CI-groups with respect to ternary relational structures

Pablo Spiga

spiga@math.unipd.it

Banff, November 27, 2008
Definition

A \textit{k-ary relational structure} is an ordered pair \(X = (V, E)\), with \(V\) a set and \(E\) a subset of \(V^k\). If \(k = 2\), we get the usual definition of digraph. If \(k = 3\), we say that \(X\) is a \textit{ternary relational structure}.
Definition
A \textit{k-ary relational structure} is an ordered pair $X = (V, E)$, with V a set and E a subset of V^k. If $k = 2$, we get the usual definition of digraph. If $k = 3$, we say that X is a \textit{ternary relational structure}.

Definition
A \textit{k-ary relational structure} $X = (V, E)$ is Cayley object for the group G, if $V = G$ and the right regular representation G_R is a subgroup of $\text{Aut}(X)$.
Definition

A k-ary relational structure is an ordered pair $X = (V, E)$, with V a set and E a subset of V^k. If $k = 2$, we get the usual definition of digraph. If $k = 3$, we say that X is a ternary relational structure.

Definition

A k-ary relational structure $X = (V, E)$ is Cayley object for the group G, if $V = G$ and the right regular representation G_R is a subgroup of $\text{Aut}(X)$.

If $k = 2$, then we get the definition of a Cayley graph over the group G (the graph X is a Cayley graph over the group G if and only if $\text{Aut}(X)$ contains a regular subgroup isomorphic to G).
Note that if $X = (G, E)$, $X' = (G, E^\alpha)$ are k-ary relational structures over G (where $\alpha \in \text{Aut}(G)$), then $X \cong X'$.
Note that if $X = (G, E), X' = (G, E^\alpha)$ are k-ary relational structures over G (where $\alpha \in \text{Aut}(G)$), then $X \cong X'$.

Definition

We say that G is a **CI-group** with respect to k-ary relational structures if whenever X and Y are k-ary rel. structures over G, X and Y are isomorphic if and only if they are isomorphic by a group automorphism of G.
Note that if $X = (G, E)$, $X' = (G, E^\alpha)$ are k-ary relational structures over G (where $\alpha \in \text{Aut}(G)$), then $X \cong X'$.

Definition

We say that G is a **CI-group** with respect to k-ary relational structures if whenever X and Y are k-ary rel. structures over G, X and Y are isomorphic if and only if they are isomorphic by a group automorphism of G.

If $k = 2$, then we get the usual definition of CI-groups with respect to digraphs.
Note that if $X = (G, E), X' = (G, E^\alpha)$ are k-ary relational structures over G (where $\alpha \in \text{Aut}(G)$), then $X \cong X'$.

Definition

We say that G is a **CI-group** with respect to k-ary relational structures if whenever X and Y are k-ary relational structures over G, X and Y are isomorphic if and only if they are isomorphic by a group automorphism of G.

If $k = 2$, then we get the usual definition of CI-groups with respect to digraphs.

The isomorphism problem for k-ary relational structures over a CI-group is “as easy as possible”.
The group G is a CI-group with respect to k-ary rel. structures if and only if any two regular subgroups isomorphic to G in $\text{Aut}(X)$ are conjugate in $\text{Aut}(X)$ (for any k-ary rel. structure X over G).
Problem Classify CI-groups with respect to k-ary relational structures.
Problem Classify CI-groups with respect to k-ary relational structures.

Case $k = 1$. Every group is a CI-group with respect to unary rel. structures.
Problem Classify CI-groups with respect to k-ary relational structures.

Case $k = 1$. Every group is a CI-group with respect to unary rel. structures.

Case $k = 2$. A relatively short list of groups is given and it is proved that every CI-group with respect to digraphs lies on this list (although not every group on the list need to be a CI-group with respect to digraphs).
Case $k \geq 4$. A group is a CI-group with respect to k-ary rel. structures if and only if it is a CI-group with respect to 4-ary rel. structures.
Case $k \geq 4$. A group is a CI-group with respect to k-ary rel. structures if and only if it is a CI-group with respect to 4-ary rel. structures.

The list of CI-groups with respect to 4-ary relational structures is known.
Case $k \geq 4$. A group is a CI-group with respect to k-ary rel. structures if and only if it is a CI-group with respect to 4-ary rel. structures.

The list of CI-groups with respect to 4-ary relational structures is known.

There is a natural 4-ary relational structure encoding the group multiplication of G:

$$E = \{(1, x, y, xy)z \mid x, y, z \in G\}.$$

If $X = (G, E)$, then $\text{Aut}(X) = G \rtimes \text{Aut}(G)$.
Case \(k \geq 4 \). A group is a CI-group with respect to \(k \)-ary rel. structures if and only if it is a CI-group with respect to 4-ary rel. structures.

The list of CI-groups with respect to 4-ary relational structures is known.

There is a natural 4-ary relational structure encoding the group multiplication of \(G \):

\[
E = \{(1, x, y, xy)z \mid x, y, z \in G\}.
\]

If \(X = (G, E) \), then \(\text{Aut}(X) = G \rtimes \text{Aut}(G) \).

In particular, \(G \) is abelian.
Case $k = 3$. As motivation to study this problem we remark that if G is a CI-group with respect to ternary relational structures then G is a CI-group with respect to digraphs.
Case $k = 3$. As motivation to study this problem we remark that if G is a CI-group with respect to ternary relational structures then G is a CI-group with respect to digraphs.

The first result in this context is due to Babai: the dihedral group of order $2p$ is a CI-group with respect to ternary relational structures.
Case $k = 3$. As motivation to study this problem we remark that if G is a CI-group with respect to ternary relational structures then G is a CI-group with respect to digraphs.

The first result in this context is due to Babai: the dihedral group of order $2p$ is a CI-group with respect to ternary relational structures.

All “elementary” constructions for proving that a certain group G is not a CI-group with respect to digraphs can be used to prove that it is not a CI-group with respect to ternary relational structures.
Case $k = 3$. As motivation to study this problem we remark that if G is a CI-group with respect to ternary relational structures then G is a CI-group with respect to digraphs.

The first result in this context is due to Babai: the dihedral group of order $2p$ is a CI-group with respect to ternary relational structures.

All “elementary” constructions for proving that a certain group G is not a CI-group with respect to digraphs can be used to prove that it is not a CI-group with respect to ternary relational structures.

For example, the following are not CI-groups w.r.t. t.r.s.

$$C_{p^2} \ (p \geq 3), \ C_p \rtimes C_q \ (q \geq 3).$$
Proposition (T.Dobson, P.S.)

If V is an abelian group and α is an automorphism of order $p \neq 2$ acting with no fixed points on $V \setminus \{0\}$, then $V \times C_p$ is not a CI-group w.r.t. ternary relational structures.
Proposition (T. Dobson, P.S.)

If V is an abelian group and α is an automorphism of order $p \neq 2$ acting with no fixed points on $V \setminus \{0\}$, then $V \times C_p$ is not a CI-group w.r.t. ternary relational structures.

It is not known whether the direct product of CI-groups w.r.t. digraphs of coprime order is a CI-group w.r.t. digraphs.
Proposition (T. Dobson, P.S.)

If V is an abelian group and α is an automorphism of order $p \neq 2$ acting with no fixed points on $V \setminus \{0\}$, then $V \times C_p$ is not a CI-group w.r.t. ternary relational structures.

It is not known whether the direct product of CI-groups w.r.t. digraphs of coprime order is a CI-group w.r.t. digraphs.

$Q_8 \times C_3$ is not a CI-group w.r.t. ternary relational structures.
Proposition (T. Dobson, P. S.)

If V is an abelian group and α is an automorphism of order $p \neq 2$ acting with no fixed points on $V \setminus \{0\}$, then $V \times C_p$ is not a CI-group w.r.t. ternary relational structures.

It is not known whether the direct product of CI-groups w.r.t. digraphs of coprime order is a CI-group w.r.t. digraphs.

$Q_8 \times C_3$ is not a CI-group w.r.t. ternary relational structures.

C_5^5 is not a CI-group w.r.t. ternary relational structures.
Proposition (T. Dobson, P.S.)

If \(V \) is an abelian group and \(\alpha \) is an automorphism of order \(p \neq 2 \) acting with no fixed points on \(V \setminus \{0\} \), then \(V \times C_p \) is not a CI-group w.r.t. ternary relational structures.

It is not known whether the direct product of CI-groups w.r.t. digraphs of coprime order is a CI-group w.r.t. digraphs.

\(Q_8 \times C_3 \) is not a CI-group w.r.t. ternary relational structures.

\(C_2^5 \) is not a CI-group w.r.t. ternary relational structures.

\(C_p \times C_p \) is not a CI-group w.r.t. ternary relational structures (\(p \geq 3 \)).
Theorem
If G is a CI-group w.r.t. ternary relational structures, then $G = U \times V$, where $\gcd(|U|, |V|) = 1$, U is of order n, with $\gcd(n, \varphi(n)) = 1$ and V is one of the following:

1. C_{2}^{d}, $1 \leq d \leq 4$, $D(m, 2)$ or $D(m, 4)$, where m is odd and $\gcd(nm, \varphi(nm)) = 1$.
2. C_{4}, Q_{8}.

Furthermore,

(a) if $V = C_{4}, Q_{8}$ or $D(m, 4)$ and $p \mid n$, then $4 \nmid (p - 1)$,
(b) if $V = C_{2}^{d}$, $d \geq 2$, or Q_{8}, then $3 \nmid n$,
(c) if $V = C_{2}^{d}$, $d \geq 3$, then $7 \nmid n$,
(d) if $V = C_{2}^{4}$, then $5 \nmid n$.
Let H be a p-group
Computational aspects

Let H be a p-group

The group H is a CI-group w.r.t. k-ary relational structures if and only if any two regular subgroups isomorphic to H in G are conjugate in G, for any permutation p-group $G = N^{(k)}$, where N is a permutation p-group normalizing and containing the right regular representation of H.
Given a graph Γ determine all the groups H such that

$$\Gamma \cong \text{Cay}(H, S),$$

for some subset S of H.
Example

Let Γ_d be the d-dimensional cube.

Note that Γ_d is a Cayley graph. If H is an elementary abelian 2-group of rank d and S is a basis for H, then $\Gamma_d = \text{Cay}(H, S)$.

Proposition (P.S.)

There exist at least $2^{d^2/64}$ non-isomorphic groups H such that $\Gamma_d = \text{Cay}(H, S)$ for some subset S of H.
Example

Let Γ_d be the d-dimensional cube.

Note that Γ_d is a Cayley graph. If H is an elementary abelian 2-group of rank d and S is a basis for H, then $\Gamma_d = \text{Cay}(H, S)$.

Proposition (P.S.)

There exist at least $2^{d^2/64}$ non-isomorphic groups H such that $\Gamma_d = \text{Cay}(H, S)$ for some subset S of H.

Corollary

The symmetric group $\text{Sym}(n)$ contains at least $2^{n^2/256}$ subgroup up to isomorphism.
Example

Let Γ_d be the d-dimensional cube.

Note that Γ_d is a Cayley graph. If H is an elementary abelian 2-group of rank d and S is a basis for H, then $\Gamma_d = \text{Cay}(H, S)$.

Proposition (P.S.)

There exist at least $2^{d^2/64}$ non-isomorphic groups H such that $\Gamma_d = \text{Cay}(H, S)$ for some subset S of H.

Corollary

The symmetric group $\text{Sym}(n)$ contains at least $2^{n^2/256}$ subgroup up to isomorphism.

Note that it was proved by L. Pyber that $\text{Sym}(n)$ contains at most 24^{n^2} subgroups up to isomorphism.