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Abstract

We show that a quotient group of a CI-group with respect to (di)graphs is a CI-group with
respect to (di)graphs.

In [1,2], Babai and Frankl provided strong constraints on which finite groups could be CI-groups

with respect to graphs. As a tool in this program, they proved [1, Lemma 3.5] that a quotient group

G/N of a CI-group G with respect to graphs is a CI-group with respect to graphs provided that

N is characteristic in G. They were not able to prove that a quotient group of a CI-group with

respect to graphs is a CI-group with respect to graphs in the general case, and so introduced the

notion of a weak CI-group with respect to graphs in order to treat quotient groups of CI-groups. In

some sense, the program that Babai and Frankl started was completed by Li [4] when he showed

that all CI-groups are solvable. (Babai and Frankl mention in [2] a sequel to their first paper that

addressed showing all CI-groups with respect to graphs are solvable. This sequel never appeared.)

We will show that a quotient group of a CI-group with respect to (di)graphs is a CI-group with

respect to (di)graphs. This will allow for a simplification of the proofs of Babai and Frankl in [1,2]

(for example the notion of a weak CI-group with respect to graphs will no longer be needed), and

consequently, as Li’s proof in [4] was based on the earlier work of Babai and Frankl, a simplification

of the proof that a CI-group with respect to graphs is solvable.
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We remark that one could use the current list of possible CI-groups with respect to graphs [5,

Theorem 1.2] to prove that quotient groups of CI-groups with respect to graphs are CI-groups

with respect to graphs. Indeed, each group G given in [5, Theorem 1.2] has the property that

for any quotient group G/H, G contains a subgroup isomorphic to G/H. As Babai and Frankl

have shown that a subgroup of a CI-group with respect to graphs is a CI-group with respect to

graphs [1, Lemma 3.2], our main result follows. However, [5, Theorem 1.2] ultimately depends upon

the work of Babai and Frankl. As our motivation is to simply the proofs leading to [5, Theorem

1.2], a proof of our main result using [5, Theorem 1.2] defeats the purpose of this paper. We begin

with some basic definitions.

Definition 1 Let G be a group and S ⊂ G. Define a Cayley digraph of G, denoted Cay(G,S),

to be the digraph with V (Cay(G,S)) = G and E(Cay(G,S)) = {(g, gs) : g ∈ G, s ∈ S}. We call S

the connection set of Cay(G,S). If S = S−1, then Cay(G,S) is a graph.

It is straightforward to show that gL : G → G by gL(x) = gx is always an automorphism of

Cay(G,S), and so GL = {gL : g ∈ G} is a subgroup of Aut(Cay(G,S)), the automorphism group

of Cay(G,S). GL is the left regular representation of G.

Definition 2 We say that a group G is a CI-group with respect to (di)graphs if given

Cay(G,S) and Cay(G,S′), S, S′ ⊂ G, then Cay(G,S) and Cay(G,S′) are isomorphic if and only if

α(S) = S′ for some α ∈ Aut(G).

It is also straightforward to verify that α(Cay(G,S)) = Cay(G,α(S)) is a Cayley (di)graph of

G for every S ⊂ G and α ∈ Aut(G). Thus if one is testing whether or not two Cayley (di)graphs of

a group G are isomorphic, one must always check whether or not there is a group automorphism of

G that acts as an isomorphism. A CI-group with respect to (di)graphs is then a group where the

group automorphisms of G are the only maps which need to be checked to determine isomorphism.

We now state some of the definitions from permutation group theory that will be required.

Definition 3 Let G be a transitive group acting on a set X. A nonempty subset B ⊆ X is a

block of G if whenever g ∈ G, then g(B)∩B ∈ {∅, B}. If B = {x} for some x ∈ X or B = X, then

B is a trivial block. Any other block is nontrivial, and if G admits nontrivial blocks then G is

imprimitive. If G is not imprimitive, we say that G is primitive. Note that if B is a block of G,

then g(B) is also a block of B for every g ∈ G, and is called a conjugate block of B. The set of

all blocks conjugate to B, denoted B, is a partition of X, and B is called a G-invariant partition

of X.
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Definition 4 Let B be a G-invariant partition. Define fixG(B) = {g ∈ G : g(B) = B for all B ∈
B}. That is, fixG(B) is the group of permutations in G that simultaneously fixes each block of B
set-wise. If C is also a G-invariant partition and for every C ∈ C we have that C ⊂ B for some

B ∈ B, we write C � B. So C is a refinement of B.

The following result is certainly known by many readers. It and its proof are included here for

completeness.

Lemma 5 Let G and H be transitive groups and B the (G oH)-invariant partition formed by the

orbits of 1G oH. If C is a (G oH)-invariant partition, then either B � C or C � B. Consequently,

B is the only (G oH)-invariant partition with blocks whose length is the degree of H.

Proof. Let C be a (G oH)-invariant partition, and B ∈ B. Let K be the point-wise stabilizer of

every point not in B. Then K is transitive on B. Now, either B � C or not. If so, we are finished.

If not, then let C ∈ C such that C ∩B 6= ∅. Then there exists at least one element of B not in C,

and so there exists k ∈ K such that k(C) 6= C. Then k(C) ∩ C = ∅ so that k fixes no point of C.

But k fixes every point not in B, and so C ⊆ B and C � B.

We remark that many authors reverse the order of G and H in G oH, and/or refer to the wreath

product of graphs (see Definition 6 below) as the lexicographic product.

Definition 6 Let Γ1 and Γ2 be digraphs. The wreath product of Γ1 and Γ2, denoted Γ1 oΓ2 is

the digraph with vertex set V (Γ1)× V (Γ2) and edge set

{(u, v)(u, v′) : u ∈ V (Γ1) and vv′ ∈ E(Γ2)} ∪ {(u, v)(u′, v′) : uu′ ∈ E(Γ1) and v, v′ ∈ V (Γ2)}.

The following result [3, Theorem 5.7] giving the automorphism group of vertex-transitive (di)graphs

that can be written as a wreath product will be useful. In the statement, for a (di)graph Γ, Γ̄ de-

notes the complement of Γ, and for a positive integer n, Sn denotes the symmetric group on n

letters.

Theorem 7 For any finite vertex-transitive (di)graph Γ ∼= Γ1 o Γ2, if Aut(Γ) 6= Aut(Γ1) o Aut(Γ2)

then there are some natural numbers r > 1 and s > 1 and vertex-transitive (di)graphs Γ′1 and Γ′2
for which either

1. Γ1
∼= Γ′1 oKr, Γ2

∼= Ks o Γ′2 or

2. Γ1
∼= Γ′1 o K̄r and Γ2

∼= K̄s o Γ′2,
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and Aut(Γ) = Aut(Γ′1) o (Srs oAut(Γ′2)).

Theorem 8 Let G be a CI-group with respect to (di)graphs and H / G. Then G/H is a CI-group

with respect to (di)graphs.

Proof. Let ` = |H|, and Cay(G/H,S1) and Cay(G/H,S2) be isomorphic. If Cay(G/H,S1) 6=
Γ1 o K` for any (di)graph Γ1 and ` ≥ 2, then Cay(G/H,S2) 6= Γ2 o K` for any (di)graph Γ2 and

` ≥ 2. In this case, define T1 = {gh : gH ∈ S1, h ∈ H} ∪ (H − {1G}) and T2 = {gh : gH ∈ S2, h ∈
H} ∪ (H −{1G}). Then Cay(G,T1) = Cay(G/H,S1) oK` and Cay(G,T2) = Cay(G/H,S2) oK` are

isomorphic Cayley (di)graphs of G. Additionally, by Theorem 7, we have that Aut(Cay(G,T1)) =

Aut(Cay(G/H,S1)) o S` and Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) o S`. On the other hand, if

Cay(G/H,S1) = Γ1 o K` for some Γ1 and ` ≥ 2, then Cay(G/H,S2) = Γ2 o K` for some Γ2.

In this case, define T1 = {gh : gH ∈ S1, h ∈ H} and T2 = {gh : gH ∈ S2, h ∈ H}. Then

Cay(G,T1) = Cay(G/H,S1) o K̄` and Cay(G,T2) = Cay(G/H,S2) o K̄` are isomorphic Cayley

digraphs of G. As before, by Theorem 7, we have that Aut(Cay(G,T1)) = Aut(Cay(G/H,S1)) o
S` and Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) o S`. In either case, Cay(G,T1) and Cay(G,T2)

are isomorphic Cayley digraphs of G such that Aut(Cay(G,T1)) = Aut(Cay(G/H,S1)) o S` and

Aut(Cay(G,T2)) = Aut(Cay(G/H,S2)) o S`.

AsG is a CI-group with respect to (di)graphs, there exists α ∈ Aut(G) such that α(Cay(G,T1)) =

Cay(G,α(T1)) = Cay(G,T2). Since both Cay(G,T1) and Cay(G,T2) have the form Γ′1 o Γ′2 where

Γ′2 has order `, Lemma 5 tells us that there is a unique Aut(Cay(G,T1))-invariant partition with

blocks of length ` in Cay(G,T1), and a unique Aut(Cay(G,T2))-invariant partition with blocks of

length ` in Cay(G,T2), and furthermore that in each case, these block systems are formed by the

orbits of 1Aut(Cay(G/H,Si)) o S`. By inspecting the connection sets of Cay(G,T1) and Cay(G,T2), it

is clear that in both graphs these orbits are the cosets of H in G. Since α is an isomorphism from

Cay(G,T1) to Cay(G,T2), it must take the unique invariant partition with blocks of length ` in

Cay(G,T1), to the unique invariant partition with blocks of length ` in Cay(G,T2), and hence take

any coset of H to a coset of H. Since α ∈ Aut(G) it takes subgroups of G to subgroups of G, so in

particular, α(H) = H.

Now α induces an automorphism ᾱ of G/H defined by ᾱ(gH) = α(g)H. Since α(H) = H,

this is well-defined. We claim that ᾱ(Cay(G/H,S1)) = Cay(G/H, ᾱ(S1)) = Cay(G/H,S2), and

so G/H is a CI-group with respect to digraphs. To see this, suppose that gH ∈ S1. Then

ᾱ(gH) = α(g)H, and by the definition of T1, gh ∈ T1 for every h ∈ H. Since α(T1) = T2, this

means that α(gh) = α(g)α(h) ∈ T2 for every h ∈ H, and since α(H) = H, this means α(g)h ∈ T2

for every h ∈ H. By definition of T2, this means that ᾱ(gH) = α(g)H ∈ S2. Since gH was an

arbitrary element of S1, this shows that ᾱ(S1) = S2, as claimed.
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