Solutions to Homework 8 - Math 2000

All solutions except 4.22,4.24, and 4.36 may be found in the book.

(# 4.22) (a) Prove that if r is a real number such that 0 < r < 1, then

sy
r(l—r) —
(b) If the real number r in part (a) is an integer, is the implication true in this case?
Explain.
Solution. Note that
1
) >4 is true (multiply both sides of the equation by r(1 — 7))
r(l—r

only if 1 > 4r(1 —r) is true (add 472 — 47 to both sides)
only if 4r? — 47 +1 > 0 is true (factor)
only if (2r — 1) > 0 is true.
However, this last equation is clearly true for all » € R since the square of any real

number is always non-negative. Thus we could reverse all the steps to prove what we
want. That is, if 7 € R, then it follows that (2r — 1)? > 0. Now we have

(2r — 1)?

4r? —dr 41

1>4r —4r =4r(1 —7)
1

r(l—r)

expand out)
subtract 4r? — 4r from both sides)
divide by r(1 —r) as long as r # 0,1)

>0 (
>0 (
(
>4 (as long as r # 0,1).

We have proven that ﬁ > 4 for all » € R excluding 0 and 1. Thus it is certainly
also true for all 0 < r < 1.

(b) By the first part, this identity is true for all integers except 0 and 1. In these
exceptional cases this identity is undefined.

(# 4.24) Prove that for every two real numbers 2 and v,
[z +y| > |2| = |yl

Solution. We begin by proving a small Lemma:
Lemma For any two real numbers a, b

|ab] = |al[b]. (1)

Proof of Lemma. We shall prove this by cases:

(i) a,b both positive

(ii) @, b both negative

(iii) one of a and b is positive and the other is negative.

Case (i). Suppose a,b > 0. Then |a| = a, |b|] = b since a > 0,b > 0. Also, ab > 0 as
both a > 0,b > 0. Therefore |ab| = ab. It follows that

|ab| = ab = |a||b]

which establishes equation (1).
Case (ii). Suppose both a,b < 0. Write a = —c and b = —d with ¢ > 0,d > 0. Then



la| = | —¢| =cand |b| = | —d| = d. Also ab = (—c)(—d) = cd since (—1)?> = 1. Note
that e¢d > 0. Therefore |ab| = |cd| = cd. Tt follows that

Jab| = cd = [al}v
which establishes equation (1).
Case (iii). Suppose a > 0 and b < 0. Let b = —d with d > 0. Then |a| = a,
|b| =| —d| =d. Also ab = a(—d) = —(ad). Thus |ab| = | — ad| = ad since ad > 0. It
follows that

|ab| = ad = |al[b]

which establishes equation (1). This completes the proof of the lemma.

Now we are in a position to prove the question. Let x,y € R. Notice that
|z| = |(z +y) + (—y)| < |z +y|+ | — y| by the triangle inequality .

By the Lemma above | —y| = [(—=1)y| = |(—1)||y| = 1|y| = |y|. Therefore this equation
is

|z < |z +yl+ [yl.
Substracting |y| off both sides yields

lz| — |yl < |z +y]

as asserted.

(# 4.36) Prove that

ANB=AUB.

for every two sets A and B.
Solution. The key point of the exercise is to notice the following. Suppose z € AN B.
Then x ¢ AN B. That is

reANB=x2¢ ANB
=~ (r € (ANB))
=~ (re ANz € B)
—~ (z € AV ~ (z € B) 2)
=(zxe AV (x € B)
=z € AUB.
It follows from these logical equivalences that if z € AN B then 2 € AUB. This means

that
ANBC AUB.

On the other hand, if x € A U B, then looking at the bottom of equation (2) and
working backwards to the top we see that z € AN B and hence
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We conclude that
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