Solutions to Homework 4 - Math 2000

(# 2.18) Consider the open sentences P(n) : 5n + 3 is prime. and Q(n) : 7n + 1 is prime over the domain \mathbb{N} .

(a). State $P(n) \implies Q(n)$ in words.

(b). State $P(2) \implies Q(2)$ in words. Is this statement true or false?

(c). State $P(6) \implies Q(6)$ in words. Is this statement true or false?

Solution. (a). If 5n + 1 is prime, then 7n + 1 is prime.

(b). If 5(2) + 1 is prime, then 7(2) + 1 is prime. Since 5(2) + 1 = 11, P(2) is true and 7(2) + 1 = 15 thus Q(2) is false. Therefore $P(2) \implies Q(2)$ is false.

(c). If 5(6) + 1 is prime, then 7(6) + 1 is prime. Since 5(6) + 1 = 31, P(5) is true and 7(6) + 1 = 43 thus Q(7) is true. Therefore $P(7) \implies Q(7)$ is true.

(# 2.20) In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine all $x \in S$ for which $P(x) \implies Q(x)$ is a true statement. (a). P(x) : x - 3 = 4; $Q(x) : x \ge 8$; $S = \mathbb{R}$.

(a): $I'(x): x^2 = 3 = 4$, $Q(x): x \ge 0$, $B = \mathbb{R}$. (b). $P(x): x^2 \ge 1$; $Q(x): x \ge 1$; $S = \mathbb{R}$.

(b). $I(x) : x \ge 1$, $Q(x) : x \ge 1$, $S = \mathbb{N}$. (c). $P(x) : x^2 \ge 1$; $Q(x) : x \ge 1$; $S = \mathbb{N}$.

(d). $P(x) : x \in [-1, 2]; Q(x) : x^2 \le 2; S = [-1, 1].$

Solution. (a). P(x) is true if x = 7 and P(x) is false if $x \neq 7$. Q(x) is true if $x \ge 8$ and Q(x) is false if x < 8. We know that $P(x) \implies Q(x)$ is false only if P(x) is true and Q(x) is false. This only occurs if x = 7. Therefore $P(x) \implies Q(x)$ is true for all other x. That is, it is true if $x \ne 7$.

(# 2.24) For the following open sentences P(x) and Q(x) over a domain S, determine all values of $x \in S$ for which the biconditional is true.

(a). $P(x) : |x| = 4; Q(x) : x = 4; S = \{-4, -3, 1, 4, 5\}.$

(b). $P(x): x \ge 3; Q(x): 4x - 1 > 12; S = \{0, 2, 3, 4, 6\}.$

(c). $P(x): x^2 = 16; Q(x): x^2 - 4x = 0; S = \{-6, -4, 0, 3, 4, 8\}.$

```
Solution. (a).
```

x	P(x): x =4.	Q(x): x = 4.	$P(x) \Leftrightarrow Q(x)$
-4	Т	F	F
-3	\mathbf{F}	\mathbf{F}	Т
1	\mathbf{F}	\mathbf{F}	Т
4	Т	Т	Т
5	\mathbf{F}	\mathbf{F}	Т

The biconditional is true for x = -3, 1, 4, 5.

(b).

x	$P(x): x \ge 3.$	Q(x): 4x - 1 > 12.	$P(x) \Leftrightarrow Q(x)$
0	F	F	Т
2	\mathbf{F}	F	Т
3	Т	\mathbf{F}	\mathbf{F}
4	Т	Т	Т
6	Т	Т	Т

Therefore the biconditional is true for x = 0, 2, 4, 6.

1		1
1	c	۱
1	c	1
		/

x	$P(x): x^2 = 16.$	$Q(x): x^2 - 4x = 0.$	$P(x) \Leftrightarrow Q(x)$
-6	F	\mathbf{F}	Т
-4	Т	\mathbf{F}	\mathbf{F}
0	\mathbf{F}	Т	\mathbf{F}
3	\mathbf{F}	\mathbf{F}	Т
4	Т	Т	Т
8	\mathbf{F}	\mathbf{F}	Т

Therefore the biconditional is true for x = -6, 3, 4, 8.

(# 2.26) For the open sentences P(x) : |x - 3| < 1 and $Q(x) : x \in (2, 4)$. over the domain \mathbb{R} , state the biconditional in two different ways. Solution. We have

' |x-3| < 1 is equivalent to $x \in (2, 4)$.'

and

' |x-3| < 1 if and only if $x \in (2, 4)$.'

and

' |x-3| < 1 is a necessary and sufficient condition for $x \in (2, 4)$.'

(# 2.28) Let $S = \{1, 2, 3\}$. Consider the following open sentences over the domain S:

$$P(n): \frac{(n+4)(n+5)}{2} \text{ is odd}$$
$$Q(n): 2^{n-2} + 3^{n-2} + 6^{n-2} > (2.5)^{n-1}.$$

Determine three distinct elements $a, b, c \in S$ such that $P(a) \implies Q(a)$ is false, $Q(b) \implies P(b)$ is false, and $P(c) \Leftrightarrow Q(c)$ is true. Solution. Note that

$$P(1):\frac{5\cdot 6}{2} = 15 \text{ is odd. true}$$
$$P(2):\frac{6\cdot 7}{2} = 21 \text{ is odd. true}$$
$$P(3):\frac{7\cdot 8}{2} = 28 \text{ is odd. false}$$

In addition,

$$\begin{split} Q(1) &: 2^{1-2} + 3^{1-2} + 6^{1-2} > 2.5^{1-1}. \\ &\frac{1}{2} + \frac{1}{3} + \frac{1}{6} > 1. \\ &1 > 1. \text{ false} \\ Q(2) &: 2^{2-2} + 3^{2-2} + 6^{2-2} > 2.5^{2-1}. \\ &1 + 1 + 1 > 2.5. \\ &3 > 2.5. \text{ true} \\ Q(3) &: 2^{3-2} + 3^{3-2} + 6^{3-2} > 2.5^{3-1}. \\ &2 + 3 + 6 > 2.5^2. \\ &11 > \frac{25}{4}. \text{ true} \end{split}$$

Note if a = 1 then $P(1) \implies Q(1)$ is false. If b = 3 then $Q(3) \implies P(3)$ is false. If c = 2 then $P(2) \Leftrightarrow Q(2)$ is true.

(# 2.30) For the statements P and Q, show that $P \implies (P \lor Q)$ is a tautology. Solution. Note that we have the following truth table:

P	Q	$P \lor Q$	$P \implies (P \lor Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

(# 2.32) For statements P and Q, show that $(P \land (P \implies Q)) \implies Q$ is a tautology. Then state $(P \land (P \implies Q)) \implies Q$ in words.

Solution. Note that we have the following truth table:

P	Q	$P \implies Q$	$P \land (P \implies Q)$	$P \land (P \implies Q) \implies Q$
Т	Т	Т	Т	Т
Т	F	\mathbf{F}	\mathbf{F}	Т
F	Т	Т	\mathbf{F}	Т
F	F	Т	\mathbf{F}	Т

In words, the statement reads:

'If P and if P, then Q, then Q.'

(# 2.34) For statements P and Q, the implication $(\sim P) \implies (\sim Q)$ is called the inverse of the implication $P \implies Q$.

(a). Use the truth table to show that these statements are not logically equivalent.

(b). Find another implication that is logically equivalent to $\sim P \implies \sim Q$ and verify your answer.

Solution. (a),(b). Note that we have the following truth table:

P	Q	$P \implies Q$	$\sim P$	$\sim Q$	$(\sim P) \implies (\sim Q)$	$Q \implies P$
Т	Т	Т	F	F	Т	Т
Т	F	\mathbf{F}	F	Т	Т	Т
F	Т	Т	Т	F	\mathbf{F}	F
F	F	Т	Т	Т	Т	Т

Observe that $Q \implies P$ is logically equivalent to $\sim P \implies \sim Q$.

(# 2.36) For statements P, Q, and R, use a truth table to show that each of the following pairs of statements are logically equivalent.

(a). $(P \land Q) \Leftrightarrow P$ and $P \implies Q$.

(b). $P \implies (Q \lor R)$ and $(\sim Q) \implies ((\sim P) \lor R)$.

Solution. (a),(b). Note that we have the following truth tables:

P	Q	$P \wedge Q$	$(P \land Q) \Longleftrightarrow P$	$P \implies Q$
Т	Т	Т	Т	Т
T	F	F	\mathbf{F}	\mathbf{F}
F	Т	F	Т	Т
F	F	F	Т	Т

Therefore $(P \land Q) \Leftrightarrow P \equiv P \implies Q$

P	Q	R	$Q \vee R$	$P \implies (Q \lor R)$	$\sim Q$	$\sim P$	$\sim P \vee R$	$\sim Q \implies (\sim P \lor R)$
T	Т	Т	Т	Т	F	F	Т	Т
T	Т	F	Т	Т	F	F	F	Т
T	F	Т	Т	Т	Т	F	Т	Т
F	Т	Т	Т	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т	Т
T	F	F	F	F	Т	F	\mathbf{F}	\mathbf{F}
F	F	F	F	Т	Т	Т	Т	Т

Therefore $P \implies (Q \lor R)$ and $(\sim Q) \implies ((\sim P) \lor R)$ are logically equivalent.

(# 2.38) For statements P, Q, and R show that $(P \lor Q) \implies R$ and $(P \implies R) \land (Q \implies R)$ are logically equivalent. Solution.

P	Q	R	$P \lor Q$	$(P \lor Q) \implies R$	$P \implies R$	$Q \implies R$	$(P \implies R) \land (Q \implies R)$
T	Т	Т	Т	Т	Т	Т	Т
T	Т	\mathbf{F}	Т	F	F	\mathbf{F}	\mathbf{F}
T	F	Т	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	Т	\mathbf{F}	Т	F	Т	\mathbf{F}	\mathbf{F}
T	\mathbf{F}	\mathbf{F}	Т	F	F	Т	\mathbf{F}
F	F	F	F	Т	Т	Т	Т

Therefore $(P \lor Q) \implies R$ and $(P \implies R) \land (Q \implies R)$ are logically equivalent.