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Abstract. Let S be a finite generating set of a torsion-free, nilpo-
tent group G. We show that every automorphism of the Cayley graph
Cay(G;S) is affine. (That is, every automorphism of the graph is ob-
tained by composing a group automorphism with multiplication by an
element of the group.) More generally, we show that if Cay(G1;S1) and
Cay(G2;S2) are connected Cayley graphs of finite valency on two nilpo-
tent groups G1 and G2, then every isomorphism from Cay(G1;S1) to
Cay(G2;S2) factors through to a well-defined affine map from G1/N1

to G2/N2, where Ni is the torsion subgroup of Gi. For the special case
where the groups are abelian, these results were previously proved by
A. A. Ryabchenko and C. Löh, respectively.
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1. Introduction

Definition 1.1 ([7, §1]). Let S be a subset of a group G.
• S is symmetric if it is closed under inverses; that is, s−1 ∈ S for all
s ∈ S.
• If S is symmetric, then the corresponding Cayley graph on G is the

graph Cay(G;S) whose vertices are the elements of G, and with an
edge g gs, for all g ∈ g and s ∈ S.

It is easy to construct examples of non-isomorphic groups that have iso-
morphic Cayley graphs, even if the Cayley graphs are required to be con-
nected and have finite valency. (For example, see Remark 1.15(4) below.)
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We show that this is not possible when the groups are torsion-free and nilpo-
tent:

Theorem 1.2. Suppose G1 and G2 are torsion-free, nilpotent groups. If
G1 has a connected Cayley graph of finite valency that is isomorphic to a
Cayley graph on G2, then G1

∼= G2.

In fact, the next theorem establishes the stronger conclusion that every
isomorphism of the Cayley graphs is obtained from an isomorphism of the
groups.

Definition 1.3. Suppose ϕ : G1 → G2, where G1 and G2 are groups. We say
that ϕ is an affine bijection if it is the composition of a group isomorphism
and a translation. That is, there exist a group isomorphism α : G1 → G2

and h ∈ G2, such that ϕ(x) = h · α(x), for all x ∈ G1.

Theorem 1.4. Assume
• G1 and G2 are torsion-free, nilpotent groups, and
• Si is a finite, symmetric generating set of Gi, for i = 1, 2.

Then every isomorphism from Cay(G1;S1) to Cay(G2;S2) is an affine bi-
jection.

Remark 1.5. In the special case where G1 and G2 are abelian, Theorem 1.4
was proved by A. A. Ryabchenko [12].

Definition 1.6. [7, §6.4] Let G be a group. A Cayley graph Cay(G;S) is
said to be normal if the left-regular representation of G is a normal subgroup
of Aut

(
Cay(G;S)

)
or, equivalently [2, Lem. 2.2(b)], if every automorphism

of Cay(G;S) is an affine bijection.

Remark 1.7. It is easy to see that the left-regular representation of G
is a subgroup of the automorphism group of every Cayley graph on G.
Definition 1.6 requires this subgroup to be normal.

With this terminology, the special case of Theorem 1.4 in which G1 = G2

has the following known result as an immediate consequence.

Corollary 1.8 (Möller-Seifter [9, Thm. 4.1(1)]). If G is a torsion-free, nilpo-
tent group, then every connected Cayley graph of finite valency on G is nor-
mal.

In the statement of Theorem 1.4, the word “nilpotent” cannot be replaced
with “solvable” (or even “polycyclic”):

Example 1.9. Let G be the unique nonabelian semidirect product of the
form Z o Z. More precisely,

G = 〈 a, b | b−1ab = a−1 〉 = 〈a〉o 〈b〉.
(In other words, G is the fundamental group of the Klein bottle.) Then
G is obviously polycyclic (so it is solvable), but it is not difficult to see that
Cay

(
G; {a±1, b±1}

)
is not normal. (Namely, the map ϕ(aibj) = biaj is a

graph automorphism that is not an affine bijection.)
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We will also show that if G is not torsion-free, then the conclusion of
Corollary 1.8 fails:

Proposition 1.10. Let G be a finitely generated, infinite group. If G is not
torsion-free, then G has a connected Cayley graph of finite valency that is
not normal.

However, the next theorem shows that if the torsion-free hypothesis is
removed from Theorem 1.4, then the conclusion still holds modulo the ele-
ments of finite order.

Definition 1.11 ([6, 1.2.13, p. 11]). Suppose G is a finitely generated,
nilpotent group. The set of all elements of finite order in G is called the
torsion subgroup of G. (This is a finite, normal subgroup of G.)

Theorem 1.12. Assume
• Si is a symmetric, finite generating set of the nilpotent group Gi, for
i = 1, 2,
• ϕ is an isomorphism from Cay(G1;S1) to Cay(G2;S2), and
• Ni is the torsion subgroup of Gi, for i = 1, 2.

Then ϕ induces a well-defined affine bijection ϕ : G1/N1 → G2/N2.

Corollary 1.13. For i = 1, 2, assume Ni is the torsion subgroup of the
finitely generated, nilpotent group Gi. Then there is a connected Cayley
graph of finite valency on G1 that is isomorphic to a Cayley graph on G2 if
and only if G1/N1

∼= G2/N2 and |N1| = |N2|.

Corollary 1.14. If Cay(G;S) is any connected Cayley graph of finite va-
lency on a torsion-free, nilpotent group G, then the left-regular representa-
tion of G is the only nilpotent subgroup of Aut

(
Cay(G;S)

)
that acts sharply

transitively on the vertices of the Cayley graph.

Remarks 1.15.
(1) In the special case where G1 and G2 are abelian, Theorem 1.12

and Corollary 1.13 were proved by C. Löh [8].
(2) Theorem 1.4 is the special case of Theorem 1.12 in which the torsion

subgroups N1 and N2 are trivial.
(3) Although Theorems 1.4 and 1.12 are stated only for graphs, they

obviously remain true in the setting of Cayley digraphs. This is
because any isomorphism of digraphs is also an isomorphism of the
underlying graphs.

(4) Some non-nilpotent groups have some connected Cayley graphs of
finite valency that are isomorphic to Cayley graphs on nilpotent
groups—or even abelian groups. (For example, the Cayley graph in
Example 1.9 is isomorphic to Cay

(
Z × Z, {(±1, 0), (0,±1)}

)
.) The-

orem 1.12 implies that any such group must have a subgroup of
finite index that is nilpotent (see Corollary 4.4), but this fact is well
known to be a consequence of Gromov’s famous theorem that groups



4 DAVE WITTE MORRIS, JOY MORRIS AND GABRIEL VERRET

of polynomial growth are virtually nilpotent [3]. Indeed, in order to
conclude from Gromov’s Theorem that G has a nilpotent subgroup of
finite index, it suffices to know that G has a connected Cayley graph
of finite valency that is quasi-isometric (not necessarily isomorphic)
to a Cayley graph on a nilpotent group.

Theorem 1.4 is proved in Section 3, and this result is used to prove The-
orem 1.12 (and its corollaries) in Section 4. (The arguments are based on
techniques of A. A. Ryabchenko [12] and C. Löh [8].) Proposition 1.10 is
proved in Section 5.

Acknowledgments. This work was partially supported by Australian Re-
search Council grant DE130101001 and a research grant from the Natural
Sciences and Engineering Research Council of Canada. We thank an anony-
mous referee for helpful comments.

2. Preliminaries

The following result is the special case of Theorem 1.4 in which G1 and G2

are abelian. (Although not stated in exactly this form in [12], the result fol-
lows from the proof that is given there and is reproduced in [10, Thm. 5.3]).
This case is not covered by the proof in Section 3.

Proposition 2.1 (Ryabchenko [12, Thm. 2]). Assume
• G1 and G2 are torsion-free, abelian groups,
• Si is a symmetric, finite generating set of Gi, for i = 1, 2, and
• ϕ is an isomorphism from Cay(G1;S1) to Cay(G2;S2).

Then ϕ is an affine bijection.

As in [8], we use geometric terminology, such as geodesics and convexity,
instead of presenting our arguments in group-theoretic language.

Definition 2.2. Let S be a symmetric, finite generating set of a group G.
• For g, h ∈ G, the distance from g to h in the Cayley graph Cay(G;S)

is denoted distS(g, h).
• A finite sequence [gi]

n
i=m of elements of G is a geodesic segment

from gm to gn in Cay(G;S) if distS(gi, gj) = |i− j| for m ≤ i, j ≤ n.
• A bi-infinite sequence [gi]

∞
i=−∞ of elements of G is a geodesic line in

Cay(G;S) if distS(gi, gj) = |i− j| for all i, j ∈ Z.
• A geodesic line [gi]

∞
i=−∞ in Cay(G;S) is convex if [gi, gi+1, . . . , gj ]

is the only path of length j − i from gi to gj , for all i, j ∈ Z (with
i < j).
• A geodesic line [gi]

∞
i=−∞ in Cay(G;S) is homogeneous if there exists

ϕ ∈ Aut
(
Cay(G;S)

)
, such that ϕ(gi) = gi+1 for all i.

• Aute
(
Cay(G;S)

)
=
{
ϕ ∈ Aut

(
Cay(G;S)

) ∣∣ ϕ(e) = e
}

.
• Each oriented edge of Cay(G;S) has a natural label, which is an ele-

ment of S. Namely, each edge of the form g gs is labelled s. (Note
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that the same edge with the opposite orientation is labelled s−1.)
Each edge in a geodesic segment (or geodesic line) comes with a
natural orientation, and therefore has a label.

Lemma 2.3. For i = 1, 2, assume
• Si is a symmetric, finite generating set of a group Gi,
• ϕi is an isomorphism from Cay(G1;S1) to Cay(G2;S2), such that
ϕi(e) = e,
• gi ∈ Gi,
• S∗i =

{
ρ(gi)

∣∣ ρ ∈ Aute
(
Cay(Gi;Si)

) }
, and

• G∗i = 〈S∗i 〉.
If ϕ1(g1) = g2, then the restriction of ϕ2 to G∗1 is an isomorphism from
Cay

(
G∗1;S∗1 ∪ (S∗1)−1

)
to Cay

(
G∗2;S∗2 ∪ (S∗2)−1

)
.

Proof. For i = 1, 2, let Ai = Aut
(
Cay(Gi;Si)

)
, Ae

i = Aute
(
Cay(Gi;Si)

)
,

and Γi = Cay
(
Gi;S

∗
i ∪ (S∗i )−1

)
. For ρ ∈ Ai and g ∈ Gi, define ρg ∈ Ae

i by

ρg(x) = ρ(g)−1 ρ(gx). Then, since S∗i is Ae
i -invariant, we have

ρ(gS∗i ) = ρ(g) ρg(S∗i ) = ρ(g)S∗i ,

so ρ is an automorphism of Γi. Since Ae
i is transitive on S∗i , and the left-

regular representation of Gi is transitive on Gi, this implies that the set of
edges of Γi is the Ai-orbit of the edge e gi.

Since ϕ1 is a graph isomorphism, it maps the A1-orbit of g1 to the A2-
orbit of ϕ1(g1) = g2. So ϕ1 is an isomorphism from Γ1 to Γ2. Since the
composition ϕ2 ◦ ϕ−1

1 is in A2, and is therefore an automorphism of Γ2,
we conclude that ϕ2 is an isomorphism from Γ1 to Γ2. Since the graph
Cay

(
G∗i ;S

∗
i ∪ (S∗i )−1

)
is the component of Γi that contains e, and ϕ2(e) = e,

the desired conclusion follows. �

Lemma 2.4 ([8, Prop. 2.5(3)]). Let s ∈ S be the label of some edge of
a convex geodesic line in Cay(G;S). If s ∈ Z(G), then every edge of the
geodesic line is labelled s.

Proof. Suppose gi gi+1 is labelled s. Let t be the label of gi+1 gi+2.
Then gi+2 = gist = (git)s, so [gi, git, gi+2] is a path of length 2 from gi
to gi+2. Therefore, convexity implies [gi, git, gi+2] = [gi, gi+1, gi+2], so git =
gi+1 = gis, so t = s. This means the label of gi+1 gi+2 is s. By induction,
we see that every edge is labelled s. �

In the remainder of this section, we recall some basic facts about nilpotent
groups.

Definition 2.5 ([6, p. 38] or [1, Notn. 3.4]). For a subgroup H of a group G,
we let √

H = { g ∈ G | gk ∈ H for some k ∈ Z+ }.
This is called the isolator of H in G.



6 DAVE WITTE MORRIS, JOY MORRIS AND GABRIEL VERRET

Any finitely generated, abelian group A is isomorphic to Zr×F , for some
r ∈ Z≥0 and finite, abelian group F . The number r is called the rank of A,
and is denoted rankA. The following definition generalizes this notion from
abelian groups to nilpotent groups.

Definition 2.6 ([6, 1.3.3 and p. 85 (1)]). Assume G is a nilpotent group.
Then G is solvable, which means there is a series

{e} = G0 / G1 / · · · / Gr−1 / Gr = G,

of subgroups of G, such that each quotient Gi/Gi−1 is abelian. If G is
finitely generated, then the Hirsch rank of G is the sum of the ranks of
these (finitely generated) abelian groups. That is,

rankG =
r∑

i=1

rank(Gi/Gi−1).

It is not difficult to see that this is independent of the choice of the subgroups
G1, . . . , Gr−1.

Lemma 2.7. Assume G is a finitely generated, nilpotent group, and H is a
subgroup of G. Then:

(1) [6, 1.2.16, p. 11] H is finitely generated.

(2) [6, 2.3.1(ii), p. 39]
√
H is a subgroup of G that contains H, and∣∣√H : H

∣∣ <∞.

(3) If N E G, then
√
N E G and G/

√
N is torsion-free.

(4) [6, 2.3.8(ii), p. 42] If G is torsion-free, then
√
Z(G) = Z(G).

(5) [6, 2.3.9(iv), p. 43]
[√
H,
√
H
]
⊆
√

[H,H].
(6) If N is a normal subgroup of G, then rankG = rankN+rank(G/N).

Therefore, rank(G/N) ≤ rankG, with equality if and only if N is
finite.

(7) (cf. [4, Lem. 2.6, p. 9]) We have rankH ≤ rankG, with equality if
and only if |G : H| <∞.

(8) [11, 5.2.1, p. 129] If N is a nontrivial normal subgroup of G, then
N ∩ Z(G) is nontrivial.

Remark 2.8. Lemma 2.7(5) corrects a typographical error. It is stated
in [6, 2.3.9(iv), p. 43] that equality holds, but a counterexample to this is
provided by any finite-index subgroup G of the discrete Heisenberg group,
such that [G,G] is a proper subgroup of Z(G): letting H = G, we have[√

G,
√
G
]

= [G,G] 6= Z(G) =
√

[G,G].

Lemma 2.9. Assume S is a symmetric, finite generating set of a finitely
generated, nilpotent group G. Then:

(1) (cf. [6, 2.3.8(i), p. 42]) If G is torsion-free, then the elements of Z(G)
are the only elements of G that have only finitely many conjugates.
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(2) (cf. [6, 2.1.2, p. 30]) Assume G is torsion-free, and a, b, g ∈ G. If

sup
k∈Z+

distS(ak, gbk) <∞,

then b = g−1ag.
(3) [1, Lem. 3.5(i,iii)] For g ∈ G, we have g ∈

√
[G,G] if and only if

distS(e, gk)/k → 0 as k →∞.

Proof. (1) In the terminology of [6, first paragraph of §2.3, p. 38], to say
that a subgroup H of G is isolated means that if gk ∈ H for some nonzero k ∈
Z, then g ∈ H. (More generally, the notion of π-isolated is defined for every
set π of prime numbers, and the above definition is the special case where
π is the set of all prime numbers.) Since G is torsion-free and nilpotent, [6,
2.3.8(i), p. 42] tells us that CG(H) is isolated, for every subgroup H of G.

Now, suppose h is an element of G that has only finitely many conjugates.
This means CG(h) is a finite-index subgroup of G, so there is some nonzero
k ∈ Z, such that gk ∈ CG(h) for all g ∈ G. From the preceding paragraph,
we conclude that g ∈ CG(h). Since this is true for all g ∈ G, this means
h ∈ Z(G).

(2) Since distS(ak, gbk) is bounded as a function of k, we know that

{ a−kgbk | k ∈ Z } is finite.

Hence, there exist k 6= `, such that a−kgbk = a−`g b`, so, letting m =
`− k 6= 0, we have g−1amg = bm. In other words, (g−1ag)m = bm. Since G
is torsion-free nilpotent, this implies g−1ag = b [6, 2.1.2, p. 30].

(3) The paper [1] uses the following notation:

‖x‖ = distS(e, x) [1, Defns. 2.2 and 2.3]

τ(x) = lim
n→∞

‖xn‖/n [1, Lem. 2.43(i)]

I(G) = { g ∈ G | τ(g) = 0 } [1, Defn. 2.5]

B(G) = { g ∈ G | τ(gx) = τ(x), ∀x ∈ G } [1, Defn. 3.1]

G′ = [G,G] [1, Notn. 3.2(ii)]

In this notation, we have

distS(e, gk)/k → 0⇔ ‖gk‖/k → 0⇔ τ(g) = 0⇔ g ∈ I(G).

Therefore, the desired conclusion is immediate from [1, Lem. 3.5(i,iii)], which
states that, since G is nilpotent (with finite generating set S), we have

I(G) = B(G) =
√
G′. �

Definition 2.10. A group G is bi-orderable if it is has a total order ≺ that
is invariant under both left-translations and right-translations. (That is,
x ≺ y ⇒ axb ≺ ayb for all x, y, a, b ∈ G.)

Lemma 2.11 ([5, Cor. 3.3.2, p. 57]). Every torsion-free, nilpotent group is
bi-orderable.
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Lemma 2.12 (cf. [12, 1st paragraph of §4] or [8, Prop. 2.9(1)]). If S is a
finite generating set of a nontrivial, bi-orderable group G, then there exists
s ∈ S, such that [si]∞i=−∞ is a convex geodesic line in Cay(G;S ∪ S−1).

Proof. Let ≺ be a total order on G that is invariant under both left-
translations and right-translations. Since the set S ∪ S−1 is finite, it has
a maximal element s under this order. We may assume s ∈ S, by replacing
≺ with the order ≺′ defined by x ≺′ y ⇔ x−1 ≺ y−1, if necessary.

For a, b, c, d ∈ G with a � b and c � d, the invariance under translations
implies that ac � bd (and equality holds iff a = b and c = d). By induction
on k, we conclude that s1s2 · · · sk � sk for all s1, s2, . . . , sk ∈ S ∪ S−1, and
that equality holds iff s1 = s2 = · · · = sk = s. This implies that [si]∞i=−∞ is
a convex geodesic line. �

3. Torsion-free nilpotent groups

In this section, we prove Theorem 1.4. Let ϕ be an isomorphism from
Cay(G1;S1) to Cay(G2;S2). By composing with a left translation, we may
assume ϕ(e) = e. (Under this assumption, we will show that ϕ is a group
homomorphism. Since ϕ is bijective, it must then be a group isomorphism.)
The proof is by induction on rankG1 + rankG2.

Notation. Let Z†i = Z(Gi) ∩
√

[Gi, Gi] for i = 1, 2.

Step 1. For every g ∈ G1 and z ∈ Z†1, there exists σg(z) ∈ G2, such that

ϕ(gzk) = ϕ(g)σg(z)k for all k ∈ Z.

Proof. By composing with left translations in G1 and G2, we may assume
g = e. Define S∗1 , S∗2 , G∗1, and G∗2 as in Lemma 2.3, with g1 = z and
g2 = ϕ(z). Combining Lemmas 2.11 and 2.12 yields s ∈ S∗2 , such that

[si]∞i=−∞ is a convex geodesic line in Cay
(
G∗2;S∗2 ∪ (S∗2)−1

)
.

We see from the definition of S∗2 that there is an isomorphism ψ from
Cay(G1;S1) to Cay(G2;S2), such that ψ(e) = e and ψ(z) = s. Since
Lemma 2.3 implies ψ restricts to an isomorphism from Cay

(
G∗1;S∗1∪(S∗1)−1

)
to Cay

(
G∗2;S∗2 ∪ (S∗2)−1

)
, we know that ψ−1

(
[si]∞i=−∞

)
is a convex geodesic

line in Cay
(
G∗1;S∗1 ∪ (S∗1)−1

)
. From the choice of ψ, this geodesic line con-

tains the edge e z, so Lemma 2.4 tells us that this geodesic line must be
[zi]∞i=−∞. This means distS∗1 (zi, zj) = |i − j| for all i, j ∈ Z. We conclude

from Lemma 2.9(3) that z /∈
√

[G∗1, G
∗
1].

On the other hand, since z ∈ Z†1, we know that z ∈
√

[G1, G1]. There-

fore
√

[G∗1, G
∗
1] 6=

√
[G1, G1]. This implies that [G∗1, G

∗
1] has infinite index

in [G1, G1] (cf. Lemma 2.7(2)), so G∗1 must have infinite index in G1 (cf.
Lemma 2.7(5)). Therefore, rankG∗1 + rankG∗2 < rankG1 + rankG2 (see
Lemma 2.7(7)), so our induction hypothesis tells us that the restriction of ϕ
to G∗1 is a group isomorphism onto G∗2. Hence, ϕ(zk) = ϕ(z)k for all k, so
we may let σg(z) = ϕ(z). �
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Step 2. We have ϕ(xZ†1) = ϕ(x)Z†2, for all x ∈ G1.

Proof. By composing with left translations in G1 and G2, we may as-
sume x = e. Then, since ϕ−1 is also an isomorphism, it suffices to show

ϕ(Z†1
)
⊆ Z†2. Fix z ∈ Z†1. For all k ∈ Z, we have distS1(zk, gzk) =

distS1(e, g) (because z ∈ Z(G1)). Since ϕ is a graph isomorphism, this
implies distS2

(
ϕ(z)k, ϕ(g)σg(z)k

)
does not depend on k. So Lemma 2.9(2)

tells us that ϕ(g)−1ϕ(z)ϕ(g) = σg(z). From the definition of σg(z), we see
that distS

(
e, σg(z)

)
= distS(e, z), so this implies that ϕ(g)−1ϕ(z)ϕ(g) is in

a ball of fixed radius, independent of g. Since ϕ(g) is an arbitrary element
of G2, we conclude that ϕ(z) has only finitely many conjugates. Since G2 is
torsion-free nilpotent, this implies ϕ(z) ∈ Z(G2) (see Lemma 2.9(1)).

Also, we see from Lemma 2.9(3) that ϕ
(√

[G1, G1]
)

=
√

[G2, G2] (since

ϕ is a graph isomorphism). Therefore ϕ(z) ∈
√

[G2, G2]. So ϕ(z) ∈ Z†2. �

Step 3. Completion of the proof of Theorem 1.4.

Proof. We claim that we may assume Cay(Z†1;S1 ∩ Z†1) is connected. For
a graph Γ and r ∈ Z+, the rth power of Γ is the graph Γr with the same
vertex set as Γ, and with an edge from u to v iff distΓ(u, v) ≤ r. It is clear
that:

• Any isomorphism from Γ1 to Γ2 is also an isomorphism from Γr
1

to Γr
2.

• Cay(G;S)r = Cay
(
G;S≤r

)
, where S≤r is the set of all elements of G

that can be written as a product of ≤ r elements of S.

We know that Z†1 has a finite generating set (see Lemma 2.7(1)). For any

sufficiently large r, this finite set is contained in S≤r1 . Since ϕ is an isomor-

phism from Cay
(
G1;S≤r1

)
to Cay

(
G2;S≤r2

)
, there is no harm in replacing

S1 and S2 with S≤r1 and S≤r2 . This completes the proof of the claim.
For i = 1, 2, we have√

Z†i =

√
Z(Gi) ∩

√
[Gi, Gi] (definition of Z†i )

=
√
Z(Gi) ∩

√√
[Gi, Gi] (

√
H ∩K =

√
H ∩

√
K)

= Z(Gi) ∩
√

[Gi, Gi] (Lemma 2.7(4) and

√√
H =

√
H)

= Z†i (definition of Z†i ),

so G/Z†i is torsion-free.

Let Gi = Gi/Z
†
i for i = 1, 2. From Step 2, we know that ϕ induces a well-

defined isomorphism ϕ from Cay(G1;S1) to Cay(G2;S2). We may assume
that G1 and G2 are not both abelian (otherwise, Ryabchenko’s Theorem
(2.1) applies), so either [G1, G1] or [G2, G2] is nontrivial. This implies that

either Z†1 or Z†2 is nontrivial (see Lemma 2.7(8)), and therefore infinite (since

G1 and G2 are torsion-free). Hence, we have rankG1 +rankG2 < rankG1 +
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rankG2 (see Lemma 2.7(6)), so, by induction on rankG1 + rankG2, we may
assume that ϕ is a group isomorphism from G1 to G2.

For each g ∈ G1 and z ∈ Z†1, we have

distS2

(
σe(z)

k, ϕ(g)σg(z)k
)

= distS2

(
ϕ(zk), ϕ(gzk)

)
= distS1(zk, gzk)

= distS1(e, g),

since z ∈ Z(G1). Then, from Lemma 2.9(2) (and the fact that Step 2

tells us that σe(z) is in Z†2 and therefore commutes with ϕ(g)), we see that
σg(z) = σe(z). This means σg(z) is independent of g (so we may drop the
subscript).

Fix some g ∈ G1 and s ∈ S1. We have ϕ(gs) = ϕ(g)ϕ(s)σ(z), for some

z ∈ Z†1 (because ϕ is a homomorphism and the surjectivity in Step 2 tells

us σ(Z†1) = Z†2). Consider any k ≥ 0 with szk ∈ S1. Then

ϕ(gszk) = ϕ(gs)σ(z)k = ϕ(g)ϕ(s)σ(z)σ(z)k = ϕ(g)ϕ(szk+1).

Since ϕ is a graph homomorphism and, by assumption, szk ∈ S1, we must
have ϕ(szk+1) ∈ S2. So szk+1 ∈ S1. By induction (with k = 0 as the base
case), we conclude that szk ∈ S1 for all k ∈ Z+. Since S1 is finite (and
G1 is torsion-free), this implies z = e. So ϕ(gs) = ϕ(g)ϕ(s). Since g is
an arbitrary element of G1 and s is an arbitrary element of the generating
set S1, this implies that ϕ is a group homomorphism. �

4. Nilpotent groups that may have torsion

Proposition 4.1. Assume
• S is a finite generating set of the group G, and
• N is a finite, normal subgroup of G, such that G/N is bi-orderable.

Then every automorphism of Cay(G;S) induces a well-defined automor-
phism of Cay(G/N ;S).

Proof. Assume, without loss of generality, that N ⊆ S (by passing to a
power of Cay(G;S)), and let

N∗ = {ϕ(n) | ϕ ∈ Aute
(
Cay(G;S)

)
, n ∈ N }.

It is important to note that, since N is contained in a ball of finite radius
centred at e, and N∗ must be contained in that same ball, the set N∗ is
finite. We wish to show N∗ ⊆ N .

We claim that there is no harm in assuming 〈N∗〉 = G. To this end,
let ϕ be an automorphism of Cay(G;S) that fixes e. Since N∗ is obviously
invariant under Aute

(
Cay(G;S)

)
, we know that ϕ restricts to an automor-

phism ϕ∗ of Cay(〈N∗〉;N∗). Also, it is clear from the definition of N∗ that
N is contained in N∗ (and 〈N∗〉/N is bi-orderable, because it is a subgroup
of G/N). Therefore, if we know the proposition is true for 〈N∗〉, then ϕ∗(N)
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is contained in N . Since ϕ∗(N) = ϕ(N), this means that ϕ(N) is contained
in N . This completes the proof of the claim.

Let G = G/N , and let N∗ = {gN | g ∈ N∗}. We wish to show G
is trivial. Suppose not. (This will lead to a contradiction.) Since, by
assumption, G is bi-orderable, Lemma 2.12 provides g ∈ N∗, such that
[gi]∞i=−∞ is a geodesic line in Cay(G;N∗). Then, since the natural map

Cay(G;N∗)→ Cay(G;N∗) decreases distances, it is clear that γ = [gi]∞i=−∞
is a geodesic line in Cay(G;N∗). By the definition of N∗, there exists ϕ ∈
Aute

(
Cay(G;S)

)
, such that ϕ(g) ∈ N . Then ϕ(γ) is a geodesic line that

contains the edge e n for some n ∈ N .
To obtain the contradiction that completes the proof, we use an argument

of C. Löh [8, first paragraph of page 105]. Write ϕ(γ) = [hi]
∞
i=−∞. For

each k ∈ N, let #(k) be the number of geodesic segments from hi to hi+k.
(Since γ = [gi]∞i=−∞ is obviously homogeneous, we know that ϕ(γ) is also
homogeneous, so #(k) is independent of the choice of i.) We may assume
h0 = e (so h1 = n). Since N is a finite normal subgroup of G, it is easy
to see that no geodesic segment can contain two edges that are labelled by
elements of N . (Namely, if (n, s1, . . . , sk, n

′) is a path in Cay(G;N), then
there exists n′′ ∈ N1, such that n′′s1 · · · sk = ns1 · · · skn′, so (n′′, s1, . . . , sk)
is a shorter path with the same endpoints.) Hence, for all k > 1, no geodesic
segment from h1 to hk has any edges that are labelled by elements of N .
(Otherwise, concatenating (n) at the start would yield a geodesic segment
from h0 to hk with more than one edge labelled by elements of N .)

For any geodesic segment γ′ = (s1, . . . , sk) from h1 to hk+1, we can con-
struct k + 1 different geodesic segments γ1, . . . , γk+1 from h0 to hk+1, by
inserting a single edge labelled by an element of N , as follows:

γi = (s1, s2, . . . , si−1, ni, si, . . . , sk),

where ni ∈ N is chosen so that ns1s2 · · · si−1 = s1s2 · · · si−1ni. (This is
possible because the subgroup N is normal.) This implies #(k + 1) ≥
(k + 1) · #(k), for all k. Therefore #(k) ≥ k! . However, it is clear that
#(k) ≤ |S|k, so this contradicts the fact that factorials grow faster than
exponentials. �

Combining this proposition with Theorem 1.4 yields the following slight
generalization of Theorem 1.12 that allows G1 and G2 to be slightly non-
nilpotent:

Theorem 4.2. Assume
• Si is a symmetric, finite generating set of the group Gi, for i = 1, 2,
• Ni is a finite, normal subgroup of Gi, such that Gi/Ni is torsion-free

nilpotent, for i = 1, 2, and
• ϕ is an isomorphism from Cay(G1;S1) to Cay(G2;S2).

Then ϕ induces a well-defined affine bijection ϕ : G1/N1 → G2/N2.
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Proof. By using ϕ to identify Cay(G1;S1) with Cay(G2;S2), we can realize
G2 as a sharply transitive subgroup G′2 of Aut

(
Cay(G1;S1)

)
. (Namely, for

h ∈ G2, define h′(x) = ϕ−1
(
hϕ(x)

)
.)

For any g ∈ G1 and n ∈ N1, there exists h ∈ G2, such that ϕ(gn) = hϕ(g).
This means h′g = gn ∈ gN1. From Proposition 4.1 (and Lemma 2.11),
we know that G′2 factors through to a well-defined group of permutations
on G1/N1, so this implies h′(gN1) = gN1. Since gN1 is finite (and G′2
is sharply transitive), we conclude that h′ has finite order, so h′ is in the
torsion subgroup N ′2 of G′2. This means h ∈ N2, so ϕ(gn) = hϕ(g) ∈
N2 ϕ(g). Therefore ϕ(gN1) ⊆ N2 ϕ(g). So ϕ induces a well-defined function
ϕ : G1/N1 → G2/N2. �

Definition 4.3 ([7, p. 305]). The wreath product (or lexicographic product)
of two graphs X1 = (V1, E1) and X2 = (V2, E2) is the graph X1[X2] with
vertex set V1 × V2, such that (v1, v2) is adjacent to (v′1, v

′
2) if and only if

either
• v1 is adjacent to v′1 in X1, or
• v1 = v′1 and v2 is adjacent to v′2 in X2.

Proof of Corollary 1.13. (⇒) Let S1 and S2 be finite, symmetric gener-
ating sets of G1 and G2, respectively, such that there is an isomorphism ϕ
from Cay(G1;S1) to Cay(G2;S2). From Theorem 1.12, we know that ϕ
induces a well-defined affine bijection ϕ : G1/N1 → G2/N2. By composing
with a left-translation, we may assume ϕ is a group isomorphism. Obvi-
ously, this implies G1/N1

∼= G2/N2. Also, since ϕ is a well-defined bijection,
we must have ϕ(N1) = N2. Since ϕ is a bijection, this implies |N1| = |N2|.

(⇐) Let
• ϕ be an isomorphism from G1/N1 to G2/N2,
• S1 be a finite generating set of G1/N1, with e /∈ S1,
• S2 = ϕ(S1) be the corresponding generating set of G2/N2, and
• Si = { s ∈ Gi | sNi ∈ Si }, for i = 1, 2.

Let n = |N1| = |N2|, and let En be the edgeless graph on n vertices.
Then, for i = 1, 2, it is easy to see that Cay(Gi;Si) is isomorphic to the
wreath product Cay

(
Gi/Ni;Si

)
[En]. Since it is obvious that ϕ is an isomor-

phism from Cay
(
G1/N1;S1

)
to Cay

(
G1/N2;S2

)
, we have Cay(G1;S1) ∼=

Cay(G2;S2). �

Proof of Corollary 1.14. Let H be a sharply transitive, nilpotent sub-
group of Aut

(
Cay(G;S)

)
. A well-known observation of G. Sabidussi [13,

Thm. 2] tells us that a graph Γ is isomorphic to a Cayley graph on G if
and only if Aut Γ contains a sharply transitive subgroup that is isomorphic
to G. So Cay(G;S) is isomorphic to a Cayley graph on H. Therefore, if
we let N be the torsion subgroup of H, then we see from Corollary 1.13
that G/{e} ∼= H/N and |{e}| = |N | (because the torsion subgroup of G is
trivial). So G ∼= H.
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From Theorem 1.4, we see that if S′ is any symmetric, finite subset of G,
such that Cay(G;S′) ∼= Cay(G;S), then there is a group automorphism α
of G with α(S) = S′. Therefore, since H is a sharply transitive subgroup of
Aut

(
Cay(G;S)

)
that is isomorphic to G, a well-known theorem of L. Babai

tells us that H is conjugate in Aut
(
Cay(G;S)

)
to the left-regular represen-

tation of G [7, Thm. 4.1]. However, Corollary 1.8 states that the left-regular
representation has no other conjugates in Aut

(
Cay(G;S)

)
, so we conclude

that H is equal to the left-regular representation of G. �

As was mentioned in Remark 1.15(4), the following consequence of The-
orem 1.12 is already known (as a corollary of Gromov’s Theorem on groups
of polynomial growth).

Corollary 4.4. Assume
• Si is a finite, symmetric generating set of a group Gi, for i = 1, 2,

and
• Cay(G1;S1) is isomorphic to Cay(G2;S2).

If G1 is nilpotent, then G2 has a nilpotent subgroup of finite index.

Proof. We know that G2 is isomorphic to a group G′2 of automorphisms
of Cay(G1;S1) (see the first paragraph of the proof of Theorem 4.2). Let
N1 be the torsion subgroup of G1, and let N ′2 = { g ∈ G′2 | g(e) ∈ N1 }.
Then Theorem 1.12 implies that G′2/N

′
2 is isomorphic to a subgroup of

Aut
(
Cay(G1/N1;S1)

)
. Since Theorem 1.4 implies that the left-regular rep-

resentation of the nilpotent group G1/N1 has finite index in this automor-
phism group, we conclude that G′2/N

′
2 has a nilpotent subgroup G′′2/N

′
2 of

finite index. Then CG′′2
(N ′2) is a nilpotent subgroup of finite index in G′2. �

5. Other groups that have torsion

In this section, we prove Proposition 1.10. In fact, we prove a more
specific version of Proposition 1.10:

Proposition 5.1. Suppose F is a nontrivial, finite subgroup of a group G,
and S is any finite, symmetric generating set for G. Then Cay(G;FSF ) is
a connected Cayley graph of finite valency that is not normal.

Proof. We begin by verifying that FSF is a symmetric, finite generating
set of G, so Cay(G;FSF ) is a connected Cayley graph of finite valency. To
this end, note that (FSF )−1 = F−1S−1F−1 = FSF (since F and S are
symmetric), so FSF is symmetric. Also, it is clear that FSF is finite, since
F and S are both finite. Finally, since e ∈ F (because F is a subgroup), we
have S = e · S · e ⊆ FSF , so FSF generates G.

To complete the proof, we show that Cay(G;FSF ) is not normal. For all
g ∈ G, it is straightforward to check that all vertices in the coset gF have the
same neighbours. Therefore, if we choose some h ∈ gF (with h 6= g), then
there is an automorphism ϕ of Cay(G;FSF ) that interchanges g and h,
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but fixes all other vertices of the Cayley graph. Since G is infinite, but
FSF is finite, we may assume g has been chosen so that gF is disjoint from
FSF ∪ {e}. Then ϕ fixes e, but is obviously not a group automorphism,
since it fixes every element of the generating set FSF , and is not the identity
map (since it moves g to h). So ϕ is not an affine bijection. �
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