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Classification of finite groups that admit an oriented regular
representation

Joy Morris and Pablo Spiga

To László Babai: for asking questions that keep us very entertained.

Abstract

This is the third, and last, of a series of papers dealing with oriented regular representations.
Here we complete the classification of finite groups that admit an oriented regular representation
(or ORR for short), and give a complete answer to a 1980 question of László Babai: “Which
[finite] groups admit an oriented graph as a DRR?” It is easy to see and well-understood that
generalised dihedral groups do not admit ORRs. We prove that, with 11 small exceptions (having
orders ranging from 8 to 64), every finite group that is not generalised dihedral has an ORR.

1. Introduction

All groups and graphs in this paper are finite. Let G be a group and let S be a subset
of G. The Cayley digraph, denoted by Cay(G,S), over G with connection set S is the
digraph with vertex set G and with (x, y) being an arc if yx−1 ∈ S. (An arc is an ordered
pair of adjacent vertices.) Since the group G acts faithfully as a group of automorphisms of
Cay(G,S) via the right regular representation, Cayley digraphs represent groups geometrically
and combinatorially as groups of automorphisms of digraphs. Naively, the closer G is to the
full automorphism group of Cay(G,S), the closer this representation is to a precise graphical
encoding of G.

Following this line of thought, it is natural to ask which groups G admit a subset S with
G being the automorphism group of Cay(G,S); that is, Aut(Cay(G,S)) = G. We say that G
admits a digraphical regular representation (or DRR for short) if there exists a subset S
of G with Aut(Cay(G,S)) = G. Babai [1, Theorem 2.1] has given a complete classification of
the groups admitting a DRR: except for

Q8, C
2
2 , C

3
2 , C

4
2 and C2

3 , (1.1)

every group admits a DRR.
In light of Babai’s result, it is natural to try to combinatorially represent groups as

automorphism groups of special classes of Cayley digraphs. Observe that, if S is inverse-closed
(that is, S = S−1 := {s−1 | s ∈ S}), then Cay(G,S) is undirected. Now, we say that G admits
a graphical regular representation (or GRR for short) if there exists an inverse-closed
subset S of G with Aut(Cay(G,S)) = G. With a considerable amount of work culminating
in [6, 8], the groups admitting a GRR have been completely classified. (In fact, this question
attracted significant interest well before the DRR problem, although the final solutions to both
problems appeared at about the same time.)
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We recall that a tournament is a digraph Γ := (V,A) with vertex set V and arc set A such
that, for every two distinct vertices x, y ∈ V , exactly one of (x, y) and (y, x) is in A. After the
completion of the classification of DRRs and GRRs, Babai and Imrich [2] proved that every
group of odd order except for C2

3 and C3
3 admits a tournament regular representation (or

TRR for short). That is, each finite odd-order group G different from C2
3 and C3

3 contains a
subset S with Cay(G,S) being a tournament and with Aut(Cay(G,S)) = G. In terms of the
connection set S, the Cayley digraph Cay(G,S) is a tournament if and only if S ∩ S−1 = ∅ and
G \ {1} = S ∪ S−1. This observation makes it clear that a Cayley digraph on G cannot be a
tournament if G contains an element of order 2, so only groups of odd order can admit TRRs.

In [1, Problem 2.7], Babai observed that one class of Cayley digraphs is rather interesting
and had not been investigated in the context of regular representations; that is, the class of
oriented Cayley digraphs (or as Babai called them, oriented Cayley graphs). An oriented
Cayley digraph is in some sense a “proper” Cayley digraph. More formally, it is a Cayley
digraph Cay(G,S) whose connection set S has the property that S ∩ S−1 = ∅. Equivalently,
in graph-theoretic terms, it is a Cayley digraph with no digons.

Definition 1.1. The group G admits an oriented regular representation (or ORR for
short) if there exists a subset S of G with S ∩ S−1 = ∅ and Aut(Cay(G,S)) = G.

Babai asked in [1] which (finite) groups admit an ORR. Since a TRR is a special type of
ORR, and C2

3 is one of the five groups in Eq. 1.1 that do not admit a DRR (so cannot admit
an ORR), the answer to this question for groups of odd order was already known when Babai
published his question.

In this paper, answering the question of Babai and also confirming the conjecture given
in [12, Conjecture 1.5], we prove the following result.

Theorem 1.2. Every finite group G admits an ORR, unless one of the following holds:
(i) G is generalised dihedral with |G| > 2 (see Definition 2.1 for the meaning of generalised

dihedral);
(ii) G is isomorphic to one of the following eleven groups

Q8, C4 × C2, C4 × C2
2 , C4 × C3

2 , C4 × C4
2 , C

2
3 , C3 × C3

2 ,

〈a, b | a4 = b4 = (ab)2 = (ab−1)2 = 1〉 (of order 16),

〈a, b, c | a4 = b4 = c4 = (ba)2 = (ba−1)2 = (bc)2 = (bc−1)2 = 1,

a2 = c2, ac = a−1, a2 = b2〉 (of order 16),

〈a, b, c | a4 = b4 = c4 = (ab)2 = (ab−1)2 = 1,

(ac)2 = (ac−1)2 = (bc)2 = (bc−1)2 = a2b2c2 = 1〉 (of order 32),

D4 ◦D4 (the central product of two dihedral groups of order 8,

which is the extraspecial group of order 32 of plus type).

We remark that since this theorem relies on results in the previous two papers [12, 13] and
since the results in [12] depend upon the Classification of Finite Simple Groups, this theorem
also depends on the Classification.

In our opinion this is not the final word on oriented regular representations of finite groups.
In fact, it is still unclear whether ORRs behave asymptotically like DRRs and GRRs. (It is
believed that most Cayley digraphs are DRRs and that most Cayley graphs are GRRs. One
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should be very careful about how to understand “most” in these statements and we refer the
reader to the introduction of [5] for two distinct, natural interpretations of “most”.)

We conclude this introductory section by observing that regular representations have shown
a new vitality lately. For instance, Marston Conder, Mark Watkins and Tom Tucker [4] have
been studying finite groups admitting a graphical Frobenius representation and have posed
some very intriguing conjectures in this context. All of these conjectures are in line with the
classification of groups that admit DRRs, GRRs, TRRs and now ORRs: except for some
“low level noise” (yielding a finite number of small exceptions) and any obvious obstructions,
regular representations of the desired type will exist. For DRRs, there are no obvious general
obstructions; for TRRs, groups of even order are problematic and yield the only general
obstruction; for GRRs, groups admitting automorphisms that map each element to itself or to
its inverse are problematic and yield the only general obstruction; for ORRs, groups for which
every generating set contains at least one involution (that is, generalised dihedral groups) are
problematic and (in light of Theorem 1.2) yield the only general obstruction.

Finally, we refer to [5, 11, 14, 15] for some recent work on similar problems.

2. Earlier work and preliminaries

Before moving to the proof of Theorem 1.2 we need to review the main results that have
been proved on oriented regular representations. We start with a few definitions.

Babai pointed out in [1] that generalised dihedral groups of order greater than 2 can never
admit an ORR. (Given a group element g, we denote by o(g) its order.)

Definition 2.1. Let A be an abelian group. The generalised dihedral group over A is
the group 〈τ,A〉 with o(τ) = 2 and τaτ = a−1 for every a ∈ A.

In the special case where A is cyclic, this is the dihedral group over A. Observe that, unless
|G| = 2, if Cay(G,S) is an ORR, then Cay(G,S) is connected and hence S is a generating set
for G. Now, Babai’s observation follows immediately from the fact that if G is the generalised
dihedral group over the abelian group A, then every element of G \A has order 2. Thus
every generating set S for G must contain an involution, so that S ∩ S−1 6= ∅. This renders
understanding generalised dihedral groups very important when we are studying ORRs.

Let G be a finite group. As customary, we denote by d(G) the minimum number of
generators for G. Following [13, Section 2], we say that a generating set {g1, . . . , gd} for G is
irredundant if, for each i ∈ {1, . . . , d}, the d− 1 elements

g1, g2, . . . , gi−1, gi+1, . . . , gd

do not generate G. Observe that each generating set for G of cardinality d(G) is irredundant.
We say that the d-tuple (g1, . . . , gd) of elements of G is beautiful if the following conditions

hold:
(i) {g1, . . . , gd} is an irredundant generating set for G,
(ii) o(gi) > 2 for every i ∈ {1, . . . , d},
(iii) o(gi+1g

−1
i ) > 2 for every i ∈ {1, . . . , d− 1}.

Observe that being beautiful is a property of ordered tuples and not of sets; that is, it depends
upon the ordering of the generating set {g1, . . . , gd} for G.

An important connection between beautiful generating tuples and ORRs is given in the next
theorem.
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Theorem 2.2. Let G be a finite group admitting a beautiful generating tuple. Then G
admits an ORR if and only if G 6∼= Q8, G 6∼= C3 × C3

2 , and G 6∼= C3 × C3.

This theorem is implicit in [12] and follows immediately from the theory developed therein.
For a proof see [13, Theorem 2.1].

Developing the theory of beautiful generating tuples (and actually something more general,
which we called five-product-avoiding generating sets), we have proved in [12] that each non-
soluble group admits an ORR. Building on this result, the second author has proved the
following result, which (among other things) reduces the classification of groups admitting an
ORR to some very specific infinite families of 2-groups.

Theorem 2.3 ([13], Theorem 1.2). Let G be a finite group. Then one of the following
holds:
(i) G admits an ORR;
(ii) G has an abelian 2-subgroup A, a normal subgroup N and two elements g ∈ G \N and

n ∈ N \A with A < N < G, |G : N | = |N : A| = 2, g2 = 1, ng = n−1 and ag = a−1 for
each a ∈ A;

(iii) there exists a normal subgroup N of G, g ∈ G and n0 ∈ N with |G : N | = 2, G = 〈N, g〉,
g2 = 1, N is a 2-group and the action of g by conjugation on N inverts precisely half of
the elements of N and N = H ∪ n0H, where H := {n ∈ N | ng = n−1}. Moreover, N has
no automorphism inverting more than half of its elements. (Every group N that has an
automorphism inverting half of its elements and no automorphism that inverts more is
classified in [7] by Hegarty and MacHale);

(iv) G is isomorphic to Q8, to C3 × C3 or to C3 × C3
2 ;

(v) G is generalised dihedral.

In view of this theorem, the classification of finite groups admitting an ORR is reduced to
the groups in (ii) and (iii). We address these two families in Sections 4 and 5, respectively.

We remark that the “flavour” of many of the ORRs that are produced in this paper is quite
different from those produced in [12] and [13]. Those papers focused on the use of beautiful
generating tuples, so that for any two consecutive elements gi and gi+1 of the generating
tuple, the product gi+1g

−1
i has order greater than 2. As we will see, a common situation for

a group G in the families we study in this paper is that G contains an elementary abelian
subgroup B of high rank and low index. In order to generate such a group G, we require a
large number of elements from at least one of the cosets Bg of B. If we place any two elements
gi := b1g and gi+1 := b2g of Bg (where b1, b2 ∈ B) consecutively in the generating set, then
gi+1g

−1
i = b2gg

−1b−11 = b2b
−1
1 ∈ B, so o(gi+1g

−1
i ) ≤ 2. In principle it could be possible to ensure

that whenever gi ∈ Bg we have gi+1 /∈ Bg, but in practice we may still find that o(gi+1g
−1
i ) = 2.

We will therefore take a very different approach that uses a GRR for B as a starting point. In
our previous papers, if we look at the induced subdigraph of each of our ORRs on the vertices
that lie in the connection set (equivalently, the induced subdigraph on the open neighbourhood
of any vertex), that digraph is (weakly) connected and asymmetric. The ORRs we produce in
this paper will often include many isolated vertices in that induced subdigraph.

Before moving into our analysis of the groups in (ii) and (iii) (from above), we introduce
some other results from the literature that will be important in our proofs.

The following result is found in the proof of the theorem in [9]. Note that the statement
in [9] assumes only k ≥ 5, but there is a mistake in the case k = 5 that has been pointed out by
multiple researchers. Although the elementary abelian 2-group of rank 5 also admits a GRR,
it requires a different connection set so we omit it from our statement.
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Lemma 2.4 (Imrich [9]). Let G be an elementary abelian 2-group of rank k ≥ 6, and let
{x1, . . . , xk} be a generating set for G. Then G has a GRR; furthermore, a GRR is given by
the Cayley graph on G whose connection set consists of the 2k + 1 elements:

x1, . . . , xk, x1x2, x2x3, . . . , xk−1xk, x1x2xk−2xk−1, x1x2xk−1xk. (2.1)

Note that the connection set found in this lemma depends on the order as well as the choice
of the elements in the generating set for G. We therefore use the following definition.

Definition 2.5. Let G be an elementary abelian 2-group of rank k ≥ 6. Given the
generating tuple (x1, . . . , xk) for G, we refer to the connection set given in Eq. 2.1 as the
Imrich generating set for G with respect to (x1, . . . , xk).

In their work on the GRR problem, Nowitz and Watkins proved a lemma that is very useful in
our context also. (Given a graph Γ and a vertex v of Γ, we denote by Aut(Γ) the automorphism
group of Γ and by Aut(Γ)v the stabiliser of the vertex v in Aut(Γ).)

Lemma 2.6 (Nowitz and Watkins [10]). Let G be a group, let S be a subset of G, let
Γ := Cay(G,S) and let X be a subset of G. If ϕ fixes X pointwise for every ϕ ∈ Aut(Γ)1, then
ϕ fixes 〈X〉 pointwise for every ϕ ∈ Aut(Γ)1.

Thus, if Aut(Γ)1 fixes every element of a generating set for G or if the subgraph induced
by Γ on the neighbourhood Γ(1) = S is asymmetric, then Aut(Γ) = G. Hence Γ is a DRR for
G, and is therefore an ORR if the connection set satisfies S ∩ S−1 = ∅. We will use this fact
repeatedly when we cite the above lemma. Also, although Nowitz and Watkins did not make
this explicit, the same proof applies if we replace both occurrences of the word “pointwise” in
the statement of Lemma 2.6 with the word “setwise.” We will also use this sometimes when
we cite the above lemma.

We include in this section two more lemmas that we will need. Lemma 2.7 follows fairly
easily from the work in [12], but we include a complete proof as the precise connection set
(and therefore the fact that the induced subgraph on that connection set is weakly connected)
is not easy to see from the statements in that paper.

Lemma 2.7. Let A be an abelian 2-group of order 2k. Assume that A is not elementary
abelian and A � C4 × Ck−22 . Then there is a generating set S for A with |S| ≥ 2 such that
the induced subgraph of Γ := Cay(G,S) on S is weakly connected with trivial automorphism
group, so that Γ is an ORR.

Proof. From the structure of finite abelian groups, we may write A = A1 × · · · ×Am, where
Ai := 〈ai〉 is a non-trivial cyclic group for each i ∈ {1, . . . ,m}. Moreover, we may assume that
o(ai+1) divides o(ai) for every i ∈ {1, . . . ,m− 1}.

Since A is not elementary abelian and A � C4 × Ck−22 , we must have either o(a1) > 4, or

m ≥ 2 and o(a1) = o(a2) = 4. In the first case, set x1 := a1, x2 := a−11 a2 and xi := a
(−1)i−1

1 ai
for every i ∈ {3, . . . ,m}; in the second case, set x1 := a1, x2 := a2, x2i+1 := a1a2i+1 and x2j :=
a2a2j for every 2i+ 1, 2j ∈ {3, . . . ,m}. In both cases, it is easy to verify that the set X :=
{x1, . . . , xm} generates A irredundantly. (In fact, (x1, . . . , xm) is a beautiful generating tuple
for A.)
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Consider S := X ∪ Y where

Y :=


{x21} if m = 1,

{x2x−21 } ∪ {x2x
−1
1 , x3x

−1
2 , . . . , xmx

−1
m−1} if m ≥ 2 and o(a1) > 4,

{x1x2} ∪ {x2x−11 , x3x
−1
2 , . . . , xmx

−1
m−1} if m ≥ 2 and o(a1) = o(a2) = 4.

Let Γ := Cay(A,S) and observe that S ∩ S−1 = ∅ so that Γ is an oriented digraph. Let ∆ be the

x2
1x1 x1 x2 x3 xm−1 xm

x2x
−2
1 x2x

−1
1 xmx−1

m−1x3x
−1
2 xm−1x

−1
m−2

x1 x2 x3 xm−1 xm

x2x1 x2x
−1
1 xmx−1

m−1x3x
−1
2 xm−1x

−1
m−2

Figure 1. The oriented graph ∆ in the proof of Lemma 2.7: top left when m = 1; top right
when m ≥ 2 and o(a1) > 4; and bottom when m ≥ 2 and o(a1) = o(a2) = 4

subgraph induced by Γ on S. It is clear that (xi−1, xi) and (xix
−1
i−1, xi) are arcs of ∆ for every

i ∈ {2, . . . ,m}. Moreover, when m = 1, (x1, x
2
1) is an arc of ∆; when m ≥ 2 and o(a1) > 4,

(x1, x2x
−1
1 ) and (x2x

−2
1 , x2x

−1
1 ) are arcs of ∆; while, when m ≥ 2 and o(a1) = o(a2) = 4,

(x1, x1x2) and (x2, x1x2) are arcs of ∆. (See Figure 1.) This shows that ∆ is weakly connected.
It is not hard (but rather tedious because it requires some detailed computations) to show
that these are the only arcs of ∆. We do not give a complete proof of this easy fact, but we
deal with one case to show the type of computations that are required. Suppose that there
exists an arc (xix

−1
i−1, xjx

−1
j−1) between two distinct vertices in Y , for some i, j ∈ {2, . . . ,m}.

Then xjx
−1
j−1xi−1x

−1
i ∈ S and hence either xjx

−1
j−1xi−1x

−1
i = xk for some k ∈ {1, . . . ,m},

or xjx
−1
j−1xi−1x

−1
i = xkx

−1
k−1 for some k ∈ {2, . . . ,m}, or xjx

−1
j−1xi−1x

−1
i ∈ {x21, x1x2, x2x

−2
1 }.

Each of these relations contradicts the irredundancy of the generating set X.
The structure of the arcs that we have described in ∆ (see again Figure 1) shows that ∆ has

trivial automorphism group. Lemma 2.6 then implies that Γ is an ORR.

We conclude this section with a technical lemma. Although we will only apply this lemma
with |G : N | ≤ 8, we state it in greater generality as the proof is no different and the general
result may be useful in future work on ORRs.

Lemma 2.8. Let G be a 2-group and suppose that G is not generalised dihedral. Let N be
a normal subgroup of G with G/N elementary abelian. Suppose that there exists T ⊆ N with
|T | ≥ 2 such that Cay(N,T ) is an ORR and such that the subgraph induced by Cay(N,T ) on
the neighbourhood T of the vertex 1 is weakly connected. Let κ := d(G/N). Then there is a
set of elements {a1, . . . , aκ} ⊆ G \N such that:

– G = 〈a1, . . . , aκ, N〉; and
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– o(ai) > 2 for each i ∈ {1, . . . , κ}.
Furthermore, if there exists such a set of elements with the additional property that, for every
i, j ∈ {1, . . . , κ} with i 6= j, we have a2i centralises N , and either a2i 6= a2j or aiaj does not
centralise N , then Cay(G,T ∪ {a1, . . . , aκ}) is an ORR

Proof. Let T ⊆ N satisfying the hypothesis of this lemma; that is: |T | ≥ 2, Cay(N,T ) is
an ORR, and the subgraph induced by Cay(N,T ) on the neighbourhood T of the vertex 1 is
weakly connected.

We begin by proving the first conclusion of this lemma. (The argument here is similar to
the proof of [12, Lemma 2.6] and uses the ideas therein.) Among all κ-tuples a1, . . . , aκ of
elements of G such that {a1N, . . . , aκN} is a generating set for G/N , choose one with as few
involutions as possible. If no element in {a1, . . . , aκ} is an involution, then our first conclusion
is proved. Hence we suppose that {a1, . . . , aκ} has at least one involution. Relabeling the index
set {1, . . . , κ} if necessary, we may assume that a1 is an involution.

Let n ∈ N . Now, {a1n, a2, . . . , aκ} is still a generating set for G modulo N of cardinality
κ. Since this generating set cannot contain fewer involutions than the original generating set,
the element a1n must be an involution. Thus 1 = (a1n)2 = a1na1n = na1n, that is, na1 = n−1.
Since this argument does not depend upon n ∈ N , we obtain that a1 acts by conjugation
inverting each element of N . In particular, N is abelian.

Let j ∈ {2, . . . , `} and let n ∈ N . Now, {a1ajn, a2, a3, . . . , aκ} is still a generating set for G
modulo N of cardinality κ. Since this generating set cannot contain fewer involutions than the
original generating set, the element a1ajn must be an involution. Thus

1 = (a1ajn)2 = a1ajna1ajn = a21(ajn)a1ajn = aa1j n
a1ajn = aa1j n

−1ajn;

so aa1j = n−1a−1j n. By applying this equality with n := 1, we deduce that conjugation by a1
inverts aj . Therefore a−1j = aa1j = n−1a−1j n for each n ∈ N , that is, aj commutes with N .

Let i, j ∈ {2, . . . , κ} with i 6= j. Arguing as above, {a1aiaj , a2, a3, . . . , a`} is still a generating
set for G modulo N of cardinality κ. Since this generating set cannot contain fewer involutions
than the original generating set, the element a1aiaj must be an involution. Thus

1 = (a1aiaj)
2 = a1aiaja1aiaj = a21(aiaj)

a1aiaj = (aa1i a
a1
j )aiaj = (a−1i a−1j )aiaj ,

so aiaj = ajai; that is, ai and aj commute.
This shows that M := 〈N, a2, . . . , a`〉 is an abelian normal subgroup of G. Since G = 〈M,a1〉

and a1 has order 2, we have |G : M | = 2. Moreover, since the action of a1 by conjugation inverts
a generating set for M , we see that G is a generalised dihedral group over M , contrary to our
assumption. Our first conclusion is thus proven.

To complete the proof, we assume from now on that {a1, . . . , aκ} satisfies the additional
hypothesis that, for every i, j ∈ {1, . . . , κ} with i 6= j, we have a2i centralises N , and either:
a2i 6= a2j , or aiaj does not centralise N .

Consider the set S := T ∪ {a1, . . . , aκ}. By construction, S ∩ S−1 = ∅ and hence Γ :=
Cay(G,S) is an oriented digraph. When κ = 0, that is, G = N , Γ is an ORR as part of our
hypothesis. Thus, for the rest of the proof, we assume that κ ≥ 1.

Let ϕ be an automorphism of Γ with 1ϕ = 1. Now, ϕ fixes the neighbourhood Γ(1) = S of
the vertex 1, that is, ϕ acts as a group of automorphisms of the subgraph ∆ induced by Γ on S.
By construction, the vertices a1, . . . , aκ are isolated in ∆. As |T | ≥ 2 and a1, . . . , aκ are isolated
in ∆, T is the (unique) connected component of ∆ of largest possible order. Thus ϕ fixes T
setwise. Therefore, by Lemma 2.6, ϕ fixes 〈T 〉 = N setwise. Thus ϕ acts as an automorphism
of the graph induced by Γ on N ; that is, on the Cayley digraph Cay(N,S ∩N) = Cay(N,T ).
By hypothesis, Cay(N,T ) is an ORR and hence ϕ fixes N pointwise. Furthermore, this shows
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that, for every n ∈ N and every vertex v of Γ, we have

(nv)ϕ = nvϕ. (2.2)

Suppose that, for some i ∈ {1, . . . , κ}, we have aϕi 6= ai. Since aϕi ∈ S, there exists j ∈
{1, . . . , κ} \ {i} with aϕi = aj . Now (ai, a

2
i ) is an arc of Γ and hence (aϕi , (a

2
i )
ϕ) is also an

arc of Γ. Since G/N is elementary abelian, we have a2i ∈ N and, since ϕ fixes N pointwise,
we have (a2i )

ϕ = a2i . Therefore, a2i (a
ϕ
i )−1 = a2i a

−1
j ∈ S \N = {a1, . . . , aκ}. Since d(G/N) = κ,

this forces a2i a
−1
j = aj , so a2i = a2j .

By Eq. (2.2), (nai)
ϕ = naj for every n ∈ N . Fix n ∈ N , and observe that ainai ∈ N because

G/N is elementary abelian and that (ainai)
ϕ = ainai because ϕ fixes N pointwise. Since

(nai, ainai) is an arc of Γ, ((nai)
ϕ, (ainai)

ϕ) = (naj , ainai) is also an arc of Γ; that is,

ainai(naj)
−1 = a2i (a

−1
i nai)(a

−1
j n−1aj)a

−1
j = a2in

ai(n−1)aja−1j ∈ S.

As a2in
ai(n−1)aja−1j lies in the coset Na−1j and G/N is elementary abelian, we deduce

a2in
ai(n−1)aja−1j = aj ; that is, nai = naj . Thus naiaj = (nai)aj = na

2
j = n because a2j cen-

tralises N by hypothesis. As this argument does not depend upon n ∈ N , aiaj centralises
N , contradicting our hypothesis.

Since i was arbitrary and our only assumption was that (ai)
ϕ 6= ai, we conclude that ϕ fixes

S pointwise, so by Lemma 2.6 we have ϕ = 1 and Γ is an ORR.

3. Constructing ORRs in groups that have low-index elementary abelian subgroups

In this section, we prove some results that will be useful for constructing ORRs on many
groups that have elementary abelian subgroups of low index. These results make intense use
of Imrich generating sets for GRRs on elementary abelian groups of rank at least 6, so they
require the elementary abelian subgroup to be of sufficiently high rank.

Given a Cayley digraph Cay(G,S) and two vertices x and y, we say that x and y are adjacent
via s if yx−1 = s ∈ S. Similarly, we say that x and y are adjacent via X if yx−1 ∈ X ⊂ S.

Lemma 3.1. Let B be an elementary abelian 2-group of rank k ≥ 6, and let T be the Imrich
generating set for B (with respect to some generating tuple). Let G be a group with B ≤ G,
let Bx be a coset of B in G and let S be any subset of G with S ∩Bx = Tx ∪ {x}. Then
in Cay(G,S), x is the only vertex of S ∩Bx that has at least three mutual inneighbours via
elements of S ∩Bx with every other vertex of S ∩Bx.

Proof. Let the generating tuple be (z1, . . . , zk). We begin by showing that x has at least
three common inneighbours via elements of S ∩Bx with every other vertex of S ∩Bx. Let tx
be an arbitrary vertex of (S ∩Bx) \ {x}, so t ∈ T . Observe that y is a mutual inneighbour via
elements of S ∩Bx of x and tx if and only if there exist t1, t2 ∈ T ∪ {1} such that t1xy = x
and t2xy = tx. Equivalently, y = tx1 and t1t2 = t. This is clearly satisfied with y = t1 = 1 and
t2 = t, so that 1 is a mutual inneighbour. It is also always satisfied by taking y = tx, t1 = t,
and t2 = 1, so that tx is a mutual inneighbour. The third mutual inneighbour depends on t.

If t = zi for some i ∈ {1, . . . , k − 1}, then taking t1 := zizi+1, t2 := zi+1, and y := tx1 gives
y as a third mutual inneighbour. If t = zk, then taking t1 := zk−1zk, t2 := zk−1, and y := tx1
gives y as a third mutual inneighbour. If t = zizi+1 for some i ∈ {1, . . . k − 1}, then taking
t1 := zi, t2 := zi+1, and y := tx1 gives y as a third mutual inneighbour. Finally, if t = z1z2z`−1z`
for ` ∈ {k − 1, k}, then taking t1 := z1z2, t2 := z`−1z`, and y := tx1 gives y as a third mutual
inneighbour.
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Now we show that for any vertex tx of Tx, there is some vertex t′x of Tx \ {tx} such
that tx and t′x have fewer than three common inneighbours via elements of S ∩Bx. Observe
that y is a mutual inneighbour via elements of S ∩Bx of tx and t′x if and only if there exist
t1, t2 ∈ T ∪ {1} such that t1xy = tx and t2xy = t′x. Equivalently, y = (t1t)

x and t1t2 = tt′. This
is clearly satisfied with y = 1, t1 = t, and t2 = t′. It is also satisfied with y = (tt′)x, t1 = t′, and
t2 = t. Thus 1 and (tt′)x are mutual inneighbours of tx and t′x.

If t = zi for some i ∈ {1, . . . , k}, then let t′ := zj for some j /∈ {i− 2, i− 1, i, i+ 1, i+ 2}
(such a j exists since k ≥ 6). There is no way to write zizj as a product of two elements
t1, t2 ∈ T ∪ {1} except when {t1, t2} = {zi, zj}. Thus there is no third mutual inneighbour of
zix and zjx via elements of S ∩Bx. Similarly, if t = zizi+1, then let t′ be either zi+2zi+3 when
i ≤ k − 3, or zi−2zi−1 otherwise. Again, if tx and t′x had a third mutual inneighbour, then
there would be some other way of writing some zjzj+1zj+2zj+3 (where j ∈ {i, i− 2}) as a
product of two elements of T ∪ {1}, but this is not possible. Finally, if t = z1z2z`−1z` where
` ∈ {k − 1, k}, then let t′ := z3. There is no other way of writing z1z2z3z`−1z` as a product of
two elements of T ∪ {1}. This completes the proof.

Unfortunately, to make the above lemma directly useful in building ORRs, we would need to
know that every automorphism of Cay(G,S) that fixes 1 also fixes S ∩Bx = Tx ∪ {x} setwise.
This is challenging to prove in general. It turns out to be much easier to prove that if S ∩Bx =
(Bx \ Tx) \ {x}, then every automorphism of Cay(G,S) that fixes 1 also fixes S ∩Bx. We
therefore prove the following result about the case where S ∩Bx = (Bx \ Tx) \ {x}, which is
a corollary to the above lemma.

Corollary 3.2. Let B be an elementary abelian 2-group of rank k ≥ 6, and let T be the
Imrich generating set for B (with respect to some generating tuple). Let G be a group with
B ≤ G, let Bx be a coset of B inG and let S be any subset ofG with S ∩Bx = (Bx \ Tx) \ {x}.
If Aut(Cay(G,S))1 fixes S ∩Bx setwise, then Aut(Cay(G,S))1 fixes x.

Proof. Assume that, for every ϕ ∈ Aut(Cay(G,S))1, (S ∩Bx)ϕ = S ∩Bx. Observe first
that Bx is uniquely determined setwise as the set of vertices that have an outneighbour in
S ∩Bx via some element of S ∩Bx. Furthermore, X := Tx ∪ {x} is uniquely determined as
the set of vertices that are not in S, but are outneighbours of some vertex in Bx via some
element of S ∩Bx. Now Lemma 3.1 (applied with the set S replaced by G \ S) tells us that
x is the only vertex in X having the property that, for every other vertex y ∈ X, there are at
least three vertices of Bx that are not inneighbours of either y or x. Thus xϕ = x, for every
ϕ ∈ Aut(Cay(G,S))1.

Finally, we can describe a situation that will arise frequently in which S ∩Bx = (Bx \ Tx) \
{x} is fixed setwise by every automorphism ϕ of Cay(G,S) that fixes 1. We show that in this
situation, B and x are fixed pointwise by ϕ, which is a significant step toward proving that
Cay(G,S) is an ORR.

Proposition 3.3. Let G be a group, and suppose that B < G where B is an elementary
abelian group of rank k ≥ 6, and x ∈ G centralises B. Let T be the Imrich generating set
for B with respect to some generating tuple, and let S be a generating set for G such that
S = [(Bx \ Tx) \ {x}] ∪X, where X ⊆ G \ 〈B, x〉 with |X| ≤ 17. Then Aut(Cay(G,S))1 fixes
B and x pointwise.
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Proof. We claim that a vertex of Cay(G,S) is an outneighbour of at least 2k − 4k − 4
vertices of S if and only if it is an element of Bx2.

Let bx2 be an arbitrary element of Bx2. Then, for any c ∈ (B \ T ) \ {1}, we have bc ∈ B,
so (bcx)(cx) = bx2 is an outneighbour of cx unless bc ∈ T ∪ {1}; that is, unless c ∈ b(T ∪ {1}).
Since there are 2k + 2 elements in b(T ∪ 1), there are at most 2k + 2 vertices in (Bx \ Tx) \ {x}
that are not inneighbours of bx2. This means that there are at least 2k − 4k − 4 vertices in S
that are inneighbours of bx2.

On the other hand, if we take a vertex v that is not in Bx2 and it is an outneighbour of
at least 2k − 4k − 4 vertices of S, then since 2k − 4k − 4 > 17, v must be an outneighbour of
some vertex bx ∈ Bx ∩ S. As we observed above, outneighbours of vertices of Bx via elements
of S ∩Bx are in Bx2, so v /∈ Bx2 implies that v is an outneighbour of at most 17 vertices that
are in Bx. Therefore, v is an outneighbour of at most 34 vertices of S (at most 17 in Bx and
at most 17 in X). Since 2k − 4k − 4 > 34, this completes the proof of our claim.

Let ϕ ∈ Aut(Cay(G,S))1. The previous paragraph shows that (Bx2)ϕ = Bx2. Since Bx is
the set of vertices of Cay(G,S) such that all but at most 17 of their outneighbours lie in Bx2,
we also have (Bx)ϕ = Bx. Thus (S ∩Bx)ϕ = S ∩Bx = (Bx \ Tx) \ {x}.

Applying Corollary 3.2 to our graph, we see that xϕ = x, and so (Tx)ϕ = Tx. Since T is the
connection set for a GRR on B and x is fixed, this implies that Bx is fixed pointwise, which
means that (using Lemma 2.6) B is fixed pointwise.

We will be using this proposition for most groups G arising from Theorem 2.3 that contain
an elementary abelian subgroup of low index. As long as G is sufficiently large, the elementary
abelian subgroup will have high enough rank to allow us to apply this result. For small orders
of G, we will make use of computations in magma to complete the proof.

4. The groups in Theorem 2.3 (ii)

In this section we deal with the groups arising from Theorem 2.3 (ii). First, we give a result
that finds an ORR for all but three specific families of groups.

Proposition 4.1. Let G be a 2-group with an abelian subgroup A, with a normal subgroup
N and with two elements g ∈ G \N and n ∈ N \A such that

A < N < G, |G : N | = |N : A| = 2, g2 = 1, ng = n−1, and ag = a−1, for each a ∈ A.

Then one of the following holds:

(a) G has an ORR;
(b) ` and κ are non-negative integers, V is an elementary abelian 2-group of rank 2`+ κ with

generating set

{v1, w1, . . . , v`, w`, e1, . . . , eκ},

and G = 〈V, x〉, where vxi = wi, w
x
i = vi for i ∈ {1, . . . , `} and exi = ei for i ∈ {1, . . . , κ};

and
(i) x2 = 1; or
(ii) κ ≥ 1 and x2 = e1;

(c) G contains a maximal subgroup D isomorphic to D4 × C`2 for some ` ∈ N (D4 is the
dihedral group of order 8); or

(d) G is generalised dihedral.

Proof. We assume that conclusion (d) does not hold, that is, G is not generalised dihedral.
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Suppose that A has exponent 2. Then V := 〈A, g〉 is a maximal subgroup of G and is
elementary abelian. Now, V is a Z〈n〉-module. Therefore, from the structure theorem of finitely
generated Z〈n〉-modules, we may write V = A1 ×A2 × · · · ×A`+κ, where Ai := 〈vi〉 is a non-
identity non-trivial cyclic Z〈n〉-module for each i ∈ {1, . . . , `}, and A`+i := 〈ei〉 is a non-identity
trivial (and hence cyclic) Z〈n〉-module for each i ∈ {1, . . . , κ}. For each i ∈ {1, . . . , `}, write
wi := vni . As n2 ∈ A centralises V , v1, w1, v2, w2, . . . , v`, w`, e1, . . . , eκ is a basis of V (as a
vector space over the field of cardinality 2) and |V | = 22`+κ.

Now the action of n on V is encoded in the pair (`, κ). Thus, to determine the isomorphism

class of G it suffices to determine n2. Write n2 = vε11 w
ε′1
1 · · · v

ε`
` w

ε′`
` e

η1
1 · · · eηκκ , for some

ε1, ε
′
1, . . . , ε`, ε

′
`, η1, . . . , ηκ ∈ {0, 1}. Since n centralizes n2 and vni = wi, w

n
i = vi, we deduce

that εi = ε′i for every i ∈ {1, . . . , `}. Let I := {i ∈ {1, . . . , `} | εi = 1} and write n′ := n
∏
i∈I vi.

Now, n and n′ induce the same action by conjugation on V and (n′)2 = eη11 · · · eηκκ . In particular,
replacing n by n′ if necessary, we may assume that εi = 0 for each i ∈ {1, . . . , `}.

If η1 = · · · = ηκ = 0, then n2 = 1 and G splits over V . Taking x := n, this is conclusion (b)(i).
If ηi 6= 0 for some i ∈ {1, . . . , κ}, then n2 6= 1 and e1, . . . , ei−1, n

2, ei+1, . . . , eκ are linearly
independent and span 〈e1, . . . , eκ〉. Therefore, up to a change of basis in 〈e1, . . . , eκ〉, we may
assume that n2 = e1. This is conclusion (b)(ii).

Suppose that A ∼= C4 × C`2, for some ` ∈ N. Now D := 〈A, g〉 is generalised dihedral
isomorphic to D4 × C`2. This is conclusion (c).

For the rest of the proof, we may assume that A is neither elementary abelian nor
isomorphic to A ∼= C4 × C`2, for some ` ∈ N. By Lemma 2.7, there exists T ⊆ A with |T | ≥ 2
such that Cay(A, T ) is an ORR and such that the induced subgraph of Cay(A, T ) on T
is weakly connected. As G/A is elementary abelian of order 4 and G is not generalised
dihedral, by Lemma 2.8 applied to the normal subgroup A, there exist a1, a2 ∈ G \N with
G = 〈a1, a2, N〉, o(a1) > 2 and o(a2) > 2. Since G \A = nA ∪ gA ∪ ngA and every element of
gA is an involution, the set {a1, a2} consists of one element of nA and one of ngA. Since G/A is
elementary abelian and A is abelian, a21 and a22 are in A and both centralise A. Now a1a2 ∈ gA
and no element of gA centralises A, because A does not have exponent 2. Thus, the second
hypothesis of Lemma 2.8 holds, and we deduce that G admits an ORR; that is, conclusion (a)
holds.

We break the rest of this section into subsections, each dealing with one of the three families
of groups described in this proposition that are not generalised dihedral, but have not yet been
shown to admit ORRs.

4.1. The groups of Proposition 4.1(b)(i).

Let G be a group that arises in Proposition 4.1(b)(i). Then we have G = V o 〈x〉, where
V = 〈v1, w1, . . . , v`, w`, e1, . . . , eκ〉 is an elementary abelian 2-group, x2 = 1, exi = ei for every
i ∈ {1, . . . , κ}, and vxi = wi for every i ∈ {1, . . . , `}.

We begin by observing that, if ` ≤ 1, then G is a generalised dihedral group.

Lemma 4.2. Let G be a group that arises in Proposition 4.1(b)(i). If ` ≤ 1, then G is
generalised dihedral.

Proof. If ` = 0, then G is elementary abelian, which is a special form of generalised dihedral.
If ` = 1, then V ′ = 〈v1x, e1, . . . , eκ〉 is an abelian group having index 2 in G (since (v1x)2 =
v1w1). Also, the action of w1 by conjugation inverts every element of V ′. Thus,G is a generalised
dihedral group over V ′.
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We now show that there is an ORR for any remaining sufficiently large group of this type.

Lemma 4.3. Let G be a group that arises in Proposition 4.1(b)(i). If ` ≥ 2 and 2`+ κ ≥ 8,
then G has an ORR.

Proof. We will use two different generating sets, according to whether or not κ ≥ 2, or
κ ∈ {0, 1}.

If κ ≥ 2, then let

V1 := 〈v2, . . . , v`, w2, . . . , w`, e1, . . . , eκ〉

and let T1 be the Imrich generating set for V1 with respect to this generating tuple (this exists
because the rank of V1 is 2(`− 1) + κ ≥ 6). If κ ∈ {0, 1}, then 2`+ κ ≥ 8 implies ` ≥ 4. In this
case, let

V2 := 〈v2, v4w4, v3, v2w2, v4, v2w3, v5, . . . , v`, e1, . . . , eκ〉

and let T2 be the Imrich generating set for V2 with respect to this generating tuple (this exists
because the rank of V2 is at least 6 since the first 6 elements are always in the tuple).

Let

S := [(Vi \ Ti) \ {1}]v1x ∪ {v2x},

where i = 1 if κ ≥ 2 and i = 2 if κ ∈ {0, 1}.
Observe that the product of any two elements of S has the form vv1xv

′v1x = vv1(v′)xw1 ∈
V1v1w1 (where v, v′ ∈ Vi), or vv1xv2x = vv1w2 ∈ V1v1 (where v ∈ Vi), or v2xvv1x = v2v

xw1 ∈
V1w1 (where v ∈ Vi), or (v2x)2 = v2w2. Since none of these can be 1, S is the connection set
for an oriented digraph.

Claim: v2x is the only vertex of S for which all of its outneighbours have no other inneighbour
from S.
Proof of the Claim: Observe that the outneighbours of v2x are all in V1v1 ∪ V1, while the
outneighbours of any vertex of Viv1x are in V1v1w1 ∪ V1w1. Thus every outneighbour of v2x
has a unique inneighbour from S. It remains to prove the uniqueness.

Let vv1x ∈ S be arbitrary, so that v ∈ Vi but v /∈ Ti ∪ {1}. If i = 1, then let f1 := e1 and f2 :=
e2; if i = 2, then let f1 := v2w2 and f2 := v3w3. We claim that v /∈ (Ti ∪ {1})f1 ∩ (Ti ∪ {1})f2.
Otherwise, v = tf1 = t′f2 for some t, t′ ∈ Ti ∪ {1} implies tt′ = f1f2. Due to the structure of
T2, this has no solutions if i = 2. When i = 1, the only solutions are {t, t′} = {1, e1e2} or
{t, t′} = {e1, e2}. Thus v ∈ 〈e1, e2〉 ⊂ T1 ∪ {1}, a contradiction that completes the proof of the
claim.

Let j ∈ {1, 2} be such that v /∈ (Ti ∪ {1})fj . Then vfj /∈ Ti ∪ {1}, so vfjv1x ∈ S and
(vfjv1x)2 = v1w1vv

x is an outneighbour of vfjv1x. It is also an outneighbour of vv1x since
(vv1x)2 = v1w1vv

x. �

Let ϕ ∈ Aut(Cay(G,S))1. From the previous claim, ϕ fixes v2x. This implies that Viv1x ∩ S
is fixed setwise by ϕ. Now we can apply Corollary 3.2 to see that ϕ fixes v1x. This also implies
that (Tiv1x)ϕ = Tiv1x, and our choice of Ti as the generating set for a GRR on Vi implies that
Viv1x is fixed pointwise by ϕ, and therefore so is Vi. Thus ϕ fixes pointwise the generating set
{v2x, v1x} ∪ Vi of G. By Lemma 2.6, Cay(G,S) is an ORR.

This shows that every group that arises in Proposition 4.1(b)(i) with ` ≥ 2 that has order
at least 29 has an ORR.
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4.2. The groups of Proposition 4.1(b)(ii).

Let G be a group that arises in Proposition 4.1(b)(ii). Then we have G = 〈V, x〉, where
V = 〈v1, w1, . . . , v`, w`, e1, . . . , eκ〉 is an elementary abelian 2-group, x2 = e1, exi = ei for every
i ∈ {1, . . . , κ}, and vxi = wi for every i ∈ {1, . . . , `}.

Lemma 4.4. Let G be a group that arises in Proposition 4.1(b)(ii). If 2`+ κ ≥ 7, then G
has an ORR.

Proof. Let (v1, . . . , v`, w1, . . . , w`, e2, . . . eκ) be a generating tuple for

V ′ := 〈v1, . . . , v`, w1, . . . , w`, e2, . . . eκ〉 < V,

and let T be the Imrich generating set for V ′ with respect to this generating tuple (this exists
because V ′ has rank 2`+ κ− 1 ≥ 6). Let

S := Tx ∪ {x}.

As the product of any two elements of S is not 1 (since it will be in V ′e1), Cay(G,S) is an
oriented Cayley digraph.

By Lemma 3.1, x is the unique vertex of S that has at least three mutual inneighbours
with every other vertex of S. Since any automorphism ϕ ∈ Aut(Cay(G,S))1 fixes S setwise,
we must have xϕ = x. Furthermore (Tx)ϕ = Tx and since T is the generating set for a GRR on
V ′, any automorphism that fixes x and fixes Tx setwise must actually fix 〈T 〉x = V ′x pointwise.
Since ϕ fixes every point of {x, V ′x} and 〈x, V ′x〉 = G, by Lemma 2.6 we have ϕ = 1 and this
completes the proof.

This shows that every group that arises in Proposition 4.1(b)(ii) that has order at least 28

has an ORR.

4.3. The groups of Proposition 4.1(c).

Notation 4.5. Let G be a group that arises in Proposition 4.1(c). Then G has a maximal
subgroup D isomorphic to D4 × C`2 for some ` ∈ N. Studying the initial description of the
groups in Proposition 4.1, we see that we may assume that G = 〈A, g, n〉, where A ∼= C4 ×
Ck2 is generated by a1, . . . , ak+1 with o(a1) = 4 and o(ai) = 2 for i ∈ {2, . . . , k + 1}, and g
acts by conjugation on A inverting every ai, g

2 = 1, ng = n−1, n normalises A and n2 ∈ A.
Furthermore, if n centralises A, then N := 〈A,n〉 is abelian and G = 〈N, g〉 is generalised
dihedral. Thus, if we assume that G is not generalised dihedral, n does not centralise A.

Lemma 4.6. Let G be as in Notation 4.5. If G is not generalised dihedral, then there exists
a ∈ A such that o(a) > 2 and a is not centralised by n.

Proof. Assume that G is not generalised dihedral. Therefore n must not centralise A. Also,
there is some a1 ∈ A with o(a1) > 2. If a1 is not centralised by n then taking a := a1 we are
done, so we may assume that n centralises every element of A of order greater than 2. Since n
does not centralise A, there is some b ∈ A such that b is not centralised by n. Thus o(b) = 2.
Let c := bn, so c 6= b has order 2. Now, a1b has order o(a1) > 2, and (a1b)

n = a1b
n = a1c 6= a1b,

so taking a := a1b satisfies our conclusion.
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Lemma 4.7. Let G be as in Notation 4.5. If o(n) = 2 and G is not generalised dihedral,
then there is some element a ∈ A such that o(a) > 2 and a is not inverted by n.

Proof. Assume o(n) = 2. Let a1 be an element of A with o(a1) > 2. If a1 is not inverted
by n then taking a := a1 we are done, so we may assume that n inverts every element of A of
order greater than 2. Consider a1b for any b of order 2 in A. As o(a1b) = o(a1) > 2, we have
a−11 b = (a1b)

−1 = (a1b)
n = an1 b

n = a−11 bn, and bn = b. Thus n centralises every element of order
2, and this implies that every element in A is inverted by n. Hence ng centralises A and 〈A,ng〉
is abelian. Since the action of g by conjugation inverts ng (because (ng)g = ngg = n−1g = ng)
and each element of A, we deduce that G is a generalised dihedral group over 〈A,ng〉, a
contradiction.

We now have the key points for dealing with these groups. Our final lemma in this section
shows that all sufficiently large groups that arise in Proposition 4.1(c) are either generalised
dihedral or have ORRs.

Lemma 4.8. Let G be as in Notation 4.5, with k ≥ 6. Then either G is generalised dihedral,
or G admits an ORR.

Proof. Suppose that G is not generalised dihedral; let B := 〈a2, . . . , ak+1〉, and let T be the
Imrich generating set for B with respect to some generating tuple. By Lemma 4.6, there exists
a ∈ A with o(a) > 2 and an 6= a. Let

S :=


[(Ba \ Ta) \ {a}] ∪ {n−1, an−1g, an} when an 6= n−2a−1 and o(n) 6= 2;

[(Ba \ Ta) \ {a}] ∪ {an−1g, an} when an 6= a−1 and o(n) = 2;

[(Ba \ Ta) \ {a}] ∪ {an−1g, n} when (a′)n = n−2(a′)−1 for every a′ ∈ A with o(a′) = 4.

Observe that the three cases above do not cover all possibilies: in the remaining case every
element a′ of order 4 in A is either centralised by n, or has (a′)n = n−2(a′)−1, and they are
not all in the second category. In the next paragraph, we study this latter possibility.

So there is a ∈ A as in Lemma 4.6, and an = n−2a−1. Notice that a 6= an = n−2a−1 implies
that n2 6= a2 in this case.

Claim: There exist three elements b1, b2, b3 ∈ B such that ab1, ab1b2, ab1b3 are distinct and
centralised by n.

Proof of claim: Since not all elements of order 4 of A are in the second category, there exists
an element of order 4 centralised by n. As A = 〈a〉 ×B, we may assume that this element is of
the form ab1, for some b1 ∈ B \ {1}. If |CB(n)| > 2, then we may choose two distinct elements
b2, b3 ∈ CB(n) \ {1}, and now n centralises the three distinct elements ab1, ab1b2, ab1b3. Assume
|CB(n)| ≤ 2.

Now, B0 := 〈a2, B〉 is characteristic in A because it consists of all elements of order 2
of A, and hence B0 is n-invariant. Clearly, |CB0

(n)| ≤ 2|CB(n)| ≤ 4. As n2 ∈ A centralises
A, the mapping f : B0 → CB0(n) defined by x 7→ xxn is a homomorphism with kernel
CB0(n). Therefore, from the first homomorphism theorem, |B0/CB0(n)| ≤ |CB0(n)| and |B0| ≤
|CB0

(n)|2 = 16. However, |B0| = 2k+1 ≥ 26+1, a contradiction. �

Let b1, b2, b3 ∈ B be as in the previous claim and let

S := [(Ba \ Ta) \ {a}] ∪ {an−1g, ab1n, ab1b2n, ab1b3n}.

We claim that, in all four cases, Γ := Cay(G,S) is an ORR for G. First we show that S
is asymmetric and all of its elements have order greater than 2. Certainly in every case the
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elements of S ∩A have order 4 and do not contain any inverse-closed pair. Any products
that are not in A will clearly not be 1. The remaining pairwise products are n−1an = an 6= 1;
ann−1 = a 6= 1; n−2 or n2 (notice that, if o(n) = 2, then Lemma 4.7 implies that n /∈ S);
(an−1g)2 = a(an)−1 6= 1 by our choice of a; (an)2 = aann2 6= 1 by our choice of a in the cases
where an ∈ S; and for every bi, bj ∈ {1, b1, b2, b3}, we have ab1binab1bjn = a2bibjn

2 6= 1 since
n2 6= a2bibj . Thus Γ is an oriented digraph.

Let ϕ ∈ Aut(Γ)1. By Proposition 3.3, aϕ = a and ϕ fixes every element of B pointwise.
Therefore ϕ fixes every element of 〈a,B〉 = A pointwise.

Now if S has the first of the four possible forms, then an−1g is the only vertex of
{an−1g, an, n−1} that has only one outneighbour (via these three elements) in A, so (an−1g)ϕ =
an−1g. The outneighbours of n−1 via {n−1, an} are n−2 and a, while the outneighbours of an
are an and aann2. We know that an 6= a, and an = n−2 implies n−2 = a, but then an = a,
a contradiction. Thus an is unique in having an as an outneighbour, so (an)ϕ = an. This
completes the proof since ϕ fixes every element of the generating set {an−1g, an} ∪A of G.

If S has the second of the four possible forms, then n2 = 1 and the outneighbours of an−1g
via an−1g and an are a(an)−1 and anan−1g = aang, while the outneighbours of an are aan

and an−1gan = a(an)−1g. Thus an is the only one of these vertices that has a(an) ∈ A as an
outneighbour, so (an)ϕ = an and (an−1g)ϕ = an−1g. This completes the proof since ϕ fixes
every element of the generating set {an, an−1g} ∪A of G.

If S has the third of the four possible forms, then (a′)n = n−2(a′)−1 for every a′ of order
4 in A. The pairwise products of {an−1g, n} are a(an)−1 = a(n−2a−1)−1 = n2a2, an−2g, n2,
and ang. Since a2 6= 1, an−1g and n do not have the same outneighbours, so nϕ = n and
(an−1g)ϕ = an−1g. This completes the proof since ϕ fixes every element of the generating set
{n, an−1g} ∪A of G.

Finally, if S has the fourth of the four possible forms, then an−1g is the only vertex of
S \Ba that has only one outneighbour in A, so (an−1g)ϕ = an−1g. Of the remaining three
vertices of S \Ba, ab1n is the only one that has both a2b2n

2 and a2b3n
2 as outneighbours,

so (ab1n)ϕ = ab1n. This completes the proof since ϕ fixes every element of the generating set
{an−1g, ab1n} ∪A of G.

This shows that every group that arises in Proposition 4.1(c) that has order at least 210 has
an ORR.

5. The groups in Theorem 2.3 (iii)

We discuss in some detail the work in [7] and establish some notation that we use for the
rest of this section. Let G, N , g and n0 be as in Theorem 2.3 (iii). Thus |G : N | = 2, g2 = 1,
N = H ∪ n0H where H := {n ∈ N | ng = n−1} (note that H is a set and not necessarily a
group), |H| = |N |/2 and N has no automorphisms inverting more than half of its elements
(according to Theorem 2.3, N is a group described in the Hegarty and MacHale paper, and
hence N admits an automorphism inverting precisely half of its elements, namely conjugation
via g, and no automorphisms inverting more than half of its elements). We observe that our
assumption about the existence and properties of n0 is not amongst the assumptions of Hegarty
and MacHale, and we will be able to use this assumption to eliminate some of the groups in
their classification.

The classification of Hegarty and MacHale is very satisfactory, but not very easy to use in
our application. These groups fall into ten isoclinism classes and, for each class, the authors
give a very explicit description of a stem group in the class. (We denote by X ′ the derived
subgroup and by Z(X) the centre of the group X.) We recall that the groups X and Y are
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isoclinic if there exist two group automorphisms ϕ : X ′ → Y ′ and ψ : X/Z(X)→ Y/Z(Y ) with

[x1Z(X), x2Z(X)]ϕ = [(x1Z(X))ψ, (x2Z(X))ψ], for every x1, x2 ∈ X.

For instance, the dihedral group of order 8 and the quaternion group of order 8 are isoclinic.
Being isoclinic is an equivalence relation coarser than the equivalence relation determined by
the notion of group isomorphism. This means that finite groups are subdivided into isoclinism
classes. Two groups in the same isoclinism class may not have the same order, for instance, X
and X × Z are isoclinic for every finite group X and for every abelian group Z. It is well-known
and also easy to prove that, for every group X, in the isoclinism class of X there exists a group
Y with Z(Y ) ≤ Y ′. A group satisfying Z(Y ) ≤ Y ′ is said to be stem group. The definition of
isoclinism yields that the stem groups are precisely the groups of smallest possible order within
their isoclinism class. It is quite unfortunate that two stem groups may be isoclinic but not
necessarily isomorphic: consider again the example of the dihedral and the quaternion group
of order 8.

We can now explain in some detail the work of Hegarty and MacHale. (Just for this
paragraph, we say that X is half-inverting, if X has an automorphism inverting half of its
elements and no automorphisms inverting more than half of its elements.) As a by-product
of their main theorem, they prove that if X and Y are isoclinic and X is half-inverting, then
Y is half-inverting. Moreover, Hegarty and MacHale prove that half-inverting groups fall into
10 distinct isoclinism classes. To describe these 10 isoclinism classes, Hegarty and MacHale
exhibit 10 (non-isoclinic) stem groups: two of order 32, six of order 64 and two of order 128.
We emphasise once again that this does not mean that there are only two stem groups of order
128 that are half-inverting. (A computation with the computer algebra system magma [3] shows
that there are 5, 55 and 251 half-inverting stem groups of order 32, 64 and 128, respectively,
up to isomorphism.)

Now that we have explained some details required for understanding the classification of
Hegarty and MacHale, we can proceed to deal with the groups that arise in our context.

Proposition 5.1. Let G be a group that arises in Theorem 2.3 (iii). Then G admits
an ORR except possibly if N has an abelian subgroup A with |N : A| = 4, and A is either
isomorphic to C4 × C`2 for some ` ≤ 5, or A is elementary abelian of rank at most 7.

Proof. By Theorem 2.3 (iii), G is a 2-group with a normal subgroup N , |G : N | = 2, and
elements g ∈ G \N and n0 ∈ N with g2 = 1; the action of g by conjugation on N inverts
precisely half of the elements of N ; and N = H ∪ n0H, where H := {n ∈ N | ng = n−1}, and
|H| = |N |/2.

From [7, Lemma 1] and its proof (see also the last paragraph of [7, page 132]), N has
an abelian subgroup A with |N : A| = 4 and with ag = a−1 for each a ∈ A. Some more
information on the interaction between A and g and N is available by reading the proof
of Lemma 1 in [7] (again, see also the last paragraph of page 132 in [7]). Let 1, x2, x3, x4 be
left coset representatives for A in N ; thus N = A ∪ x2A ∪ x3A ∪ x4A. According to Hegarty
and MacHale, there are only two cases:

Case I: g inverts some element in each coset of A in N ;

Case II: g inverts some element in the cosets A, x3A and x4A, and g inverts no elements in
the coset x2A.

For the benefit of the reader, we have used the same subdivision into cases here, as the
subdivision used in [7]. Replacing x2, x3, x4 by suitable coset representatives we may assume
that g inverts x3 and x4 and that g also inverts x2 in Case I. Let x ∈ {x2, x3, x4} in Case
I and x ∈ {x3, x4} in Case II. Let y ∈ H ∩ xA. Then, y = xa for some a ∈ A and a−1x−1 =
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(xa)−1 = y−1 = yg = (xa)g = xgag = x−1a−1. This shows that xa = ax. Therefore

H =

{
A ∪ x2CA(x2) ∪ x3CA(x3) ∪ x4CA(x4) in Case I,

A ∪ x3CA(x3) ∪ x4CA(x4) in Case II.

Theorem 2.3 (iii) gives us information about the element n0 in addition to the structure that
was studied by Hegarty and MacHale, and we have not used this in our analysis yet. We do so
now. Recall that N = H ∪ n0H, and H ∩ n0H = ∅ because H has cardinality |N |/2.

Assume that Case I holds. Now n0A ⊆ n0H and hence n0H contains a whole left coset of
A in N . Since H contains elements from each left coset of A in N , we get n0H ∩H 6= ∅, a
contradiction. Therefore 2-groups in Case I do not arise in Theorem 2.3 (iii).

For the rest of the proof, we assume that Case II holds. From [7, line 11 from the bottom of
page 134], we have ACN and N/A is elementary abelian of order 4; therefore, ACG because
g also normalises A.

As

2|A| = |N |/2 = |H| = |A|+ |CA(x3)|+ |CA(x4)|,

we deduce |A : CA(x3)| = |A : CA(x4)| = 2. Clearly, n0 ∈ x2A, otherwise, arguing as in the
previous paragraph, we get n0H ∩H 6= ∅. Replacing x2 if necessary, we may assume that
n0 = x2. Thus

n0H = x2A ∪ x2x3CA(x3) ∪ x2x4CA(x4).

It is important to observe that since A is normal in N and N/A is elementary abelian, we
have x2x3A = (x2A)(x3A) = x4A and x2x4A = (x2A)(x4A) = x3A; therefore x2x3CA(x3) is
contained in the coset x4A and x2x4CA(x4) is contained in the coset x3A. Now, the condition
N = H ∪ n0H yields x3A = x3CA(x3) ∪ x2x4CA(x4). This implies that A is the union of a
coset of CA(x4) with a coset of CA(x3), and since each of these subgroups of A has cardinality
|A|/2, this can happen only when CA(x3) = CA(x4). Since N = 〈A, x3, x4〉, we have

Z(N) = CA(x3) ∩CA(x4) = CA(x4) < A;

hence, |N : Z(N)| = 8. Finally we observe that G/A is elementary abelian of order 8 because
g acts by conjugation inverting x3 and x4 and hence fixes the cosets x3A and x4A.

Suppose now that A is neither elementary abelian nor isomorphic to C4 × C`2, for some ` ∈ N.
From Lemma 2.7, there exists a subset T of A of cardinality at least 2 with Cay(A, T ) an ORR
and such that the subgraph induced by Cay(A, T ) on T is weakly connected.

We claim that A = CG(A), that is, no element of G \A centralises A. Observe that

G \A = x3A ∪ x4A ∪ x3x4A ∪ gx3A ∪ gx4A ∪ gx3x4A.

From [7, Lemma 1], N has no abelian subgroup of index less then four. Therefore no element
in the cosets x3A, x4A and x3x4A centralises A and, moreover,

Z(N) = CA(x3) = CA(x4) = CA(x3x4).

Observe now that Z(N) is not elementary abelian because A has no elementary abelian
subgroup of index 2. Since g acts by conjugation inverting each element of Z(N), we deduce
that no element in the cosets gA, gx3A, gx4A and gx3x4A centralises Z(N) ≤ A. Thus our
claim is proved.

By Lemma 2.8, since |G : A| = 8, there are generators a1, a2, a3 for G modulo A none of
which is an involution. Furthermore, since G/A is elementary abelian and A is abelian, a2i
centralises A for every i ∈ {1, 2, 3}. From the previous paragraph, aiaj does not centralise A,
for every i, j ∈ {1, 2, 3} with i 6= j. In particular, the second hypothesis of Lemma 2.8 holds,
and we deduce that G admits an ORR.
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Suppose now that A is either elementary abelian or isomorphic to C4 × C`2 for some ` ∈ N.
We deal with the two possible structures for A individually.

Suppose first that A is isomorphic to C4 × C`2. By ignoring the exceptions from our statement,
we may assume that ` ≥ 6. Let a0 ∈ A \ Z(N) with o(a0) = 4 (observe that this is possible
because Z(N) < N cannot contain all the elements of order 4 of A). Let B be an elementary
abelian subgroup of rank ` in A that does not include the non-identity square element of A,
and let T be the Imrich generating set for B with respect to some generating tuple. Let

X := {gx3a0, gx3a0b, gx3a0b′, gx3a0b′′},

where b, b′, and b′′ are chosen from B so that 〈b, b′, b′′〉 has order 8 and none of the pairwise
products from {1, b, b′, b′′} is (a−10 )x3a0: the rank of B is easily large enough that such choices
are possible. Let

Y := {gx4a0, gx4a0c, gx4a0c′},

where c and c′ are chosen from B so that 〈c, c′〉 has order 4 and none of the pairwise products
from {1, c, c′} is (a−10 )x4a0 (again, this is possible because B has rank at least 6). Let

S := [(Ba0 \ Ta0) \ {a0}] ∪X ∪ Y ∪ {gx3x4}.

The elements of S ∩Ba0 have order 4 and none is the inverse of another since a20 /∈ B. The
pairwise products of the elements of S that are not in A cannot yield the identity. Furthermore,
observe that, for every z, z′ ∈ {1, b, b′, b′′}, we have

(gx3a0z)(gx3a0z
′) = (a−10 )x3a0zz

′ 6= 1

by our choice of b, b′ and b′′ and the fact that a0 /∈ Z(N) = CA(x3). Similarly, for every
z, z′ ∈ {1, c, c′}, we have

(gx4a0z)(gx4a0z
′) = (a−10 )x4a0zz

′ 6= 1

by our choice of c and c′ and the fact that a0 /∈ Z(N) = CA(x4). Finally,

(gx3x4)2 = gx3x4gx3x4 = xg3x
g
4x3x4 = x−13 x−14 x3x4 6= 1,

where in the third equality we have used x3, x4 ∈ H = {n ∈ N | ng = n−1}, and in the last
inequality we used the fact that x3 and x4 do not commute because x3x4 /∈ H and

x−14 x−13 = (x3x4)−1 6= (x3x4)g = xg3x
g
4 = x−13 x−14 .

This proves that S ∩ S−1 = ∅ and Cay(G,S) is an oriented graph.
By Proposition 3.3, any automorphism ϕ ∈ Aut(Cay(G,S))1 fixes B and a0 pointwise, so

fixes 〈a0, B〉 = A pointwise.
Observe that, for any of the elements of X, its outneighbours via elements of X ∪ Y ∪

{gx3x4} have four outneighbours in A and four not in A; the elements of Y each have
three outneighbours via X ∪ Y ∪ {gx3x4} in A and five not in A; and gx3x4 has only one
outneighbour via X ∪ Y ∪ {gx3x4} that is in A. Thus Xϕ = X, Y ϕ = Y , and (gx3x4)ϕ =
gx3x4, for every ϕ ∈ Aut(Cay(G,S))1. Furthermore, in X, since 〈b, b′, b′′〉 has order 8, gx3a0
is the only vertex that does not have either (a−10 )x3a0bb

′ or (a−10 )x3a0bb
′′ as an outneighbour.

Therefore gx3a0 is fixed by Aut(Cay(G,S))1. Similarly, in Y , since 〈c, c′〉 has order 4, gx4a0 is
the only vertex that does not have (a−10 )x4a0cc

′ as an outneighbour. Therefore gx4a0 is fixed
by Aut(Cay(G,S))1. Thus Aut(Cay(G,S))1 fixes the generating set {gx3x4, gx3a0, gx4a0} ∪A
for G pointwise, so by Lemma 2.6, Aut(Cay(G,S))1 = 1 and Cay(G,S) is an ORR.

Suppose now that A is elementary abelian, that is, A ∼= C`2 for some ` ∈ N. By ignoring the
exceptions from our statement, we may assume that ` ≥ 8. As x3 and x4 do not commute,
the commutator d := x−14 x−13 x4x3 6= 1. Recall that N/Z(N) is elementary abelian and hence
the commutator subgroup N ′ is contained in Z(N). Thus d ∈ Z(N). Let d, b1, . . . , b`−2 be an
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irredundant generating set for Z(N) ∼= C`−12 , and let B := 〈b1, . . . , b`−2〉. So B is elementary
abelian of rank `− 2 ≥ 6. Let T be the Imrich generating set for B with respect to some
generating tuple.

Let a0 ∈ A \ Z(N) and observe that 〈Z(N), g, x3a0, x4a0〉 is a subgroup of G having index
2. Since G is not generalised dihedral, there exists v ∈ G \ 〈Z(N), g, x3a0, x4a0〉 with o(v) > 2.
Let

X := {gx3a0, gx3a0b, gx3a0b′, gx3a0b′′},

where b, b′, and b′′ are chosen from B so that 〈b, b′, b′′〉 has order 8 and none of the pairwise
products from {1, b, b′, b′′} is (a−10 )x3a0: the rank of B is easily large enough that such choices
are possible. Let

Y := {gx4a0, gx4a0c, gx4a0c′},

where c and c′ are chosen from B so that 〈c, c′〉 has order 4 and none of the pairwise products
from {1, c, c′} is (a−10 )x4a0 (again, this is possible because B has rank at least 6). Let

S := gx3x4[(B \ T ) \ {1}] ∪X ∪ Y ∪ {v} ∪ {gx3x4d}.

For any z, z′ ∈ B, we have

(gx3x4z)(gx3x4z
′) = x−13 x−14 x3x4zz

′ = dzz′ 6= 1,

because d /∈ B. The argument that no two elements of X or Y are inverses of one another is
exactly as in the previous case. Notice also that v is not in 〈S \ {v}〉, so o(v) > 2 implies that
v−1 /∈ S. Now, observe that, for any b ∈ B \ {1}, we have

gx3x4bgx3x4d = dx4bd = dbd = b 6= 1

since d ∈ Z(N) which is elementary abelian. Finally, (gx3x4d)2 = d 6= 1. Thus S ∩ S−1 = ∅ and
Cay(G,S) is an oriented Cayley graph.

Observe that (gx3x4)2 = d implies o(gx3x4) = 4, and since Z(N) is elementary abelian we
have B < Z(N) = Z(G), so gx3x4 centralises B. Thus Proposition 3.3 applies to show that
Aut(Cay(G,S))1 fixes B and gx3x4 pointwise. Thus the cosets of B are blocks of imprimitivity
for Aut(Cay(G,S))1. Since the four vertices of X lie in one coset of B, the three vertices of Y
lie in a different coset, and the vertices v and gx3x4d each lie in a different coset of B, we have
Xϕ = X and Y ϕ = Y , for every ϕ ∈ Aut(Cay(G,S))1. The same argument as in the previous
case again shows that gx3a0 and gx4a0 are fixed by Aut(Cay(G,S))1.

Let ϕ ∈ Aut(Cay(G,S))1. Since d ∈ Z(N) has order 2, we see that gx3x4d has 2` −
2`− 2 outneighbours in B, but v has at most one outneighbour in B. Thus vϕ = v
and (gx3x4d)ϕ = gx3x4d. We now see that ϕ fixes every point of the generating set
{gx3a0, gx4a0, v, gx3x4, gx3x4d} ∪B for G. Since ϕ was arbitrary, Lemma 2.6 gives that
Cay(G,S) is an ORR.

6. Proof of Theorem 1.2

We are now ready to prove our main theorem, Theorem 1.2.

Proof of Theorem 1.2. If |G| = 2, then Cay(G, ∅) is an ORR for G. We henceforth assume
that G is not generalised dihedral.

By Theorem 2.3, G admits an ORR unless G is as in Theorem 2.3 (ii), Theorem 2.3 (iii),
or G ∼= Q8, C

2
3 , or C3 × C3

2 . The final three possibilities are in our list of exceptions in the
statement of Theorem 1.2. Suppose now that G is as in Theorem 2.3 (ii). By Proposition 4.1,
either G admits an ORR, or one of the following possibilities holds:
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(1) ` and κ are non-negative integers, V is an elementary abelian 2-group of rank 2`+ κ with
generating set {v1, w1, . . . , v`, w`, e1, . . . , eκ}, and G = 〈V, x〉, where vxi = wi, w

x
i = vi

for i ∈ {1, . . . , `} and exi = ei for i ∈ {1, . . . , κ}; and
(i) x2 = 1; or
(ii) κ ≥ 1 and x2 = e1; or

(2) 〈A, g〉 is isomorphic to D4 × C`2 for some ` ∈ N.
If (1)(i) holds, then by Lemma 4.2 we have ` ≥ 2. Now by Lemma 4.3, G admits an ORR

as long as 2`+ κ ≥ 8; equivalently, as long as |G| ≥ 29. If (1)(ii) holds, then by Lemma 4.4,
G admits an ORR as long as 2`+ κ ≥ 7; equivalently, as long as |G| ≥ 28. If (2) holds, then
by Lemma 4.8, G admits an ORR as long as ` ≥ 6; equivalently, as long as |G| ≥ 210. On the
other hand, if G is as in Theorem 2.3 (iii), then by Proposition 5.1, G admits an ORR when
|G| ≥ 211.

It remains to check 2-groups of order at most 29 that are not generalised dihedral and that
satisfy Theorem 2.3 (ii) and the 2-groups of order at most 210 that satisfy Proposition 5.1.
These were all checked with the aid of magma, and the only groups that do not admit an ORR
are those listed.
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