
Solutions to Homework 8 - Math 2000

All solutions except 4.22,4.24, and 4.36 may be found in the book.

(# 4.22) (a) Prove that if r is a real number such that 0 < r < 1, then

1
r(1− r)

≥ 4.

(b) If the real number r in part (a) is an integer, is the implication true in this case?
Explain.
Solution. Note that

1
r(1− r)

≥ 4 is true (multiply both sides of the equation by r(1− r))

only if 1 ≥ 4r(1− r) is true (add 4r2 − 4r to both sides)

only if 4r2 − 4r + 1 ≥ 0 is true (factor)

only if (2r − 1)2 ≥ 0 is true.

However, this last equation is clearly true for all r ∈ R since the square of any real
number is always non-negative. Thus we could reverse all the steps to prove what we
want. That is, if r ∈ R, then it follows that (2r − 1)2 ≥ 0. Now we have

(2r − 1)2 ≥ 0 (expand out)

4r2 − 4r + 1 ≥ 0 (subtract 4r2 − 4r from both sides)

1 ≥ 4r − 4r2 = 4r(1− r) (divide by r(1− r) as long as r 6= 0, 1)
1

r(1− r)
≥ 4 (as long as r 6= 0, 1).

We have proven that 1
r(1−r) ≥ 4 for all r ∈ R excluding 0 and 1. Thus it is certainly

also true for all 0 < r < 1.
(b) By the first part, this identity is true for all integers except 0 and 1. In these
exceptional cases this identity is undefined.

(# 4.24) Prove that for every two real numbers x and y,

|x + y| ≥ |x| − |y|

Solution. We begin by proving a small Lemma:
Lemma For any two real numbers a, b

|ab| = |a||b|. (1)

Proof of Lemma. We shall prove this by cases:
(i) a, b both positive
(ii) a, b both negative
(iii) one of a and b is positive and the other is negative.
Case (i). Suppose a, b > 0. Then |a| = a, |b| = b since a > 0, b > 0. Also, ab > 0 as
both a > 0, b > 0. Therefore |ab| = ab. It follows that

|ab| = ab = |a||b|

which establishes equation (1).
Case (ii). Suppose both a, b < 0. Write a = −c and b = −d with c > 0, d > 0. Then
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|a| = | − c| = c and |b| = | − d| = d. Also ab = (−c)(−d) = cd since (−1)2 = 1. Note
that cd > 0. Therefore |ab| = |cd| = cd. It follows that

|ab| = cd = |a||b|

which establishes equation (1).
Case (iii). Suppose a > 0 and b < 0. Let b = −d with d > 0. Then |a| = a,
|b| = | − d| = d. Also ab = a(−d) = −(ad). Thus |ab| = | − ad| = ad since ad > 0. It
follows that

|ab| = ad = |a||b|

which establishes equation (1). This completes the proof of the lemma.

Now we are in a position to prove the question. Let x, y ∈ R. Notice that

|x| = |(x + y) + (−y)| ≤ |x + y|+ | − y| by the triangle inequality .

By the Lemma above | − y| = |(−1)y| = |(−1)||y| = 1|y| = |y|. Therefore this equation
is

|x| ≤ |x + y|+ |y|.

Substracting |y| off both sides yields

|x| − |y| ≤ |x + y|

as asserted.

(# 4.36) Prove that
A ∩B = A ∪B.

for every two sets A and B.
Solution. The key point of the exercise is to notice the following. Suppose x ∈ A ∩B.
Then x /∈ A ∩B. That is

x ∈ A ∩B = x /∈ A ∩B

=∼ (x ∈ (A ∩B))
=∼ (x ∈ A ∧ x ∈ B)
≡∼ (x ∈ A)∨ ∼ (x ∈ B)

≡ (x ∈ A) ∨ (x ∈ B)

= x ∈ A ∪B.

(2)

It follows from these logical equivalences that if x ∈ A ∩B then x ∈ A∪B. This means
that

A ∩B ⊆ A ∪B.

On the other hand, if x ∈ A ∪ B, then looking at the bottom of equation (2) and
working backwards to the top we see that x ∈ A ∩B and hence

A ∪B ⊆ A ∩B.

We conclude that
A ∩B = A ∪B.
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