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Abstract. In this paper, we provide necessary and sufficient conditions for the existence
of a cyclic m-cycle system of Kn − I when m and n are even and m | n.

In honor of Dan Archdeacon.

1. Introduction

Throughout this paper, Kn will denote the complete graph on n vertices, Kn − I will
denote the complete graph on n vertices with a 1-factor I removed (a 1-factor is a 1-regular
spanning subgraph), and Cm will denote the m-cycle (v1, v2, . . . , vm). An m-cycle system of
a graph G is a set C of m-cycles in G whose edges partition the edge set of G. An m-cycle
system is called hamiltonian if m = |V (G)|.

Several obvious necessary conditions for an m-cycle system C of a graph G to exist are
immediate: m ≤ |V (G)|, the degrees of the vertices of G must be even, and m must divide
the number of edges in G. A survey on cycle systems is given in [4] and necessary and
sufficient conditions for the existence of an m-cycle system of Kn and Kn − I were given
in [1, 17] where it was shown that an m-cycle system of Kn or Kn − I exists if and only if
n ≥ m, every vertex of Kn or Kn − I has even degree, and m divides the number of edges
in Kn or Kn − I, respectively.

Throughout this paper, ρ will denote the permutation (0 1 . . . n − 1), so 〈ρ〉 = Zn. An
m-cycle system C of a graph G with vertex set V (G) = Zn is cyclic if, for every m-cycle
C = (v1, v2, . . . , vm) in C, the m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also in C. A cyclic
n-cycle system C of a graph G with vertex set Zn is called a cyclic hamiltonian cycle system.
Finding necessary and sufficient conditions for cyclic m-cycle systems of Kn is an interesting
problem and has attracted much attention (see, for example, [2, 3, 6, 7, 10, 11, 13, 15]).
The obvious necessary conditions for a cyclic m-cycle system of Kn are the same as for an
m-cycle system of Kn; that is, n ≥ m ≥ 3, n is odd (so that the degree of every vertex
is even), and m must divide the number of edges in Kn. However, these conditions are no
longer necessarily sufficient. For example, it is not difficult to see that there is no cyclic
decomposition of K15 into 15-cycles. Also, if p is an odd prime and α ≥ 2, then Kpα cannot
be decomposed cyclically into pα-cycles [7].

The existence question for cyclic m-cycle systems of Kn has been completely settled in a
few small cases, namely m = 3 [14], 5 and 7 [15]. For even m and n ≡ 1 (mod 2m), cyclic
m-cycle systems of Kn are constructed for m ≡ 0 (mod 4) in [13] and for m ≡ 2 (mod 4)
in [15]. Both of these cases are handled simultaneously in [10]. For odd m and n ≡ 1
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(mod 2m), cyclic m-cycle systems of Kn are found using different methods in [2, 6, 11]. In
[3], as a consequence of a more general result, cyclic m-cycle systems of Kn for all positive
integers m and n ≡ 1 (mod 2m) with n ≥ m ≥ 3 are given using similar methods. In [7],
it is shown that a cyclic hamiltonian cycle system of Kn exists if and only if n 6= 15 and
n 6∈ {pα | p is an odd prime and α ≥ 2}. Thus, as a consequence of a result in [6], cyclic m-
cycle systems of K2mk+m exist for all m 6= 15 and m 6∈ {pα | p is an odd prime and α ≥ 2}.
In [18], the last remaining cases for cyclic m-cycle systems of K2mk+m are settled, i.e., it
is shown that, for k ≥ 1, cyclic m-cycle systems of K2km+m exist if m = 15 or m ∈ {pα |
p is an odd prime and α ≥ 2}. In [20], necessary and sufficient conditions for the existence
of cyclic 2q-cycle and m-cycle systems of the complete graph are given when q is an odd prime
power and 3 ≤ m ≤ 32. In [5], cycle systems with a sharply vertex-transitive automorphism
group that is not necessarily cyclic are investigated. As a result, it is shown in [5] that no
cyclic m-cycle system of Kn exists if m < n < 2m with n odd and gcd(m,n) a prime power.
In [19], it is shown that if m is even and n > 2m, then there exists a cyclic m-cycle system
of Kn if and only if the obvious necessary conditions that n is odd and that n(n − 1) ≡ 0
(mod 2m) hold.

These questions can be extended to the case when n is even by considering the graph
Kn− I. In [3], it is shown that for all integers m ≥ 3 and k ≥ 1, there exists a cyclic m-cycle
system of K2mk+2 − I if and only if mk ≡ 0, 3 (mod 4). In [12], it is shown that for an even
integer n ≥ 4, there exists a cyclic hamiltonian cycle system of Kn− I if and only if n ≡ 2, 4
(mod 8) and n 6= 2pα where p is an odd prime and α ≥ 1. In [8], it was shown that in every
cyclic cycle decomposition of K2n − I, the number of cycle orbits of odd length must have
the same parity as n(n − 1)/2. As a consequence of this result, in [8], it is shown that a
cyclic m-cycle system of K2n − I can not exist if n ≡ 2, 3 (mod 4) and m 6≡ 0 (mod 4) or
n ≡ 0, 1 (mod 4) and m does not divide n(n− 1). In this paper we are interested in cyclic
m-cycle systems of Kn− I when m and n are even and m | n. The main result of this paper
is the following.

Theorem 1.1. For an even integer m and integer t, there exists a cyclic m-cycle system of
Kmt − I if and only if

(1) t ≡ 0, 2 (mod 4) when m ≡ 0 (mod 8),
(2) t ≡ 0, 1 (mod 4) when m ≡ 2 (mod 8) with t > 1 if m = 2pα for some prime p and

integer α ≥ 1,
(3) t ≥ 1 when m ≡ 4 (mod 8), and
(4) t ≡ 0, 3 (mod 4) when m ≡ 6 (mod 8).

Our methods involve circulant graphs and difference constructions. In Section 2, we give
some basic definitions and lemmas while the proof of Theorem 1.1 is given in Sections 3, 4
and 5. In Section 3, we handle the case when m ≡ 0 (mod 8) and show that there is a cyclic
m-cycle system of Kmt − I if and only if t ≥ 2 is even. In Section 4, we handle the case
when m ≡ 4 (mod 8) and show that there is a cyclic m-cycle system of Kmt − I if and only
if t ≥ 1. In Section 5, we handle the case when m ≡ 2 (mod 4). When m ≡ 2 (mod 8),
we show that there is a cyclic m-cycle system of Kmt − I if and only if t ≡ 0, 1 (mod 4).
When m ≡ 6 (mod 8), we show that there is a cyclic m-cycle system of Kmt− I if and only
if t ≡ 0, 3 (mod 4). Our main theorem then follows.
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2. Preliminaries

The notation [1, n] denotes the set {1, 2, . . . , n}. The proof of Theorem 1.1 uses circulant
graphs, which we now define. For x 6≡ 0 (modn), the modulo n length of an integer x,
denoted |x|n, is defined to be the smallest positive integer y such that x ≡ y (modn) or
x ≡ −y (modn). Note that for any integer x 6≡ 0 (modn), it follows that |x|n ∈ [1, bn

2
c].

If L is a set of modulo n lengths, we define the circulant graph 〈L〉n to be the graph with
vertex set Zn and edge set {{i, j} | |i−j|n ∈ L}. Notice that in order for a graph G to admit
a cyclic m-cycle decomposition, G must be a circulant graph, so circulant graphs provide a
natural setting in which to construct cyclic m-cycle decompositions.

The graph Kn is a circulant graph, since Kn = 〈{1, 2, . . . , bn/2c}〉n. For n even, Kn− I is
also a circulant graph, since Kn − I = 〈{1, 2, . . . , (n− 2)/2}}〉n (so the edges of the 1-factor
I are of the form {i, i+ n/2} for i = 0, 1, . . . , (n− 2)/2).

Let H be a subgraph of a circulant graph 〈L〉n. The notation `(H) will denote the set of
modulo n edge lengths belonging to H, that is,

`(H) = {` ∈ L | {g, g + `} ∈ E(H) for some g ∈ Zn}.

Many properties of `(H) are independent of the choice of L; in particular, the next lemma
in this section does not depend on the choice of L.

Let C be anm-cycle in circulant graph 〈L〉n and recall that the permutation ρ = (0 1 . . . n−
1), which generates Zn, has the property that ρ(C) ∈ C whenever C ∈ C. We can therefore
consider the action of Zn as a permutation group acting on the elements of C. Viewing
matters this way, the length of the orbit of C (under the action of Zn) can be defined as the
least positive integer k such that ρk(C) = C. Observe that such a k exists since ρ has finite
order; furthermore, the well-known orbit-stabilizer theorem (see, for example [9, Theorem
1.4A(iii)]) tells us that k divides n. Thus, if G is a graph with a cyclic m-cycle system C
with C ∈ C in an orbit of length k, then it must be that k divides n = |V (G)| and that
ρ(C), ρ2(C), . . . , ρk−1(C) are distinct m-cycles in C.

The next lemma gives many useful properties of an m-cycle C in a cyclic m-cycle system
C of a graph G with V (G) = Zn where C is in an orbit of length k. Many of these properties
are also given in [7] in the case that m = n. The proofs of the following statements follow
directly from the previous definitions and are therefore omitted.

Lemma 2.1. Let C be a cyclic m-cycle system of a graph G of order n and let C ∈ C be in
an orbit of length k. Then

(1) |`(C)| = mk/n;
(2) C has n/k edges of length ` for each ` ∈ `(C);
(3) (n/k) | gcd(m,n);

Let k > 1 and let P : v0 = 0, v1, . . . vmk/n be a subpath of C of length mk/n. Then

(4) if there exists ` ∈ `(C) with k | `, then m = n/ gcd(`, n),
(5) vmk/n = kx for some integer x with gcd(x, n/k) = 1,
(6) v1, v2, . . . , vmk/n are distinct modulo k,
(7) `(P ) = `(C), and
(8) P, ρk(P ), ρ2k(P ), . . . , ρn−k(P ) are pairwise edge-disjoint subpaths of C.
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Let X be a set of m-cycles in a graph G with vertex set Zn such that C = {ρi(C) | C ∈
X, i = 0, 1, . . . , n − 1} is an m-cycle system of G. Then X is called a generating set for
C. Clearly, every cyclic m-cycle system C of a graph G has a generating set X as we may
always let X = C. A generating set X is called a minimum generating set if C ∈ X implies
ρi(C) 6∈ X for 1 ≤ i ≤ n unless ρi(C) = C.

Let C be a cyclic m-cycle system of a graph G with V (G) = Zn. To find a minimum
generating set X for C, we start by adding C1 to X if the length of the orbit of C1 is
maximum among the cycles in C. Next, we add C2 to X if the length of the orbit of C2 is
maximum among the cycles in C\{ρi(C1) | 0 ≤ i ≤ n−1}. Continuing in this manner, we add
C3 to X if the length of the orbit of C3 is maximum among the cycles in C \ {ρi(C1), ρ

i(C2) |
0 ≤ i ≤ n − 1}. We continue in this manner until {ρi(C) | C ∈ X, 0 ≤ i ≤ n − 1} = C.
Therefore, every cyclic m-cycle system has a minimum starter set. Observe that if X is a
minimum generating set for a cyclic m-cycle system C of the graph 〈L〉n, then it must be
that the collection of sets {`(C) | C ∈ X} forms a partition of L.

In this paper, we are interested in the cyclic m-cycle systems of Kn − I where n = mt
for some positive integer t. Suppose Kn has a cyclic m-cycle system C for some n = mt.
Let X be a minimum generating set for C and let C ∈ X be a cycle in an orbit of length
k. Then, `(C) has mk/n = k/t lengths which implies that k = `t for some integer `. Also,
since |`(C)| = `, it follows that ` | m. The following lemma will be useful in determining the
congruence classes of t based on the congruence class of m modulo 8.

Lemma 2.2. Let m be an even integer and let Kmt − I have a cyclic m-cycle system for
some positive integer t.

(1) If {1, 2, . . . , (mt− 2)/2} has an odd number of even integers, then t is even.
(2) If {1, 2, . . . , (mt− 2)/2} has an odd number of odd integers, then t is odd.

Proof. Let m be even and suppose Kmt − I has a cyclic m-cycle system C for some positive
integer t. Let V (Kmt) = Zmt, and let X be a minimum generating set for C.

Suppose first that {1, 2, . . . , (mt − 2)/2} has an odd number of even integers. Since the
set {`(C) | C ∈ X} is a partition of {1, 2, . . . , (mt − 2)/2}, there must be an odd number
of cycles C in X with `(C) containing an odd number of evens. Let C ∈ X be a cycle in
an orbit of length k with an odd number of even edge lengths. Let |`(C)| = ` and note that
k = `t. From Lemma 2.1, we know that the subpath of C starting at vertex 0 of length `
ends at vertex jk with gcd(j,m/`) = 1.

Suppose first k is odd. Then ` and t must both be odd. Thus m/` is even so that jk is
odd. Hence, `(C) contains an odd number of odd integers and, since |`(C)| is odd, an even
number of even integers, contradicting the choice of C. Thus, k is even. Since k is even, jk
is even. Thus, `(C) contains an even number of odd integers. If ` is even, then `(C) also
contains an even number of even integers, contradicting the choice of C. Thus, ` is odd.
Since k is even and k = `t, it must be that t is even.

Now suppose {1, 2, . . . , (mt − 2)/2} has an odd number of odd integers. Hence there are
an odd number of cycles C in X with `(C) containing an odd number of odd integers. Again,
let C ∈ X be such a cycle with |`(C)| = `, in an orbit of length k = `t. Let the subpath
of C starting at vertex 0 of length ` end at vertex jk with gcd(j,m/`) = 1. Now, if k is
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even, then jk is even so that `(C) contains an even number of odd integers, contradicting
the choice of C. Thus k is odd. Since k = `t, we have that t is odd. �

The following corollary is an immediate consequence of Lemma 2.2 and [12].

Corollary 2.3. For an even integer m and a positive integer t, if there exists a cyclic m-cycle
system of Kmt − I, then

(1) t ≡ 0, 2 (mod 4) when m ≡ 0 (mod 8),
(2) t ≡ 0, 1 (mod 4) when m ≡ 2 (mod 8) with t > 1 if m = 2pα for some prime p and

integer α ≥ 1,
(3) t ≡ 0, 3 (mod 4) when m ≡ 6 (mod 8), and
(4) t ≥ 1 when m ≡ 4 (mod 8).

Let n > 0 be an integer and suppose there exists an ordered m-tuple (d1, d2, . . . , dm)
satisfying each of the following:

(i) di is an integer for i = 1, 2, . . . ,m;
(ii) |di| 6= |dj| for 1 ≤ i < j ≤ m;

(iii) d1 + d2 + · · ·+ dm ≡ 0(modn); and
(iv) d1 + d2 + · · ·+ dr 6≡ d1 + d2 + · · ·+ ds(modn) for 1 ≤ r < s ≤ m.

Then an m-cycle C can be constructed from this m-tuple, that is, let C = (0, d1, d1 +
d2, . . . , d1 + d2 + · · · + dm−1), and {C} is a minimum generating set for a cyclic m-cycle
system of 〈{d1, d2, . . . , dm}〉n. Thus, in what follows, to find cyclic m-cycle systems of 〈L〉n,
it suffices to partition L into m-tuples satisfying the above conditions. Hence, an m-tuple
satisfying (i)-(iv) above is called a difference m-tuple and it corresponds to the m-cycle
C = (0, d1, d1 + d2, . . . , d1 + d2 + · · · dm−1) in 〈L〉n.

3. The Case when m ≡ 0 (mod 8)

In this section, we consider the case when m ≡ 0 (mod 8) and show that there exists a
cyclic m-cycle system of Kmt − I for each even positive integer t. We begin with the case
t = 2.

Lemma 3.1. For each positive integer m ≡ 0 (mod 8), there exists a cyclic m-cycle system
of K2m − I.

Proof. Let m be a positive integer such that m ≡ 0 (mod 8), say m = 8r for some positive
integer r. Then K2m − I = 〈S ′〉2m where S ′ = {1, 2, . . . ,m − 1} = {1, 2, . . . , 8r − 1}. The
proof proceeds as follows. We begin by finding a path P of length m/2 = 4r, ending at
vertex m, so that C = P ∪ ρm(P ) is an m-cycle. Note that 〈{2}〉2m consists of two vertex
disjoint m-cycles. For the remaining 4r− 2 edge lengths in S ′ \ (`(P ) ∪ {2}), we find 2r− 1
paths Pi of length 2, ending at vertex 4 or −4, so that Ci = Pi∪ρ4(Pi)∪ρ8(Pi)∪· · · ρ2m−4(Pi)
is an m-cycle. Then this collection of cycles will give a minimum generating set for a cyclic
m-cycle system of K2m − I.

Suppose first that r is odd. For r = 1, let P : 0,−3, 3, 7, 8 and note that the edge lengths
of P in the order encountered are 3, 6, 4, 1. For r = 3, let

P : 0,−3, 3,−7, 7,−11, 11, 23, 19, 20,−20,−4, 24
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and note that edge lengths of P in the order encountered are 3, 6, 10, 14, 18, 22, 12, 4, 1, 8, 16, 20.
For r ≥ 5, let

P : 0,−3, 3,−7, 7, . . . ,−(4r − 1), 4r − 1, 8r − 1, 8r − 5, 8r − 4, 8r + 4, 8r − 8, 8r + 8, . . . ,

6r + 2, 10r − 2, 6r − 10, 10r + 2, 6r − 14, . . . , 12r − 8, 4r − 4, 8r

be a path of length m/2 whose edge lengths in the order encountered are 3, 6, 10, 14, . . . , 8r−
6, 8r − 2, 4r, 4, 1, 8, 12, 16, . . . , 4r − 4, 4r + 8, 4r + 12, . . . , 8r − 8, 8r − 4, 4r + 4.

Now suppose that r is even. For r = 2, let P : 0,−3, 3,−7, 7,−1,−5,−4, 16 and note that
the edge lengths of P in the order encountered are 3, 6, 10, 14, 8, 4, 1, 12. For r ≥ 4, let

P : 0,−3, 3,−7, 7, . . . ,−(4r − 1), 4r − 1,−1,−5,−4, 4,−8, 8, . . . ,

−(2r − 4), 2r − 4,−2r, 2r + 8,−(2r + 4), 2r + 12, . . . ,−(4r − 8), 4r,−(4r − 4), 8r

be a path of length m/2 whose edge lengths in the order encountered are 3, 6, 10, 14, . . . , 8r−
6, 8r − 2, 4r, 4, 1, 8, 12, 16, . . . , 4r − 8, 4r − 4, 4r + 8, 4r + 12, . . . , 8r − 8, 8r − 4, 4r + 4.

In each case, let C = P ∪ ρm(P ) and observe that C is an m-cycle C with `(C) =
{1, 3, 4, 6, 8, . . . , 8r−2}. Let C ′ = (0, 2, 4, 6, . . . , 2m−2) and note that C ′ is an m-cycle with
`(C ′) = {2}.

For 0 ≤ i ≤ r−2, let Pi : 0, 9+8i, 4 be the path of length 2 with edge lengths 9+8i, 5+8i
and let P ′i : 0, 11 + 8i, 4 be the path of length 2 with edge lengths 11 + 8i, 7 + 8i. Let
Ci = Pi ∪ ρ4(Pi) ∪ ρ8(Pi) ∪ · · · ∪ ρ2m−4(Pi) and C ′i = P ′i ∪ ρ4(P ′i ) ∪ ρ8(P ′i ) ∪ · · · ∪ ρ2m−4(P ′i )
and note that each is an m-cycle with `(Ci) = {5 + 8i, 9 + 8i} and `(C ′i) = {7 + 8i, 11 + 8i}.

Finally, let P ′′ : 0, 8r− 3,−4 be the path of length 2 with edge lengths 8r− 3 and 8r− 1.
Let C ′′ = P ′′ ∪ ρ4(P ′′) ∪ ρ8(P ′′) ∪ · · · ∪ ρ2m−4(P ′′) and note that C ′′ is an m-cycle with
`(C ′′) = {8r − 3, 8r − 1}.

Then {C,C ′, C0, . . . , Cr−2, C
′
0, . . . , C

′
r−2, C

′′} is a minimum generating set for a cyclic m-
cycle system of K2m − I. �

We now consider the case when t is even and t > 2.

Lemma 3.2. For each positive integer k and each positive integer m ≡ 0 (mod 8), there
exists a cyclic m-cycle system of K2mk − I.

Proof. Let m and k be positive integers such that m ≡ 0 (mod 8). Lemma 3.1 handles the
case when k = 1 and thus we may assume that k ≥ 2. Then K2km − I = 〈S ′〉2km where
S ′ = {1, 2, . . . , km − 1}. Since K2m − I has a cyclic m-cycle system by Lemma 3.1 and
〈{k, 2k, . . . ,mk}〉2km consists of k vertex-disjoint copies of K2m− I, we need only show that
〈S〉2km has a cyclic m-cycle system where S = {1, 2, . . . ,mk} \ {k, 2k, . . . ,mk}.

Let A = [ai,j] be the (k − 1)×m array
k − 1 2k − 1 3k − 1 4k − 1 (m− 1)k − 1 mk − 1
...

...
...

... · · ·
...

...
2 k + 2 2k + 2 3k + 2 (m− 2)k + 2 (m− 1)k + 2
1 k + 1 2k + 1 3k + 1 (m− 2)k + 1 (m− 1)k + 1

 .
It is straightforward to verify that A satisfies∑

j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j,
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and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k − 1.
For each i = 1, 2, . . . , k − 1, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X = {C1, C2, . . . , Ck−1} is a minimum generating set for a cyclic m-cycle system of
〈S〉2km. �

4. The Case when m ≡ 4 (mod 8)

In this section, we consider the case when m ≡ 4 (mod 8) and show that there exists a
cyclic m-cycle system of Kmt − I for each t ≥ 1. We begin with the case when t is odd, say
t = 2k + 1 for some nonnegative integer k.

Lemma 4.1. For each nonnegative integer k and each m ≡ 4 (mod 8), there exists a cyclic
m-cycle system of Km(2k+1) − I.

Proof. Let m and k be nonnegative integers such that m ≡ 4 (mod 8). Since Km − I
has a cyclic hamiltonian cycle system [12], we may assume that k ≥ 1. Let m = 4r for
some positive integer r. Then Km(2k+1)− I = 〈S ′〉(2k+1)m where S ′ = {1, 2, . . . , 4rk+2r−1}.
Again, since Km−I has a cyclic hamiltonian cycle system [12] and 〈{2k+1, 4k+2, . . . , (2r−
1)(2k + 1)}〉(2k+1)m consists of 2k + 1 vertex-disjoint copies of Km − I, we need only show
that 〈S〉(2k+1)m has a cyclic m-cycle system where

S = {1, 2, . . . , 4rk + 2r − 1} \ {2k + 1, 4k + 2, . . . , (2r − 1)(2k + 1)}.
Let r and k be positive integers. Let A = [ai,j] be the k ×m array
k 2k 3k + 1 4k + 1 5k + 2 (4r − 2)k + 2r − 2 (4r − 1)k + 2r − 1 4rk + 2r − 1
...

...
...

...
... · · ·

...
...

...
2 k + 2 2k + 3 3k + 3 4k + 4 (4r − 3)k + 2r (4r − 2)k + 2r + 1 (4r − 1)k + 2r + 1
1 k + 1 2k + 2 3k + 2 4k + 3 (4r − 3)k + 2r − 1 (4r − 2)k + 2r (4r − 1)k + 2r

 .
It is straightforward to verify that A satisfies∑

j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k.
For each i = 1, 2, . . . , k, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X = {C1, C2, . . . , Ck} is a minimum generating set for a cyclic m-cycle system of
Km(2k+1) − I.

�
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We now handle the case when t is even, say t = 2k for some positive integer k.

Lemma 4.2. For each positive integer k and each m ≡ 4 (mod 8), there exists a cyclic
m-cycle system of K2mk − I.

Proof. As before, let m and k be positive integers such that m ≡ 4 (mod 8). Thus m = 4r
for some positive integer r. Then K2mk − I = 〈S ′〉2km where S ′ = {1, 2, . . . , 4rk − 1}. Since
Km−I has a cyclic hamiltonian cycle system [12] and 〈{2k, 4k, . . . , (2r−1)(2k)}〉2km consists
of 2k vertex-disjoint copies of Km − I, we need only show that 〈S〉2km has a cyclic m-cycle
system where

S = {1, 2, . . . , 4rk − 1} \ {2k, 4k, . . . , (2r − 1)(2k)}.
Since |S| = m(k−1)+m/2, we will start by partitioning a subset T ⊆ S with |T | = m(k−1)
into k − 1 difference m-tuples.

Let T = {1, 2, . . . , 4rk− 1}\{1, 2k, 4k− 1, 4k, 4k+ 1, 6k, 8k− 1, 8k, 8k+ 1, . . . , (4r− 4)k−
1, (4r−4)k, (4r−4)k+1, (4r−2)k, 4rk−1}, and observe that |T | = (k−1)m. Let A = [ai,j],
with entries from the set T , be the (k − 1)×m array

k 2k − 1 3k − 1 4k − 2 5k 6k − 1 7k − 1 8k − 2 9k
...

...
...

...
...

...
...

...
... · · ·

3 k + 2 2k + 2 3k + 1 4k + 3 5k + 2 6k + 2 7k + 1 8k + 3
2 k + 1 2k + 1 3k 4k + 2 5k + 1 6k + 1 7k 8k + 2

(4r − 3)k (4r − 2)k − 1 (4r − 1)k − 1 4rk − 2

· · ·
...

...
...

...
(4r − 4)k + 3 (4r − 3)k + 2 (4r − 2)k + 2 (4r − 1)k + 1
(4r − 4)k + 2 (4r − 3)k + 1 (4r − 2)k + 1 (4r − 1)k

 .
It is straightforward to verify that the array A satisfies∑

j≡0,1 (mod 4)

ai,j =
∑

j≡2,3 (mod 4)

ai,j,

and
ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ k − 1.
For each i = 1, 2, . . . , k − 1, the m-tuple

(ai,1,−ai,3, ai,5,−ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . ,−ai,6, ai,4,−ai,2, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X = {C1, C2, . . . , Ck−1} is a minimum generating set for a cyclic m-cycle system of
〈T 〉2km.

It now remains to find a minimum generating set for a cyclic m-cycle system of 〈B〉2km
where B = {1, 4k−1, 4k+ 1, 8k−1, 8k+ 1, . . . , (4r−4)k−1, (4r−4)k+ 1, 4rk−1}. For i =
1, 2, . . . , r, define d2i−1 = 4(i− 1)k+ 1 and d2i = 4ik− 1. Observe that B = {d1, d2, . . . , d2r}
and dj+2 − dj = 4k for j = 1, 2, . . . , 2r − 2. Since m ≡ 4 (mod 8), it follows that r is
odd. Let P1 : 0, 1, 4k, and let Pi : 0, d2i+1, 4k if i is even and let Pi : 0, d2i, 4k if i is odd.
Let C ′i = Pi ∪ ρ4k(Pi) ∪ ρ8k(Pi) ∪ · · · ∪ ρ(2m−4)k(Pi), and note that C ′i is an m-cycle with
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`(C ′1) = {1, 4k − 1}, `(C ′i) = {d2i−1, d2i+1} if i is even, and `(C ′i) = {d2i−2, d2i} if i is odd.
Then `(C ′1) ∪ `(C ′2) ∪ · · · ∪ `(C ′r) = B so that {C ′1, C ′2, . . . , C ′r} is a minimum generating set
for 〈B〉2km. �

5. The Case when m ≡ 2 (mod 4)

In this section, we consider the case when m ≡ 2 (mod 4) and prove parts (2) and (4) of
Theorem 1.1. We divide this proof into three parts, each dealt with in its own subsection.
First we consider the case t ≡ 0 (mod 4). Then we consider the case m ≡ 2 (mod 8) and
t ≡ 1 (mod 4). Finally we consider the case m ≡ 6 (mod 8) and t ≡ 3 (mod 4).

5.1. The case when t ≡ 0 (mod 4).

We consider the case t ≡ 0 (mod 4), starting with the special case t = 4.

Lemma 5.1. For each positive integer m ≥ 6 with m ≡ 2 (mod 4), there exists a cyclic
m-cycle system of K4m − I.

Proof. Let m ≥ 6 be a positive integer with m ≡ 2 (mod 4). Then K4m − I = 〈S ′〉4m where
S ′ = {1, 2, . . . , 2m − 1}. The proof proceeds as follows. We begin by finding one difference
m-tuple which corresponds to an m-cycle C with |`(C)| = m. Note that 〈{4}〉4m consists of
four vertex disjoint m-cycles. For the remaining m− 2 edge lengths in S ′ \ (`(C) ∪ {4}), we
find (m − 2)/2 paths Pi of length 2, ending at vertex 8 or −8, so that Ci = Pi ∪ ρ8(Pi) ∪
ρ16(Pi) ∪ · · · ∪ ρ4m−8(Pi) is an m-cycle. Then this collection of cycles will give a minimum
generating set for a cyclic m-cycle system of K4m − I.

Consider the difference m-tuple

(1,−2, 6,−10, . . . , 2m− 6,−(2m− 2),−3, 8,−12, . . . , 2m− 12,−(2m− 8), 2m− 4)

and the corresponding m-cycle C with `(C) = {1, 2, 3, 6, 8, . . . , 2m−2}. It is straightforward
to verify that the odd vertices visited all lie between −m+ 1 and m− 1 with no duplication.
Similarly, the even vertices visited all lie between −2m+ 4 and −4, and have no duplication.

Let C ′ = (0, 4, 8, . . . , 4m− 4) and note that C ′ is an m-cycle with `(C ′) = {4}.
Let m = 8k + m′, so m′ is either 2 or 6. If k = 0, then m′ = 6 and let P : 0, 13, 8 be the

path of length 2 with edge lengths 11, 5. Then, C ′′ = P ∪ ρ8(P ) ∪ ρ16(P ) is a 6-cycle with
`(C ′′) = {11, 5}. Then {C,C ′, C ′′} is a minimum generating set for cyclic 6-cycle system of
K24 − I. Now suppose that k ≥ 1. For 0 ≤ i ≤ k − 1, let Pi : 0, 13 + 16i, 8 be the path of
length 2 with edge lengths 13 + 16i, 5 + 16i; let P ′i : 0, 15 + 16i, 8 be the path of length 2
with edge lengths 15 + 16i, 7 + 16i; let P ′′i : 0, 17 + 16i, 8 be the path of length 2 with edge
lengths 17 + 16i, 9 + 16i; and let P ′′′i : 0, 19 + 16i, 8 with edge lengths 19 + 16i, 11 + 16i. Let
Ci = Pi∪ρ8(Pi)∪ρ16(Pi)∪· · ·∪ρ4m−8(Pi), C ′i = P ′i ∪ρ8(P ′i )∪ρ16(P ′i )∪· · ·∪ρ4m−8(P ′i ), C ′′i =
P ′′i ∪ρ8(P ′′i )∪ρ16(P ′′i )∪ · · ·∪ρ4m−8(P ′′i ), and C ′′′i = P ′′′i ∪ρ8(P ′′′i )∪ρ16(P ′′′i )∪ · · ·∪ρ4m−8(P ′′′i )
and note that each is an m-cycle with `(Ci) = {5+16i, 13+16i}, `(C ′i) = {7+16i, 15+16i},
`(C ′′i ) = {9 + 16i, 17 + 16i}, and `(C ′′′i ) = {11 + 16i, 19 + 16i}.

If m′ = 2, then {C,C ′, C0, C
′
0, C

′′
0 , C

′′′
0 , . . . , Ck−1, C

′
k−1, C

′′
k−1, C

′′′
k−1} is a minimum generat-

ing set for a cyclic m-cycle system of K4m−I . If m′ = 6, then let Pk : 0, 2m−1,−8 and P ′k :
0, 2m−3,−8 be paths of length 2 with `(Pk) = {2m−1, 2m−7} and `(P ′k) = {2m−3, 2m−5}.
Let Ck = Pk∪ρ8(Pk)∪ρ16(Pk)∪· · ·∪ρ4m−8(Pk) and C ′k = P ′k∪ρ8(P ′k)∪ρ16(P ′k)∪· · ·∪ρ4m−8(P ′k)
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and observe that each is an m-cycle with `(Ck) = {2m − 1, 2m − 7} and `(C ′k) = {2m −
3, 2m − 5}. Thus, {C,C ′, C0, C

′
0, C

′′
0 , C

′′′
0 , . . . , Ck−1, C

′
k−1, C

′′
k−1, C

′′′
k−1, Ck, C

′
k} is a minimum

generating set for a cyclic m-cycle system of K4m − I. �

We now consider the case when t ≡ 0 (mod 4) with t > 4.

Lemma 5.2. For each positive integer k and each positive integer m ≡ 2 (mod 4) with
m ≥ 6, there exists a cyclic m-cycle system of K4mk − I.

Proof. Let m ≥ 6 and k be positive integers such that m ≡ 2 (mod 4). Lemma 5.1 handles
the case when k = 1 and thus we may assume that k ≥ 2. Then K4km − I = 〈S ′〉4km where
S ′ = {1, 2, . . . , 2km − 1}. Since K4m − I has a cyclic m-cycle system by Lemma 5.1 and
〈{k, 2k, . . . , 2km}〉4km consists of k vertex-disjoint copies of K4m−I, we need only show that
〈S〉2km has a cyclic m-cycle system where S = {1, 2, . . . , 2km} \ {k, 2k, . . . , 2km}.

Let A = [ai,j] be the 2k ×m array
2k 4k 6k 8k (m− 1)2k 2km
2k − 1 2k + 1 6k − 1 8k − 1 (m− 1)2k − 1 2km− 1
...

...
...

... · · ·
...

...
2 4k − 2 4k + 2 6k + 2 (m− 2)2k + 2 (m− 1)2k + 2
1 4k − 1 4k + 1 6k + 1 (m− 2)2k + 1 (m− 1)2k + 1

 .
(Observe that the second column does not follow the same pattern as the others.)

Let A′ be the (2k − 2) ×m array obtained from A by deleting rows 1 and k + 1. Then
the entries in A′ are precisely the elements of S. Also, it is straightforward to verify that A′

satisfies

ai,j + ai,j+3 = ai,j+1 + ai,j+2

for each positive integer j ≡ 3 (mod 4) with j ≤ m− 3,

ai,1 + ai,2 + ai,m−3 + ai,m−1 = ai,m−2 + ai,m,

and

ai,1 < ai,2 < . . . < ai,m

for each i with 1 ≤ i ≤ 2k − 2.
For each i = 1, 2, . . . , 2k − 2, the m-tuple

(ai,1, ai,2,−ai,4, ai,6,−ai,8, ai,10, . . . ,−ai,m−2,−ai,m, ai,m−3,−ai,m−5, ai,m−7, . . . , ai,3, ai,m−1)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X = {C1, C2, . . . , C2k−2} is a minimum generating set for a cyclic m-cycle system of
〈S〉4km. �

What remains is to find cyclic m-cycle systems of Kmt − I for the appropriate odd values
of t, which we do in the following subsections.
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5.2. The case when m ≡ 2 (mod 8) and t ≡ 1 (mod 4).

In this subsection, we find a cyclic m-cycle system of Kmt − I when m ≡ 2 (mod 8) and
t ≡ 1 (mod 4). We begin with two special cases, namely when m = 10 or t = 5.

Lemma 5.3. For each positive integer t ≡ 1 (mod 4) with t > 1, there exists a cyclic 10-cycle
system of K10t − I.

Proof. Let t ≡ 1 (mod 4) with t > 1, say t = 4s + 1 where s ≥ 1. Then K10t − I = 〈S ′〉10t
where S ′ = {1, 2, . . . , 20s + 4}. Consider the paths P1 : 0, 5t − 1, 2t and P2 : 0, 5t − 2, 2t.
Then, `(P1) = {3t − 1, 5t − 1} and `(P2) = {3t − 2, 5t − 2}. For i ∈ {1, 2}, let Ci =
Pi ∪ ρ2t(Pi) ∪ ρ4t(Pi) ∪ · · · ∪ ρ8t(Pi). Then clearly each Ci is an 10-cycle and X = {C1, C2}
is a minimum generating set for 〈{3t − 2, 3t − 1, 5t − 2, 5t − 1}〉10t. Since 3t − 3 = 12s
and 5t − 2 = 20s + 3, it remains to find a cyclic 10-cycle system of 〈S〉10t where S =
{1, 2, . . . , 12s, 12s+ 3, 12s+ 4, . . . , 20s+ 2}. Let A = [ai,j] be the 2s× 10 array

1 2 3 4 8s+ 1 8s+ 3 12s+ 3 12s+ 4 12s+ 5 12s+ 6
5 6 7 8 8s+ 2 8s+ 4 12s+ 7 12s+ 8 12s+ 9 12s+ 10
...

...
...

...
...

...
...

...
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s 20s− 1 20s 20s+ 1 20s+ 2


Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 10)

and
ai,1 < ai,2 < . . . < ai,10.

Thus the 10-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7,−ai,9,−ai,8, ai,6,−ai,4, ai,10)
is a difference 10-tuple and corresponds to an 10-cycle C ′i with `(C ′i) = {ai,1, ai,2, . . . , ai,10}.
Hence, X ′ = {C ′1, C ′2, . . . , C ′2s} is a minimum generating set for a cyclic 10-cycle system of
〈S〉10t. �

We now consider the case when t = 5.

Lemma 5.4. For each positive integer m ≡ 2 (mod 8), there exists a cyclic m-cycle system
of K5m − I.

Proof. Let m be a positive integer such that m ≡ 2 (mod 8), say m = 8r + 2 for some
positive integer r. By Lemma 5.3, we may assume r ≥ 2. Then K5m − I = 〈S ′〉5m where
S ′ = {1, 2, . . . , 20r + 4}.

Let 2r = 6q + 4 + b for integers q ≥ 0 and b ∈ {0, 2, 4}. Let a be a positive integer such
that 1 + log2(q + 2) ≤ a ≤ 1 + log2(5q + 2), and note that a exists since if q = 0 then
log2(q + 2) is an integer, while if q ≥ 1 then 2(q + 2) = 2q + 4 ≤ 4q + 2 < 5q + 2. For
nonnegative integers i and j, define di,j = 10(2r− i) + j. Consider the path Pi,j : 0, di,j, 5 · 2a
and observe that `(Pi,j) = {10(2r − i) + j, 10(2r − i) + j − 5 · 2a}. If 0 < j < 10, then
Ci,j = Pi,j ∪ ρ10(Pi,j) ∪ ρ20(Pi,j) ∪ · · · ∪ ρ5m−10(Pi,j) is an m-cycle since m ≡ 2 (mod 8) gives
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gcd(5 · 2a, 5m) = 10. Thus, if 0 < j < 10, `(Ci,j) = {10(2r − i) + j, 10(2r − i) + j − 5 · 2a}.
Let

X = {C0,j | 1 ≤ j ≤ 4} ∪ {Ci,j | 1 ≤ i ≤ q and 1 ≤ j ≤ 6} ∪ {Cq+1,j | 6− b+ 1 ≤ j ≤ 6}

and let

B = {20r + j, 20r + j − 5 · 2a | 1 ≤ j ≤ 4}
∪ {10(2r − i) + j, 10(2r − i) + j − 5 · 2a | 1 ≤ i ≤ q and 1 ≤ j ≤ 6}
∪ {10(2r − q − 1) + j, 10(2r − q − 1) + j − 5 · 2a | 6− b+ 1 ≤ j ≤ 6},

where if q = 0 or b = 0, we take the corresponding sets to be empty as necessary. Now
B will consist of 4r distinct lengths and X will be a minimum generating set for 〈B〉5m if
20r + 4− 5 · 2a ≤ 10(2r − q − 1) + 6− b. Note that 1 + log2(q + 2) ≤ a ≤ 1 + log2(5q + 2)
gives q + 2 ≤ 2a−1 ≤ 5q + 2. So,

20r + 4− [10(2r − q − 1) + 6− b] = 10q + 8 + b ≤ 10q + 12

and

(10q + 12)/10 < q + 2 ≤ 2a−1.

Thus 20r + 4− 5 · 2a ≤ 10(2r − q − 1) + 6− b so that B consists of 4r distinct lengths, and
X is a minimum generating set for 〈B〉5m.

It remains to find a cyclic m-cycle system of 〈S ′ \ B〉5m. The smallest length in B is
10(2r− q−1) + 6− b+ 1−5 ·2a, and we wish to show 10(2r− q−1) + 6− b−5 ·2a ≥ 12. So,

10(2r − q − 1) + 6− b− 12 = 20r − 10q − 16− b ≥ 20r − 10q − 20

and (20r − 10q − 20)/10 ≥ 2r − q − 2. Now

2r − q − 2 = 5q + 2 + b ≥ 5q + 2 ≥ 2a−1.

Hence, 10(2r− q− 1) + 6− b− 5 · 2a ≥ 12. Since |B| = 4r, we have |S ′ \B| = 20r+ 4− 4r =
2(8r + 2). Now

S ′ \B = {1, 2, . . . , 10(2r − q − 1) + 6− b− 5 · 2a} ∪ {10(2r − i)− 5 · 2a − 3,

10(2r − i)− 5 · 2a − 2, 10(2r − i)− 5 · 2a − 1, 10(2r − i)− 5 · 2a | 0 ≤ i ≤ q}
∪ {10(2r) + 5− 5 · 2a, . . . , 10(2r − q − 1) + 6− b}
∪ {10(2r − i)− 3, 10(2r − i)− 2, 10(2r − i)− 1, 10(2r − i) | 0 ≤ i ≤ q}.

Note that each the sets {1, 2, . . . , 10(2r−q−1)+6−b−5 ·2a}, {10(2r− i)−5 ·2a−3, 10(2r−
i)−5·2a−2, 10(2r−i)−5·2a−1, 10(2r−i)−5·2a | 0 ≤ i ≤ q}, {10(2r)+5−5·2a, . . . , 10(2r−
q−1)+6−b}, and {10(2r−i)−3, 10(2r−i)−2, 10(2r−i)−1, 10(2r−i) | 0 ≤ i ≤ q} has even
cardinality and consists of consecutive integers. Therefore, we may partition S ′ \B into sets
T, S1, S2, . . . , S8r−4 where T = {1, 2, . . . , 12} and for i = 1, 2, . . . , 8r − 4, let Si = {bi, bi + 1}
with b1 < b2 < · · · < b8r−4.

Let A = [ai,j] be the 2×m array[
1 2 3 4 9 11 b1 b1 + 1 b2 b2 + 1 · · · b4r−2 b4r−2 + 1
5 6 7 8 10 12 b4r−1 b4r−1 + 1 b4r b4r + 1 · · · b8r−4 b8r−4 + 1

]
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It is straightforward to verify that, for 1 ≤ i ≤ 2,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Hence, for 1 ≤ i ≤ 2, the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . , ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X ′ = {C1, C2} is a minimum generating set for a cyclic m-cycle system of 〈S ′ \
B〉5m. �

We are now ready to prove the main result of this subsection, namely, that Kmt− I has a
cyclic m-cycle system for every t ≡ 1 (mod 4) and m ≡ 2 (mod 8) with t > 1 if m = 2pα for
some prime p and integer α ≥ 1.

Lemma 5.5. For each positive integer t ≡ 1 (mod 4) and each m ≡ 2 (mod 8) with t > 1
if m = 2pα for some prime p and integer α ≥ 1, there exists a cyclic m-cycle system of
Kmt − I.

Proof. Let m and t be positive integers such that m ≡ 2 (mod 8) and t ≡ 1 (mod 4). Thus
m = 8r + 2 for some positive integer r. Then Kmt − I = 〈S ′〉mt where S ′ = {1, 2, . . . , (mt−
2)/2}. Since Km − I has a cyclic hamiltonian cycle system [12] if and only if m 6= 2pα for
some prime p and integer α ≥ 1, we may assume that t > 1. Thus, let t = 4s + 1 for some
positive integer s. By Lemmas 5.3 and 5.4, we may assume that s ≥ 2 and r ≥ 2.

The proof proceeds as follows. We begin by finding a set B ⊆ S ′ such that |B| = 4r and
〈B〉mt has a cyclic m-cycle system with a minimum generating set X consisting of cycles
each with two distinct lengths and orbit 2t. We then construct an (|S ′ \ B|/m) ×m array
A = [ai,j] with the property that for each i with 1 ≤ i ≤ |S ′ \B|/m,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Thus for each i = 1, 2, . . . , |S ′ \B|/m, the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . , ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X ′ = {C1, C2, . . . , C|S′\B|/m} will be a minimum generating set for a cyclic m-cycle
system of 〈S ′ \B〉mt.

Let w = br/2c, and let δr = 2(r/2− w), so that δr = 1 if r is odd and δr = 0 if r is even.
Write w = qs+ b where q and b are non-negative integers with 0 ≤ b < s (note that it may
be the case that q = 0). For integers i and j, define di,j = 4(r − 2i)t+ j. Consider the path
Pi,j : 0, di,j, 4t and observe that `(Pi,j) = {4(r − 2i)t + j, 4(r − 2i − 1)t + j}. If 0 < j < t,
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then Ci,j = Pi,j ∪ ρ2t(Pi,j) ∪ ρ4t(Pi,j) ∪ · · · ∪ ρ(m−2)t(Pi,j) is an m-cycle since m ≡ 2 (mod 8)
gives gcd(4t,mt) = 2t. Thus, if 0 < j < t, `(Ci,j) = {4(r − 2i)t+ j, 4(r − 2i− 1)t+ j}. Let

X = {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ t− 1} ∪ {Cq,j | t− 4b− 2δr ≤ j ≤ t− 1}

and let

B = {4(r − 2i)t+ j, 4(r − 2i− 1)t+ j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ t− 1}
∪{4(r − 2q)t+ j, 4(r − 2q − 1)t+ j | t− 4b− 2δr ≤ j ≤ t− 1},

where we take the appropriate sets to be empty if q = 0 or b = 0. Observe that X is a
minimum generating set for 〈B〉mt, and consider the set S ′ \B. Now |X| = 4qs+ 4b so that
|B| = 2(4qs+ 4b) = 4r. Hence |S ′ \B| = (4r + 1)t− 1− 4r = 2s(8r + 2) and

S ′ \B = {1, 2, . . . , 4(r − 2q − 1)t+ t− 1− 2δr − 4b}
∪ {4(r − 2q − 1)t+ t, 4(r − 2q − 1)t+ t+ 1, . . . , 4(r − 2q)t+ t− 1− 2δr − 4b}
∪ {4kt+ t, 4kt+ t+ 1, . . . , 4(k + 1)t | r − 2q ≤ k ≤ r − 1}.

Note that S ′ \ B has been written as the disjoint union of sets, each of which has even
cardinality and consists of consecutive integers.

The smallest length in B is 4(r− 2q− 1)t+ t− 4b− 2δr, and we wish to show this length
is at least 12s+ 1. Now r ≥ 2w = 2(qs+ b) > 2q + 1 since s ≥ 2. Next since 0 ≤ b < s and
t = 4s+ 1, we have t− 1− 4b = 4s− 4b ≥ 4. Therefore, 4(r− 2q− 1)t ≥ 4t > 16s, and thus
4(r−2q−1)t+t−3−4b > 16s+2 > 12s. Since the smallest length is S ′\B is at least 12s+1
and since S ′ \B consists of sets of consecutive integers of even cardinality, we may partition
S ′ \ B into sets T, S1, . . . , S8rs−4s where T = {1, 2, . . . , 12s}, and for i = 1, 2, . . . , 8rs − 4s,
Si = {bi, bi + 1} with b1 < b2 < · · · < b8rs−4s. Let A = [ai,j] be the 2s×m array

1 2 3 4 8s+ 1 8s+ 3 b1 b1 + 1
5 6 7 8 8s+ 2 8s+ 4 b4r−1 b4r−1 + 1
...

...
...

...
...

...
...

... · · ·
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s b8rs−4s−4r+3 b8rs−4s−4r+3 + 1

b2 b2 + 1 · · · b4r−2 b4r−2 + 1
b4r b4r + 1 · · · b8r−4 b8r−4 + 1
...

... · · ·
...

...
b8rs−4s−4r+4 b8rs−4s−4r+4 + 1 · · · b8rs−4s b8rs−4s + 1

 .
Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and

ai,1 < ai,2 < . . . < ai,m.

Thus the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . , ai,6,−ai,4, ai,m)
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is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X ′ = {C1, C2, . . . , C2s} is a minimum generating set for a cyclic m-cycle system of
〈S ′ \B〉mt. �

5.3. The Case when m ≡ 6 (mod 8) and t ≡ 3 (mod 4).

In this subsection, we find a cyclic m-cycle system of Kmt − I when m ≡ 6 (mod 8) and
t ≡ 3 (mod 4). We begin with three special cases, namely when m = 6, m = 14, or t = 3.
We first consider the case m = 6.

Lemma 5.6. For all positive integers t ≡ 3 (mod 4), there exists a cyclic 6-cycle system of
K6t − I.

Proof. Let t be a positive integer such that t ≡ 3 (mod 4), say t = 4s+3 for some non-negative
integer s. Then K6t − I = 〈S ′〉6t where S ′ = {1, 2, . . . , 12s+ 8}.

Consider the paths Pi : 0, 3t − i, 2t, for 1 ≤ i ≤ 4; then `(Pi) = {3t − i, t − i}. Next, let
Ci = Pi∪ρ2t(Pi)∪ρ4t(Pi). Then each Ci is a 6-cycle and X = {C1, C2, C3, C4} is a minimum
generating set for 〈B〉6t where B = {3t− i, t− i | 1 ≤ i ≤ 4}. Now, t− 5 = 4s− 2 and thus
S ′ \ B = {1, 2, . . . , 4s − 2, 4s + 3, 4s + 4, . . . , 12s + 4}, and so we must find a cyclic 6-cycle
system of 〈S ′ \B〉6t. Let A = [ai,j] be the 2s× 6 array

1 2 3 4 8s+ 5 8s+ 7
5 6 7 8 8s+ 6 8s+ 8
...

...
...

...
...

...
4s− 3 4s− 2 4s+ 3 4s+ 4 α α+ 2
...

...
...

...
...

...
8s+ 1 8s+ 2 8s+ 3 8s+ 4 12s+ 2 12s+ 4


where

α =

{
10s+ 2 if s is even,

10s+ 3 if s is odd.

Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 6)

and
ai,1 < ai,2 < . . . < ai,6.

Thus the 6-tuple
(ai,1,−ai,2, ai,3,−ai,4,−ai,5, ai,6)

is a difference 6-tuple and corresponds to a 6-cycle C ′i with `(C ′i) = {ai,1, ai,2, . . . , ai,6}.
Hence, X ′ = {C ′1, C ′2, . . . , C ′2s} is a minimum generating set for a cyclic 6-cycle system of
〈S ′ \B〉6t. �

Next we consider the case when m = 14.

Lemma 5.7. For all positive integers t ≡ 3 (mod 4), there exists a cyclic 14-cycle system of
K14t − I.
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Proof. Let t be a positive integer such that t ≡ 3 (mod 4), say t = 4s+3 for some non-negative
integer s. Then K14t − I = 〈S ′〉14t where S ′ = {1, 2, . . . , 28s+ 20}.

Consider the paths Pi : 0, 7t− i, 2t, for 1 ≤ i ≤ 10; then `(Pi) = {7t− i, 5t− i}. Next, let
Ci = Pi∪ρ2t(Pi)∪ρ4t(Pi)∪· · ·∪ρ12t(Pi). Then each Ci is a 14-cycle and X = {C1, C2, . . . , C10}
is a minimum generating set for 〈B〉14t where B = {7t − i, 5t − i | 1 ≤ i ≤ 10}. Now,
5t− 10 = 20s+ 5 and thus S ′ \B = {1, 2, . . . , 20s+ 4, 20s+ 15, 20s+ 16, . . . , 28s+ 10}, and
so we must find a cyclic 14-cycle system of 〈S ′ \B〉14t. Let A = [ai,j] be the 2s× 14 array

1 2 3 4 8s+ 1 8s+ 3 12s+ 1 12s+ 2 12s+ 3 12s+ 4
5 6 7 8 8s+ 2 8s+ 4 12s+ 5 12s+ 6 12s+ 7 12s+ 8
9 10 11 12 8s+ 5 8s+ 7 12s+ 9 12s+ 10 12s+ 11 12s+ 12
...

...
...

...
...

...
...

...
...

...
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s 20s− 3 20s− 2 20s− 1 20s

20s+ 1 20s+ 2 20s+ 3 20s+ 4
20s+ 15 20s+ 16 20s+ 17 20s+ 18
20s+ 19 20s+ 20 20s+ 21 20s+ 22
...

...
...

...
28s+ 7 28s+ 8 28s+ 9 28s+ 10

 .
Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ 14)

and

ai,1 < ai,2 < . . . < ai,14.

Thus the 14-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7,−ai,9, ai,11,−ai,13,−ai,12, ai,10,−ai,8, ai,6,−ai,4, ai,14)

is a difference 14-tuple and corresponds to a 14-cycle C ′i with `(C ′i) = {ai,1, ai,2, . . . , ai,14}.
Hence, X ′ = {C ′1, C ′2, . . . , C ′2s} is a minimum generating set for a cyclic 14-cycle system of
〈S ′ \B〉14t. �

We now consider the case when t = 3.

Lemma 5.8. For all positive integers m ≡ 6 (mod 8), there exists a cyclic m-cycle system
of K3m − I.

Proof. Let m be a positive integer such that m ≡ 6 (mod 8), say m = 8r + 6 for some non-
negative integer r. By Lemmas 5.6 and 5.7, we may assume r ≥ 2. Then K3m − I = 〈S ′〉mt
where S ′ = {1, 2, . . . , 12r + 8}. Write 2r = 4q + b+ 2 for integers q ≥ 0 and b ∈ {0, 2}, and
let a be a positive integer such that 1 + log2(q + 1) ≤ a ≤ 1 + log2(3q + 4/3 + 5b/6). For
integers i and j, define di,j = 6(2r − i) + j. Then consider the path Pi,j : 0, di,j, 3 · 2a; so
`(Pi,j) = {6(2r− i)+j, 6(2r− i)+j−3 ·2a}. Now, let Ci,j = Pi,j∪ρ6(Pi,j)∪· · ·∪ρ3(m−2)(Pi,j).
Then Ci,j is an m-cycle since m ≡ 6 (mod 8) implies gcd(3 · 2a, 3m) = 6. Thus, `(Ci,j) =
`(Pi,j).
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Now, let

X = {C0,j | j = 7, 8}
∪ {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 4}
∪ {Cq,j | 5− b ≤ j ≤ 4}

and let

B = {12r + 7, 12r + 7− 3 · 2a, 12r + 8, 12r + 8− 3 · 2a}
∪ {6(2r − i) + j, 6(2r − i)− 3 · 2a + j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 4}
∪ {6(2r − q) + j, 6(2r − q)− 3 · 2a + j | 5− b ≤ j ≤ 4}

where, if q = 0 or b = 0, we take the corresponding sets to be empty as necessary. Now
B will consists of 4r distinct lengths and X will be a minimum generating set for 〈B〉3m if
12r + 8− 3 · 2a ≤ 6(2r − q) + 5− b− 1. Note that 1 + log2(q + 1) ≤ a so that q + 1 ≤ 2a−1.
Next,

12r + 8− [6(2r − q) + 5− b− 1] = 6q + 4 + b ≤ 6q + 6 = 6(q + 1) ≤ 6 · 2a−1 = 3 · 2a,
and hence 12r+8−3·2a ≤ 6(2r−q)+5−b−1. Thus, B consists of 4r distinct lengths, and X
is a minimum generating set for 〈B〉3m. Now, the smallest length in B is 6(2r−q)+5−b−3·2a
and we want this length to be greater than 8. Recall that a ≤ 1 + log2(3q+ 3/2 + 5b/6) and
thus 2a−1 ≤ 3q+3/2+5b/6. Hence, 3·2a ≤ 18q+9+5b = 12r−6q−3−b since 2r = 4q+b+2.
Therefore, 6(2r− q) + 5− b− 3 · 2a ≥ 8. Since |B| = 4r, we have |S ′ \B| = 8r+ 8. Note that

S ′ \B = {1, 2, . . . , 6(2r − q) + 5− b− 3 · 2a − 1}
∪ {6(2r − i)− 3 · 2a + 5, 6(2r − i)− 3 · 2a + 6 | 0 ≤ i ≤ q}
∪ {12r − 3 · 2a + 9, . . . , 6(2r − q) + 5− b− 1}
∪ {6(2r − i) + 5, 6(2r − i) + 6 | 0 ≤ i ≤ q}.

Note that S ′ \ B has been written as the disjoint union of sets, each of which has even
cardinality and consists of consecutive integers. Therefore, we may partition S ′ \B into sets
T, S1, S2, . . . , S4r where T = {1, 2, . . . , 8} and for i = 1, 2, . . . , 4r, let Si = {bi, bi + 1} with
b1 < b2 < · · · < b4r.

Consider the m-tuple

(1,−3, 6,−7, b1,−b2, b3,−b4, . . . , b4r−1,−b4r,−(b4r−1 + 1), b4r−2 + 1,

−(b4r−3 + 1), b4r−4 + 1, . . . , b2 + 1,−(b1 + 1), 8,−5, b4r + 1)

which is a difference m-tuple and corresponds to an m-cycle C1 with

`(C1) = {1, 3, 5, 6, 7, 8, b1, b1 + 1, b2, b2 + 1, . . . , b4r, b4r + 1}.
Then consider the path P : 0, 2, 6; so `(P ) = {2, 4}. Now, let C2 = P∪ρ6(P )∪· · ·∪ρ3(m−2)(P ).
Then C2 is an m-cycle since m ≡ 6 (mod 8) implies gcd(6, 3m) = 6. Thus, `(C2) = `(P ) =
{2, 4}. Hence, X ′ = {C1, C2} is a minimum generating set for a cyclic m-cycle system of
〈S ′ \B〉3m. �
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We now prove the main result of this subsection, namely that Kmt−I has a cyclic m-cycle
system for every t ≡ 3 (mod 4) and m ≡ 6 (mod 8).

Lemma 5.9. For all positive integers t ≡ 3 (mod 4) and m ≡ 6 (mod 8), there exists a cyclic
m-cycle system of Kmt − I.

Proof. Let m and t be positive integers such that m ≡ 6 (mod 8) and t ≡ 3 (mod 4). Then
m = 8r + 6 and t = 4s + 3 for some non-negative integers r and s. Then Kmt − I = 〈S ′〉mt
where S ′ = {1, 2, . . . , (4r + 3)t− 1}.

By Lemmas 5.6, 5.7, and 5.8, we may assume s ≥ 1 and r ≥ 2. First, write 6r + 4 =
(2t − 2)q + (t − 1)` + b for integers q, ` and b with q ≥ 0, 0 ≤ b < 2t − 2 , and ` = 0 if
6r + 4 < t − 1, or ` = 1 otherwise. For integers i and j, define di,j = 2t(2r − 2i − 1) + j.
Consider the path Pi,j : 0, di,j, 2t and note that `(Pi,j) = {2t(2r−2i−1)+j, 2t(2r−2i−2)+j}.
If 0 < j < 2t, then Ci,j = Pi,j ∪ ρ2t(Pi,j) ∪ ρ4t(Pi,j) ∪ · · · ∪ ρ(m−2)t(Pi,j) is an m-cycle since
m ≡ 6 (mod 8) implies gcd(2t,mt) = 2t. Thus, if 0 < j < 2t, then `(Ci,j) = `(Pi,j).

Now, let

X = {C−1,j | 1 ≤ j ≤ t− 1}
∪ {Ci,j | 0 ≤ i ≤ q − 1 and 1 ≤ j ≤ 2t− 2}
∪ {Cq,j | 2t− 1− b ≤ j ≤ 2t− 2}

and let

B = {2t(2r + 1) + j, 2t(2r) + j | 1 ≤ j ≤ t− 1}
∪ {2t(2r − 2i− 1) + j, 2t(2r − 2i− 2) + j | 1 ≤ j ≤ 2t− 2 and 0 ≤ i ≤ q − 1}
∪ {2t(2r − (2q + 1)) + 2t− 1− b+ j, 2t(2r − 2q − 2) + 2t− 1− b+ j | 0 ≤ j ≤ b− 1}.

where we take the first set to be empty if ` = 0, the second to be empty if q = 0, and the
third to be empty if b = 0. Then X is a minimum generating set for 〈B〉mt.

Now we must find a cyclic m-cycle system of 〈S ′ \ B〉mt. First, |B| = 2[(2t − 2)q + (t −
1)`+ b] = 12r + 8 so that |S ′ \B| = (4r + 3)t− 1− 12r − 8 = (8r + 6)(2s). Moreover,

S ′ \B = {1, 2, . . . , 2t(2r − 2q − 1)− b− 2}
∪ {2t(2r − 2q − 1)− 1, 2t(2r − 2q − 1), . . . , 2t(2r − 2q)− b− 2}
∪ {2t(2r − i)− 1, 2t(2r − i) | 0 ≤ i ≤ 2q}
∪ {4rt+ t, 4rt+ t+ 1, . . . , 4rt+ 2t}.

The smallest length in B is 4t(r− q − 1) + (2t− 1)− b, and we must verify that this length
is at least 12s + 1. Note that we have 2t − 1 − b > 1. Thus, it is sufficient to prove that
4t(r− q− 1) ≥ 12s, or t(r− q− 1) ≥ 3s. This inequality follows if r > q+ 1. Clearly, this is
true if q = 0 since r ≥ 2, so assume q ≥ 1. Then ` = 1, and so 6r+4 = 2q(4s+2)+(4s+2)+b,
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or

3r + 2 = q(4s+ 2) + 2s+ 1 + b/2

= 4qs+ 2q + 2s+ 1 + b/2

≥ 6q + 3 (since s ≥ 1).

So, r ≥ 2q + 1/3 > q + 1 since q ≥ 1. Since the smallest length in B is at least 12s+ 1 and
S ′ \ B consists of sets of consecutive integers of even cardinality, we may partition S ′ \ B
into sets T, S1, . . . , S8rs where T = {1, 2, . . . , 12s}, and for i = 1, 2, . . . , 8rs, Si = {bi, bi + 1}
with b1 ≤ b2 ≤ · · · ≤ b8rs. Let A = [ai,j] be the 2s×m array

1 2 3 4 8s+ 1 8s+ 3 b1 b1 + 1
5 6 7 8 8s+ 2 8s+ 4 b4r+1 b4r+1 + 1
...

...
...

...
...

...
...

... · · ·
8s− 3 8s− 2 8s− 1 8s 12s− 2 12s b8rs−4r+1 b8rs−4r+1 + 1

b2 b2 + 1 · · · b4r b4r + 1
b4r+2 b4r+2 + 1 · · · b8r b8r + 1
...

... · · ·
...

...
b8rs−4r+2 b8rs−4r+2 + 1 · · · b8rs b8rs + 1

 .
Clearly, for each i with 1 ≤ i ≤ 2s,

ai,2 +
∑

j≡0,1 (mod 4)

ai,j = ai,1 +
∑

j≡2,3 (mod 4)

ai,j (where 3 ≤ j ≤ m)

and
ai,1 < ai,2 < . . . < ai,m.

Thus the m-tuple

(ai,1,−ai,2, ai,3,−ai,5, ai,7, . . . , ai,m−3,−ai,m−1,−ai,m−2, ai,m−4,−ai,m−6, . . . , ai,6,−ai,4, ai,m)

is a difference m-tuple and corresponds to an m-cycle Ci with `(Ci) = {ai,1, ai,2, . . . , ai,m}.
Hence, X ′ = {C1, C2, . . . , C2s} is a minimum generating set for a cyclic m-cycle system of
〈S ′ \B〉mt. �
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