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LIMITING DISTRIBUTIONS OF THE CLASSICAL ERROR TERMS OF PRIM E
NUMBER THEORY

AMIR AKBARY, NATHAN NG, AND MAJID SHAHABI

ABSTRACT. Let φ : [0,∞) → R and lety0 be a non-negative constant. Let(λn)n∈N be a non-
decreasing sequence of positive numbers which tends to infinity, let (rn)n∈N be a complex sequence,
andc a real number. Assume thatφ is square-integrable on[0, y0] and fory ≥ y0, φ can be expressed
as

φ(y) = c+ ℜ
( ∑

λn≤X

rne
iλny

)
+ E(y,X),

for anyX ≥ X0 > 0 whereE(y,X) satisfies

lim
Y→∞

1

Y

∫ Y

y0

|E(y, eY )|2dy = 0.

We prove that, under certain assumptions on the exponentsλn and the coefficientsrn, φ(y) is a
B2-almost periodic function and thus possesses a limiting distribution. Also if {λn}n∈N is linearly
independent overQ, we explicitly calculate the Fourier transform of the limiting distribution mea-
sure. Moreover, we prove general versions of the above results for vector-valued functions. Finally,
we illustrate some applications of our general theorems by applying them to several classical error
terms which occur in prime number theory. Examples include the error term in the prime number
theorem for an automorphicL-function, weighted sums of the Möbius function, weightedsums of
the Liouville function, the sum of the Möbius function in anarithmetic progression, and the error
term in Chebotarev’s density theorem.

1. INTRODUCTION

In recent years, limiting distributions have played a prominent role in many problems in analytic
number theory. Indeed it is convenient to study number theoretic questions from a probabilistic
point of view. Limiting distributions have been a useful tool in problems concerning summa-
tory functions [16], [32], prime number races [34], [9], [23], and the distribution of values of
L-functions [17], [14], [22]. In this article, we shall investigate the limiting distributions associ-
ated to some of the classical error terms that occur in prime number theory. In 1935, Wintner [38]
proved, assuming the Riemann hypothesis (RH), that the function

e−y/2
(
ψ(ey)− ey

)
(1.1)

possesses a limiting distribution, whereψ(x) =
∑

pm≤x log p. By his method, one may show that
on RH

ye−y/2
(
π(ey)− Li(ey)

)
(1.2)

possesses a limiting distribution, whereπ(x) = ♯{p ≤ x | p is a prime} andLi(x) =
∫ x

2
dt
log t

. Over
the years, other researchers have investigated similar questions for related error terms. Letq > 2
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anda1, . . . , ar be reduced residues moduloq. Defineπ(x; q, a) to be the number of primes less
than or equal tox which are congruent toamoduloq. In 1994, Rubinstein and Sarnak [34] proved,
assuming the generalized Riemann hypothesis for DirichletL-functions, that the vector-valued
function

ye−y/2
(
ϕ(q)π(ey; q, a1)− π(ey), . . . , ϕ(q)π(ey; q, ar)− π(ey)

)
(1.3)

possesses a limiting distribution. These distributions were employed to give a conditional solution
to an old problem known as the Shanks-Rényi prime number race game. In 2004, Ng [32] studied
the sum of the Möbius function. This arithmetic function isdefined by

µ(n) =





1 if n = 1,
0 if n is not squarefree,
(−1)k if n is squarefree andn = p1 . . . pk,

and its summatory function isM(x) =
∑

n≤x µ(n). He showed that

e−y/2M(ey) (1.4)

possesses a limiting distribution assuming the Riemann hypothesis and the conjectural bound
∑

0<|ℑ(ρ)|≤T

|ζ ′(ρ)|−2 ≪ T,

whereζ(s) is the Riemann zeta function andρ ranges through its non-trivial zeros. The common
element in the proofs of the existence of a limiting distribution of (1.1), (1.2), (1.3), and (1.4) is
an “explicit formula” for each of these functions. For instance, the truncated explicit formula for
ψ(x) is

ψ(x) = x−
∑

ζ(ρ)=0
|ℑ(ρ)|≤X

xρ

ρ
+O

(
x log2(xX)

X
+ log x

)
,

valid for x ≥ 2 andX > 1 (see [7, Chapter 17]). On the Riemann hypothesis, it followsthat

e−y/2
(
ψ(ey)− ey

)
= ℜ

(
∑

ρ= 1

2
+iγ

0<γ≤X

−2eiyγ

ρ

)
+O

(
e

y
2 log2(eyX)

X
+ ye−

y
2

)
. (1.5)

Based on this formula Wintner deduced that (1.1) possesses alimiting distribution. In this article,
we shall prove a general limiting distribution theorem for functionsφ(y), possessing an explicit for-
mula of a particular shape which is modelled on (1.5). Our theorem will include the above results
as special cases and we will provide some new examples of functions with limiting distributions.

We now recall the definition of a limiting distribution for a vector-valued function~φ : [0,∞) →
Rℓ, whereℓ ∈ N.

Definition 1.1. We say that a function~φ : [0,∞) → Rℓ has alimiting distributionµ onRℓ if µ is
a probability measure onRℓ and

lim
Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy =

∫

Rℓ

fdµ

for all bounded continuous real functionsf onRℓ.
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We next describe the functions considered in this article. Letφ : [0,∞) → R and lety0 be a non-
negative constant such thatφ is square-integrable on[0, y0]. We shall assume there exists(λn)n∈N, a
non-decreasing sequence of positive numbers which tends toinfinity, (rn)n∈N, a complex sequence,
andc a real constant such that fory ≥ y0

φ(y) = c+ ℜ
( ∑

λn≤X

rne
iλny
)
+ E(y,X), (1.6)

for anyX ≥ X0 > 0 whereE(y,X) satisfies

lim
Y→∞

1

Y

∫ Y

y0

|E(y, eY )|2dy = 0. (1.7)

There shall be various conditions imposed on the coefficients rn and the exponentsλn.
Our approach in proving the limiting distribution ofφ(y) is to show thatφ(y) is aB2-almost

periodic function. We say that the real functionφ(y) is aB2-almost periodicfunction if for any
ǫ > 0 there exists a real-valued trigonometric polynomial

PN(ǫ)(y) =

N(ǫ)∑

n=1

rn(ǫ)e
iλn(ǫ)y

such that

lim sup
Y→∞

1

Y

∫ Y

0

|φ(y)− PN(ǫ)(y)|2dy < ǫ2.

Our main result is the following.

Theorem 1.2.Letφ : [0,∞) → R satisfy(1.6)and (1.7). Letα, β > 0, andγ ≥ 0. Assume either
of the following conditions:
(a) β > 1/2 and

∑

T<λn≤T+1

|rn| ≪
(log T )γ

T β
(1.8)

for T > 0.
(b) β ≤ min{1, α}, α2 + α/2 < β2 + β, and

∑

S<λn≤T

|rn| ≪
(T − S)α(log T )γ

Sβ
(1.9)

for T > S > 0.
Thenφ(y) is aB2-almost periodic function and therefore possesses a limiting distribution.

In Theorem 1.2, we prove that the conditions onφ imply that it is aB2-almost periodic function.
However, as it is known thatB2-almost periodic functions possess limiting distributions (see [39,
Theorem 8.3] and Theorem 2.9 in this article), we also obtainthatφ possesses a limiting distribu-
tion. It would be interesting to determine the weakest conditions on the coefficients(rn)n∈N and
the exponents(λn)n∈N which imply thatφ isB2-almost periodic.

Note that in part (b), the conditionsβ ≤ α andα2 + α/2 < β2 + β are equivalent to

β ≤ α <

√
β2 + β +

1

16
− 1

4
. (1.10)

The next corollary provides simpler criteria for whichφ possesses a limiting distribution.
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Corollary 1.3. Letφ : [0,∞) → R satisfy(1.6)and (1.7).
Assume either of the following conditions:

(a) rn ≪ λ−β
n for β > 1

2
, and ∑

T<λn≤T+1

1 ≪ log T. (1.11)

(b) 0 ≤ θ < 3−
√
3, (1.11), and ∑

λn≤T

λ2n|rn|2 ≪ T θ. (1.12)

Thenφ(y) is aB2-almost periodic function and therefore possesses a limiting distribution.

Part (a) of this corollary is useful to apply when thern’s satisfy the nice boundrn ≪ λ−β
n where

β > 1/2. The existence of limiting distributions for (1.1) and (1.3) may be deduced from this case.
If we assumed RH and|ζ ′(ρ)|−1 ≪ |ρ| 12−ε, then part (a) implies that (1.4) possesses a limiting
distribution.

On the other hand, if thern’s oscillate significantly, then by part (b) of the above corollary it
suffices to have a modest bound for the second moment ofλn|rn|.

More generally, we prove a version of Theorem 1.2 for vector-valued functions whose compo-
nents are of the typeφ(y). For instance, let~φ : [0,∞) → Rℓ be given by

~φ(y) =
(
φ1(y), . . . , φℓ(y)

)
, (1.13)

where eachφk(y) is of the shape (1.6). Then we have the following.

Theorem 1.4. Suppose that the conditions of Theorem 1.2 or Corollary 1.3 hold for eachφk(y)

for 1 ≤ k ≤ ℓ. Then~φ(y) possesses a limiting distribution.

This theorem contains as special cases the results of Wintner, Rubinstein and Sarnak, and Ng. That
is, the functions in equations (1.1), (1.2), (1.3), and (1.4) possess limiting distributions.

We also provide several new examples of functions which havelimiting distributions. These
functions are now described.

Letπ be an irreducible unitary cuspidal automorphic representation ofGLd(AQ), and letL(s, π)
be the automorphicL-function attached toπ. We have

L(s, π) =
∏

p<∞

Lp(s, πp),

where

Lp(s, πp) =

d∏

j=1

(
1− απ(p, j)

ps

)−1

,

for ℜ(s) > 1. The completedL-functionΦ(s, π) is defined by

Φ(s, π) = L∞(s, π∞)L(s, π),

where the Archimedean local factor is

L∞(s, π∞) =

d∏

j=1

ΓR(s+ µπ(j))

andΓR(s) = π−s/2Γ(s/2) whereΓ is the classical gamma function. For1 ≤ j ≤ d, the complex
numbersαπ(p, j) andµπ(j) are called thelocal parameters. It is known thatΦ(s, π) is entire

4



(except in the caseL(s, π) = ζ(s − iτ0) for τ0 ∈ R, which in this caseΦ(s, π) has two simple
poles) and satisfies the functional equation

Φ(s, π) = ǫ(s, π)Φ(1− s, π̃),

with
ǫ(s, π) = ǫπQ

1/2−s
π ,

whereQπ ≥ 1 is an integer called the conductor ofπ, ǫπ is the root number satisfying|ǫπ| = 1,
andπ̃ is the representation contragredient toπ. It is expected that all non-trivial zeros ofL(s, π)
are located on the lineℜ(s) = 1/2 and this is known as the generalized Riemann hypothesis for
L(s, π).

We now consider prime counting functions associated toL(s, π). Let

aπ(p
k) =

d∑

j=1

απ(p, j)
k, (1.14)

and define
ψ(x, π) =

∑

n≤x

Λ(n)aπ(n),

whereΛ(n) is the classical von Mangoldt function. We have, forℜ(s) > 1,

−L
′(s, π)

L(s, π)
=

∞∑

n=1

Λ(n)aπ(n)

ns
.

The prime number theorem forL(s, π) (see [25, Theorem 2.3]) is the assertion that

ψ(x, π) = δ(x, π) +O(x exp(−c
√

log x))

for some positive constantc, where

δ(x, π) =

{
x1+iτ0

1+iτ0
if L(s, π) = ζ(s− iτ0),

0 otherwise.

From Corollary 1.3 (a) we are able to deduce that a scaled version of the above error term possesses
a limiting distribution.

Corollary 1.5. Under the assumption of the generalized Riemann hypothesisfor L(s, π) the func-
tion

E1(y, π) = e−y/2 (ψ(ey, π)− δ(ey, π))

has a limiting distribution.

Note that Wintner’s theorem (1.1) is a special case of the above corollary. In addition, for a
modular newformf of weightk and levelN , we conclude, under the assumption of the generalized
Riemann hypothesis, thate−y/2ψ(ey, f) has a limiting distribution.

We now introduce several other functions that possess limiting distributions. These functions are
related to certain negative moments of the derivative of anL-function evaluated at its zeros. The
first case to consider is the Riemann zeta function. Gonek [13] and Hejhal [17] studiedJ−1(T ) =∑

0<γ≤T |ζ ′(ρ)|−2 and Gonek conjectured that

J−1(T ) ∼
3

π3
T.

5



Assuming the Riemann hypothesis and all zeros ofζ(s) are simple, Milinovich and Ng [26] proved
thatJ−1(T ) ≥ ( 3

2π3 − ε)T for everyε > 0 andT sufficiently large. In our work, we make the
weaker assumption

J−1(T ) ≪ T θ with 1 ≤ θ < 3−
√
3. (1.15)

Currently, assuming the Riemann hypothesis and the simplicity of zeros ofζ(s), no upper bounds
are known forJ−1(T ). However, the weak Mertens conjecture, the assumption that

∫ X

1

(M(x)

x

)2
dx≪ logX,

implies|ζ ′(ρ)|−1 ≪ |ρ| and thusJ−1(T ) ≪ T 3+ε (see [37, p. 377, eq. (14.29.4)]).
We also require a version of (1.15) for DirichletL-functionsL(s, χ). We assume there exists a

positiveθ such that
∑

χ modq

∑

0<|ℑ(ρχ)|≤T
L(ρχ,χ)=0

|L′(ρχ, χ)|−2 ≪q T
θ where1 ≤ θ < 3−

√
3. (1.16)

It seems plausible that such a bound holds and it is natural toconjecture there is a positive constant
Cq such that ∑

χ modq

∑

0<|ℑ(ρχ)|≤T
L(ρχ,χ)=0

|L′(ρχ, χ)|−2 ∼ CqT.

In fact, we can prove that this sum is greater than a positive constant timesT , assuming that all
zeros ofL(s, χ) are simple and lie on the critical line. Finally, observe that (1.15) implies that all
zeros ofζ(s) are simple and (1.16) implies that all nonreal zeros of theL(s, χ) are simple. We
make use of these facts in our applications.

We shall introduce several other summatory functions. Forα ∈ [0, 1] andx > 0, we set

Mα(x) =
∑

n≤x

µ(n)

nα
.

Over the years, there has been significant interest in these functions. For instance, Landau showed
in his Ph.D. thesis thatM1(x) converges to 0. In 1897 Mertens conjectured thatM0(x) = M(x)
is bounded in absolute value by

√
x. This conjecture implies the Riemann hypothesis. Many

researchers studied the size ofM0(x). Finally, in 1985, Odlyzko and te Riele [33] showed that
Mertens’ conjecture is false. On the Riemann hypothesis, itis known thatM(x) ≪ x

1

2
+ε for

anyε > 0. Hence, by partial summation, it follows thatMα(x) converges toζ(α)−1 for α > 1
2
.

Consequently, we observe that the behaviour ofMα(x) changes atα = 1/2 and thus define

E2(y, α) =

{
ey(−1/2+α)Mα(e

y) if 0 ≤ α ≤ 1/2,
ey(−1/2+α)

(
Mα(e

y)− 1
ζ(α)

)
if 1/2 < α ≤ 1.

(1.17)

We now consider weighted sums of the Liouville function. TheLiouville function is given by
λ(n) = (−1)Ω(n) whereΩ(n) is the total number of prime factors ofn. We set

Lα(x) =
∑

n≤x

λ(n)

nα
.

Pólya and Turán studiedL0(x) = L(x) andL1(x), respectively. Early numerical calculations sug-
gested that the inequalitiesL0(x) ≤ 0 andL1(x) > 0 hold for allx ≥ 2. In 1958, Haselgrove [15]

6



showed thatL0(x) andL1(x) change sign infinitely often. Tanaka [36] showed that the first value
of n for whichL0(n) > 0 is 906,105,257. Borwein, Ferguson, and Mossinghoff [4] determined
that the smallest value ofn for whichL1(n) < 0 is 72,185,376,951,205. It would be interesting to
know how oftenLα(x) is positive or negative. In order to study such questions we define the error
terms

E3(y, α) =





ey(−1/2+α)Lα(e
y) if 0 ≤ α < 1/2,

ey(−1/2+α)
(
Lα(e

y)− y
2ζ(1/2)

)
if α = 1/2,

ey(−1/2+α)
(
Lα(e

y)− ζ(2α)
ζ(α)

)
if 1/2 < α ≤ 1.

(1.18)

In [32] it was mentioned thatE3(y, 0) possesses a limiting distribution under the same hypotheses
for which e−y/2M(ey) possesses a limiting distribution. Recently, Humphries [19] studied these
functions in the rangeα ∈ [0, 1/2) and showed that, for theseα, the Riemann hypothesis and
J−1(T ) ≪ T imply thatE3(y, α) possesses a limiting distribution.

Our next example concerns the Möbius function in arithmetic progressions. Forq ≥ 2 and
(a, q) = 1, let

M(x; q, a) =
∑

n≤x
n≡a (mod q)

µ(n).

This is a variant ofM(x) with the extra conditionn ≡ a (mod q) inserted. Sums likeM(x; q, a)
reflect the behaviour of primes in arithmetic progressions.In fact, many theorems which can be
established for ∑

n≤x
n≡a (mod q)

Λ(n)− x

φ(q)

have corresponding analogues forM(x; q, a). For a fixed integerq ≥ 2, we define

E4(y; q, a) = e−y/2M(ey; q, a). (1.19)

The next corollary establishes the existence of limiting distributions forE2(y, α), E3(y, α), and
E4(y; q, a).

Corollary 1.6. Letα ∈ [0, 1], q ≥ 2, and(a, q) = 1.
(i) If RH is true and(1.15)holds, thenE2(y, α) possesses a limiting distribution.
(ii) If RH is true and(1.15)holds, thenE3(y, α) possesses a limiting distribution.
(iii) If the generalized Riemann hypothesis is true for all Dirichlet L-functions moduloq and(1.16)
holds, thenE4(y; q, a) possesses a limiting distribution.

Part (i) improves and generalizes the main result of [32]. Similarly, part (ii) improves and
generalizes the limiting distribution result of [19]. In [32] and [19] the boundJ−1(T ) ≪ T is
employed, whereas we use the weaker bound (1.15). It it possible that parts (i) and (ii) may be
extended to hold for allα ∈ R. In addition, assuming the same conditions as in part (iii),we can
show that forq ≥ 2 and(a, q) = 1 thate−y/2L(ey; q, a) possesses a limiting distribution where

L(x; q, a) =
∑

m≤x
n≡a (mod q)

λ(n).

Our final example of error terms which possess limiting distributions is related to number fields.
LetK/k be a normal extension of number fields with Galois groupG = Gal(K/k). Denote byOk

7



andOK the corresponding rings of integers ofk andK. We define several counting functions. Let

πk(x) =
∑

Np≤x

1

whereNp denotes the norm of the prime idealp ⊂ Ok and for a conjugacy classC of G

πC(x) =
∑

Np≤x
σp=C

1

whereσp is the Frobenius conjugacy class associated top.
Associated tor distinct conjugacy classesC1, . . . , Cr in G, we define

~E5(y) = ye−y/2

( |G|
|C1|

πC1
(ey)− πk(e

y), . . . ,
|G|
|Cr|

πCr(e
y)− πk(e

y)

)
.

In order to study~E5(y), we require information regarding the zeros of ArtinL-functions associated
to the extensionK/k. Let ρ be a representation ofG in GLn(C) with characterχ = tr(ρ). The
principal characterχ0 is the character attached to the trivial representationρ0 = 1. For each
characterχ of G, we associate the ArtinL-functionL(s, χ,K/k). It is known thatL(s, χ,K/k)
is a meromorphic function on the complex plane. Moreover, there is the following fundamental
conjecture.

Conjecture 1.7(Artin’s Holomorphy Conjecture). If χ is non-trivial thenL(s, χ,K/k) is entire.

Also it is conjectured that an analogue of the Riemann hypothesis holds for ArtinL-functions.
For further information regarding ArtinL-functions see [5, pp. 218–225] .
In his Ph.D. thesis [31], the second author showed that~E5(y) possesses a limiting distribution.

This can be deduced as a corollary of Theorem 1.4.

Corollary 1.8. Under the assumptions of the generalized Riemann hypothesis and Artin’s holo-
morphy conjecture forL(s, χ,K/k), whereχ ranges through the irreducible characters ofG,
~E5(y) possesses a limiting distribution.

This result contains as special cases the fact that (1.2) and(1.3) possess limiting distributions.
The above corollaries are just a few applications of Theorems 1.2 and 1.4 and there are other

interesting examples. For instance, Fiorilli [10] appliesour theorems in his work on highly biased
prime number races and also in his work [11] on prime number races associated to elliptic curves.

Our next theorem states that under an additional assumptionon the exponent set(λn)n∈N the
Fourier transform of the limiting distribution of Theorem 1.4 can be explicitly calculated. In order
to explain our result we require some notation.

For1 ≤ k ≤ ℓ, let the component functionφk(x) of (1.13) be defined by

φk(x) = ck + ℜ
( ∑

λk,n≤X

rk,ne
iλk,ny

)
+ Ek(y,X),

whereck ∈ R, (λk,n)n∈N ⊂ R+ is an increasing sequence,(rk,n)n∈N ⊂ C, andEk(y,X) satisfies
(1.7). Note that the collection of(λk,n)n∈N for 1 ≤ k ≤ ℓ is a multiset. We now consider the set
∪ℓ
k=1∪∞

n=1 {λk,n} and reorder its elements to construct the increasing sequence(λm)m∈N. Also, we
define

rk(λm) =

{
rk,n if λm = λk,n for somen ∈ N,
0 otherwise.

8



With this notation in hand, we now provide a formula for the Fourier transform of the limiting
distribution of~φ(y).

Theorem 1.9. Assume thatµ is the limiting distribution associated to~φ(y) as given in Theorem
1.4. Suppose that the set{λm}m∈N is linearly independent overQ. Then the Fourier transform

µ̂(~ξ) =

∫

Rℓ

e−i
∑ℓ

j=1
ξjtjdµ(t1, . . . , tℓ)

of µ at ~ξ = (ξ1, . . . , ξℓ) ∈ Rℓ exists and is equal to

µ̂(~ξ) = exp
(
− i
∑ℓ

k=1ckξk
)
×

∞∏

m=1

J0
(∣∣∑ℓ

k=1rk(λm)ξk
∣∣),

whereJ0(z) is the Bessel function

J0(z) =

∫ 1

0

e−iz cos(2πt)dt.

The above theorem is a useful tool in studying arithmetic applications of our limiting distribution
theorems. We now discuss an application. Forq ≥ 2 anda1, . . . , ar, r distinct reduced residue
classes modq, consider the set

Sq;a1,...,ar = {x > 0 | M(x; q, a1) > M(x; q, a2) > · · · > M(x; q, ar)}.
In analogy to the Shanks-Rényi prime number race, we ask whether this set contains infinitely
many natural numbers and if it possesses a density. In this situation it is convenient to consider
logarithmic density.

Definition 1.10. ForP ⊆ [0,∞), set

δ(P ) = lim sup
X→∞

1

logX

∫

t∈P∩[2,X]

dt

t

and

δ(P ) = lim inf
X→∞

1

logX

∫

t∈P∩[2,X]

dt

t
.

If δ(P ) = δ(P ) = δ(P ), we say that thelogarithmic densityof P is δ(P ).

In order to studySq;a1,...,ar , we consider

~E6(y) = e−y/2
(
M(ey; q, a1), . . . ,M(ey; q, ar)

)
.

Theorem 1.4 implies~E6(y) has a limiting distributionµq;a1,...,ar assuming the generalized Riemann
hypothesis for DirichletL-functions moduloq and (1.16). If it were known thatµq;a1,...,ar is an
absolutely continuous measure, then it would follow that

δ(Sq;a1,...,ar) = µ({x ∈ Rr | x1 > x2 > · · · > xr}). (1.20)

In order to show thatµq;a1,...,ar is absolutely continuous, we require further information on the
imaginary parts of zeros of DirichletL-functions. We now recall a folklore conjecture concerning
the diophantine nature of the imaginary parts.

9



Conjecture 1.11(Linear Independence Conjecture). The multiset of the nonnegative imaginary
parts of the nontrivial zeros of DirichletL-functions corresponding to primitive characters is lin-
early independent over the rationals.

With this conjecture in hand, it follows from Formula (4.23)and Theorem 1.9 that

µ̂q;a1,...,ar(ξ1, . . . , ξr) =
∏

χ mod q

∏

γχ>0

J0

(
2
∣∣∑r

j=1 χ(aj)ξj
∣∣

ϕ(q)
∣∣ρχL′(ρχ, χ)

∣∣

)
. (1.21)

Following the arguments in [8, Lemma 2.1] and [19, Lemma 6.4]we can deduce from (1.21)
thatµq;a1,...,ar possesses a density function and is absolutely continuous.Thus on the generalized
Riemann hypothesis, Conjecture 1.11, and (1.16) it followsfrom (1.20) thatδ(Sq;a1,...,ar) exists.
We can also employ (1.21) to investigate symmetries of the density function ofµq;a1,...,ar . The
proof of Proposition 3.1 of [34] yields the following.

Proposition 1.12. Assume the generalized Riemann hypothesis,(1.16), and the linear indepen-
dence conjecture. Then the density function ofµq;a1,...,ar is symmetric in(t1, . . . , tℓ) if and only if
eitherr = 2 or r = 3 and there isρ 6= 1 such thatρ3 ≡ 1, a2 ≡ a1ρ, anda3 ≡ a1ρ

2 (moduloq).

As a consequence of the symmetry of the density function ofµq;a1,...,ar we obtain the next corol-
lary.

Corollary 1.13. Assume the conditions of Proposition 1.12. If eitherr = 2 or r = 3 and there is
ρ 6= 1 such thatρ3 ≡ 1, a2 ≡ a1ρ, anda3 ≡ a1ρ

2 (moduloq), then

δ
(
{x > 0 |M(x; q, a1) > M(x; q, a2) > · · · > M(x; q, ar)}

)
=

1

r!
.

In particular, ifa1 anda2 are distinct residues moduloq,

δ
(
{x > 0 |M(x; q, a1) > M(x; q, a2)}

)
= δ
(
{x > 0 |M(x; q, a2) > M(x; q, a1)}

)
=

1

2
.

This shows that the race between the summatory functions of the Möbius function on two arith-
metic progressions is unbiased.

Our general limiting distribution theorems can be used in proposing and studying many new
arithmetic problems. For example, let

~E7(y) =
(
ye−y/2(π(ey)− Li(ey)), e−y/2M(ey)

)
.

Then Corollaries 1.8 and 1.6(i)
imply that if the Riemann hypothesis and (1.15) hold, then~E7(y) possesses a limiting distribu-

tion. If in addition, the linear independence conjecture for the zeros ofζ(s) is true, then
{
x > 0

∣∣∣∣
log x√
x

(
π(x)− Li(x)

)
>
M(x)√

x

}

possesses a logarithmic density. It would be interesting todetermine the value of this logarithmic
density. However, this requires further analysis of the constructed distribution.

As mentioned before, our strategy in the proof of our generallimiting distribution theorem will
be to prove thatφ(y) is aB2-almost periodic function. Since Besicovitch [1, Section 2] proved
thatB2-almost periodic functions satisfy a Parseval type identity, we deduce the following result.
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Theorem 1.14.Suppose that the functionφ(y) of (1.6)satisfies the conditions of Theorem 1.2 or
Corollary 1.3. Then we have

lim
Y→∞

1

Y

∫ Y

0

φ(y)2dy = c2 + 1
2

∞∑

n=1

|rn|2. (1.22)

In fact, it is possible to show following an argument of Fiorilli [10, Lemmas 2.4, 2.5] that

lim
Y→∞

1

Y

∫ Y

0

φ(y)2dy =

∫

R

t2dµ(t)

whereµ is the limiting distribution associated toφ. A similar argument would also establish that

lim
Y→∞

1

Y

∫ Y

0

φ(y)dy =

∫

R

tdµ(t) = c.

As a corollary, we deduce Cramer’s result [6] and its analogues for the error term of an auto-
morphicL-function,e−y/2M(ey), ande−y/2L(ey).

Corollary 1.15. (i) LetL(s, π) be an automorphicL-function. If the generalized Riemann hypoth-
esis is true forL(s, π), then

lim
Y→∞

1

Y

∫ Y

0

(
ψ(ey, π)− δ(ey, π)

ey/2

)2

dy = 4 (ords=1/2L(s, π))
2 +

∑

γ>0
L(1/2+iγ,π)=0

2m2
γ

1
4
+ γ2

,

wheremγ denotes the multiplicity of the zero1/2 + iγ.
(ii) If the Riemann hypothesis is true and(1.15)holds, then

lim
Y→∞

1

Y

∫ Y

0

(
M(ey)

ey/2

)2

dy =
∑

γ>0
ζ( 1

2
+iγ)=0

2

|ρζ ′(ρ)|2 .

(iii) If the Riemann hypothesis is true and(1.15)holds, then

lim
Y→∞

1

Y

∫ Y

0

(
L(ey)

ey/2

)2

dy =
1

ζ(1
2
)2

+
∑

γ>0
ζ( 1

2
+iγ)=0

2

∣∣∣∣
ζ(2ρ)

ρζ ′(ρ)

∣∣∣∣
2

.

Note that Theorem 1.15 (ii) improves Theorem 3 of [32] where the stronger conditionJ−1(T ) ≪
T is assumed.

The rest of this article is organized as follows. In Section 2we review the background onBp-
almost periodic functions and show that almost periodic functions possess limiting distributions. In
Section 3, we prove Theorem 1.2 and Corollary 1.3. In Section4, we deduce Corollaries 1.5, 1.6,
and 1.8. In Section 5, we prove Theorem 1.9. Finally, we mention some notation used throughout
this article. We writef(x) = O(g(x)) or f(x) ≪ g(x) to mean there existsM > 0 such that
|f(x)| ≤M |g(x)| for all sufficiently largex.
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2. Bp-ALMOST PERIODIC FUNCTIONS AND LIMITING DISTRIBUTIONS

The main goal in this section is to provide the necessary background onBp-almost periodic func-
tions needed in the proof of Theorem 1.4. It has been known since the 1930’s that anyBp-almost
periodic functionφ1 possess limiting distributions. Such a result is mentionedin [21, Theorems
25 and 27] and proven in [39, Theorem 8.3]. However, the authors were unable to find a refereed
publication from the 1930’s which proves this result. The earliest journal publication we are aware
of is [3], though it only proves the result forℓ = 1. In order to keep our article self-contained, we
provide a proof in the general case of a vector-valued function.

We review some facts from the theory of almost periodic functions. LetLp
loc([0,∞)) be the set

of locally p-integrable functions on[0,∞). Forp ≥ 1 andφ ∈ Lp
loc([0,∞)), define

‖φ‖Bp =
(
lim sup
Y→∞

1

Y

∫ Y

0

|φ(y)|pdy
)1/p

.

Denote byT the class of all real-valued trigonometric polynomials

PN(y) =
N∑

n=1

rne
iλny (y ∈ R),

wherern ∈ C andλn ∈ R. TheBp-closureof S , denotedHBp(S ), is the set of functionsφ ∈ R

that satisfy the following property:
For anyε > 0 there is a functionfε(y) ∈ S such that

‖φ(y)− fε(y)‖Bp < ε.

Definition 2.1. Any φ ∈ ∪p≥1HBp(T ) is called analmost periodic function. If φ ∈ HBp(T ) we
say thatφ is aBp-almost periodic function.

Forφ ∈ HBp(T ) and givenε > 0 there exists

PN(ε)(y) =

N(ε)∑

n=1

rn(ε)e
iλn(ε)y (2.1)

in T such that

‖φ(y)− PN(ε)(y)‖Bp < ε.

It is an important fact of the theory of almost periodic functions that in (2.1),λn(ε) can be taken
only from a setΛ(φ) = {λn | n ∈ N} and the corresponding values forrn are given by

rn = lim
Y→∞

1

Y

∫ Y

0

φ(y)e−iλnydy

(see [3]).

Definition 2.2. A vector-valued function~φ : [0,∞) → Rℓ, ~φ = (φ1, . . . , φℓ), is calledalmost
periodic, if there is ap ≥ 1 such that each component functionφk (1 ≤ k ≤ ℓ) belongs to
HBp(T ). Moreover~φ is calledBp-almost periodicif eachφk (1 ≤ k ≤ ℓ) isBp-almost periodic.

1In this sectionφ denotes a Lebesgue integrable function.
12



It is known thatHBp(T ) ⊆ HBq(T ) if 1 ≤ q ≤ p (see [3, p. 476]). So a vector-valued function
is almost periodic if and only if each of its component functions is almost periodic.

The following lemma states a version of Kronecker-Weyl equidistribution theorem.

Lemma 2.3. Let t1, . . . , tN be arbitrary real numbers. Suppose thatA is the topological closure of
{y(t1, . . . , tN ) | y ∈ R} /ZN in the torusTN . Letg : RN → R be a continuous function of period
1 in each of its variables. Then we have

lim
Y→∞

1

Y

∫ Y

0

g(yt1, . . . , ytN)dy =

∫

A

g(a)dω

whereω is the normalized Haar measure onA.

Proof. This may be deduced from the Kronecker-Weyl theorem (see [18, pp. 1–16]), and is also a
special case of Ratner’s theorem on unipotent flows (see [30]). �

Next we prove that every vector-valued function whose components are real-valued trigonometric
polynomials has a limiting distribution.

Proposition 2.4. For 1 ≤ k ≤ ℓ, let (λk,n)
Nk
n=1 be a real sequence and(rk,n)

Nk
n=1 be a complex

sequence. Set

Pk(y) =

Nk∑

n=1

rk,ne
iλk,ny (y ∈ R).

If Pk(y) ∈ R for all y ∈ R, then

~P (y) =
(
P1(y), . . . , Pℓ(y)

)

has a limiting distribution.

Proof. We consider the set∪ℓ
k=1 ∪Nk

n=1 {λk,n} and write its elements in increasing order as the
sequence(λm)Nm=1. For1 ≤ k ≤ ℓ, we set

rk(λm) =
∑

1≤n≤Nk
λk,n=λm

rk,n.

Let f : Rℓ → R be a bounded continuous function. Suppose thatX : TN → Rℓ andg : TN → R

are defined by

X(θ1, . . . , θN) =

( N∑

m=1

r1(λm)e
2πiθm , . . . ,

N∑

m=1

rℓ(λm)e
2πiθm

)

andg(θ1, . . . , θN ) = f
(
X(θ1, . . . , θN)

)
. By applying Lemma 2.3 witht1 = λ1

2π
, . . . , tN = λN

2π
, we

have

lim
Y→∞

1

Y

∫ Y

0

g
(
yλ1

2π
, . . . , yλN

2π

)
dy =

∫

A

g(a)dω,

whereA is the closure of
{
y
(
λ1

2π
, . . . , λN

2π

)
| y ∈ R

}
/ZN in TN andω is the normalized Haar

measure onA. Define a probability measureµN onRℓ by µN(B) = ω
(
X−1(B) ∩A

)
, whereB is

any Borel set inRℓ. By the change of variable formula [2, Theorem 16.12],∫

A

g(a)dω =

∫

Rℓ

fdµN (2.2)
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and thus

lim
Y→∞

1

Y

∫ Y

0

f
(
~P (y)

)
dy =

∫

Rℓ

fdµN ,

for all bounded continuous real-valued functionsf onRℓ. Therefore,~P (y) has a limiting distribu-
tion. �

Our next goal is to show that every almost periodic function possesses a limiting distribution.
This requires several concepts from probability.

Definition 2.5. Let (µn)n∈N be a sequence of finite measures on a measurable spaceX. We say
thatµn converges weaklyto µ if for every bounded real-valued continuous functionf we have∫

X

fdµn →
∫

X

fdµ (2.3)

asn→ ∞.

In fact, it is well known that (2.3) only needs to be verified for Lipschitz functions.

Lemma 2.6(Portmanteau). µn converges weakly toµ if and only if∫

X

fdµn →
∫

X

fdµ

for any bounded Lipschitz functionf onX.

Proof. See [27, Theorem 3.5]. �

Next we define the tightness of a sequence of probability measures.

Definition 2.7. A sequence(µn)n∈N of probability measures onRℓ is tight if for any ε > 0 there
isAε > 0 such that

∫
|x|≥Aε

dµn < ε, for all n ∈ N.

The following lemma illustrates the importance of a tight sequence of measures.

Lemma 2.8(Helly’s Selection Theorem). Let (µn)n∈N be a sequence of probability measures on
Rℓ. Then(µn)n∈N is tight if and only if for every subsequence(µnj

)j∈N there is a further subse-
quence(µnjk

)k∈N and a probability measureµ such thatµnjk
converges weakly toµ.

Proof. See [2, Theorems 25.8 and 25.10]. �

We are ready to prove the main result of this section.

Theorem 2.9.Every almost periodic function possesses a limiting distribution.

Proof. Consider an almost periodic function~φ : [0,∞) → Rℓ. ForY ≥ 1, let

νY (B) =
1

Y
meas

(
[0, Y ] ∩ (~φ)−1(B)

)

for any Borel setB in Rℓ, wheremeas(·) is the Lebesgue measure onR.
Note that, by Definition 2.5,~φ(y) has a limiting distribution if and only if there exists a prob-

ability measureµ such that the sequence(νY )Y ∈N converges weakly toµ. By Lemma 2.6 this is
equivalent to ∫

Rℓ

fdνY →
∫

Rℓ

fdµ,
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asY → ∞, for any bounded Lipschitz functionf : Rℓ → R.
Now let ~φ(y) =

(
φ1(y), . . . φℓ(y)

)
such thatφk(y) belongs toHB1(T ) for 1 ≤ k ≤ ℓ. (Recall

thatHBp(T ) ⊆ HB1(T ) for anyp ≥ 1.) Then for each componentφk(y) and forM ∈ N, there
existsNk(M) ∈ N and sequences(rk,n)

Nk
n=1 and(λk,n)

Nk
n=1 such that

lim sup
Y→∞

1

Y

∫ Y

0

∣∣∣φk(y)−
Nk(M)∑

n=1

rk,ne
iyλk,n

∣∣∣dy < 1

M
. (2.4)

By Proposition 2.4,

~PM(y) =

(N1(M)∑

n=1

r1,ne
iyλ1,n , . . . ,

Nℓ(M)∑

n=1

rℓ,ne
iyλℓ,n

)
(2.5)

has a limiting distributionµM , i.e.

lim
Y→∞

1

Y

∫ Y

0

f
(
~PM(y)

)
dy =

∫

Rℓ

f(x)dµM(x) := µM(f),

for all bounded continuous functionsf : Rℓ → R. From now on for a probability measureν onRℓ

and a functiong, we shall make use of the notation

ν(g) =

∫

Rℓ

g(x)dν(x).

Let f : Rℓ → R be a bounded Lipschitz function which satisfies

|f(x)− f(y)| ≤ cf |x− y|
for all x, y ∈ Rℓ wherecf is the Lipschitz constant. Then we have

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ 1

Y

∫ Y

0

f
(
~PM(y)

)
dy +

cf
Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy (2.6)

and

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≥ 1

Y

∫ Y

0

f
(
~PM(y)

)
dy − cf

Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy (2.7)

for anyY > 0 andM ∈ N. Moreover,

1

Y

∫ Y

0

∣∣~φ(y)− ~PM(y)
∣∣dy ≤

ℓ∑

k=1

1

Y

∫ Y

0

∣∣∣φk(y)−
Nk(M)∑

n=1

rk,ne
iyλk,n

∣∣∣dy.

If we apply the latter inequality in (2.6) and (2.7) and takelim sup andlim inf asY → ∞, respec-
tively, by employing (2.4) we obtain

µM(f)− ℓcf/M ≤ lim inf
Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ lim sup

Y→∞

1

Y

∫ Y

0

f
(
~φ(y)

)
dy ≤ µM(f) + ℓcf/M.

(2.8)
These inequalities imply thatL(f) := limY→∞

1
Y

∫ Y

0
f
(
~φ(y)

)
dy exists. Moreover, (2.8) implies

that
lim
Y→∞

νY (f) = lim
M→∞

µM(f) = L(f) (2.9)

exists for every bounded Lipschitz functionf : Rℓ → R.
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We next show that(νY )Y ∈N is tight, i.e. for anyε > 0, there isAε > 0 such that
∫

|x|≥Aε

dνY < ε

for all Y ∈ N. Let ε > 0 be given. We choose a natural numberM such thatℓ/M < ε. By (2.4)
and (2.5), there exists a vector function~PM(y) with trigonometric polynomials as its components
such that

|~φ(y)− ~PM(y)| < ℓ/M < ε, (2.10)

where|.| denote the Euclidean norm inRℓ. Let

Aε = sup
y∈[0,∞]

|~PM(y)|+ 1.

Now by employing (2.10) we have
∫

|x|≥Aε

dνY =
1

Y
meas

{
0 ≤ y ≤ Y, |~φ(y)| > Aε

}
≤ 1

Y

∫ Y

0

|~φ(y)− ~PM(y)|dy < ε.

Hence(νY )Y ∈N is tight, as we stated. Thus, by Lemma 2.8, there is a subsequence(νYj
)j∈N of

(νY )Y ∈N and a probability measureµ onRℓ such that

L(f) = lim
j→∞

νYj
(f) = µ(f).

This together with (2.9) shows that

lim
Y→∞

νY (f) = lim
M→∞

µM(f) = µ(f), (2.11)

for every bounded Lipschitz functionf : Rℓ → R and the proof is complete. �

3. PROOF OF THE MAIN THEOREM

The goal in this section is to prove Theorem 1.4. By Theorem 2.9, we know that~φ(y) has a
limiting distribution if ~φ(y) is aB2-almost periodic function. Since~φ(y) is aB2-almost periodic
function if and only if each of its component functionsφk(y) isB2-almost periodic, Theorem 1.4
will follow as a consequence of Theorem 1.2.

The proof of Theorem 1.2 under conditions given in (a) uses a lemma of Gallagher. The proof
under the assumptions given in (b) follows an argument first employed by Cramér [6] and later
used by Ng [32].

For a proof of the following lemma see [12, Lemma 1].

Lemma 3.1(Gallagher). Let (νn)n∈N be an arbitrary sequence of real numbers and(cn)n∈N ⊂ C.
Assume thatf(x) =

∑∞
n=1 cne

2πiνnx is absolutely convergent. Then, forU ≥ 0,
∫ U

−U

|f(x)|2dx≪ 1

U2

∫ ∞

−∞

∣∣∣
∑

t<νn≤t+1/U

cn

∣∣∣
2

dt.

Proof of Theorem 1.2.Let X > T > 1 andV ≥ 0. Assume either of the conditions of Theorem
1.2. We shall begin by showing that there existδ ≥ 0 andη > 0 such that

∫ V+1

V

∣∣∣
∑

T<λn≤X

rne
iyλn

∣∣∣
2

dy ≪ (log T )δ

T η
. (3.1)
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First assume that Condition (a) in Theorem 1.2 holds. Then
∫ V+1

V

∣∣∣
∑

T<λn≤X

rne
iyλn

∣∣∣
2

dy ≤ 2π

∫ V+1

−(V+1)

∣∣∣
∑

T<λn≤X

rne
2πiyλn

∣∣∣
2

dy.

Lemma 3.1 implies
∫ V+1

−(V+1)

∣∣∣
∑

T<λn≤X

rne
2πiyλn

∣∣∣
2

dy ≪ 1

(V + 1)2

∫ ∞

−∞

∣∣∣
∑

T<λn≤X
t<λn≤t+ 1

V +1

rne
2πitλn

∣∣∣
2

dt

≤
∫ ∞

−∞

( ∑

T<λn≤X
t<λn≤t+1

|rn|
)2
dt.

In the last integral,t satisfiesT − 1 ≤ t ≤ X. From (1.8) andβ > 1/2, we have
∫ ∞

−∞

( ∑

T<λn≤X
t<λn≤t+1

|rn|
)2
dt ≤

∫ X

T−1

( ∑

t<λn≤t+1

|rn|
)2
dt≪

∫ X

T−1

(log t)2γ

t2β
dt≪ (log T )2γ

T 2β−1
.

So (3.1) holds forδ = 2γ andη = 2β − 1.
Next assume that (b) holds. Note that, by dyadic summations,(1.9) andα ≥ β imply

∑

λn≤T

|rn| ≪ T α−β(log T )γ+1.

Thus, by partial summation, we conclude that ifκ > α− β andν > 0, then

∑

λn>T

|rn|(log λn)ν
λκn

≪ (log T )γ+ν+1

T κ−α+β
. (3.2)

Since|z|2 = zz̄, we have
∫ V+1

V

∣∣∣
∑

T<λn≤X

rne
iyλn

∣∣∣
2

dy =
∑

T<λn≤X

∑

T<λm≤X

rnrm

∫ V+1

V

eiy(λn−λm)dy

≪
∑

T<λn≤X

∑

T<λm≤X

|rnrm|min

(
1,

1

|λn − λm|

)
= Σ1 + Σ2,

whereΣ1 is the sum of those terms for which we have|λn−λm| < 1, andΣ2 is the sum of the rest
of the terms. ForΣ1, by employing (1.9) and (3.2) we have

Σ1 ≤
∑

T<λn≤X

|rn|
∑

λn−1<λm<λn+1

|rm| ≪
∑

λn>T

|rn|(log λn)γ
λβn

≪ (log T )2γ+1

T 2β−α
. (3.3)

Note that the last inequality is justified since (1.10) implies thatβ > α−β. To studyΣ2, we define
for anyT ≥ 1

ST (U) =
∑

λm>T
|U−λm|≥1

|rm|
|U − λm|

,
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whereU ≥ T . Then we can write

Σ2 =
∑

T<λn≤X

|rn|
∑

T<λm≤X
|λn−λm|≥1

|rm|
|λn − λm|

≤
∑

T<λn≤X

|rn|ST (λn).

We determine an upper bound forST (U) as follows. Let0 < c < 1 andT ≥ 1 be fixed. For any
numberU ≥ T consider the set of numbersU c, U − U c, andU − 1. Either of the following cases
occurs

T ≤ U c, U c < T ≤ U − U c, U − U c < T ≤ U − 1, or U − 1 < T ≤ U.

Suppose that the first case happens, i.e.T ≤ U c. Then

ST (U) =

( ∑

T<λm≤Uc

+
∑

Uc<λm≤U−Uc

+
∑

U−Uc<λm≤U−1

+
∑

U+1≤λm≤U+Uc

+
∑

U+Uc<λm≤2U

+
∑

λm>2U

) |rm|
|U − λm|

.

Denote these six sums byσ1, . . . , σ6. Then, by applying (1.9), we deduce

σ1 ≤ 1

U − U c

∑

T<λm≤Uc

|rm| ≪
(U c − T )α(logU)γ

(U − U c)T β
≪ (logU)γ

U1−cα
,

σ2 ≤ 1

U c

∑

Uc<λm≤U−Uc

|rm| ≪
1

U c

(U − 2U c)α log(U − U c)γ

(U c)β
≪ (logU)γ

U c+cβ−α
,

σ3 ≤
∑

U−Uc<λm≤U−1

|rm| ≪
(U c)α(logU)γ

(U − U c)β
≪ (logU)γ

Uβ−cα
,

σ4 ≤
∑

U+1≤λm≤U+Uc

|rm| ≪
(U c)α(logU)γ

Uβ
≪ (logU)γ

Uβ−cα
,

and

σ5 ≤ 1

U c

∑

U+Uc<λm≤2U

|rm| ≪
1

U c

Uα(logU)γ

Uβ
≪ (logU)γ

U c+β−α
.

Forσ6, we divide the interval of summation into subintervals(2kU, 2k+1U ] to get

σ6 ≤
∞∑

k=1

1

(2k − 1)U

∑

2kU<λm≤2k+1U

|rm| ≪
(

∞∑

k=1

kγ

2k(β+1−α)

)
(logU)γ

Uβ+1−α
≪ (logU)γ

Uβ+1−α
,

which is justified sinceα < β + 1 by (1.10). We observe thatσ6 ≪ σ5 ≪ σ2, σ4 ≪ σ3, and
σ1 ≪ σ3 sinceβ ≤ 1. Thus we have

ST (U) ≪ σ2 + σ3 ≪
(logU)γ

U c+cβ−α
+

(logU)γ

Uβ−cα
.

In the last inequality we choosec = α+β
α+β+1

and hence ifT ≤ U c, then

ST (U) ≪
(logU)γ

U ξ
,
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where

ξ =
β2 − α2 + β

α+ β + 1
.

By similar arguments, we find the same bound forST (U) in the three other cases of (3). Condition
α2 + α/2 < β2 + β yieldsξ > α− β. Hence (3.2) implies

Σ2 ≪
∑

λn>T

|rn|ST (λn) ≪
(log T )2γ+1

T ξ−α+β
, (3.4)

where

ξ − α+ β =
2(β2 − α2) + (2β − α)

α + β + 1
.

By (3.3) and (3.4), we have

Σ1 + Σ2 ≪
(log T )2γ+1

T ξ−α+β
,

sinceα, β > 0 implies thatξ−α+β < 2β−α. Thus (3.1) holds forδ = 2γ+1 andη = ξ−α+β.
Now we show that (3.1) together with (1.7) imply thatφ(y) is aB2-almost periodic function. It

follows from (1.6) that foreY > T ≥ X0 andy ≥ y0,

φ(y)− c− ℜ
( ∑

λn≤T

rne
iλny
)
= ℜ

( ∑

T<λn≤eY

rne
iλny
)
+ E(y, eY ).

Then, by employing (3.1) and (1.7), we obtain

lim sup
Y→∞

1

Y

∫ Y

y0

∣∣∣φ(y)− c− ℜ
( ∑

λn≤T

rne
iλny
)∣∣∣

2

dy

≪ lim sup
Y→∞

1

Y

∫ Y

y0

∣∣∣
∑

T<λn≤eY

rne
iyλn

∣∣∣
2

dy + lim
Y→∞

1

Y

∫ Y

y0

|E(y, eY )|2dy

≪ lim sup
Y→∞

1

Y

⌊Y−y0⌋∑

j=0

∫ y0+j+1

y0+j

∣∣∣
∑

T<λn≤eY

rne
iyλn

∣∣∣
2

dy ≪ (log T )δ

T η
.

This inequality together with

lim
Y→∞

1

Y

∫ y0

0

∣∣∣φ(y)− c− ℜ
( ∑

λn≤T

rne
iλny
)∣∣∣

2

dy = 0

imply thatφ(y) isB2-almost periodic. Hence, the theorem follows from Theorem 2.9. �

We next prove Corollary 1.3.

Proof of Corollary 1.3.(a) Sincern ≪ λ−β
n then (1.11) imply that

∑

T<λn≤T+1

|rn| ≪
log T

T β
.
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Now Theorem 1.2(a) implies the result.
(b) By partial summation, using (1.12) andθ < 2, we have
∑

λn≥S

|rn|2 = 2

∫ ∞

S

(∑

λn≤t

λ2n|rn|2
)
dt

t3
+ lim

X→∞
X−2

( ∑

λn≤X

λ2n|rn|2
)
− S−2

( ∑

λn≤S

λ2n|rn|2
)

≪
∫ ∞

S

tθ−3dt+ Sθ−2 ≪ Sθ−2.

By employing this bound, (1.11), and Cauchy’s inequality wehave

∑

S<λn≤T

|rn| ≪
(T − S)

1

2 (log T )
1

2

S1− θ
2

.

Now we chooseα = 1/2, β = 1−θ/2, andγ = 1/2, and employ Theorem 1.2. If1 ≤ θ < 3−
√
3

the conditions given in (b) in Theorem 1.2 are satisfied. Notethat this also implies the result for
0 ≤ θ < 1 since in this case

∑
λn≤T λ

2
n|rn|2 ≪ T θ ≤ T . �

4. APPLICATIONS OF THEMAIN THEOREM

In this section, by applying Theorem 1.4, we prove Corollaries 1.5, 1.6, and 1.8.

3.1. Proof of Corollary 1.5.

Error term of the prime number theorem for automorphic L-functions. Letπ be an irreducible
unitary cuspidal automorphic representation ofGLd(AQ) and letL(s, π) be the automorphicL-
function attached toπ. We follow the notation in the introduction. Forδ > 0 let

C(δ) = C \ {z ∈ C | |z + µπ(j) + 2k| ≤ δ, 1 ≤ j ≤ d, k ≥ 0}.
We need the following lemma.

Lemma 4.1. (i) Let σ ≤ −1/2 then for alls = σ + it ∈ C(δ),

L′(s, π)

L(s, π)
≪ log |s|.

(ii) For any integerm ≥ 2, there isTm withm ≤ Tm ≤ m+ 1 such that

L′(σ ± iTm, π)

L(σ ± iTm, π)
≪ log2 Tm

uniformly for−2 ≤ σ ≤ 2.
(iii) For T ≥ 2, the numberN(T, π) of the zeros ofL(s, π) in the region0 ≤ ℜ(s) ≤ 1, |ℑ(s)| ≤ T
satisfies

N(T + 1, π)−N(T, π) ≪ log T

and
N(T, π) ≪ T log T.

(iv) There is a constant0 ≤ θ < 1/2 such that for all1 ≤ j ≤ d,

|απ(p, j)| ≤ pθ and|ℜ(µπ(j))| ≤ θ. (4.1)

Proof. For (i) see [29, p. 177] forGL2 automorphicL-functions. The general case is similar. See
[24, Lemma 4.3(a)(d)] for (ii) and (iii). For (iv) see [35, p.275]. Note that in (ii), and (iii) the
implied constants depend onπ, and in (i) the implied constant depends onδ andπ. �
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We now establish an explicit formula forψ(x, π).

Proposition 4.2. Let θ be the constant given in(4.1). For all x > 1 andT ≥ 2 we have

ψ(x, π)− δ(x, π) = Rπ −
∑

|ℑ(ρ)|≤T

xρ

ρ
+O

(xθ+1 log2 x

T
+ xθ log x+

x log2 T

T log x
+
x log T

T

)
, (4.2)

whereρ runs over the nontrivial zeros ofL(s, π) with |ℑ(ρ)| ≤ T , and

Rπ =





−L
′(0, π)

L(0, π)
if L(0, π) 6= 0,

− log x− L′′(0, π)

2L′(0, π)
if L(0, π) = 0.

The implied constant in(4.2)depends onδ in Lemma 4.1 andπ.

Proof. Recall that forℜ(s) > 1, we have

−L
′(s, π)

L(s, π)
=

∞∑

n=1

Λ(n)aπ(n)

ns
.

From (1.14) and Lemma 4.1(iv) we conclude that|aπ(n)| ≤ dnθ. Let c = 1 + 1/ logx, andTm be
as in Lemma 4.1(ii). By Perron’s formula [37, p. 70, Lemma 3.19] we obtain

ψ(x, π) =
1

2πi

∫ c+iTm

c−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds+O

(xθ+1 log2 x

T
+ xθ log x

)
. (4.3)

Let U < −1/2 andδ > 0 be such thatU ± it ∈ C(δ) for t ∈ [−Tm, Tm]. Consider the contour
which consists of the rectangleC with verticesc+ iTm, c− iTm, U + iTm, U − iTm. By the residue
theorem, we have

1

2πi

∫ c+iTm

c−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds = δ(x, π) +Rπ −

∑

U≤ℜ(µ)≤θ
|ℑ(µ)|≤T

xµ

µ
−

∑

0≤ℜ(ρ)≤1
|ℑ(ρ)|≤T

xρ

ρ

+
1

2πi

(∫ U−iTm

c−iTm

+

∫ U+iTm

U−iTm

+

∫ c+iTm

U+iTm

)(
− L′(s, π)

L(s, π)

) xs
s
ds, (4.4)

where the first and the second sums run over the trivial and thenon-trivial zeros ofL(s, π) inside
the rectangleC, respectively. If we follow the argument in [29, pp. 174–178] and employ Lemma
4.1(i) and (ii), we get the following estimates for the integrals on the right-hand side of (4.4). We
have

1

2πi

(∫ U−iTm

c−iTm

+

∫ c+iTm

U+iTm

)(
− L′(s, π)

L(s, π)

) xs
s
ds≪ x log2 Tm

Tm log x
,

and

1

2πi

∫ U+iTm

U−iTm

(
− L′(s, π)

L(s, π)

) xs
s
ds≪ Tmx

U log |U + iTm|
|U | .
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Now we letU → −∞ through admissible values and note that(Tmx
U log |U + iTm|)/|U | → 0.

Moreover, Lemma 4.1(iv) implies

∑

−∞≤ℜ(µ)≤θ
|ℑ(µ)|≤T

xµ

µ
≪ xθ


1 +

∑

1≤j≤d
k>0

x−2k

ℜ(µπ(j))− 2k


≪ xθ.

Inserting the above estimates in (4.4) together with (4.3) establishes (4.2) in the caseT = Tm.
Now note that if we changeTm by an arbitraryT ∈ [m,m+ 1], then we have the same estimate as
in (4.2), since by Lemma 4.1(iii), we have

∑

0≤ℜ(ρ)≤1
Tm≤|ℑ(ρ)|≤T

xρ

ρ
+

∑

0≤ℜ(ρ)≤1
T≤|ℑ(ρ)|≤Tm

xρ

ρ
≪ x log T

T
.

This completes the proof. �

We now show that, under the assumption of the generalized Riemann hypothesis,

E1(y, π) =
ψ(ey, π)− δ(ey, π)

ey/2

has a limiting distribution. By pairing the conjugate zerosρ = 1/2+ iγ andρ̄ = 1/2− iγ in (4.2),
for y > 0 andX ≥ 2, we get

E1(y, π) = −2ords=1/2L(s, π) + ℜ
( ∑

0<γ≤X

−2eiγy

ρ

)
+ Eπ(y,X),

whereords=1/2L(s, π) is equal to the multiplicity of the zero ofL(s, π) ats = 1/2 if L(1/2, π) = 0
andords=1/2L(s, π) = 0 otherwise, andEπ(y,X) satisfies

Eπ(y,X) = O

(
y2ey(1/2+θ)

X
+ yey(θ−1/2) +

ey/2 log2X

yX
+
ey/2 logX

X

)
.

Note that Condition (1.7) fory0 > 0 is satisfied forEπ(ey, eY ). Settingrn = −2/ρn andλn =
ℑ(ρn) where the non-trivial zeros ofL(s, π) are labelled(ρn)n∈N, we obtain from Lemma 4.1(iii)

∑

λn≤T

λ2n|rn|2 =
∑

0<γ≤T

4γ2

|ρ|2 ≪
∑

0<γ≤T

1 ≪ T log T.

Hence, assuming the generalized Riemann hypothesis forL(s, π), Corollary 1.3(b) implies that
E1(y, π) has a limiting distribution.

3.2. Proof of Corollary 1.6.

Before proceeding we require the following two lemmas. The first lemma derives an explicit
formula for sums of the shape

∑
n≤x ann

−α.

Lemma 4.3. Let (an)n∈N be a bounded sequence. Assume there exist complex functionsF (w)

andG(w) such that
∑∞

n=1 ann
−w = F (w)

G(w)
for ℜ(w) > 1. Let x > 1, α ∈ [0, 1], β ∈ R, c =

1− α+ 1/ log x, b 6= α, andb < c+ α.
Assume the following three conditions hold:
(i) For any t > 0, within and on the boxBt with verticesc + α + it, b + it, b − it, c + α − it,
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F (s) is either holomorphic or it has a simple pole of residued0 at s0 ∈ (b, c + α), andG(s) is
holomorphic with simple zeros atρ1, . . . , ρJ insideBt and each different froms0. In the caseF (s)
has a simple pole ats = s0, let d1 be the value ofF (s)− d0/(s− s0) at s = s0.
(ii) There existsδ = δ(b) ∈ R− {0} such that

F (b+ it)

G(b+ it)
= O((|t|+ 1)δ).

(iii) There exists an increasing sequence of positive numbers (Tm)m∈N tending to infinity such that

F (σ ± iTm)

G(σ ± iTm)
= O(T β

m),

uniformly onb ≤ σ ≤ c+ α.
Then forα ∈ [0, 1] andx > 1,

∑

n≤x

an
nα

= Rα,s0(x) +
J∑

j=1
ρj∈Bt

F (ρj)x
ρj−α

(ρj − α)G′(ρj)
+O

(x1−α log x

Tm
+
xcT β−1

m

log x
+ xb−α(T δ

m + 1) + x−α
)
,

where

Rα,s0(x) =





0 if α, s0 6∈ (b, c+ α),
F (α)

G(α)
if α ∈ (b, c+ α), s0 6∈ (b, c + α),

d0x
s0−α

(s0 − α)G(s0)
if α 6∈ (b, c+ α), s0 ∈ (b, c + α),

d0x
s0−α

(s0 − α)G(s0)
+
F (α)

G(α)
if α, s0 ∈ (b, c+ α), α 6= s0,

d0 log x

G(s0)
+

d1
G(s0)

− d0G
′(s0)

G2(s0)
if α, s0 ∈ (b, c+ α), α = s0.

(4.5)

Proof. Applying Perron’s formula [37, p. 70, Lemma 3.19] withc = 1− α + 1/ log x gives

∑

n≤x

an
nα

=
1

2πi

∫ c+iTm

c−iTm

F (s+ α)

G(s+ α)

xs

s
ds+O

(x1−α log x

Tm
+ x−α

)
. (4.6)

If we replaces by s− α in the integral, we obtain

1

2πi

∫ c+iTm

c−iTm

F (s+ α)

G(s+ α)

xs

s
ds =

1

2πi

∫ c+α+iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds.

Cauchy’s residue theorem and (i) imply

1

2πi

∫ c+α+iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds = Rα,s0(x) +

J∑

j=1
ρj∈BTm

F (ρj)x
ρj−α

(ρj − α)G′(ρj)

+
1

2πi

(∫ b−iTm

c+α−iTm

+

∫ b+iTm

b−iTm

+

∫ c+α+iTm

b+iTm

)
F (s)

G(s)

xs−α

s− α
ds, (4.7)
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whereRα,s0(x) equals the sum of the residues ats = s0 ands = α, and the sum appears from the
residues at the zeros ofG(s). Taking into account the various cases forα ands0, a simple residue
calculation yields (4.5). From assumptions (ii) and (iii) we obtain

1

2πi

∫ b+iTm

b−iTm

F (s)

G(s)

xs−α

s− α
ds≪ xb−α(T δ

m + 1), (4.8)

1

2πi

∫ c+α+iTm

b+iTm

F (s)

G(s)

xs−α

s− α
ds≪ xcT β−1

m

log x
, (4.9)

and similarly

1

2πi

∫ b−iTm

c+α−iTm

F (s)

G(s)

xs−α

s− α
ds≪ xcT β−1

m

log x
. (4.10)

The result follows by combining (4.6), (4.7), (4.8), (4.9),and (4.10). �

In the previous lemma, a convenient sequence(Tm)m∈N of reals is chosen so thatF (s)/G(s) is
not too large on the contourℑ(s) = Tm. Consequently, in the explicit formula for

∑
n≤x ann

−α,
the sum overρj is constrained by the condition|ℑ(ρj)| ≤ Tm. The next lemma allows us to replace
this condition by|ℑ(ρj)| ≤ T for anyT ≥ 1.

Lemma 4.4. Let (zn)n∈N ⊂ C and (λn)n∈N ⊂ R+ be sequences and letx, c1, andc2 be positive
reals. LetT, T ′ ∈ [1,∞) such that|T − T ′| ≤ 1. Assume that fort ≥ 1 we have

∑

λn≤t

|zn|2 ≪ tc1 (4.11)

and ∑

t<λn≤t+1

1 ≪ (log t)c2 . (4.12)

Then
∑

λn≤T ′

znx
1

2
+iλn

1
2
+ iλn

=
∑

λn≤T

znx
1

2
+iλn

1
2
+ iλn

+O
(
x

1

2T (c1−2)/2(log T )c2/2
)
.

Proof. We begin by assumingT − 1 ≤ T ′ ≤ T . By the Cauchy-Schwarz inequality
∣∣∣∣
∑

T ′<λn≤T

znx
1

2
+iλn

1
2
+ iλn

∣∣∣∣ ≤ x
1

2

( ∑

T ′<λn≤T

∣∣∣∣
zn

1
2
+ iλn

∣∣∣∣
2)1/2( ∑

T ′<λn≤T

1

)1/2

≪ x
1

2T
c1−2

2 (log T )c2/2

(4.13)
by (4.11) and (4.12). In the caseT < T ′ ≤ T + 1, we obtain the same bound as (4.13). �

We now prove Corollary 1.6. In each part of this corollary, weshall apply Corollary 1.3(b) to
establish the existence of the limiting distribution.

(i) Weighted Sums of the M̈obius Function. In this proof we assume the Riemann hypothesis and
assumption (1.15). We shall show thatE2(y, α), defined in (1.17), possesses a limiting distribution.
We start by establishing an explicit formula for

Mα(x) =
∑

n≤x

µ(n)

nα
.
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We first consider the caseα 6= 0. Let 0 < b < min(1/2, α) and0 < ε < 1/2 − b. Under the
assumption of the Riemann hypothesis, there exists a sequence(Tm)m∈N, whereTm ∈ [m− 1, m],
such that

|ζ(σ + iTm)|−1 ≪ T ε
m (4.14)

uniformly for−1 ≤ σ ≤ 2 (see [37, pp. 357–358]). Moreover, for anyε > 0, we have

|ζ(b+ it)|−1 ≪ |t|−1/2+b+ε

for |t| ≥ 1 (see [28, Corollary 10.5 and Theorems 13.18 and 13.23]). By taking F (s) = 1,
G(s) = ζ(s), an = µ(n), β = ε, andδ = −1/2 + b+ ε in Lemma 4.3 we derive

Mα(x) =
1

ζ(α)
+
∑

|γ|≤Tm

xρ−α

(ρ− α)ζ ′(ρ)
+O

(
x1−α log x

Tm
+

x1−α

T 1−ε
m log x

+ xb−α

)
, (4.15)

whereρ ranges over the non-trivial zeros ofζ(s). Let T ≥ 1 andm ≥ 1 be the natural number
such thatT ∈ [m − 1, m]. Label the non-trivial zeros ofζ(s) with positive imaginary part in
non-decreasing order by(ρn)n∈N. An application of Lemma 4.4 withλn = ℑ(ρn), zn = ζ ′(ρn)

−1,
c1 = θ, c2 = 1, β = 1/2, T , andT ′ = Tm implies that

∑

|γ|≤Tm

xρ−α

(ρ− α)ζ ′(ρ)
=
∑

|γ|≤T

xρ−α

(ρ− α)ζ ′(ρ)
+O

(
x1/2−αT (θ−2)/2(log T )1/2

)
. (4.16)

Substituting (4.16) in (4.15), forα 6= 0, we have

Mα(x) =
1

ζ(α)
+
∑

|γ|≤T

xρ−α

(ρ− α)ζ ′(ρ)

+O

(
x1−α log x

T
+

x1−α

T 1−ε log x
+ x1/2−α

(
T θ−2 log T

)1/2
+ xb−α

)
, (4.17)

valid for x > 1 andT ≥ 1. If α = 0, we let0 < b < 1/2. Then similarly we have

M0(x) =
∑

|γ|≤T

xρ

ρζ ′(ρ)
+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2

(
T θ−2 log T

)1/2
+ xb

)
. (4.18)

We now analyzeE2(y, α) in the casesα ∈ (0, 1/2), α ∈ (1/2, 1], α = 0, andα = 1/2.
For0 < α < 1/2, by (4.17), forX ≥ 1 andy > 0, we have

E2(y, α) =
1

ey(1/2−α)ζ(α)
+ ey(−1/2+α)

∑

|γ|≤X

ey(ρ−α)

(ρ− α)ζ ′(ρ)

+O

(
yey/2

X
+

ey/2

yX1−ε
+
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b)

)
.

Thus

E2(y, α) = ℜ
( ∑

0<γ≤X

2eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eµ,α(y,X),

where

Eµ,α(y,X) = O

(
yey/2

X
+

ey/2

yX1−ε
+
(
Xθ−2 logX

)1/2
+

1

ey(1/2−α)

)
.
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Note that in this case the termey(α−1/2) in Eµ,α(y,X) comes from the termey(α−1/2)/ζ(α) in
E2(y, α), since we choseb < α.

For 1
2
< α ≤ 1, we recall thatE2(y, α) = ey(−1/2+α)

(
Mα(e

y) − 1/ζ(α)
)
. By (4.17) and by

pairing conjugate zeros, we obtain

E2(y, α) = ℜ
( ∑

0<γ≤X

2eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eµ,α(y,X),

for X ≥ 1 andy > 0, where

Eµ,α(y,X) = O

(
yey/2

X
+

ey/2

yX1−ε
+
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b)

)
. (4.19)

Forα = 0, from (4.18) we have

E2(y, 0) = ℜ
( ∑

0<γ≤X

2eiyγ

ρζ ′(ρ)

)
+ Eµ,0(y,X),

whereEµ,0(y,X) satisfies (4.19).
Finally, forα = 1/2, (4.17) implies

E2(y, 1/2) =
1

ζ(1
2
)
+ ℜ

( ∑

0<γ≤X

2eiyγ

(ρ− 1/2)ζ ′(ρ)

)
+ Eµ,1/2(y,X),

whereEµ,1/2(y,X) is bounded as (4.19).
Note thatEµ,α(y, eY ) satisfies (1.7) fory0 > 0, for anyα ∈ [0, 1]. Settingrn = 2/(ρn − α)ζ ′(ρ)

andλn = ℑ(ρn), it follows from (1.15) that
∑

λn≤T

λ2n|rn|2 =
∑

0<γ≤T

4γ2

|(ρ− α)ζ ′(ρ)|2 ≪ T θ.

Thus Corollary 1.3(b) implies that, under the assumptions of the Riemann hypothesis forζ(s) and
(1.15),E2(y, α) has a limiting distribution.

(ii) Weighted Sums of the Liouville Function. In this part, we show thatE3(y, α), defined by
(1.18), possesses a limiting distribution. We begin by establishing an explicit formula forLα(x) =∑

n≤x λ(n)n
−α. Assume the Riemann hypothesis forζ(s) and (1.15). Forα ∈ (0, 1] andx > 1,

let

Rα,s0(x) =

{
x1/2−α

(1−2α)ζ(1/2)
+ ζ(2α)

ζ(α)
if α 6= 1/2,

log x
2ζ(1/2)

+ γ0
ζ(1/2)

− ζ′(1/2)
2ζ(1/2)2

if α = 1/2,

whereγ0 is Euler’s constant. Let0 < ǫ < b < min(1/4, α). Then we have
∣∣∣ζ(2(b+ it))

ζ(b+ it)

∣∣∣≪ |t|−b+ε

for all |t| ≥ 1, and ∣∣∣ζ(2(σ + iTm))

ζ(σ + iTm)

∣∣∣≪ T 1/2−2b+ε
m

uniformly for b ≤ σ ≤ c + α (see [28, Corollary 10.5 and Theorems 13.18 and 13.23]), where
(Tm)m∈N is the sequence introduced in (4.14). SetF (s) = ζ(2s), G(s) = ζ(s), zm = λ(m),
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β = 1/2− 2b+ ε, andδ = −b+ ε. Then ifα 6= 0, Lemmas 4.3 and 4.4 imply that, forx > 1 and
T ≥ 1,

Lα(x) = Rα,s0(x) +
∑

|γ|≤T

xρ−α

ρ− α

ζ(2ρ)

ζ ′(ρ)

+O

(
x1−α log x

T
+
x1−αT−1/2−2b+ε

log x
+ x1/2−α

(
T θ−2 log T

)1/2
+ xb−α

)
. (4.20)

If α = 0, we let0 < ǫ < b < 1/4. Similarly, we have

L0(x) =
x1/2

ζ(1/2)
+
∑

|γ|≤T

xρ

ρ

ζ(2ρ)

ζ ′(ρ)
+O

(
x log x

T
+
xT−1/2−2b+ε

log x
+ x1/2

(
T θ−2 log T

)1/2
+ xb

)
.

(4.21)
Forα ∈ [0, 1], let

Cα =

{
1

(1−2α)ζ(1/2)
if 0 ≤ α < 1/2 or 1/2 < α ≤ 1,

γ0
ζ(1/2)

− ζ′(1/2)
2ζ(1/2)2

if α = 1/2.

Then (4.20) and (4.21) imply that, fory > 0 andX ≥ 1,

E3(y, α) = Cα + ey(−1/2+α)
∑

|γ|≤X

ζ(2ρ)ey(ρ−α)

(ρ− α)ζ ′(ρ)
+ Eλ,α(y,X)

= Cα +
∑

|γ|≤X

ζ(2ρ)eiyγ

(ρ− α)ζ ′(ρ)
+ Eλ,α(y,X)

= Cα + ℜ
( ∑

0<γ≤X

2ζ(2ρ)eiyγ

(ρ− α)ζ ′(ρ)

)
+ Eλ,α(y,X),

where

Eλ,α(y,X) ≪ yey/2

X
+
ey/2X−1/2−2b+ε

y
+
(
Xθ−2 logX

)1/2
+

1

ey(1/2−b)
.

Observe that (1.7) fory0 > 0 holds forEλ,α(y, eY ). Sincern = 2ζ(2ρn)/(ρn − α)ζ ′(ρ) and
λn = ℑ(ρn), it follows from (1.15) that

∑

λn≤T

λ2n|rn|2 =
∑

0<γ≤T

4γ2|ζ(2ρ)|2
|(ρ− α)ζ ′(ρ)|2 ≪

∑

0<γ≤T

4γ2(log γ)3/2+ε

|(ρ− α)ζ ′(ρ)|2 ≪ T θ(log T )3/2+ε.

Note that, in the previous inequalities we have used the factthatζ(1 + it) = O
(
(log t)3/4+ε

)
(see

[37, Theorem 6.14]). Hence by Corollary 1.3(b), under the assumptions of the Riemann hypothesis
for ζ(s) and (1.15),E3(y, α) has a limiting distribution.

(iii) The Summatory Function of the Möbius Function in Arithmetic Progressions.In this part
we prove the existence of a limiting distribution forE4(y; q, a) defined in (1.19). We first establish
an explicit formula for

M(x; q, a) :=
∑

n≤x
n≡a modq

µ(n),
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whereq ≥ 2 and(a, q) = 1. Let 0 < b < 1/2 and0 < ε < 1/2 − b. Assume the generalized
Riemann hypothesis for DirichletL-functions moduloq and (1.16). An argument analogous to
the proof of the existence of the sequence(Tm)m∈N introduced in (4.14) may be carried out for
Dirichlet L-functions. Following the proof of [28, Theorem 13.22], we are able to show that
the generalized Riemann hypothesis for DirichletL-functions implies that there is a sequence
(Tm,χ)m∈N, whereTm,χ ∈ [m− 1, m], such that

|L(σ + iTm,χ, χ)|−1 ≪ T ε
m,χ

uniformly for−1 ≤ σ ≤ 2. Moreover, for anyε > 0, we have

|L(b+ it, χ)|−1 ≪ |t|−1/2+b+ε

(see [28, Corollary 10.10 and p. 445, Exercises 8 and 10]). The orthogonality relation for charac-
ters asserts that

1

ϕ(q)

∑

χ mod q

χ(a)χ(n) =

{
1 if n ≡ a (modq),
0 otherwise,

(see [28, p. 122]). Thus

M(x; q, a) =
1

ϕ(q)

∑

χ mod q

χ(a)
∑

n≤x

µ(n)χ(n). (4.22)

Let F (s) = 1, G(s) = L(s, χ), zn = µ(n)χ(n), β = ε, δ = −1/2 + b + ε, andα = 0. Then
by applying a slight variant of Lemma 4.3 which takes into theconsideration the potential pole of
1/L(s, χ) at s = 1/2 and Lemma 4.4, we obtain, forx > 1 andT ≥ 1,

∑

n≤x

µ(n)χ(n) = Ress= 1

2

( xs

L(s, χ)s

)
+
∑

|γχ|≤T
γχ 6=0

xρχ

ρχL′(ρχ, χ)

+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2(T θ−2 log T )1/2 + xb

)
,

whereRess= 1

2

(.) denote the residue ats = 1/2. Substituting this in (4.22) implies that, forx > 1

andT ≥ 1,

M(x; q, a) =
1

ϕ(q)

∑

χ mod q
L(1/2,χ)=0

χ(a)Ress= 1

2

( xs

L(s, χ)s

)
+

1

ϕ(q)

∑

χ mod q

χ(a)
∑

|γχ|≤T
γχ 6=0

xρχ

ρχL′(ρχ, χ)

+O

(
x log x

T
+

x

T 1−ε log x
+ x1/2(T θ−2 log T )1/2 + xb

)
.

Assuming the generalized Riemann hypothesis for DirichletL-functions moduloq and (1.16), it
follows that, fory > 0 andX ≥ 1,

E4(y; q, a) =
1

ϕ(q)

∑

χ mod q
L(1/2,χ)=0

χ(a)Ress= 1

2

( eys

L(s, χ)s

)

+
1

ϕ(q)

∑

χ mod q

χ(a)
∑

|γχ|≤X
γχ 6=0

eiyγχ

ρχL′(ρχ, χ)
+ Eµ,q,a(y,X), (4.23)
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where

Eµ,q,a(y,X) ≪ yey/2

X
+

ey/2

yX1−ε
+

(logX)1/2

X1−θ/2
+

1

ey(1/2−b)
.

Let (λn)n∈N be the non-decreasing sequence that consists of all the numbersγχ > 0 satisfying
L(1/2 + iγχ, χ) = 0, for some Dirichlet characterχ modq, and let(rn)n∈N be defined as

rn =
2 χλn(a)

ϕ(q)(1/2 + iλn)L′(1/2 + iλn, χλn)
,

whereχλn is the character which corresponds toλn. We can rewrite (4.23) in the form of

E4(y; q, a) =
1

ϕ(q)

∑

χ mod q
L(1/2,χ)=0

χ(a)Ress= 1

2

( eys

L(s, χ)s

)
+ ℜ

( ∑

λn<X

rne
iyλn

)
+ Eµ,q,a(y,X).

Observe that (1.7) fory0 > 0 holds forEµ,q,a(y, eY ) and (1.16) implies
∑

λn≤T

λ2n|rn|2 ≪ T θ,

for 1 ≤ θ < 3 −
√
3. Hence Corollary 1.3(b) implies that, under the assumptions of the general-

ized Riemann hypothesis for DirichletL-functions moduloq and (1.16),E4(y; q, a) has a limiting
distribution.

3.2. Proof of Corollary 1.8.

Chebotarev’s Density Theorem. Let K/k be a normal extension of number fields with cor-
responding Galois groupG. We shall consider the squaring functionsq : G → G given by
sq(x) = x2. For a conjugacy classC of G, letA1, . . . , At be the conjugacy classes which satisfy
A2

i ⊆ C. We observe that

sq−1(C) =
t⋃

i=1

Ai

and define

c(G,C) = −1 +
|sq−1(C)|

|C| + 2
∑

χ 6=χ0

χ(C)ords=1/2L(s, χ,K/k)

whereχ ranges over the irreducible characters ofG andχ0 denotes the trivial character. It was
proven in [31, pp. 71–73] that the generalized Riemann hypothesis and Artin’s holomorphy con-
jecture imply that, forx > 1, T ≥ 1 and1 ≤ j ≤ r,

log x√
x

( |G|
|Cj|

πCj
(x)− πk(x)

)
=

− c(G,Cj)−
∑

χ 6=χ0

χ(Cj)

( ∑

0<|γχ|≤T

xiγχ

1/2 + iγχ

)
+O

(
x1/2 log2(xT )

T
+

1

log x

)
, (4.24)

where for eachχ, ρχ = 1/2 + iγχ runs over the non-trivial zeros ofL(s, χ,K/k). In this formula,
the termc(G,Cj) is the number field analogue of the constant termc(q, a) which appears in the
Chebyshev bias phenomenon. Let(λn)n∈N be the non-decreasing sequence that consists of all the
numbersγχ > 0 which satisfyL(1/2 + iγχ, χ,K/k) = 0 for someχ 6= χ0. Suppose thatχn is the
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character which corresponds toλn, and for1 ≤ j ≤ r setrj,n = −2χn(Cj)/(1/2 + iλn). Then
(4.24) implies that

E
(j)
5 (y) :=

( |G|
|Cj|

πCj
(ey)− πk(e

y)

)
ye−y/2 = −c(G,Cj)+ℜ

( ∑

0<λn≤X

rj,ne
iyλn

)
+ EG;Cj

(y,X),

where

EG;Cj
(y,X) = O

(
ey/2 log2(eyX)

X
+

1

y

)
.

Observe that Condition (1.7) fory0 > 0 holds forEG;Cj
(y, eY ) and by [20, Theorem 5.8] we have

∑

λn≤T

λ2n|rn|2 ≪
∑

λn≤T

1 ≪ T log T.

Therefore, Theorem 1.4 implies that, under the assumptionsof generalized Riemann hypothesis
and Artin’s holomorphy conjecture,~E5(y) =

(
E

(1)
5 (y), . . . , E

(r)
5 (y)

)
has a limiting distribution.

5. CALCULATION OF THE FOURIER TRANSFORMµ̂

Proof of Theorem 1.9.Let~rm =
(
r1(λm), . . . , rℓ(λm)

)
andN ∈ N. By Proposition 2.4, the vector-

valued function

~P (y) =

(
c1 + ℜ

( N∑

m=1

r1(λm)e
iyλm

)
, . . . , cℓ + ℜ

( N∑

m=1

rℓ(λm)e
iyλm

))

has a limiting distributionµN . Since{λ1, · · · , λN} is linearly independent then by the Kronecker-
Weyl theorem [18, Chapter 1] we have

lim
Y→∞

1

Y

∫ Y

0

g

(
yλ1
2π

, · · · , yλN
2π

)
dy =

∫

TN

g(a)dω,

whereg : RN → R is any continuous function of period1 in each of its variables anddω(θ1, . . . , θN )
is the normalized Haar measure onTN which is equal to the Lebesgue measuredθ1 . . . dθN onTN .
Hence, by takingf(t1, . . . , tℓ) = exp(−i∑ℓ

k=1 ξktk) andA = TN in (2.2), we obtain
∫

Rℓ

e−i
∑ℓ

k=1
ξktkdµN(t1, . . . , tℓ)

=

∫

TN

exp

(
− i
∑ℓ

k=1

[
ck + ℜ

(∑N
m=1rk(λm)e

2πiθm
)]
ξk

)
dω(θ1, . . . , θN)

= e−i
∑ℓ

k=1
ckξk

∫

TN

exp

(
− iℜ

(∑N
m=1

(
~rm · ~ξ

)
e2πiθm

))
dθ1 . . . dθN

= e−i
∑ℓ

k=1
ckξk ×

N∏

m=1

∫ 1

0

exp
(
−iℜ

((
~rm · ~ξ

)
e2πiθ

))
dθ. (5.1)
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Thus, in view of (2.11) and (5.1) we deduce that

µ̂(~ξ) =

∫

Rℓ

e−i
∑ℓ

k=1
ξktkdµ(t1, . . . , tℓ) = lim

N→∞

∫

Rℓ

e−i
∑ℓ

k=1
ξktkdµN(t1, . . . , tℓ)

= e−i
∑ℓ

k=1 ckξk ×
∞∏

m=1

∫ 1

0

exp
(
−iℜ

((
~rm · ~ξ

)
e2πiθ

))
dθ.

If ~rm · ~ξ 6= 0, then
∫ 1

0

exp
(
−iℜ

((
~rm · ~ξ

)
e2πiθ

))
dθ =

∫ 1

0

exp
(
−iℜ

(
|~rm · ~ξ|ei(2πθ+arg(~rm·~ξ))

))
dθ

=

∫ 1

0

exp
(
−i|~rm · ~ξ| cos

(
2πθ + arg

(
~rm · ~ξ

)))
dθ

=

∫ 1+arg(~rm·~ξ)/2π

arg(~rm·~ξ)/2π

exp
(
− i|~rm · ~ξ| cos(2πt)

)
dt

=

∫ 1

0

exp
(
− i|~rm · ~ξ| cos(2πt)

)
dt

= J0
(∣∣∑ℓ

k=1rk(λm)ξk
∣∣). (5.2)

If ~rm · ~ξ = 0, then (5.2) holds trivially. Hence

µ̂(~ξ) = e−i
∑ℓ

k=1
ckξk ×

∞∏

m=1

J0
(∣∣∑ℓ

k=1rk(λm)ξk
∣∣).
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Number Theory133, 2013, 545–582.
[20] H. Iwaniec and E. Kowalski,Analytic Number Theory, American Mathematical Society, Colloquium Publica-

tions, v. 53, 2004.
[21] B. Jessen and A. Wintner,Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc.38no.

1, 1935, 48–88.
[22] Y. Lamzouri,Distribution of values ofL-functions at the edge of the critical strip, Proc. Lond. Math. Soc. (3)

100no. 3, 2010, 835-863.
[23] Y. Lamzouri,Prime number races with three or more contestants, to appear in Math. Annalen.
[24] J. Liu and Y. Ye,Superposition of zeros of distinctL-functions, Forum Math.142002, 419–455.
[25] J. Liu and Y. Ye,Perron’s formula and the prime number theorem for automorphicL-functions, Pure Appl. Math.

Q. 3 no. 2, 2007, 481–497.
[26] M. B. Milinovich and N. Ng,A note on a conjecture of Gonek, Funct. Approx. Comment. Math.46no. 2, 2012,

177–187.
[27] I. Molchanov and S. Zuyev,Advanced Course in Probability: Weak Convergence and Asymptotics, Spring 2011.
[28] H. Montgomery and R. C. Vaughan,Multiplicative Number Theory I: Classical Theory, Cambridge Studies in

Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.
[29] C. J. Moreno,Explicit formulas in the theory of automorphic forms, in: Lecture Notes in Math.626, Springer,

Berlin, 1977, 73–216.
[30] D. W. Morris,Ratner’s Theorem on Unipotent Flows, Chicago Lectures in Mathematics Series, 2005.
[31] N. Ng,Limiting distributions and zeros of ArtinL-functions, Ph.D. Thesis, University of British Colombia, 2000.
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