SOLUTIONS QUIZ 6 - MATH 2000

Question 1

Let $x \in \mathbb{Z}$. If $3 \nmid x$, then $3 \mid x^2 - 1$.

Proof. We give a direct proof. Since $3 \nmid x$ it follows that either x = 3k + 1 for some $k \in \mathbb{Z}$ or x = 3k + 2 for some $k \in \mathbb{Z}$.

Case 1. x = 3k + 1 for some $k \in \mathbb{Z}$. Then

$$x^{2} - 1 = (3k + 1)^{2} - 1 = 9k^{2} + 6k + 1 - 1 = 3(3k^{2} + 2k)$$

and $3 \mid x^2 - 1$ since $3k^2 + 2k \in \mathbb{Z}$.

Case 2. x = 3k + 2 for some $k \in \mathbb{Z}$. Then

$$x^{2} - 1 = (3k + 2)^{2} - 1 = 9k^{2} + 12k + 4 - 1 = 3(3k^{2} + 4k + 1)$$

and $3 \mid x^2 - 1$ since $3k^2 + 4k + 1 \in \mathbb{Z}$. Therefore in either case we have $3 \mid x^2 - 1$ and this completes the proof. \Box

Question 2

Let $a, b \in \mathbb{Z}$. Show that if $a \equiv 5 \pmod{6}$ and $b \equiv 3 \pmod{4}$, then $4a + 6b \equiv 6 \pmod{8}$.

$$4a + 00 \equiv 0(1100)$$

Proof. Since $a \equiv 5 \pmod{6}$ we have

$$a = 5 + 6k$$

with $k \in \mathbb{Z}$. Since $b \equiv 3 \pmod{4}$

$$b = 3 + 4l$$

with $l \in \mathbb{Z}$. Thus

$$4a + 6b - 6 = 4(5 + 6k) + 6(3 + 4l) - 6$$

= 20 + 24k + 18 + 24l - 6
= 32 + 24k + 24l
= 8(4 + 3k + 3l).

Since $4 + 3k + 3l \in \mathbb{Z}$ it follows that $8 \mid 4a + 6b - 8$ or

$$4a + 6b \equiv 6 \pmod{8}$$