On non-normal 4-valent arc transitive dihedrants

Aleksander Malnič
University of Ljubljana

Joint work with István Kovács and Boštjan Kuzman

Banff, Canada
November, 2008
An **n-dihedrant** is a Cayley graph of a dihedral group D_n. An **n-bicirculant** is a regular \mathbb{Z}_n-cover of a dipole.

\[n\text{-dihedrant} \Rightarrow n\text{-bicirculant} \]

It is often convenient if we consider dihedrants as bicirculants.
An **n-dihedrant** is a Cayley graph of a dihedral group D_n. An **n-bicirculant** is a regular \mathbb{Z}_n-cover of a dipole.

\[\text{n-dihedrant } \Rightarrow \text{n-bicirculant} \]

It is often convenient if we consider dihedrants as bicirculants.

BC$_n$1, BC$_n$2, BC$_n$3, BC$_n$4

Bicirculants of valency 4 fall into 4 classes,

![Diagram of bicirculants with 4 classes]

wrt. the number of perfect matchings between the two orbits of \mathbb{Z}_n.
4 valent edge transitive bicirculants

BC$_n$1, BC$_n$3

No such graphs. Kovács, Kuzman, M., Wilson, 2008
<table>
<thead>
<tr>
<th>BC_n1, BC_n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No such graphs. Kovács, Kuzman, M., Wilson, 2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BC_n2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose window graphs. Kovács, Kutnar, Marušič, 2008</td>
</tr>
<tr>
<td>Some of these are dihedrans.</td>
</tr>
</tbody>
</table>
BC\(_n1, BC\(_n3\)

No such graphs. Kovács, Kuzman, M., Wilson, 2008

BC\(_n2\)

- Rose window graphs. Kovács, Kutnar, Marušič, 2008

 Some of these are dihedrants.

4 valent edge transitive bicirculants

<table>
<thead>
<tr>
<th>BC(_n1), BC(_n3)</th>
<th>No such graphs. Kovács, Kuzman, M., Wilson, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC(_n2)</td>
<td>Rose window graphs. Kovács, Kutnar, Marušič, 2008</td>
</tr>
<tr>
<td></td>
<td>Some of these are dihedrans.</td>
</tr>
<tr>
<td>BC(_n4)</td>
<td>(X \in \text{BC}_n4) is necessarily a dihedrant.</td>
</tr>
<tr>
<td></td>
<td>Normal, (D_\phi \triangleleft \text{Aut}(X)).</td>
</tr>
<tr>
<td></td>
<td>Kovács, Kuzman, M., Wilson, 2008</td>
</tr>
<tr>
<td></td>
<td>This talk.</td>
</tr>
</tbody>
</table>
Non-normal arc-transitive BC_{n4}

Table 1: Non-normal 4-valent arc-transitive dihedrants satisfying the bipartition condition.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. The lexicographic product $C_n[2K_1]$. $n \geq 4$ even, $S = {b, ba, ba^2, ba^3}$ (in picture, $n = 16$).</td>
<td>II. The graph $K_{5,5} - 5K_2$. $n = 5$, $S = {b, ba, ba^5, ba^9}$.</td>
<td></td>
</tr>
<tr>
<td>III. The non-incidence graph of $PG(2, 2)$. $n = 7$, $S = {b, ba, ba^2, ba^4}$.</td>
<td>IV. The incidence graph of $PG(2, 3)$. $n = 13$, $S = {b, ba, ba^3, ba^9}$.</td>
<td></td>
</tr>
<tr>
<td>V. A 2-cover of the graph III. $n = 14$, $S = {b, ba, ba^4, ba^5}$.</td>
<td>VI. A 3-cover of the graph II. $n = 15$, $S = {b, ba, ba^3, ba^7}$</td>
<td></td>
</tr>
</tbody>
</table>
Arc transitive dihedrants val 4, 1-regular

Arc transitive dihedrants val 4, 1-regular

Lemma

$X \in BC_n4$ non-normal $\Rightarrow X$ not 1-regular.
References

Arc transitive dihedrants val 4, 1-regular

Lemma

$X \in BC_n4$ non-normal $\Rightarrow X$ not 1-regular.

2-arc transitive dihedrants

I. The lexicographic product $C_n[2K_1]$, $n \geq 4$ even, $S = \{b, ba, ba^2, ba^{2+1}\}$ (in picture, $n = 16$).

II. The graph $K_{5,5} - 5K_2$, $n = 5$, $S = \{b, ba, ba^3, ba^7\}$.

III. The non-incidence graph of $PG(2,2)$, $n = 7$, $S = \{b, ba, ba^2, ba^4\}$.

IV. The incidence graph of $PG(2,3)$, $n = 13$, $S = \{b, ba, ba^3, ba^9\}$.

V. A 2-cover of the graph III, $n = 14$, $S = \{b, ba, ba^4, ba^6\}$.

VI. A 3-cover of the graph II, $n = 15$, $S = \{b, ba, ba^3, ba^7\}$.

Table 1: Non-normal 4-valent arc-transitive dihedrants satisfying the bipartition condition.
With $X \in BC_n4$ we associate a certain circulant Y (step two blue graph in figure below). Graphs X are classified by finding all possible graphs Y.
With \(X \in BC_n^4 \) we associate a certain circulant \(Y \) (step two blue graph in figure below). Graphs \(X \) are classified by finding all possible graphs \(Y \).

With $X \in \text{BC}_n 4$ we associate a certain circulant Y (step two blue graph in figure below). Graphs X are classified by finding all possible graphs Y.

In order this to work we need to transfer symmetry properties between X and Y.
Lemma

\(X \in BC_n 4 \) non-normal \(\Leftrightarrow \) \(X \) non-normal \(\mathbb{Z}_n \)-cover of \(\text{dip}_4 \).
Lemma

\[X \in BC_n^4 \text{ non-normal} \iff X \text{ non-normal } \mathbb{Z}_n\text{-cover of } \text{dip}_4. \]

Lemma

\[X \in BC_n^4 \text{ non-normal} \implies Y \text{ non-normal circulant.} \]
Lemma

\(X \in \text{BC}_n4 \) non-normal \(\Leftrightarrow \) \(X \) non-normal \(\mathbb{Z}_n \)-cover of \(\text{dip}_4 \).

Lemma

\(X \in \text{BC}_n4 \) non-normal \(\Rightarrow \) \(Y \) non-normal circulant.

\[\text{Aut}Y \]

\[\text{D} \quad \text{G=AutX} \]

\[\varphi \text{ restr. on } Z \]

\[Z \quad G \]

\[\tilde{G} \]

- \(\text{Ker}\phi = \text{Ker}\tilde{G} = 1 \). Then \(Z \triangleleft \text{Aut}(Y) \Rightarrow Z \triangleleft \tilde{G} \Rightarrow Z \triangleleft G \)
- \(\text{Ker}\phi = \text{Ker}\tilde{G} \neq 1 \). Then \(X = C_n[2K_1], \ n \geq 4 \) even, \(Y = C_{n/2}[K_2] \).
Why it works? The structure of Y

$X = \text{Cay}(D_n, S), \quad S = \{ b, ba^x, ba^y, ba^z \}$

$Y = \text{Cay}(\mathbb{Z}_n, T), \quad T = \{ a^{\pm x}, a^{\pm y}, a^{\pm z}, a^{\pm (x-y)}, a^{\pm (y-z)}, a^{\pm (x-z)} \}$

might not be arc transitive. However: it is an edge-disjoint union of arc transitive circulants (of which at least one of them is connected).
Why it works? The structure of Y

\[X = \text{Cay}(D_n, S), \quad S = \{b, ba^x, ba^y, ba^z\} \]

\[Y = \text{Cay}(\mathbb{Z}_n, T), \quad T = \{a^{\pm x}, a^{\pm y}, a^{\pm z}, a^{\pm(x-y)}, a^{\pm(y-z)}, a^{\pm(x-z)}\} \]

might not be arc transitive. However: it is an edge-disjoint union of arc transitive circulants (of which at least one of them is connected).

Lemma

Either

- \(Y \) connected arc transitive, non normal, and
 \[T = \{a^{\pm x}, a^{\pm y}, a^{\pm z}, a^{\pm(x-y)}, a^{\pm(y-z)}, a^{\pm(x-z)}\} \]

or

- \(Y = Y_1 + Y_2 \), where \(Y_2 \) is connected, arc transitive, non-normal, and
 \[T_1 = \{a^{\pm x}, a^{\pm(y-z)}\}, \quad T_2 = \{a^{\pm y}, a^{\pm z}, a^{\pm(x-y)}, a^{\pm(x-z)}\} \]
The structure of Y, uniformity index of X

For $e \in Y$, let $r(e)$ be the number of 3-cycles in $X \cup X^2$ containing e.
The structure of Y, uniformity index of X

For $e \in Y$, let $r(e)$ be the number of 3-cycles in $X \cup X^2$ containing e.

Lemma

- If Y is arc transitive, then
 \[r(e) = \frac{12}{|T|} \text{ for each } e \in E(Y). \]

- If $Y = Y_1 + Y_2$ is an edge disjoint union of two arc transitive graphs, then
 \[r(e) = \begin{cases}
 \frac{4}{|T_1|}, & \text{for each } e \in E(Y_1) \\
 \frac{8}{|T_2|}, & \text{for each } e \in E(Y_2).
 \end{cases} \]
For $e \in Y$, let $r(e)$ be the number of 3-cycles in $X \cup X^2$ containing e.

Lemma

- If Y is arc transitive, then
 \[r(e) = \frac{12}{|T|} \text{ for each } e \in E(Y). \]

- If $Y = Y_1 + Y_2$ is an edge disjoint union of two arc transitive graphs, then
 \[r(e) = \begin{cases}
 \frac{4}{|T_1|}, & \text{for each } e \in E(Y_1) \\
 \frac{8}{|T_2|}, & \text{for each } e \in E(Y_2).
\end{cases} \]

X is k-uniform if $r(e) = k$ for all $e \in E(Y)$. The parameter k is the uniformity index. If $Y = Y_1 + Y_2$, then Y_1 is k_1-uniform and Y_2 is k_2-uniform. Possibly, $k_1 = k_2 = k$.
Then $Y = Y_1 + Y_2$. Since $|T_1|k_1 = 4$, $|T_2|k_2 = 8 \Rightarrow k_1, k_2 \in \{1, 2, 4\}$.

By a result of Baik, Feng, Sim, Xu, the graph Y_2 is one of K_5, K_5, K_2, and $C_n/2[K_1]$ for $n \geq 6$ even. None of these can appear as Y_2.

X is non-uniform

Then \(Y = Y_1 + Y_2 \). Since \(|T_1|k_1 = 4, \ |T_2|k_2 = 8 \ \Rightarrow k_1, k_2 \in \{1, 2, 4\} \).

Lemma

If \(X \) is non-uniform, then \(X = C_n[2K_1], \ n \geq 4 \) even.
Then $Y = Y_1 + Y_2$. Since $|T_1|k_1 = 4$, $|T_2|k_2 = 8 \Rightarrow k_1, k_2 \in \{1, 2, 4\}$.

Lemma

If X is non-uniform, then $X = C_n[2K_1]$, $n \geq 4$ even.

- $k_1 = 4$. Then elements in $T_1 = \{a^{\pm x}, a^{\pm(y-z)}\}$ coincide. Hence $X = C_n[2K_1]$.

11 / 19
X is non-uniform

Then \(Y = Y_1 + Y_2 \). Since \(|T_1|k_1 = 4, |T_2|k_2 = 8 \Rightarrow k_1, k_2 \in \{1, 2, 4\} \).

Lemma

If \(X \) is non-uniform, then \(X = C_n[2K_1], n \geq 4 \) even.

- \(k_1 = 4 \). Then elements in \(T_1 = \{a^{\pm x}, a^{\pm(y-z)}\} \) coincide. Hence \(X = C_n[2K_1] \).
- \(k_1 = 2 \). No graphs.
Then $Y = Y_1 + Y_2$. Since $|T_1|k_1 = 4$, $|T_2|k_2 = 8 \Rightarrow k_1, k_2 \in \{1, 2, 4\}$.

Lemma

If X is non-uniform, then $X = C_n[2K_1]$, $n \geq 4$ even.

- $k_1 = 4$. Then elements in $T_1 = \{a^{\pm x}, a^{\pm(y-z)}\}$ coincide. Hence $X = C_n[2K_1]$.
- $k_1 = 2$. No graphs.
- $k_1 = 1$. Then $T_1 = \{a^{\pm(y+z)}, a^{\pm(y-z)}\}$ and $T_2 = \{a^{\pm y}, a^{\pm z}\}$. Now Y_2 is a connected 4-valent arc transitive circulant, and non-normal.

By a result of Baik, Feng, Sim, Xu, the graph Y_2 is one of K_5, $K_{5,5} - 5K_2$, and $C_{n/2}[2K_1]$ for $n \geq 6$ even.

None of these can appear as Y_2.

Then \(Y = Y_1 + Y_2 \). Since \(|T_1|k_1 = 4 \), \(|T_2|k_2 = 8 \) \(\Rightarrow \) \(k_1, k_2 \in \{1, 2, 4\} \).

Lemma

If \(X \) is non-uniform, then \(X = C_n[2K_1], \ n \geq 4 \) even.

- \(k_1 = 4 \). Then elements in \(T_1 = \{a^{\pm x}, a^{\pm(y-z)}\} \) coincide. Hence \(X = C_n[2K_1] \).
- \(k_1 = 2 \). No graphs.
- \(k_1 = 1 \). Then \(T_1 = \{a^{\pm(y+z)}, a^{\pm(y-z)}\} \) and \(T_2 = \{a^{\pm y}, a^{\pm z}\} \). Now \(Y_2 \) is a connected 4-valent arc transitive circulant, and non-normal.

By a result of Baik, Feng, Sim, Xu, the graph \(Y_2 \) is one of

\[K_5, K_{5,5} - 5K_2, \ \text{and} \ C_{n/2}[2K_1] \ \text{for} \ n \geq 6 \ \text{even.} \]

None of these can appear as \(Y_2 \).

Lemma

If X is k-uniform, $k > 1$, then $k \leq 4$, and

- $k = 4$ and $X = K_{4,4}$.
- $k = 3$ and $X = K_{5,5} - 5K_2$.
- $k = 2$ and X is the non-incidence graph of $PG(2,2)$.

These graphs are constructed using elementary combinatorial arguments.
Lemma

If X is k-uniform, $k > 1$, then $k \leq 4$, and

- $k = 4$ and $X = K_{4,4}$.
- $k = 3$ and $X = K_{5,5} - 5K_2$.
- $k = 2$ and X is the non-incidence graph of $PG(2, 2)$.

These graphs are constructed using elementary combinatorial arguments.
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

As a quotient we obtain either a cycle, or a smaller 4-valent graph. In the latter case, $X \rightarrow X/\bar{J}$ is a regular cyclic covering projection. Moreover, X/\bar{J} is an arc transitive dihedrant, and non-normal. The uniformity index for the small dihedrant is > 1. So X is a regular cyclic cover of $C_m\langle 2K_1, K_4, 4, K_5, 5 \rangle - 5K_2$, non-inc. $PG(2, 2)$.
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
We use quotienting by the action of some cyclic subgroup \(\bar{J} \leq \bar{Z} \) such that

- orbits of \(\bar{J} \) are blocks of imprimitivity for \(G = \text{Aut}(X) \).
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.

How to find \(\bar{J} \)?

It is enough to find \(J < Z < \text{Aut}(Y) \) such that the orbits of \(J \) are blocks of imprimitivity for \(\text{Aut}(Y) \).

Since \(X \neq C_n \), we have a monomorphism of \(\bar{G} \rightarrow \text{Aut}(Y) \), and we can transfer the action of \(J \) back to an action of \(\bar{J} \) on \(X \).
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \rightarrow X/\bar{J}$ is a regular cyclic covering projection. Moreover,
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \rightarrow X/\bar{J}$ is a regular cyclic covering projection. Moreover,
 - X/\bar{J} is an arc transitive dihedrant, and non-normal.
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \to X/\bar{J}$ is a regular cyclic covering projection. Moreover,
 - X/\bar{J} is an arc transitive dihedrant, and non-normal.
 - The uniformity index for the small dihedrant is > 1.

X is 1-uniform
X is 1-uniform

We use quotienting by the action of some cyclic subgroup \(\bar{J} \leq \tilde{Z} \) such that

- orbits of \(\bar{J} \) are blocks of imprimitivity for \(G = \text{Aut}(X) \).
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, \(X \rightarrow X/\bar{J} \) is a regular cyclic covering projection.

Moreover,

- \(X/\bar{J} \) is an arc transitive dihedrant, and non-normal.
- The uniformity index for the small dihedrant is \(> 1 \).
- So \(X \) is a regular cyclic cover of
 - \(C_m[2K_1] \), \(K_{4,4} \), \(K_{5,5} - 5K_2 \), non-inc. \(PG(2, 2) \).
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \to X/\bar{J}$ is a regular cyclic covering projection. Moreover,
 - X/\bar{J} is an arc transitive dihedrant, and non-normal.
 - The uniformity index for the small dihedrant is > 1.
 - So X is a regular cyclic cover of $C_m[2K_1], K_{4,4}, K_{5,5} - 5K_2$, non-inc. $PG(2, 2)$.

How to find \bar{J}?
We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \to X/\bar{J}$ is a regular cyclic covering projection.

Moreover,

- X/\bar{J} is an arc transitive dihedrant, and non-normal.
- The uniformity index for the small dihedrant is > 1.
- So X is a regular cyclic cover of $C_m[2K_1], K_{4,4}, K_{5,5} - 5K_2$, non-inc. $PG(2, 2)$.

How to find \bar{J}?

- It is enough to find $J < Z < \text{Aut}(Y)$ such that the orbits of J are blocks of imprimitivity for $\text{Aut}(Y)$.

We use quotienting by the action of some cyclic subgroup $\bar{J} \leq \bar{Z}$ such that

- orbits of \bar{J} are blocks of imprimitivity for $G = \text{Aut}(X)$.
- As a quotient we obtain either a cycle, or a smaller 4-valent graph.
- In the latter case, $X \to X/\bar{J}$ is a regular cyclic covering projection.

Moreover,

- X/\bar{J} is an arc transitive dihedrant, and non-normal.
- The uniformity index for the small dihedrant is > 1.
- So X is a regular cyclic cover of
 $C_m[2K_1], K_{4,4}, K_{5,5} - 5K_2$, non-inc. $PG(2, 2)$.

How to find \bar{J}?

- It is enough to find $J < Z < \text{Aut}(Y)$ such that the orbits of J are blocks of imprimitivity for $\text{Aut}(Y)$.
- Since $X \neq C_n[2K_1]$, we have a monomorphism of $\bar{G} \to \text{Aut}(Y)$, and we can transfer the action of J back to an action of \bar{J} on X.

"X is 1-uniform"
Y or (Y_2) is a connected, arc transitive, non-normal circulant. Hence the connection set T (or T_2) has restricted structure, by a result of Kovács.
Y or (Y_2) is a connected, arc transitive, non-normal circulant. Hence the connection set T (or T_2) has restricted structure, by a result of Kovács.

Y or \((Y_2)\) is a connected, arc transitive, non-normal circulant. Hence the connection set \(T\) (or \(T_2\)) has restricted structure, by a result of Kovács.

(A) There exists $1 < E < Z$ such that T (or T_2) is a union of E-cosets,

(B) There exists a coprime decomposition $Z = E \times F$, $|E| > 3$, such that T (or T_2) is of the form $E \# T'$, for some $T' < F$.
(A) There exists $1 < E < Z$ such that T (or T_2) is a union of E-cosets.

(B) There exists a coprime decomposition $Z = E \times F$, $|E| > 3$, such that T (or T_2) is of the form $E^\# T'$, for some $T' < F$.

In (A) and (B), cosets of E and F are blocks of imprimitivity for $\text{Aut}(Y)$.
1 < E < Z, take \(J = E \)

\[X \rightarrow X/\bar{E} \text{ not a cover} \]
$1 < E < Z$, take $J = E$

$X \rightarrow X/\bar{E}$ not a cover

- $T \cap E \neq \emptyset$. So $Y = Y_1 + Y_2$, and $T_2 \cap E = \emptyset$. Then $T_1 \cap E \neq \emptyset$ and moreover, $T_1 \subset E$.

$|T_2| = 8$ and $|E| \geq 5$ forces $|E| = 8$, T_2 is one coset. Also, E is of index 2. So $n = 16$.

Hence $T_1 \subset a^{\pm\{2,4,6,8\}}$ and $T_2 = a^{\pm\{1,3,5,7\}}$. So $x \in \pm\{2,4,6\}$, $y = 1$, $z \in \{3,5,7\}$.

By MAGMA, none of these graphs is arc transitive.
1 < E < Z, take J = E

\(X \rightarrow X/\overline{E} \) not a cover

- \(T \cap E \neq \emptyset \). So \(Y = Y_1 + Y_2 \), and \(T_2 \cap E = \emptyset \). Then \(T_1 \cap E \neq \emptyset \) and moreover, \(T_1 \subset E \).

\(|T_2| = 8\) and \(|E| \geq 5\) forces \(|E| = 8\), \(T_2 \) is one coset. Also, \(E \) is of index 2. So \(n = 16 \).

Hence \(T_1 \subset a^{\pm\{2, 4, 6, 8\}} \) and \(T_2 = a^{\pm\{1, 3, 5, 7\}} \). So \(x \in \pm\{2, 4, 6\} \), \(y = 1 \), \(z \in \{3, 5, 7\} \).

By MAGMA, none of these graphs is arc transitive.

\(X \rightarrow X/\overline{E} \) is a cover
1 < E < Z, take J = E

$X \rightarrow X/\bar{E}$ not a cover

- $T \cap E \neq \emptyset$. So $Y = Y_1 + Y_2$, and $T_2 \cap E = \emptyset$. Then $T_1 \cap E \neq \emptyset$ and moreover, $T_1 \subset E$.

$|T_2| = 8$ and $|E| \geq 5$ forces $|E| = 8$, T_2 is one coset. Also, E is of index 2. So $n = 16$.

Hence $T_1 \subset a^{\pm\{2,4,6,8\}}$ and $T_2 = a^{\pm\{1,3,5,7\}}$. So $x \in \pm\{2,4,6\}$, $y = 1$, $z \in \{3,5,7\}$.

By MAGMA, none of these graphs is arc transitive.

$X \rightarrow X/\bar{E}$ is a cover

- The quotient graph must be k-uniform, $k > 1$. Then $k = |E|$. By direct case analysis, also using MAGMA, we have:
 - $k = 2$. A 2-cover of the graph III. We obtain graph V.
 - $k = 3$. A 3-cover of the graph II. We obtain graph VI.
 - $k = 4$. A 4-cover of $K_{4,4}$. No graphs.
$Z = E \times F$, take $J = E$

$X \to X/E$ not a cover
\[Z = E \times F, \text{ take } J = E \]

\[X \to X/\bar{E} \text{ not a cover} \]

- \(T_2 \cap E \neq \emptyset \). Then \(T_2 = E^\# = \mathbb{Z}_n^\# \), so \(n = 13 \). We obtain graph IV.

- \(T_1 \subset E, \ T_1 \neq T_2 \).

More involved. No other graphs.
\(Z = E \times F \), take \(J = E \)

\[X \to X/E \] not a cover

- \(T_2 \cap E \neq \emptyset \). Then \(T_2 = E^\# = \mathbb{Z}_n^\# \), so \(n = 13 \). We obtain graph IV.
- \(T_1 \subset E, T_1 \neq T_2 \).

 More involved. No other graphs.

\[X \to X/E \] is a cover. Consider \(X \to X/F \)
$Z = E \times F$, take $J = E$

$X \to X/\bar{E}$ not a cover

- $T_2 \cap E \neq \emptyset$. Then $T_2 = E^\# = \mathbb{Z}_n^\#$, so $n = 13$. We obtain graph IV.
- $T_1 \subset E$, $T_1 \neq T_2$.
 More involved. No other graphs.

$X \to X/\bar{E}$ is a cover. Consider $X \to X/\bar{F}$

- Then $\bar{E} \triangleleft G$. So $X \to X/\bar{F}$ is not a cover. Otherwise $\bar{F} \triangleleft G$, and so $\bar{Z} = \bar{E} \bar{F} \triangleleft G$, a contradiction. Thus, $T_1 \subset F$. It follows that X/\bar{E} is non-uniform, with parameters $(1, |E| - 1)$, a contradiction.
Non-normal arc-transitive BC_{n4}

Table 1: Non-normal 4-valent arc-transitive dihedrants satisfying the bipartition condition.
Thank you!