Imprimitive symmetric graphs with cyclic blocks

Sanming Zhou

Department of Mathematics and Statistics
University of Melbourne

Joint work with Cai Heng Li and Cheryl E. Praeger

December 17, 2008
1 Introduction

- Symmetric graphs
- Imprimitive symmetric graphs
1. Introduction
 - Symmetric graphs
 - Imprimitive symmetric graphs

2. A family of imprimitive symmetric graphs
Outline

1. Introduction
 - Symmetric graphs
 - Imprimitive symmetric graphs

2. A family of imprimitive symmetric graphs

3. Imprimitive symmetric graphs with cyclic blocks
 - Cyclic blocks: the ‘simplest’ case
 - Constructions
1 Introduction
 - Symmetric graphs
 - Imprimitive symmetric graphs

2 A family of imprimitive symmetric graphs

3 Imprimitive symmetric graphs with cyclic blocks
 - Cyclic blocks: the ‘simplest’ case
 - Constructions

4 Questions
An arc of a graph is an ordered pair of adjacent vertices.
An arc of a graph is an ordered pair of adjacent vertices.

An s-arc is a sequence of $s + 1$ vertices such that any two consecutive terms are adjacent and any three consecutive terms are distinct.
An arc of a graph is an ordered pair of adjacent vertices.

An s-arc is a sequence of \(s + 1 \) vertices such that any two consecutive terms are adjacent and any three consecutive terms are distinct.

\(s \text{-arc} \neq \text{path of length } s \).
Arc and s-arc

- An arc of a graph is an ordered pair of adjacent vertices.
- An s-arc is a sequence of $s + 1$ vertices such that any two consecutive terms are adjacent and any three consecutive terms are distinct.
- s-arc \neq path of length s.
- $\text{Arc}(\Gamma) :=$ set of arcs of a graph Γ.

Let Γ admit a group G as a group of automorphisms.
Let Γ admit a group G as a group of automorphisms.

That is, G acts on $V(\Gamma)$ and preserves the adjacency of Γ, e.g. $G \leq \Aut(\Gamma)$.
Let Γ admit a group G as a group of automorphisms.

That is, G acts on $V(\Gamma)$ and preserves the adjacency of Γ, e.g. $G \leq \text{Aut}(\Gamma)$.

Γ is called G-symmetric (or G-arc transitive) if G is transitive on $V(\Gamma)$ and transitive on $\text{Arc}(\Gamma)$.

Let Γ admit a group G as a group of automorphisms. That is, G acts on $V(\Gamma)$ and preserves the adjacency of Γ, e.g. $G \leq \text{Aut}(\Gamma)$.

Γ is called G-symmetric (or G-arc transitive) if G is transitive on $V(\Gamma)$ and transitive on $\text{Arc}(\Gamma)$.

That is, for any $\alpha, \beta \in V(\Gamma)$ there exists $g \in G$ permuting α to β, and for any $(\alpha, \beta), (\gamma, \delta) \in \text{Arc}(\Gamma)$ there exists $g \in G$ mapping (α, β) to (γ, δ).
Let Γ admit a group G as a group of automorphisms.

That is, G acts on $V(\Gamma)$ and preserves the adjacency of Γ, e.g. $G \leq \text{Aut}(\Gamma)$.

Γ is called G-symmetric (or G-arc transitive) if G is transitive on $V(\Gamma)$ and transitive on $\text{Arc}(\Gamma)$.

That is, for any $\alpha, \beta \in V(\Gamma)$ there exists $g \in G$ permuting α to β, and for any $(\alpha, \beta), (\gamma, \delta) \in \text{Arc}(\Gamma)$ there exists $g \in G$ mapping (α, β) to (γ, δ).

Γ is called (G, s)-arc transitive if G is transitive on $V(\Gamma)$ and the set of s-arcs.
Tutte’s 8-cage is 5-arc transitive. It is a cubic graph of girth 8 with minimum order (30 vertices).
Let G be a group and $H < G$ be core-free.
Let G be a group and $H < G$ be core-free.

Let $g \in G$ be a 2-element such that $g \not\in N_G(H)$ and $g^2 \in H \cap H^g$.
Let G be a group and $H < G$ be core-free.

Let $g \in G$ be a 2-element such that $g \not\in \mathcal{N}_G(H)$ and $g^2 \in H \cap H^g$.

$	ext{Cos}(G, H, H^g)$ is defined to be the graph with vertex set $[G : H]$ such that $Hx \sim Hy$ if and only if $xy^{-1} \in H^g$.
Let G be a group and $H < G$ be core-free.

Let $g \in G$ be a 2-element such that $g \not\in \mathsf{N}_G(H)$ and $g^2 \in H \cap H^g$.

$\text{Cos}(G, H, H^g)$ is defined to be the graph with vertex set $[G : H]$ such that $Hx \sim Hy$ if and only if $xy^{-1} \in H^g$.

$\text{Cos}(G, H, H^g)$ is G-symmetric, and any symmetric graph is of this form.
Let G be a group and $H < G$ be core-free.

Let $g \in G$ be a 2-element such that $g \not\in N_G(H)$ and $g^2 \in H \cap H^g$.

$\text{Cos}(G, H, HgH)$ is defined to be the graph with vertex set $[G : H]$ such that $Hx \sim Hy$ if and only if $xy^{-1} \in HgH$.

$\text{Cos}(G, H, HgH)$ is G-symmetric, and any symmetric graph is of this form.

$\text{Cos}(G, H, HgH)$ is connected if and only if $\langle H, g \rangle = G$.
Let Γ be a G-symmetric graph.
Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

$\Gamma_{\mathcal{B}}$:= quotient graph w.r.t \mathcal{B}.

$\Gamma_{\mathcal{B}}$ is G-symmetric.
Imprimitive symmetric graphs

Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

Γ is imprimitive if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}.
Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

Γ is imprimitive if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}.

This occurs if and only if G_α is not a maximal subgroup of G, where $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Equivlently, Cos(G,H,HgH) is imprimitive if and only if H is not a maximal subgroup of G.

$\Gamma_B :=$ quotient graph w.r.t B. Γ_B is G-symmetric.
Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

Γ is imprimitive if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}.

This occurs if and only if G_α is not a maximal subgroup of G, where $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Equivlently, $\text{Cos}(G, H, HgH)$ is imprimitive if and only if H is not a maximal subgroup of G.
Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

Γ is imprimitive if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}.

This occurs if and only if G_α is not a maximal subgroup of G, where $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Equivalently, $\text{Cos}(G, H, HgH)$ is imprimitive if and only if H is not a maximal subgroup of G.

$\Gamma_\mathcal{B} :=$ quotient graph w.r.t \mathcal{B}.
Let Γ be a G-symmetric graph.

A partition \mathcal{B} of $V(\Gamma)$ is G-invariant if for any $B \in \mathcal{B}$ and $g \in G$, $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$, e.g. trivial partitions $\{\{\alpha\} : \alpha \in V(\Gamma)\}$ and $\{V(\Gamma)\}$.

Γ is imprimitive if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}.

This occurs if and only if G_α is not a maximal subgroup of G, where $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Equivlently, $\text{Cos}(G, H, HgH)$ is imprimitive if and only if H is not a maximal subgroup of G.

$\Gamma_\mathcal{B} :=$ quotient graph w.r.t \mathcal{B}.

$\Gamma_\mathcal{B}$ is G-symmetric.
The dodecahedron graph is A_5-symmetric and the partition with each part containing antipodal vertices is A_5-invariant. The quotient graph is isomorphic to Petersen graph.
Let \((\Gamma, \mathcal{B})\) be an imprimitive \(G\)-symmetric graph.
Let (Γ, B) be an imprimitive G-symmetric graph.

$v := \text{block size of } B.$
Let \((\Gamma, B)\) be an imprimitive \(G\)-symmetric graph.

\(v := \) block size of \(B\).

\(k := \) no. vertices in \(B\) having a neighbour in \(C\) (where \(B, C\) are adjacent).
Let (Γ, B) be an imprimitive G-symmetric graph.

- $v :=$ block size of B.
- $k :=$ no. vertices in B having a neighbour in C (where B, C are adjacent).
- $\Gamma[B, C] :=$ bipartite subgraph of Γ induced by $B \cup C$ with isolates deleted.
Let \((\Gamma, B)\) be an imprimitive \(G\)-symmetric graph.

- \(v :=\) block size of \(B\).
- \(k :=\) no. vertices in \(B\) having a neighbour in \(C\) (where \(B, C\) are adjacent).
- \(\Gamma[B, C] :=\) bipartite subgraph of \(\Gamma\) induced by \(B \cup C\) with isolates deleted.
- Consider the case \(k = v - 2 \geq 1\).
Case $k = v - 2 \geq 1$
An auxiliary graph when $k = v - 2 \geq 1$

\[\langle B, C \rangle := \text{set of vertices of } B \text{ not adjacent to any vertex of } C. \]
An auxiliary graph when $k = v - 2 \geq 1$

- $\langle B, C \rangle :=$ set of vertices of B not adjacent to any vertex of C.
- $|\langle B, C \rangle| = 2$.

$\Gamma_B :=$ multigraph with vertex set B and an edge joining the two vertices of $\langle B, C \rangle$ for each C adjacent to B in Γ_B.

Simple $(\Gamma_B) :=$ underlying simple graph of Γ_B.

Simple (Γ_B) is G_B-vertex- and G_B-edge-transitive, where $G_B := \{g \in G : Bg = B\}$.

An auxiliary graph when $k = v - 2 \geq 1$

- $\langle B, C \rangle := \text{set of vertices of } B \text{ not adjacent to any vertex of } C$.
- $|\langle B, C \rangle| = 2$.
- $\Gamma^B := \text{multigraph with vertex set } B \text{ and an edge joining the two vertices of } \langle B, C \rangle \text{ for each } C \text{ adjacent to } B \text{ in } \Gamma_B$.
An auxiliary graph when \(k = v - 2 \geq 1 \)

- \(\langle B, C \rangle := \text{set of vertices of } B \text{ not adjacent to any vertex of } C \).
- \(|\langle B, C \rangle| = 2 \).
- \(\Gamma^B := \text{multigraph with vertex set } B \text{ and an edge joining the two vertices of } \langle B, C \rangle \text{ for each } C \text{ adjacent to } B \text{ in } \Gamma^B \).
- \(\text{Simple}(\Gamma^B) := \text{underlying simple graph of } \Gamma^B \).
- \(\text{Simple}(\Gamma^B) \) is \(G_B \)-vertex- and \(G_B \)-edge-transitive, where
 \(G_B := \{ g \in G : B^g = B \} \).
Lemma

[Iranmanesh, Praeger, Z] Suppose $k = v - 2 \geq 1$. Then one of the following occurs:

(a) Γ^B is connected;

(b) v is even and $\text{Simple}(\Gamma^B)$ is a perfect matching between the vertices of B.
Known results when $k = v - 2 \geq 1$

- Γ_B is $(G, 2)$-arc transitive (even if Γ is not $(G, 2)$-arc transitive) iff Γ^B is simple and $v = 3$ or $\Gamma^B = (v/2) \cdot K_2$ (Iranmanesh, Praeger, Z).
Known results when $k = v - 2 \geq 1$

- Γ_B is $(G, 2)$-arc transitive (even if Γ is not $(G, 2)$-arc transitive) iff Γ^B is simple and $v = 3$ or $\Gamma^B = (v/2) \cdot K_2$ (Iranmanesh, Praeger, Z).
- We know when Γ_B inherits $(G, 2)$-arc transitivity from Γ;
Known results when $k = v - 2 \geq 1$

- $\Gamma_\mathcal{B}$ is ($G, 2$)-arc transitive (even if Γ is not ($G, 2$)-arc transitive) iff Γ^B is simple and $v = 3$ or $\Gamma^B = (v/2) \cdot K_2$ (Iranmanesh, Praeger, Z).

- We know when $\Gamma_\mathcal{B}$ inherits ($G, 2$)-arc transitivity from Γ;

- and some information about Γ and $\Gamma_\mathcal{B}$ in this case (Iranmanesh, Praeger, Z).
Known results when $k = v - 2 \geq 1$

- Γ_B is $(G, 2)$-arc transitive (even if Γ is not $(G, 2)$-arc transitive) iff Γ^B is simple and $v = 3$ or $\Gamma^B = (v/2) \cdot K_2$ (Iranmanesh, Praeger, Z).

- We know when Γ_B inherits $(G, 2)$-arc transitivity from Γ;

- and some information about Γ and Γ_B in this case (Iranmanesh, Praeger, Z).

- But we know nothing about Γ and Γ_B when Γ^B is connected (except $v = 3$).
Known results when \(k = v - 2 \geq 1 \)

- \(\Gamma_B \) is \((G, 2)\)-arc transitive (even if \(\Gamma \) is not \((G, 2)\)-arc transitive) iff \(\Gamma^B \) is simple and \(v = 3 \) or \(\Gamma^B = (v/2) \cdot K_2 \) (Iranmanesh, Praeger, Z).

- We know when \(\Gamma_B \) inherits \((G, 2)\)-arc transitivity from \(\Gamma \);

- and some information about \(\Gamma \) and \(\Gamma_B \) in this case (Iranmanesh, Praeger, Z).

- But we know nothing about \(\Gamma \) and \(\Gamma_B \) when \(\Gamma^B \) is connected (except \(v = 3 \)).

- Let us try the simplest case, namely \(\text{Simple}(\Gamma^B) \) has valency 2.
The case when $\text{Simple}(\Gamma^B)$ has valency 2
The case when \(\text{Simple}(\Gamma^B) \) has valency 2
Theorem

[Li, Praeger, Z] Suppose $k = v - 2 \geq 1$, Γ_B is connected and $\text{Simple}(\Gamma^B)$ has valency 2. Then $\text{Simple}(\Gamma^B) = C_v$, Γ_B is of valency mv (where m is the multiplicity of each edge of Γ^B), and one of the following occurs.

(a) $v = 3$ and Γ is of valency m;
(b) $v = 4$, $\Gamma[B, C] = K_{2,2}$, and Γ is a connected graph of valency $4m$;
(c) $v = 4$, $\Gamma[B, C] = 2 \cdot K_2$, and Γ is of valency $2m$.
A map is a 2-cell embedding of a connected graph on a closed surface.
A map is a 2-cell embedding of a connected graph on a closed surface.

A map M is regular if its automorphism group $\text{Aut}(M)$ is regular on incident vertex-edge-face triples.
If $v = 3$ and $m = 1$, then Γ can be obtained from a regular map of valency 3 by truncation.
Let M be a 4-valent regular map, and let $G = \text{Aut}(M)$.
Incident vertex-face pairs

- Let M be a 4-valent regular map, and let $G = \text{Aut}(M)$.
- For each edge $\{\sigma, \sigma'\}$ of M, let f, f' denote the faces of M such that $\{\sigma, \sigma'\}$ is on the boundary of both f and f'.
Let M be a 4-valent regular map, and let $G = \text{Aut}(M)$.

For each edge $\{\sigma, \sigma'\}$ of M, let f, f' denote the faces of M such that $\{\sigma, \sigma'\}$ is on the boundary of both f and f'.

Let $O_\sigma(f)$ and $O_\sigma(f')$ be the other two faces of M incident with σ and opposite to f and f' respectively.
Let M be a 4-valent regular map, and let $G = \text{Aut}(M)$.

For each edge $\{\sigma, \sigma'\}$ of M, let f, f' denote the faces of M such that $\{\sigma, \sigma'\}$ is on the boundary of both f and f'.

Let $O_\sigma(f)$ and $O_\sigma(f')$ be the other two faces of M incident with σ and opposite to f and f' respectively.

Define $O_{\sigma'}(f)$ and $O_{\sigma'}(f')$ similarly.
Incident vertex-face pairs

\[O_\sigma(f') \quad O_\sigma'(f') \]

\[O_\sigma(f) \quad O_\sigma'(f) \]

\[f \quad f' \]

\[\sigma \quad \sigma' \]
We construct four graphs Γ_1, Γ_2, Γ_3, Γ_4 as follows.

They have vertices the incident vertex-face pairs of M such that for each edge $\{\sigma, \sigma'\}$ of M:

- Γ_1: $(\sigma, f) \sim (\sigma', f), (\sigma, f') \sim (\sigma', f')$
- Γ_2: $(\sigma, f) \sim (\sigma', f'), (\sigma, f') \sim (\sigma', f)$
- Γ_3: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f)), (\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f'))$
- Γ_4: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f')), (\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f))$
We construct four graphs Γ_1, Γ_2, Γ_3, Γ_4 as follows.

- They have vertices the incident vertex-face pairs of M such that for each edge $\{\sigma, \sigma'\}$ of M:
 - Γ_1: $(\sigma, f) \sim (\sigma', f)$, $(\sigma, f') \sim (\sigma', f')$
 - Γ_2: $(\sigma, f) \sim (\sigma', f')$, $(\sigma, f') \sim (\sigma', f)$
 - Γ_3: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f))$, $(\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f'))$
 - Γ_4: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f'))$, $(\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f))$

These are examples of graphs in case (c) with $m = 1$.
We construct four graphs Γ_1, Γ_2, Γ_3, Γ_4 as follows.

- They have vertices the incident vertex-face pairs of M such that for each edge $\{\sigma, \sigma'\}$ of M:
 - Γ_1: $(\sigma, f) \sim (\sigma', f)$, $(\sigma, f') \sim (\sigma', f')$
 - Γ_2: $(\sigma, f) \sim (\sigma', f')$, $(\sigma, f') \sim (\sigma', f)$
 - Γ_3: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f))$, $(\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f'))$
 - Γ_4: $(\sigma, O_\sigma(f)) \sim (\sigma', O_{\sigma'}(f'))$, $(\sigma, O_\sigma(f')) \sim (\sigma', O_{\sigma'}(f))$

These are examples of graphs in case (c) with $m = 1$.

No example is known in case (c) with $m > 1$.
Let p be a prime such that $p \equiv 1 \pmod{16}$, and let $G = PSL(2, p)$.
A group-theoretic construction

- Let p be a prime such that $p \equiv 1 \pmod{16}$, and let $G = PSL(2, p)$.
- Let H be a Sylow 2-subgroup of G.
Let p be a prime such that $p \equiv 1 \pmod{16}$, and let $G = \text{PSL}(2, p)$.

Let H be a Sylow 2-subgroup of G.

$H = \langle a \rangle : \langle b \rangle \cong D_{16}, \langle a^4, b \rangle \cong \mathbb{Z}_2^2, \ N_G(\langle a^4, b \rangle) = S_4.$
Let p be a prime such that $p \equiv 1 \pmod{16}$, and let $G = PSL(2, p)$.

Let H be a Sylow 2-subgroup of G.

$H = \langle a \rangle : \langle b \rangle \cong D_{16}$, $\langle a^4, b \rangle \cong \mathbb{Z}_2^2$, $N_G(\langle a^4, b \rangle) = S_4$.

There exists an involution $g \in N_G(\langle a^4, b \rangle) \setminus \langle a^2, b \rangle$ such that g interchanges a^4 and b.
Let p be a prime such that $p \equiv 1 \pmod{16}$, and let $G = \text{PSL}(2, p)$.

Let H be a Sylow 2-subgroup of G.

$H = \langle a \rangle : \langle b \rangle \cong D_{16}$, $\langle a^4, b \rangle \cong \mathbb{Z}_2^2$, $\mathbf{N}_G(\langle a^4, b \rangle) = S_4$.

There exists an involution $g \in \mathbf{N}_G(\langle a^4, b \rangle) \setminus \langle a^2, b \rangle$ such that g interchanges a^4 and b.

Let $L = \langle a^4, ba \rangle \cong \mathbb{Z}_2^2$.
Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.

Γ and Σ are G-symmetric, connected and of valency 4.

Let $B := \left[H : L\right]$ and $B := \{B_x : x \in G\}$.

B is a G-invariant partition of $V(\Gamma) = \left[G : L\right]$ such that $k = v - 2 = 2$, $\Gamma_B = C_4$, $\Gamma[B, C] = K_2^2$, and $\Sigma \sim \Gamma_B$.

These are examples of graphs in case (b) with $m = 1$.

No example is known in case (b) with $m > 1$.

A group-theoretic construction
Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.

Γ and Σ are G-symmetric, connected and of valency 4.
A group-theoretic construction

- Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.
- Γ and Σ are G-symmetric, connected and of valency 4.
- Let $B := [H : L]$ and $B := \{B^x : x \in G\}$.

These are examples of graphs in case (b) with $m = 1$. No example is known in case (b) with $m > 1$.

A group-theoretic construction

- Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.

 - Γ and Σ are G-symmetric, connected and of valency 4.

- Let $B := [H : L]$ and $\mathcal{B} := \{B^x : x \in G\}$.

 - \mathcal{B} is a G-invariant partition of $\mathcal{V}(\Gamma) = \text{Cos}(G, L)$ such that $k = v - 2 = 2$, $\Gamma^{\mathcal{B}} = C_4$, $\Gamma[B, C] = K_{2,2}$ and $\Sigma \cong \Gamma_{\mathcal{B}}$.

These are examples of graphs in case (b) with $m_1 = 1$.

No example is known in case (b) with $m_1 > 1$.

Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.

Γ and Σ are G-symmetric, connected and of valency 4.

Let $B := [H : L]$ and $B := \{B^x : x \in G\}$.

B is a G-invariant partition of $V(\Gamma) = [G : L]$ such that $k = v - 2 = 2$, $\Gamma^B = C_4$, $\Gamma[B, C] = K_{2,2}$ and $\Sigma \cong \Gamma_B$.

These are examples of graphs in case (b) with $m = 1$.
Define $\Sigma := \text{Cos}(G, H, HgH)$, $\Gamma := \text{Cos}(G, L, LgL)$.

Γ and Σ are G-symmetric, connected and of valency 4.

Let $B := [H : L]$ and $\mathcal{B} := \{B^x : x \in G\}$.

\mathcal{B} is a G-invariant partition of $V(\Gamma) = [G : L]$ such that $k = v - 2 = 2$, $\Gamma^B = C_4$, $\Gamma[B, C] = K_{2,2}$ and $\Sigma \cong \Gamma_{\mathcal{B}}$.

These are examples of graphs in case (b) with $m = 1$.

No example is known in case (b) with $m > 1$.
Corollary

[Li, Praeger, Z] There exists an infinite family of connected symmetric graphs \(\Gamma \) of valency 4 which have a quotient graph \(\Gamma_B \) of valency 4 such that \(\Gamma \) is not a cover of \(\Gamma_B \).

This is the first (infinite) family of graphs with these properties.
In the case where \(k = \nu - 2 \geq 1 \) and \(\Gamma^B \) is connected, is \(\nu \) bounded by some function of the valency of \(\text{Simple}(\Gamma^B) \)?
Questions

- In the case where $k = v - 2 \geq 1$ and Γ^B is connected, is v bounded by some function of the valency of $\text{Simple}(\Gamma^B)$?

- Can Γ be determined for small values of m?
In the case where \(k = v - 2 \geq 1 \) and \(\Gamma^B \) is connected, is \(v \) bounded by some function of the valency of \(\text{Simple}(\Gamma^B) \)?

Can \(\Gamma \) be determined for small values of \(m \)?

Study the case when \(\text{Simple}(\Gamma^B) = C_v \) and \(m \) is small (e.g. \(m = 3 \) in case (a), \(m = 2, 3 \) in case (b) and \(m = 2 \) in case (c)).