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LIMITING DISTRIBUTIONS OF THE CLASSICAL ERROR TERMS OF PRIM E
NUMBER THEORY

AMIR AKBARY, NATHAN NG, AND MAJID SHAHABI

ABSTRACT. Let¢ : [0,00) — R and lety, be a non-negative constant. L@t,),cn be a non-
decreasing sequence of positive numbers which tends tatynfet (r,, ) ,,en be a complex sequence,
andc areal number. Assume thais square-integrable df, yo] and fory > o, ¢ can be expressed
as
éy) = ¢ + %( 3 rnewy) T &y, X),
An <X
forany X > X, > 0 where&(y, X) satisfies

li _]17 / €( )|2 0
m E(y,e dy = 0.
v » Y, Y

We prove that, under certain assumptions on the exponentd the coefficients,,, ¢(y) is a
B2-almost periodic function and thus possesses a limitingidigion. Also if {\, },.cn is linearly
independent ove), we explicitly calculate the Fourier transform of the limg distribution mea-
sure. Moreover, we prove general versions of the abovetsefaulvector-valued functions. Finally,
we illustrate some applications of our general theoremspmyyang them to several classical error
terms which occur in prime number theory. Examples inclindedrror term in the prime number
theorem for an automorphit-function, weighted sums of the Mobius function, weighsedns of
the Liouville function, the sum of the Mobius function in arithmetic progression, and the error
term in Chebotarev’s density theorem.

1. INTRODUCTION

In recent years, limiting distributions have played a proenit role in many problems in analytic
number theory. Indeed it is convenient to study number #t@oguestions from a probabilistic
point of view. Limiting distributions have been a useful lt@@ problems concerning summa-
tory functions [16], [32], prime number races [34]] [9], J[2&nd the distribution of values of
L-functions [17], [14], [22]. In this article, we shall inviggate the limiting distributions associ-
ated to some of the classical error terms that occur in prinmeler theory. In 1935, Wintner [38]
proved, assuming the Riemann hypothesis (RH), that theéibmc

o~ V/2 ((e) — ev) (1.1)
possesses a limiting distribution, whesér) = > .. log p. By his method, one may show that
on RH -

ye /2 (m(e¥) — Li(e")) (1.2)

possesses a limiting distribution, wherer) = {p < z | pis a primg andLi(z) = [ l(%. Over

the years, other researchers have investigated similatiqne for related error terms. Let> 2
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anday, ..., a, be reduced residues modujo Definer(zx; ¢, a) to be the number of primes less
than or equal ta: which are congruent toe modulog. In 1994, Rubinstein and Sarnak [34] proved,
assuming the generalized Riemann hypothesis for Dirichl&inctions, that the vector-valued

function

ye V2 (plg)m(e?; q,a1) — w(e), . p(g)m(e?; q,a,) — m(e?)) (1.3)
possesses a limiting distribution. These distributionsaveanployed to give a conditional solution

to an old problem known as the Shanks-Rényi prime numbergame. In 2004, Ng [32] studied
the sum of the Mobius function. This arithmetic functiordefined by

1 if n=1,
un)=1< 0 if n is not squarefree,
(=1)* if nis squarefree and = p; . .. py,

and its summatory function ¥/ (z) = >, _, p(n). He showed that

e Y2 M (eY) (1.4)
possesses a limiting distribution assuming the Riemanothgsis and the conjectural bound
>, K<,
0<[S(p)|<T

where((s) is the Riemann zeta function apdanges through its non-trivial zeros. The common
element in the proofs of the existence of a limiting disttibn of (I.1), [1.2), [1.B), and (1.4) is
an “explicit formula” for each of these functions. For insta, the truncated explicit formula for

P(x)is

p log®(zX
CREY 2o (T o),
p:
IS(p)[<X

valid forx > 2 andX > 1 (seel7, Chapter 17]). On the Riemann hypothesis, it follthas

e/ (h(eV) — e¥) = é)%( > —2;2'@”) +0 (M + ye_g) : (1.5)

p=g+iv

0<y<X
Based on this formula Wintner deduced that|(1.1) possedgediag distribution. In this article,
we shall prove a general limiting distribution theorem famétionsy(y), possessing an explicit for-
mula of a particular shape which is modelled bn|(1.5). Ouotbm will include the above results
as special cases and we will provide some new examples didasavith limiting distributions.

We now recall the definition of a limiting distribution for @etor-valued functiom : [0, co) —

R, wherel € N,

Definition 1.1. We say that a function : [0, 00) — R’ has alimiting distribution . onR” if 1 is
a probability measure oR‘ and

R B
i 5 [ £@w)dn= [ s

Y —o0

for all bounded continuous real functiofison R.
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We next describe the functions considered in this articé L [0, o) — R and lety, be a non-
negative constant such thais square-integrable df, y,]. We shall assume there exi$?s, ) .cn, a
non-decreasing sequence of positive numbers which temalf§tity, (,,).cn, @ cOMplex sequence,
andc a real constant such that fgr>

o(y) =c+ 9%( Z rneM”y> + E(y, X), (1.6)

An <X

forany X > X, > 0 where&(y, X) satisfies

: 1 v Y\|2
Jim / 8Py =0 (L.7)
There shall be various conditions imposed on the coeffisignand the exponents,.

Our approach in proving the limiting distribution ¢fy) is to show that)(y) is a B*-almost
periodic function. We say that the real functiofy) is a B*-almost periodidunction if for any
e > 0 there exists a real-valued trigonometric polynomial

N(e)
PN(E) (y) = Z Tn<€)ez>\7L(E)y
n=1
such that
: 1 Y 2 2
fimsup - [ 10(0) ~ Py () dy < €
0

Y-
Our main result is the following.

Theorem 1.2.Let¢ : [0,00) — R satisfy(I.6)and (L.7). Leta, 8 > 0, andy > 0. Assume either
of the following conditions:
(@ s >1/2and

log T)7
> m4<(§ﬁ (1.8)
T<A<T+1
forT > 0.
(b) 8 < min{l,a}, a®* + a/2 < 5%+ 3, and
T — S)*(logT)"
ST jnl < ( )55( oe 1) (1.9)
S<An<T
forT > S > 0.

Theng(y) is a B2-almost periodic function and therefore possesses a lignidistribution.

In Theoreni_ LR, we prove that the conditions@imply that it is aB2-almost periodic function.
However, as it is known tha2-almost periodic functions possess limiting distribuideeel([39,
Theorem 8.3] and Theorelm 2.9 in this article), we also olitzng possesses a limiting distribu-
tion. It would be interesting to determine the weakest ctomial on the coefficient§,, ),y and
the exponent§),,),.ex Which imply thate is B2-almost periodic.

Note that in part (b), the conditions< o anda? + /2 < 3% + 3 are equivalent to

6§a<wﬁ+ﬁ+%—%. (1.10)

The next corollary provides simpler criteria for whiglpossesses a limiting distribution.
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Corollary 1.3. Let¢ : [0, 00) — R satisfy(1.6) and (I.7).
Assume either of the following conditions:
(@) r, < X,” for 5 > 1, and

> 1<logT. (1.11)
T<A<T+1
(b)0 <0 < 3—+/3, [@11) and
> X < T (1.12)
A <T

Theng(y) is a B2-almost periodic function and therefore possesses a lignitistribution.

Part (a) of this corollary is useful to apply when thgs satisfy the nice boungd, < \,” where
S > 1/2. The existence of limiting distributions fdr (1.1) and (lr8ay be deduced from this case.
If we assumed RH anfl’(p)|~! < |p|z~=, then part (a) implies thaf{1.4) possesses a limiting
distribution.

On the other hand, if the,’s oscillate significantly, then by part (b) of the above diany it
suffices to have a modest bound for the second momeXt|of|.

More generally, we prove a version of Theorem 1.2 for vewtdued functions whose compo-

nents are of the type(y). For instance, lep : [0,00) — R’ be given by

oy) = (D1(y), - delw)), (1.13)
where eachy(y) is of the shape (116). Then we have the following.

Theorem 1.4. Suppose that the conditions of Theofenmi 1.2 or Corollary dl8 for eachey(y)

—

for 1 < k < /. Theng(y) possesses a limiting distribution.

This theorem contains as special cases the results of Wilnbinstein and Sarnak, and Ng. That
is, the functions in equations (1.1]), (1..2), (1.3), dnd)(p@ksess limiting distributions.

We also provide several new examples of functions which tiawing distributions. These
functions are now described.

Let 7 be an irreducible unitary cuspidal automorphic represemaf GL,(Ag), and letL(s, 7)
be the automorphié-function attached ta. We have

L(s,m) = H Lp(svﬂ'p)a

p<oo

Ly(s,m,) = H (1 - M)_l ,

pS
7=1
for ®(s) > 1. The completed.-function®(s, ) is defined by
O(s,m) = Loo(S, Too) L(s, ),
where the Archimedean local factor is

Loo(8, o) = H Ir(s + pr(4))

where

andl'r(s) = 7~*/2I'(s/2) wherel is the classical gamma function. Fbr< j < d, the complex

numbersa,.(p, j) and u.(j) are called thdocal parameters It is known that®(s, ) is entire
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(except in the casé(s,m) = ((s — imp) for 7y € R, which in this caseb(s, 7) has two simple
poles) and satisfies the functional equation
O(s,m) = €e(s,m)P(1 — s,7),
with
e(s,m) = ,QY*3,
where@, > 1 is an integer called the conductor of ¢, is the root number satisfying,.| = 1,
andT is the representation contragredientrtolt is expected that all non-trivial zeros &{s, )
are located on the lin&(s) = 1/2 and this is known as the generalized Riemann hypothesis for
L(s,m).
We now consider prime counting functions associateb(to 7). Let

d
ar(p*) = Zaw<p,j>k, (1.14)

and define

V(™) = An)aq(n),

n<x

whereA(n) is the classical von Mangoldt function. We have, #is) > 1,

L'(s,m)  ~=A(n)ax(n)
C L(s,m) Z ns

The prime number theorem fax(s, 7) (seel[25, Theorem 2.3]) is the assertion that

Y(x,m) = d(z,7) + O(x exp(—cy/log x))

for some positive constant where

p1+iTo . .
bomy = { o L = Clo— )

From Corollary 1.8 (a) we are able to deduce that a scale@bven$the above error term possesses
a limiting distribution.

otherwise.

Corollary 1.5. Under the assumption of the generalized Riemann hypotfaesig s, 7) the func-
tion

El (yv 7T) = e—y/? (w(eyv ﬂ-) - 6(6y7 ﬂ-))
has a limiting distribution.

Note that Wintner’s theoreni_(1.1) is a special case of thevalgorollary. In addition, for a
modular newforny of weightk and levelV, we conclude, under the assumption of the generalized
Riemann hypothesis, that¥/2i(e?, f) has a limiting distribution.

We now introduce several other functions that possesstigtistributions. These functions are
related to certain negative moments of the derivative of.danction evaluated at its zeros. The
first case to consider is the Riemann zeta function. Ganekdd@ Hejhal [17] studied_,(T") =
> o<<r I¢'(p)| 72 and Gonek conjectured that

JA(T) ~ 21

3
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Assuming the Riemann hypothesis and all zerag ef are simple, Milinovich and Nd [26] proved
that.J_,(T) > (525 — )T for everye > 0 andT sufficiently large. In our work, we make the
weaker assumption

J_1(T) < T with1 < 0 < 3 — /3. (1.15)

Currently, assuming the Riemann hypothesis and the siityptitzeros of((s), no upper bounds
are known forJ_, (7). However, the weak Mertens conjecture, the assumption that

/X (Mix)>2dx < log X,
1

implies|¢’(p)| ™' < |p| and thus/_{(T) < T3 (seel[37, p. 377, eq. (14.29.4))).
We also require a version df (1]15) for DirichletfunctionsL(s, x). We assume there exists a
positivef such that

YD (x| <, T wherel < 6 < 3— /3, (1.16)
X modq 0<|S(py)|<T
L(px,x)=0

It seems plausible that such a bound holds and it is natucalif@cture there is a positive constant

C, such that
> Z L (o )72 ~ G T

x modq 0<|S(py ) |<T
L(px; x) 0

In fact, we can prove that this sum is greater than a positwestant timed’, assuming that all
zeros ofL(s, x) are simple and lie on the critical line. Finally, observettffall) implies that all
zeros of((s) are simple and_(1.16) implies that all nonreal zeros oftfie x) are simple. We
make use of these facts in our applications.

We shall introduce several other summatory functions.dFer[0, 1] andz > 0, we set

M (z) = “757;).

Over the years, there has been significant interest in thestidns. For instance, Landau showed
in his Ph.D. thesis that/, (z) converges to 0. In 1897 Mertens conjectured thigf{z) = M (x)
is bounded in absolute value kyz. This conjecture implies the Riemann hypothesis. Many
researchers studied the size df(z). Finally, in 1985, Odlyzko and te Rielé [33] showed that
Mertens’ conjecture is false. On the Riemann hypothesis, known thatM (z) < zz*¢ for
anye > 0. Hence, by partial summation, it follows thaf, (z) converges t@(a)~* for a > 1.
Consequently, we observe that the behaviouv/gf =) changes atr = 1/2 and thus define

. V(=124 N (eY) if 0<a<1/2
2 (y, V(12 (M, (ev) — @) if 1/2<a<l

We now consider weighted sums of the Liouville function. Theuville function is given by
A(n) = (=1)%" whereQ)(n) is the total number of prime factors of We set

(1.17)

n<x

Polya and Turan studieb,(z) = L(z) andL,(z), respectively. Early numerical calculations sug-

gested that the inequalitiés (x) < 0 andL;(z) > 0 hold for allz > 2. In 1958, Haselgrove [15]
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showed that ((z) and L, (z) change sign infinitely often. Tanaka [36] showed that the Viatue

of n for which Ly(n) > 0 is 906,105,257. Borwein, Ferguson, and Mossinghoff [4gdatned
that the smallest value ef for which L, (n) < 0is 72,185,376,951,205. It would be interesting to
know how oftenL,, (z) is positive or negative. In order to study such questions efmd the error
terms

V(=124 [, (eY) if 0<a<1/2
Es(y,a) = eV 1) (Lo (e¥) — 24(?14/2)) it a=1/2, (1.18)
V) (Lo (ev) — L2y i 1/2<a <1

In [32] it was mentioned thak;(y, 0) possesses a limiting distribution under the same hyposhese
for which e=¥/2 M (e¢¥) possesses a limiting distribution. Recently, Humphii€d Etudied these
functions in the ranger € [0,1/2) and showed that, for these the Riemann hypothesis and
J_1(T) < T imply that E5(y, o) possesses a limiting distribution.

Our next example concerns the Mobius function in arithmptiogressions. Fay > 2 and
(a,q) =1, let

M(zsga)= > uln)

n<x
n=a (mod q)

This is a variant ofV/ (z) with the extra conditiom = a (mod ¢) inserted. Sums liké/(z; q, a)
reflect the behaviour of primes in arithmetic progressidnsfact, many theorems which can be

established for .
Aln) — ——
2 ) ?(q)

n<x
n=a (mod q)

have corresponding analogues fdi(z; ¢, a). For a fixed integey > 2, we define
Ey(y;q,a) = e V2 M(e%; g, a). (1.19)

The next corollary establishes the existence of limitingtrithutions forEs(y, o), Es(y, ), and
Ey(y:q, a).

Corollary 1.6. Leta € [0,1], ¢ > 2, and(a, ¢) = 1.

(i) If RH is true and(L.15)holds, thenk,(y, o) possesses a limiting distribution.

(i) If RH is true and(X.15)holds, thenFs(y, «) possesses a limiting distribution.

(iii) If the generalized Riemann hypothesis is true for ali€hlet L-functions modulg and (1.16)
holds, then¥,(y; ¢, a) possesses a limiting distribution.

Part (i) improves and generalizes the main result_of [32]milarly, part (ii) improves and
generalizes the limiting distribution result of [19]. InZBand [19] the bound/_;(T") <« T'is
employed, whereas we use the weaker bolnd{1.15). It itiplesiat parts (i) and (ii) may be
extended to hold for alk € R. In addition, assuming the same conditions as in part (i§,can
show that fory > 2 and(a, q) = 1 thate™¥/2L(e¥; ¢, a) possesses a limiting distribution where

L(x;q,a) = Z A(n).

m<x
n=a (mod q)

Our final example of error terms which possess limiting distions is related to number fields.

Let K /k be a normal extension of number fields with Galois gréug: Gal(K/k). Denote byO;,
7



andQOg the corresponding rings of integersfodnd /. We define several counting functions. Let

m(x) = Z 1

Np<lz
whereNp denotes the norm of the prime idgat- O, and for a conjugacy class of G

o(x) = Z 1

Np<zx
op=C
whereg, is the Frobenius conjugacy class associatgd to
Associated to- distinct conjugacy classés,, . .., C, in GG, we define
- G G
Bu() = e (170, (€)= mu(e), . [ €)= ma(e) ).
(&Y Gy
In order to stud;&(y), we require information regarding the zeros of Ardiffunctions associated
to the extensior/k. Let p be a representation of in GL,,(C) with charactery = tr(p). The
principal charactery, is the character attached to the trivial representatipr= 1. For each
charactery of G, we associate the Artith-function L(s, x, K/k). Itis known thatL(s, x, K/k)
is a meromorphic function on the complex plane. Moreovesrdhs the following fundamental
conjecture.

Conjecture 1.7(Artin’s Holomorphy Conjecture)lf x is non-trivial thenL(s, x, K/k) is entire.

Also it is conjectured that an analogue of the Riemann hygsithholds for ArtinL-functions.

For further information regarding Artih-functions se€ [5, pp. 218-225] .

In his Ph.D. thesi< [31], the second author showed &) possesses a limiting distribution.
This can be deduced as a corollary of Theorerm 1.4.

Corollary 1.8. Under the assumptions of the generalized Riemann hypsthasi Artin’s holo-
morphy conjecture fot.(s, x, K/k), wherex ranges through the irreducible characters Gf
Es(y) possesses a limiting distribution.

This result contains as special cases the factthdt (1.2{laBxpossess limiting distributions.

The above corollaries are just a few applications of Thesig@@d and_1}4 and there are other
interesting examples. For instance, Fiorilli[10] apploes theorems in his work on highly biased
prime number races and also in his wark/[11] on prime numhsgassociated to elliptic curves.

Our next theorem states that under an additional assumptiadhe exponent sét\,,),.cn the
Fourier transform of the limiting distribution of Theoréndican be explicitly calculated. In order
to explain our result we require some notation.

For1l < k < ¢, let the component functiog, (x) of (1.13) be defined by

or(T) = e + 9‘%( Z Tk,ne”‘k»”y> + &y, X),

)‘k,nSX

wherec;, € R, (Arn)nen C RT is an increasing sequende;. ,)n.en C C, and&(y, X) satisfies
(1.7). Note that the collection @f\; ,,)nen for 1 < k < £is a multiset. We now consider the set
Uf_, w2, { ..} and reorder its elements to construct the increasing seguap ),.cn. Also, we
define .
() = { Thm 1T A = Mo for somen € N,
m 0 otherwise
8



With this notation in hand, we now provide a formula for theuRer transform of the limiting
distribution of o (y).

—

Theorem 1.9. Assume that is the limiting distribution associated 9(y) as given in Theorem
[1.4. Suppose that the sgX,, }..<n is linearly independent ove. Then the Fourier transform

—

N iS¢ s
fi(€) = / e EmStdu(h, . t)
R

of atE: (&1,...,&) € R exists and is equal to

—

(&) = exp (— i) x [ Jo(|rmamem)l)
m=1
whereJy(z) is the Bessel function

1
JO (Z) _ / 6—2'2 cos(2mt) dt.
0

The above theorem is a useful tool in studying arithmetidiagfpons of our limiting distribution
theorems. We now discuss an application. &o¢ 2 andaq, ..., a,, r distinct reduced residue
classes mod, consider the set

Sq;a1 ..... ar = {x >0 | M(x§Q>a1) > M(x§€1>a2) > > M(xS Q7a'r)}~

In analogy to the Shanks-Rényi prime number race, we askh&hehis set contains infinitely
many natural numbers and if it possesses a density. In tioigtgin it is convenient to consider
logarithmic density.

Definition 1.10. For P C [0, c0), set

_ 1 dt
d(P) = limsup —
X—oo 10g X tePr[2,x] t

and

dt
8(P) = lim inf 7
X —o00 log X te PN[2,X] ¢

If §(P) = §(P) = §(P), we say that théogarithmic densityof P is §(P).

In order to studyS,.,, ......,,» We consider

.....

Eg(y) = eV (M(e¥;q,a1), ..., M(e"; . a,)).

Theoren LK implie€; () has a limiting distribution,.,, ..., assuming the generalized Riemann
hypothesis for Dirichlet_-functions modulay and [1.16). If it were known that,,,, ., is an
absolutely continuous measure, then it would follow that

5<Sq;a1 ..... ar> = M({Jf eR" | X1 > Tg >0 > .TT}> (120)

In order to show tha,.,, ., is absolutely continuous, we require further informationtbe
imaginary parts of zeros of Dirichlét-functions. We now recall a folklore conjecture concerning

the diophantine nature of the imaginary parts.
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Conjecture 1.11(Linear Independence Conjectur@ihe multiset of the nonnegative imaginary
parts of the nontrivial zeros of Dirichlet-functions corresponding to primitive characters is lin-
early independent over the rationals.

With this conjecture in hand, it follows from Formula (4.28)d Theorerh 119 that

2| >0 x(ay)é;
fgar, o (G106 =[] HJO( PHERI )5‘) (1.21)

2(Q)] ok L (pys X))

x mod g x>0

Following the arguments in [8, Lemma 2.1] and[[19, Lemma 6vé]can deduce froni (1.21)
thatiq..,...., POSSESSES a density function and is absolutely continuiduss on the generalized
Riemann hypothesis, Conjectire 1.11, dnd (1.16) it follows (1.20) that)(S,.., . .,.) €Xists.

.....

proof of Proposition 3.1 of [34] yields the following.

Proposition 1.12. Assume the generalized Riemann hypothd&id6) and the linear indepen-
dence conjecture. Then the density functiopf, .. iS symmetric inty, ..., ¢,) if and only if
eitherr = 2 or r = 3 and there isp # 1 such thatp® = 1, ay = a,p, andas = a,p? (Modulog).

-----

lary.

Corollary 1.13. Assume the conditions of Proposition 1.12. If eithet 2 or » = 3 and there is
p # 1suchthatp® = 1, ay = a,p, andas = a;p* (modulog), then

1
§({x > 0| M(z;q,a1) > M(x;q,a3) > -+~ > M(x;q,a,)}) = L
In particular, ifa; anda, are distinct residues modu4o

6({z > 0] M(z;q,a1) > M(x;q,a9)}) = 6({z > 0| M(x;q,a2) > M(w;9,a1)}) = %

This shows that the race between the summatory functionseoMidbius function on two arith-
metic progressions is unbiased.

Our general limiting distribution theorems can be used wppsing and studying many new
arithmetic problems. For example, let

Erly) = (ye " (m(e¥) — Li(e?)), V2 M(e")).

Then Corollarie§ 118 arid1.6(i) B
imply that if the Riemann hypothesis aind (1.15) hold, tii&fy) possesses a limiting distribu-
tion. If in addition, the linear independence conjectunetfie zeros of (s) is true, then

{x >0 log @ (7(z) — Li(z)) > M(z) }

Vi v

possesses a logarithmic density. It would be interestirdgtermine the value of this logarithmic
density. However, this requires further analysis of thestautted distribution.

As mentioned before, our strategy in the proof of our gereraling distribution theorem will
be to prove that(y) is a B2-almost periodic function. Since Besicovitch [1, Sectidrpgved

that B2-almost periodic functions satisfy a Parseval type idgntie deduce the following result.
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Theorem 1.14.Suppose that the functief{y) of (1.6) satisfies the conditions of Theorém]1.2 or
Corollary[1.3. Then we have

. 1 Y 2 2 1 C 2
Jim / oy =13l (1.22)

In fact, it is possible to show following an argument of FilbfiLO] Lemmas 2.4, 2.5] that

1 Y
Jim /0 o(y)*dy = /R t2dp(t)

wherey is the limiting distribution associated to A similar argument would also establish that

1 Y
Jim < / 6(y)dy = / tdpu(t) = c.

As a corollary, we deduce Cramer’s result [6] and its anadésdor the error term of an auto-
morphic L-function,e™¥/2M (e¥), ande /2 L(eY).

Corollary 1.15. (i) Let L(s, w) be an automorphié-function. If the generalized Riemann hypoth-
esis is true forL(s, ), then

LY (e, ) = 6(e, )\ 2 2m7
gy [ (M dy=4Cdmpllem)+ 3 T
L(1/2+ivy,m)=0
wherem., denotes the multiplicity of the zetg2 + i~.
(ii) If the Riemann hypothesis is true aflI5)holds, then

1Y M(ey))2 B 2
YIEE‘OY/O </ W=D o

v>0
C(3+i7)=0

(iii) If the Riemann hypothesis is true aff 15)holds, then

e L<ey>)2 1 )c<2p>
ylgréoy/o (ey/2 YTt ; o)
¢(3+i7)=0

2

Note that Theorem 1.15 (ii) improves Theorem 3 of [32] wheredtronger conditior_;(7T") <
T is assumed.

The rest of this article is organized as follows. In Section€2review the background oRP-
almost periodic functions and show that almost periodicfioms possess limiting distributions. In
Section 3, we prove Theordm 1.2 and Corollary 1.3. In Sectiame deduce Corollariés 1[5, 11.6,
and 1.8. In Section 5, we prove Theorem| 1.9. Finally, we noargbme notation used throughout
this article. We writef(z) = O(g(z)) or f(z) < g(z) to mean there existd/ > 0 such that

|f(x)| < M|g(x)| for all sufficiently larger.
11



2. BP-ALMOST PERIODIC FUNCTIONS AND LIMITING DISTRIBUTIONS

The main goal in this section is to provide the necessarydracikd onB?-almost periodic func-
tions needed in the proof of Theorém]|1.4. It has been knowgedime 1930’s that ang?-almost
periodic functiongbﬂ possess limiting distributions. Such a result is mentioinef21, Theorems
25 and 27] and proven in [39, Theorem 8.3]. However, the aativere unable to find a refereed
publication from the 1930’s which proves this result. Thdiest journal publication we are aware
of is [3], though it only proves the result fér= 1. In order to keep our article self-contained, we
provide a proof in the general case of a vector-valued foncti

We review some facts from the theory of almost periodic fioms. LetZ! ([0, 00)) be the set

loc

of locally p-integrable functions of), c0). Forp > 1 and¢ € L? (]0,00)), define

loc

ol = (s & [ ot)Pan)’

Denote by.7 the class of all real-valued trigonometric polynomials

N
Pu(y) =3 re™  (y e R),

n=1

wherer, € C and)\, € R. The BP-closureof ., denoted z» (.¥), is the set of functions € #
that satisfy the following property:
For anye > 0 there is a functiory.(y) € . such that

lo(y) — fe()llBr < e.

Definition 2.1. Any ¢ € U,>1Hg:(.7) is called aralmost periodic functionlf ¢ € Hg.(.7) we
say thatp is a BP-almost periodic function
For¢ € Hyr(7) and givere > 0 there exists

N(e)
Prio(y) =D ra(e)e @V (2.1)

n=1
in .7 such that
|é(y) — Py ()|lBr < €.

It is an important fact of the theory of almost periodic fuinos that in [2.01) \,,(¢) can be taken
only from a setA\(¢) = {\, | n € N} and the corresponding values fgrare given by

1 v —i\
T'n = Ylgr;o ? o ¢(y)6 nydy
(seell3)).
Definition 2.2. A vector-valued function) : [0,00) — R, ¢ = (¢4, ...,¢,), is calledalmost

periodic if there is ap > 1 such that each component functigp (1 < k& < /) belongs to
Hp» (7). Moreoverg is called BP-almost periodidf each¢y, (1 < k < /) is BP-almost periodic.

LIn this sectiony denotes a Lebesgue integrable function.
12



It is known thatH g, (7)) C Hp(7) if 1 < g < p (seel3, p. 476]). So a vector-valued function
is almost periodic if and only if each of its component fuoos is almost periodic.

The following lemma states a version of Kronecker-Weyl degiribution theorem.

Lemma 2.3. Letty, ..., ty be arbitrary real numbers. Suppose thats the topological closure of
{y(t,...,tn) | y € R} /Z" in the torusT". Letg : R — R be a continuous function of period
1 in each of its variables. Then we have

.1
lim ?/ g(ytl,---,ytzv)dyz/g(a)dw
0 A

Y —oo

wherew is the normalized Haar measure oh

Proof. This may be deduced from the Kronecker-Weyl theorem (s€epi.81-16]), and is also a
special case of Ratner’s theorem on unipotent flows (se¢.[30] O

Next we prove that every vector-valued function whose camepts are real-valued trigonometric
polynomials has a limiting distribution.

Proposition 2.4. For 1 < k < ¢, let (\,,))*, be a real sequence and;_,).*, be a complex

sequence. Set
Ng

Puy) =Y 1™ (y €R).

n=1

If P.(y) € R forall y € R, then

ﬁ(y) = (Pl(y>7 . -;Pz(y))
has a limiting distribution.

Proof. We consider the sett_, UY:, {)\.,} and write its elements in increasing order as the
sequencé),,)¥_,. Forl < k </, we set

Tk()\m): Z Tk:,rr

1<n<N,
)‘k,n:Am

Let f : R® — R be a bounded continuous function. Suppose #atT" — Rfandg : TV — R
are defined by

N N

X(61,....0n) = < > (A0 Y rg()\m)e%i@m)

m=1 m=1

andg(0y,...,0x) = f(X(61,...,0y)). By applying Lemma2I3 with; = 3L,... ¢ty = 3¥, we
have

1 /Y
lim — vy ) g ——/ d
J Y/o g(%e,... L2 dy Ag(a) w,

where A is the closure of y(3L,...,3%) | y € R}/ZY in TV andw is the normalized Haar

measure onl. Define a probability measugey onR* by yn(B) = w(X~(B) N A), whereB is
any Borel set irR‘. By the change of variable formula [2, Theorem 16.12],

/ glaydw = | fduy (2.2)
A R

13



and thus

1Yo
Jim /O F(Ply)dy = /R fu,

for all bounded continuous real-valued functighenR*. Therefore,ﬁ(y) has a limiting distribu-
tion. O

Our next goal is to show that every almost periodic functiosgesses a limiting distribution.
This requires several concepts from probability.

Definition 2.5. Let (i, ).en be a sequence of finite measures on a measurable shadée say
that,, converges weaklipo 1. if for every bounded real-valued continuous functijowe have

/X Fn — /X Fd (2.3)

In fact, it is well known that[(2]3) only needs to be verified Edpschitz functions.

asn — oQ.

Lemma 2.6(Portmanteau)u,, converges weakly to if and only if

/X Fpn — /X fdp

for any bounded Lipschitz functighon X .
Proof. See|[27, Theorem 3.5]. O
Next we define the tightness of a sequence of probability oreas

Definition 2.7. A sequencé., )<y of probability measures oR’ is tight if for any ¢ > 0 there
is A. > 0 such thathZAE du, < ¢, foralln € N.

The following lemma illustrates the importance of a tighqsence of measures.

Lemma 2.8 (Helly’s Selection Theorem)Let (1, ).y be a sequence of probability measures on
R’. Then(u,)qen is tight if and only if for every subsequenge, ,);cn there is a further subse-
quence(unjk )rken @nd a probability measure such thayu,, converges weakly to.

Proof. Seel[2, Theorems 25.8 and 25.10]. O
We are ready to prove the main result of this section.
Theorem 2.9. Every almost periodic function possesses a limiting distion.

Proof. Consider an almost periodic functian: [0, co) — R’. ForY > 1, let
1 -
vy (B) = —-meas([0,Y] 1 (6)7(B))

for any Borel sef3 in R, wheremeas(-) is the Lebesgue measure Bn
Note that, by Definition 215¢(y) has a limiting distribution if and only if there exists a prob
ability measure: such that the sequen¢ey )y <y converges weakly tp. By Lemma 2.6 this is
equivalent to
dey — fdu,

R?



asY — oo, for any bounded Lipschitz functiofi: R — R.
Now leté(y) = (61(y), - .. de(y)) such thai,(y) belongs toH 51 (7) for 1 < k < ¢. (Recall
thatHp» (7)) C Hpi (7) for anyp > 1.) Then for each componen (y) and forM € N, there

existsN, (M) € N and sequences;, ,)™*, and(\,) %, such that
Ny(M)

: 1
I - ‘ | dy < = 2.4
im sup 7 / or(y Z;mﬁ y< 57 (2.4)
By Proposition 2.4,
N1 (M) No(M)
PJ\/[ (y) = ( Z Tl,neiy)\lmu tety Z Tﬁ,neiy)\[’n) (25)
n=1 n=1
has a limiting distributionu,,, i.e.
Y A
lim — F(Pu()dy = | fla)dpn(z) = par(f),
Y—>oo Y 0 Rl

for all bounded continuous functiorfs: R* — R. From now on for a probability measureon R
and a functiory, we shall make use of the notation

o) = [ gta)dv(o)

Let f : R* — R be a bounded Lipschitz function which satisfies

(@) = f(y)] < crlz —yl

for all z,y € R® wherec; is the Lipschitz constant. Then we have

—/ dy<§ 7 (Puly) dy+—/ — Puly)|ay (2.6)

cr [V - -
5 [ s@wa= ¢ [ Py [ 160 - Puwlay 27)

foranyY > 0 andM € N. Moreover,

and

1 Yy Ny (M) ‘
?/ |6(y) — Par(y)|dy < Z / ’Cbk = ) et
0 n=1

If we apply the latter inequality in(2.6) an[I(]Z.?) and téke sup andlim inf asY — oo, respec-
tively, by employing[(2.4) we obtain

R T R . IR
MM(f)—ﬁcf/MSIgnlnf—/ f( (y))dyﬁhmsup—/ F(o(y)dy < pa(f) + Leg /M.
—oo Y Jo Yoo Y Jo
) (2.8)
These inequalities imply that(f) := limy_ 5 fOY f(o(y))dy exists. Moreover[(2]8) implies
that

dy.

Jim v (f) = T juas(f) = L() (2.9)

exists for every bounded Lipschitz functign R¢ — R.
15



We next show thatvy )y ey is tight, i.e. for anye > 0, there isA. > 0 such that

/ dl/y <e€
Ix|>Ae

forall Y € N. Lete > 0 be given. We choose a natural numBérsuch that /M < . By (2.4)

and [2.5), there exists a vector functiém[(y) with trigonometric polynomials as its components
such that

[6(y) — Pu(y)| < £/M <, (2.10)
where|.| denote the Euclidean norm Y. Let

A.= sup |Py(y)|+1.

y€[0,00]

Now by employing[(2.10) we have

1 - 1 Y - -
/ dvy = Smeas{0 < y < Y, |6(y)] > A} < & / 18(y) — Pur(y)ldy < =.
Ix|> A Y Y Jo

Hence(vy)yen is tight, as we stated. Thus, by Lemimal2.8, there is a subsequ®y, ) cn Of
(vy)yen and a probability measugeon R such that

L(f) = lim w3, (F) = ()
This together with[(2]9) shows that

Jim vy (F) = Tim g (f) = n(f), (2.12)
for every bounded Lipschitz functiofi: R® — R and the proof is complete. O

3. PROOF OF THE MAIN THEOREM

The goal in this section is to prove Theoreml|1.4. By Thedre®h &e know thaf(g(y) has a
limiting distribution if ¢(y) is a B2-almost periodic function. Since(y) is a B2-almost periodic
function if and only if each of its component functiong(y) is B2-almost periodic, Theorem1.4
will follow as a consequence of Theoréml1.2.

The proof of Theorern_112 under conditions given in (a) usegraria of Gallagher. The proof
under the assumptions given in (b) follows an argument firgpleyed by Cramér |6] and later
used by Ng[[32].

For a proof of the following lemma see |12, Lemma 1].

Lemma 3.1(Gallagher) Let (v, ),.en be an arbitrary sequence of real numbers dngl),,.n C C.
Assume thaf (z) = > 7 | c,e*™* is absolutely convergent. Then, fgr> 0,

U
/| 2)[2dr < — / 3 cn‘dt

U t<vn <t+1/U

Proof of Theoreh 1l2Let X > T > 1 andV > 0. Assume either of the conditions of Theorem
[1.2. We shall begin by showing that there exist 0 andn > 0 such that

/V+1 Z r zy)\n (log T)

1n
T<An<X

“ay < (3.1)

16



First assume that Condition (a) in Theorem 1.2 holds. Then

V+1 B V+1 '
/ ’ Z rne’y)‘" dy < 2w / Z rneQ’”y)‘"
1%

T<An<X —(V+D) " ron,<x

2
dy.

Lemmd3.1 implies

V+1 ] 2 1 [e%) ] 2
/ ‘ Z ,,,,n627rzy)\n dy < 5 / ‘ Z ,,,,n627rzt>\n dt
—(V+1) T ey, <x V412 ) T<An<X

t<An <t+ ﬁ

/ 3 \rn|) dt.

- T<Ap<X
t<Ap <t+1

In the last integral; satisfiesl’ — 1 < ¢ < X. From [1.8) and3 > 1/2, we have

X 1 2 1 2
/ Z |7‘n|) dt</ ( Z |rn\>2dt < /T_l(oig)”dt«(;gz%.

T<A<X L Y can<t+1
t<Ap<t+1

So (3.1) holds fop = 2y andn = 23 — 1.
Next assume that (b) holds. Note that, by dyadic summat{@®) ando > 3 imply

D fral < TP (log T,

An<T

Thus, by partial summation, we conclude that it o — g andv > 0, then

rnl(log \y,)? log T) v+t
3 Fallogh)t  logTye 52
A>T n

Since|z|? = 2z, we have

V+1
/ § rne zy)\n

T<An<X

- Y nm / vOn=Am) gy

T<An<X T<Amn<X
1
T<An<X T<Am<X

whereX; is the sum of those terms for which we hawg — \,,,| < 1, andX;, is the sum of the rest
of the terms. FoE, by employing[(1.P) and (3.2) we have

ra|(log A\,,)? log T)27+1
DS Y Y, |7“m|<<Z| KA% [l Qs (3)

T26—a
T<An<X An—1<Am <Ap+1 A>T n

Note that the last inequality is justified sin€e (1.10) ireplthat? > « — . To study>l,, we define
foranyT > 1
. ‘Tm‘
srl) = AZ )
m>T
[U—Am|>1

17



whereU > T. Then we can write

B Yl Y e 3 nlsiow

T<An<X T<Am<X T<An<X
[An—Am[>1

We determine an upper bound 8¢ (U) as follows. Let) < ¢ < 1 andT" > 1 be fixed. For any
numberU > T consider the set of numbels, U — U¢, andU — 1. Either of the following cases
occurs

T<v U<T<U-U° U-U<T<U-1, or U-1<T<U.
Suppose that the first case happens,i.ec U¢. Then

o (F T X L w o w ey

T<dAn<Ue  Ut<Ap<U-U¢ U-U<An<U—-1 U+H1SAn,<U+UC  U4U<An<2U  Ap>2U0

Denote these six sums by, . .., 0. Then, by applying (119), we deduce

1 (Uc=T)*(logU)”  (logU)Y
UlSU—UC Z Irm| < <

_JJc l—ca ’
e (U—-UT" U
1 1 (U—=209*log(U—-U®)" _ (logU)”
oy < TTe Z |Tm| < ﬁ (UC)B < Uctep—a’

Uc<im<U-U*°

(U)*(logU)” _ (logU)?
o3 < > 7m| < U < i

U-Uc<An<U-1

(U)*(logU)" _ (logU)?
o4 < Z |Tm| < UB < UB—ca ’

U+1<An <U+U*

and

1 1 U%(logU)"  (logU)”
o5 < ﬁ Z |Tm| <K ﬁ /8 < [JetB—a

U+Uc<im<2U

For o4, we divide the interval of summation into subinterval$U, 251U] to get

[e.e]

1 =k (logU)" _ (logU)?
76 < 27(%_ i Yol < <Z Qk(6+1—a)> e < gae

k=1 28U <A\ <2k LU k=1

which is justified sincex < 5 + 1 by (1.10). We observe thaty < 05 < 09, 04 < 03, and
01 < o3 since < 1. Thus we have

(logU)Y  (logU)Y

Uc-i—cﬁ—oz UB—coz :

ST(U) < g2 -+ 03 <

In the last inequality we choose= —2t5_ and hence if” < U¢, then

at+p+1
(log U)"
vs

Sr(U) <
18




where
B 62 _ Oé2 + 5
&= a+p+1"
By similar arguments, we find the same bounddetU) in the three other cases 6f (3). Condition
a® +a/2 < 32 + Byields¢ > a — 3. Hencel(3.2) implies

1 T 2y+1
So < Y [ralSr(he) < %, (3.4)
A>T
where
_2(B?-a*) +(28-aq)
f-ath= a+pB+1 '
By (3.3) and[(3.14), we have
(log T)2fy+1
21 -+ 22 < W7

sincea, 8 > 0 impliesthatt —a+ 3 < 28 —a. Thus[3.1) holds fo§ = 2v+1andn = £ —a+ 8.
Now we show that(3]1) together with (1L.7) imply théty) is a B2-almost periodic function. It
follows from (1.8) that forY > T > X, andy > yq,

¢(y)—c—§R<Zrnei’\”y>:§R< Z Tn Z’\”y)+5(y, ).

A <T T<An<eY

Then, by employing (311) and (1.7), we obtain

limsup%/y ‘¢(y) —c— §R( Z rne”‘”y) ?
Yo

Y —oo An<T

< ki 1 /Y Z YA 2
1m sup — Tpe """
Y —oo Y Yo "

T<Apn<eY
Y ~vo]

1 yo+i+1
< limsup — /

dy

Y —oo

1 Y
dy + lim —/ |5(y,ey)|2dy
Y Yo

(log T)°
n

2
E r,en

0+j T<An<e¥

dy <

This inequality together with

. 1 Yo
JEE;?/O

imply that(y) is B2-almost periodic. Hence, the theorem follows from Theore@h 2 O

)—c— (Z T e’)‘"y)

A <T

dy =0

We next prove Corollary 113.
Proof of Corollary(1.3.(a) Sincer,, < A" then [1.I1) imply that

T8
T<An<T+1
19



Now Theoreni 1]2(a) implies the result.
(b) By partial summation, using (1.112) afick 2, we have

= a B
S Il =2 [T (X M)+ Jim (5 ) =57 5 AinP)
An>S An <t

An<X An<S
< / t973dt 4+ 5972 < 5072,
S
By employing this bound[(1.11), and Cauchy’s inequalityha&e
T — 5)z(logT)2
Y Iml< ( )1_(90g )E
S<A<T STz

Now we chooser = 1/2, 8 = 1—6/2, andy = 1/2, and employ Theoremn 1.2.1f< § < 3—+/3
the conditions given in (b) in Theorem 1.2 are satisfied. Nlo#e this also implies the result for
0 <6 <1sinceinthiscasd , _, \2|r|> < T <T. O

4. APPLICATIONS OF THEMAIN THEOREM
In this section, by applying Theorém 1.4, we prove Coradisl.5[ 1.6, and 1.8.

3.1. Proof of Corollary [L.B.

Error term of the prime number theorem for automorphic L-functions. Letr be anirreducible
unitary cuspidal automorphic representationGdf,;(Ag) and letL(s, ) be the automorphic-
function attached ta. We follow the notation in the introduction. For> 0 let

C(0) =C\{z € C||z+px(j) +2k| <0, 1 <j < d, k = 0}.
We need the following lemma.

Lemma 4.1. (i) Leto < —1/2 then foralls = o + it € C(9),
L'(s,m)
L(s,m)
(i) For any integerm > 2, there isT,, withm < T,, < m + 1 such that
L'(oc+iT,,, )
L(oc £iT,,, )

< log |s].

< log2 T,

uniformly for—2 < o < 2.
(iii) For T > 2, the numbeN (T, 7) of the zeros ol.(s, ) in the regiond < R(s) < 1,
satisfies

S(s)| =T

N(T+1,7)— N(T,7) < logT
and
N(T,m) < TlogT.
(iv) There is a constarit < # < 1/2 such that for alll < j <d,
| (p, )| < p” and | R(u(5))] < 6. (4.1)
Proof. For (i) seel[29, p. 177] fo&zL, automorphicL-functions. The general case is similar. See
[24, Lemma 4.3(a)(d)] for (ii) and (iii). For (iv) see [35, 275]. Note that in (ii), and (iii) the

implied constants depend an and in (i) the implied constant dependsdoandr. O
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We now establish an explicit formula for(x, 7).
Proposition 4.2. Letd be the constant given i@.1). For all z > 1 and7T > 2 we have

2
0 xlog®T :clogT)

1 4.2
7 + 2% logx + AT + T ) (4.2)

P 0+1 2
dom) ~Sem) =R Y T o RE

sp<r P

wherep runs over the nontrivial zeros df(s, 7) with |3(p)| < 7', and

/
_LO,m) if L(0,7) # 0,
R = L(O>7T) I (0 )
™ "0,m) . B
— logx — m |f L(O,’TF) = O

The implied constant ifd.2) depends or in Lemmd 4.1l and.

Proof. Recall that forfR(s) > 1, we have

n

L'(s,7) s A(n)ax(n)
L(s,7) HZ:; s

From (1.14) and Lemnia4.1(iv) we conclude thgt(n)| < dn’. Letc = 1 + 1/logz, andT;, be
as in Lemma4l1(ii). By Perron’s formula[37, p. 70, Lemmad3 e obtain

1 fetim L'(s,m)\ x° 291 log® ©
— _ 2\ 2y SR EpLY | . 4.3
vl m) 271 /c_iTm < L(s,m) ) s 7 + O< T +alog x) (4.3)

LetU < —1/2 andé > 0 be such that/ + it € C(9) fort € [-T,,,T,,]. Consider the contour
which consists of the rectanglewith verticesc +iT,,,, ¢ —iT,,, U +iT,,, U —iT,,. By the residue
theorem, we have

1 c+iTp, ( L/(S ﬂ_>> s Tt P
_— ———2) —ds=6(zx,m)+ R, — Z - Z 9
27 J o, L(Saﬁ) S U<R(p)<6 H 0<R(p)<1
IS(w)|<T [S(p)|<T

1 U—iTm U+iTm c+iTm I/ S, s
+—(/ +/ +/ )Q—L—Q—w,wg
210\ Je—it,, U—iTm U+iTm L(s,m)/ s
where the first and the second sums run over the trivial anddhetrivial zeros ofL.(s, 7) inside

the rectangl€, respectively. If we follow the argument in [29, pp. 174-]l&8d employ Lemma
[4.1(i) and (ii), we get the following estimates for the intag on the right-hand side df (4.4). We

have
1 U_'iT7rL C+iTm L/ S 1 2 Tm
L[ [T (B 2y o T
21\ Je_it,, Ui, L(s,m)/ s T, logx

1 U+iTm

and

(_ L’(s,w)) x—sds TzY log |U + T,
L(s,m)/ s 19 '
21

271 U—iT,,



Now we letU — —oo through admissible values and note tti8f,2" log |U + iT},|)/|U| — 0.
Moreover, Lemma4]1(iv) implies

zt 0 2 0
E — <Lz |1+ g Lz’
1 — 2k
—oco<R(pn)<6O 1<]<d
[S(WILT k>0

Inserting the above estimates [n (4.4) together with] (4sBtdishes[(4]2) in the cage = T,,..
Now note that if we changé,, by an arbitraryl" € [m, m + 1], then we have the same estimate as
in (4.2), since by Lemmi@a4.1(iii), we have

> i > x—p<<xl(;§T.

o<t P o<k P
Tm<[|S(p)|I<T T<IS(P)I<Tm

This completes the proof. O

We now show that, under the assumption of the generalizeddia hypothesis,
eV, m)—o(e¥,
By (y.m) = LT 0 T)

69/2
has a limiting distribution. By pairing the conjugate zepos 1/2+ iy andp = 1/2 — i~ in (4.2),
fory > 0 andX > 2, we get

—2eMY
Brlpm) = ~2ord ks, + R 3 T ) £ X),

0<y<X P

whereord,_, 2 L(s, 7) is equal to the multiplicity of the zero df(s, 7) ats = 1/2if L(1/2,7) =0
andord,—;,»L(s, 7) = 0 otherwise, and’;(y, X ) satisfies
2,y(1/2+0) ¥/2 1002 X ¥/2100 X
ye 9-1/2) , €108 e’ " log
E(y, X) = O T + yev@=1/2 :
(y, X) < = Tye + X +t—

Note that Condition[{1]7) foy, > 0 is satisfied for€,(ev, e¥). Settingr, = —2/p, and ), =
3(p,) Where the non-trivial zeros di(s, ) are labelled p,, ),.<n, we obtain from Lemmi 4l 1(iii)

4 2
Z M, |2 = Z > < Z 1< TlogT.
An<T O<-y<T| l 0<y<T

Hence, assuming the generalized Riemann hypothesis(forr), Corollary[1.3(b) implies that
E;(y, ) has a limiting distribution.

3.2. Proof of Corollary[1.8.

Before proceeding we require the following two lemmas. Tha& femma derives an explicit
formula for sums of the shape nn

—a
n<:v

Lemma 4.3. Let (a,),en be a bounded sequence. Assume there exist complex fungtjans
and G(w) such thaty~;*  a,n™ = G for R(w) > 1. Letz > 1,0 € [0,1], B € R, ¢ =
l—a+1/logz, b# a, andb<c+a

Assume the following three conditions hold:

() For any t > 0, within and on the boX3; with verticesc + a + it,b + it,b — it,c + a — it,
22



F(s) is either holomorphic or it has a simple pole of residlgeat sq € (b, ¢ + «), andG(s) is
holomorphic with simple zeros at, . . ., p, insideB, and each different from,. In the caseF'(s)
has a simple pole at = s, letd; be the value of'(s) — dy/(s — sg) at s = so.
(i) There exists) = §(b) € R — {0} such that
F(b+1it)
G(b+it)

(iii) There exists an increasing sequence of positive nusdg, ),.cn tending to infinity such that

F(o +iT,)
G(o £iT,,)

= O((It| +1)°).

= O(T,,),

uniformly onb < o < ¢+ a.
Then fora € [0,1] andx > 1,

J
N F(p)xri—e l—al cTﬁ—l
Za_:Ra,so(x)+ > (ps) ' +O<x 8T T im +:cb—a(T;;+1)+x—a>,

“—~ n® ‘= (p; — )G (p)) T log x
N ijBt
where
(0 if  a,s0¢& (b,c+ ),
F(a) :
Gl if  ae(bc+a), sy é((bc+a),
(6%
dol’so @ .
—_— f
R () = (SOd_ TETPN o i a & (byct+a), so€(bc+a), (4.5)
OxSO_O‘ (8% .
+ if a, sg € (b,c+ a), a# sg,
0108 T 1 0 (So :
+ — if a,s0 € (b,c+a), a=sg.
| GGo) T 000 T @) o€ el a=s
Proof. Applying Perron’s formula[37, p. 70, Lemma 3.19] with= 1 — o + 1/ log x gives
a, 1 [ P(s4 o) x® ' logx
w ) Geta) s O (=, +) (4.6)

n<x
If we replaces by s — « in the integral, we obtain

1 [ (s 4 )t 1 crotilm p(g) go—e

2mi e—ir,, G(s+a)s

B % cta—iTm, G(S) S— o
Cauchy’s residue theorem and (i) imply

1 cta+iTy, F(S) 5T«

270 Jorair,, G(s)s—a

J
ds = R s, () + Z

1 b_iTm b+iTm cta+iTm F s xs—oc
+_.(/ +/ +/ ) () s, @)
2mi cta—iTm b—iTpm b+iTom G(s)s —a
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whereR,, ,(z) equals the sum of the residuessat s, ands = «, and the sum appears from the
residues at the zeros 6f(s). Taking into account the various casesdoands,, a simple residue
calculation yields[(4]5). From assumptions (ii) and (iig wbtain

1 b+iTm, F(S) xS—O{

— Sal— bma(T® 41 4.
27t Jo_ir, G(s)s—ads<<x (T + 1), (4.8)

1 cta+ilm F(S) P’ chﬁ—l

o 2 4.
210 Jorir,,  G(s)s —a ° logz ’ (4.9)
and similarly
1 b—iTm F(S) 5 chﬁ—l
_— m_ 4.1
2700 Jepa—ir, G(5)s —a o< log x (4.10)
The result follows by combining (4.6}, (4.7), (#.8). (4.ahd [4.10). O

In the previous lemma, a convenient sequefiGg),.c Of reals is chosen so that(s)/G(s) is
not too large on the conto®(s) = 7,,,. Consequently, in the explicit formula for, __a,n™¢,
the sum ovep; is constrained by the conditid®(p;)| < 7,,. The next lemma allows us to replace
this condition by|3(p;)| < T foranyT" > 1.

Lemma 4.4. Let (z,),en € C and(M\,)nen € RT be sequences and letc;, andc, be positive
reals. LetT’, 7" € [1,00) such thai7 — 7"| < 1. Assume that fot > 1 we have

PE R (4.11)
An<t
and
> 1< (logt)®. (4.12)
t<Ap<t+1
Then 1 1
2z tiAn P Rl L c
Z ﬁ = Z ﬁ —|—0<1’2T( 1 2)/2(10gT) 2/2)‘
)\nST/ 2 n )\nST 2 n

Proof. We begin by assuming — 1 < 7" < T'. By the Cauchy-Schwarz inequality

o X 2\ 1/2 1/2 s
> F=d (2 ) (X 1) ey

T' <Ay <T 2 T' <A <T T' <A\ <T
(4.13)

by (4.11) and(4.12). In the cage< T" < T + 1, we obtain the same bound as(4.13). O

We now prove Corollary_116. In each part of this corollary, sf&ll apply Corollary 113(b) to
establish the existence of the limiting distribution.

Zn

1 ]
§+Z)\n

(i) Weighted Sums of the Mdbius Function. In this proof we assume the Riemann hypothesis and
assumption (1.15). We shall show that(y, o), defined in[(1.17), possesses a limiting distribution.
We start by establishing an explicit formula for

M,(x) = M
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We first consider the case # 0. Let0 < b < min(1/2,«) and0 < ¢ < 1/2 — b. Under the
assumption of the Riemann hypothesis, there exists a seqUER),,.cn, WhereT,, € [m — 1, m],
such that

(o +iT)| ! < T, (4.14)
uniformly for —1 < o < 2 (seel[37, pp. 357-358]). Moreover, for any- 0, we have
|C(b—|—it>|_l < |t|—1/2+b+a
for |t| > 1 (see[28, Corollary 10.5 and Theorems 13.18 and 13.23]). aRing F'(s) = 1,
G(s) = ((s),a, = p(n), B =¢,andé = —1/2 + b + ¢ in Lemmd4.B we derive

1 P r'=%log A b_a>
M, (1) = —— _ " 10 . (415
D=t L praem < T, ' Tilogr " (4.15)

"Y‘STm

wherep ranges over the non-trivial zeros ¢fs). Let7 > 1 andm > 1 be the natural number
such thatl” € [m — 1,m|. Label the non-trivial zeros of(s) with positive imaginary part in
non-decreasing order ky,, ),.cn. An application of Lemm&a4l4 with,, = S(p,), 2z, = '(pn) 71,
cqg=0,c0=1,6=1/2,T,andT’ = T,, implies that

P~ P
2 (p—a)'(p) 2 (0 —a)('(p)

Y<Tm Iv|<T

Substituting[(4.16) in(4.15), fax + 0, we have

+ Oz 27T =22 (log T)V/?). (4.16)

1 TP~
M= Ly
Cle) = (o= a)(p)
' %logx i ) 1/2
—i—O( - +T1—5logx+x ( ogT) """ +u ), (4.17)

valid forz > 1 andT > 1. If « = 0, we let0 < b < 1/2. Then similarly we have

i xrlogx x _ 1/2
My(z) = —+0< + + 22 (T2 1og T +g;b). 4.18
ol@) = 2, 2o T Trogs U | ) (418)

We now analyzd,(y, ) in the cases: € (0,1/2),a € (1/2,1], « =0, anda = 1/2.
For0 < « < 1/2, by (4.17), forX > 1 andy > 0, we have

1 ey(p—a)
Ey(y,a) = ——— + ey(=1/2+a) S
ev1/2=)((a) E:X (= a)C'(p)
0 (Lo S (00710 X) " )
Thus
2%
Ba(pv) = ( )+ Bl ),
M% (p=a)(p)) "
where




Note that in this case the tera¥®=%/2) in &, ,(y, X) comes from the termv©~/2 /¢(«) in
Es(y, «), since we choseé < a.

Forl < a < 1, we recall thatEy(y, o) = e?1/2) (M, (e¥) — 1/¢(a)). By (@&17) and by
pairing conjugate zeros, we obtain

2e7
sne) =w( 2 oeg) oo

0<y<X
for X > 1andy > 0, where
yey/? ey/?

5M7(X(y7X) = O ( X + yXl_e

Fora = 0, from (4.18) we have
2e7
EZ(yvo) :éR( Z ) +€u,0(y7X)7

o2y P (P)

g— 1/2 1

where€,, o(y, X) satisfies[(4.19).
Finally, fora = 1/2, (417) implies

1 27
B0 1/2) = g+ R X i) el )
’ 3 ZX (p—1/2)C(p)) =7
where&,, 1 »(y, X) is bounded ag (4.19).
Note that€, . (y, ¢¥) satisfies[[117) fog, > 0, for anya € [0, 1]. Settingr, = 2/(p, — a)'(p)
and\, = (p,), it follows from (1.15) that
2

4y
A2 |r)? = .
2 Nnl= 3 o aemr <7

An<T 0<~<T

Thus Corollary 1.B(b) implies that, under the assumptidiB@Riemann hypothesis fgKs) and
(1.15), E>(y, ) has a limiting distribution.

(i) Weighted Sums of the Liouville Function. In this part, we show thak;(y, «), defined by
(1.18), possesses a limiting distribution. We begin bytdisthaing an explicit formula for,, (z) =
> e AMn)n~*. Assume the Riemann hypothesis {gs) and [1.15). Forv € (0,1] andz > 1,

let
al/2e ¢(2a) .
+ if o 1 27
Ro () = { (1-20)¢(1/2) " ((a) #1/

ZC(%/Z) + C(z(}2) T 20(1/2)2 if o= 1/2’
wherey, is Euler’'s constant. Let < € < b < min(1/4, «). Then we have
2(b+ it
| <l
C(b+1t)
forall |¢| > 1, and
’M’ < T;L/2—2b+5
C(o+1iT)

uniformly forb < o < ¢+ « (see[28, Corollary 10.5 and Theorems 13.18 and 13.23])revhe
(T)men 1S the sequence introduced [n_(4.14). $&k) = ((2s), G(s) = ((s), zm = A(m),
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B=1/2—2b+¢,andd = —b+ e. Thenifa # 0, Lemmas$ 43 and 4.4 imply that, for> 1 and
T>1,
p—c (9
Lolt) = Ra(z) + 3 2 20)
o —adlp)
I-aj 1—aT—1/2—2b+a
@) (x Togm + - log = + gt/ (T9_2 log T)l/2 + xb_o‘) . (4.20)

If « =0, weletd < e <b< 1/4. Similarly, we have

1/2 P (2 1 T—1/2—2b+6
Lo(x) = —— + Z v ((2p) '0) +0 <x S + 22 (T 10g T)? +xb) .

(4.21)
Fora € [0,1], let
o (ETCeY] if 0<a<1l/20r1/2<a<l,
- /2 : -
C(’1Y(/)2) - 20(1/2)2 if o = 1/2

Then [4.20) and (4.21) imply that, fgr> 0 and X > 1,

y(p—a)
Biy.a) = C, 1 eyzra S GG
5(y, @) +e ;X@_ acp) T Era:X)

Zy’y

— C.+ Z +5M(y, X)
e ¢
_ QC(QP)em
- et (ZX = a>¢f<p>) + &l 0

where

yey/Z ey/2X—1/2—2b+a s 1/2 1

X ” (X log X) 7y(1/2_b) )
Observe that[(117) foy, > 0 holds for &y . (y,e¥). Sincer, = 2((2p,)/(pn — a)'(p) and
A = S(py), it follows from (1.15) that

5>\7a(y, X) <

4~21C(20) |2 4~2(1 3/2+¢€
Sl = 3 et < o e wee < T

An<T 0cq<r I\P 0<y<T

Note that, in the previous inequalities we have used thetfiatt (1 + it) = O((logt)***¢) (see
[37, Theorem 6.14]). Hence by Corollary11.3(b), under treiagptions of the Riemann hypothesis
for ¢(s) and [1.15) F3(y, o) has a limiting distribution.

(iif) The Summatory Function of the M 6bius Function in Arithmetic Progressions.In this part
we prove the existence of a limiting distribution 8% (y; ¢, a) defined in[[1.19). We first establish
an explicit formula for

M(r;q.a) =) p(n),

n<x
n=a modgq
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whereq > 2 and(a,q) = 1. Let0 < b < 1/2and0 < € < 1/2 — b. Assume the generalized
Riemann hypothesis for Dirichlat-functions modulo; and [1.16). An argument analogous to
the proof of the existence of the sequeni@g, ),.cn introduced in[(4.14) may be carried out for
Dirichlet L-functions. Following the proof of [28, Theorem 13.22], we @ble to show that
the generalized Riemann hypothesis for Dirichlefunctions implies that there is a sequence
(Tonx)men, WhereT,, . € [m — 1,m], such that

|L(0 +iT . X) | < T,
uniformly for —1 < ¢ < 2. Moreover, for any > 0, we have
|L(b+it, x)| ™t < |t|~1/2+0+e
(seel[28, Corollary 10.10 and p. 445, Exercises 8 and 10p. ofthogonality relation for charac-

ters asserts that
1 — |1  ifn=a(modg),
() 21 x(@)x(n) _{ 0  otherwise,

Xx mod g

(seell28, p. 122]). Thus
Msg0) = — 3 X@ Y wln)x(n). (4.22)

QO(Q) x mod g n<x
Let F'(s) = 1, G(s) = L(s,x), zn = p(n)x(n), 8 =€, = =1/2+ b+ ¢, anda = 0. Then
by applying a slight variant of Lemnia 4.3 which takes into ¢basideration the potential pole of
1/L(s,x) ats = 1/2 and Lemma& 4J4, we obtain, far> 1 and7 > 1,

3 ) = Resy () + X

/
n<x Iy |<T pXL (pX7 X)
'Yx?éo

zlogx z 1/2 (-2 1/2 b
(0] T *logT
+ ( T + T logz + ogT)"*+x" ),

whereResszé(.) denote the residue at= 1/2. Substituting this in[(4.22) implies that, far> 1
andT > 1,

1 — x® 1 xPx
M(w;g,0) = — w(@Res,_y () + W@ Y ———
v(q) X%q 2\L(s,x)s/  ¢(q) Xglq ng P L (pxs X)
L(1/2,)=0 A0

xlogx x 1 _
9] /2 T@ 21 T 1/2 b )
+ ( Tt T logz + 2% ( ogT)’* +ux

Assuming the generalized Riemann hypothesis for DirichKtinctions modula; and [1.16), it
follows that, fory > 0 andX > 1,

JE4(.¢J;61,OL)=L > WR@Ss%( - )

A~ L(s, x)s

L{1/2,)=0

Loy o Y 2 g0 X) (@23
+— x\a / + Cugaly; ) .
Pla) o, e P o )



where
yey/? N ev/? N (log X )/ N 1
X yX1-e X1-6/2 ey(1/2=b) "

Let (A\,).en be the non-decreasing sequence that consists of all thearamp > 0 satisfying
L(1/2 +i7,, x) = 0, for some Dirichlet charactey modg, and let(r,,),cn be defined as

2 Xa,(a)
(@) (1/2 4 iXa) L(1/2 + idn, X))
wherey,, is the character which corresponds\to We can rewrite[(4.23) in the form of

Ey(y:q.a) = @ > x(@Res s <ﬁ) +§R< > e W”) + Epgaly, X).

x mod g An<X
L{(1/2,)=0

Observe tha{{1l7) fog, > 0 holds for€,, , .(y, ¢*) and [1.16) implies
Z 2|2 < T,
An<T
for 1 < # < 3 — /3. Hence Corollary_T]3(b) implies that, under the assumptifithe general-

ized Riemann hypothesis for Dirichlétfunctions modulg; and [1.18),E,(y; ¢, a) has a limiting
distribution.

3.2. Proof of Corollary[1.8.

Chebotarev’s Density Theorem. Let K/k be a normal extension of number fields with cor-
responding Galois group:. We shall consider the squaring functisqp : G — G given by
sq(z) = 2% For a conjugacy class of G, let A;, ..., A; be the conjugacy classes which satisfy
A? C C. We observe that

gu,q,a (y> X) <

Tn =

and define
(G, C) = |sq + 2 Z x(C)ords—y /o L(s, x, K/k)

XFX0
wherey ranges over the irreducible characterstofind y, denotes the trivial character. It was
proven in [31, pp. 71-73] that the generalized Riemann Hg®is and Artin’s holomorphy con-
jecture imply that, forr > 1,7 > 1andl < j <,

2 (Gt —m) =

ivx 1/2 1602
— (G, C) — Zx@)( 3 I/Q”SW) +0($ 107% (=T) +10;), (4.24)

XFX0 0<|yx|<T

where for eachy, p, = 1/2 + iv, runs over the non-trivial zeros @f(s, x, K/k). In this formula,
the termc(G, C;) is the number field analogue of the constant tefm «) which appears in the
Chebyshev bias phenomenon. L&}),.y be the non-decreasing sequence that consists of all the

numbersy, > 0 which satisfyL(1/2 + iv,, x, K/k) = 0 for someyx # x,. Suppose that,, is the
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character which corresponds Xg, and forl < j < r setr;,, = —2x,(C;)/(1/2 +i\,). Then
(4.22) implies that

. e 4
B9 (y) = (Hwe% - m(ey)> ye I = —o(G,C;) + ére( 3 ) T €y (4. X),
J 0<An <X
where
e¥?log?(e?X) 1
Eao;(y, X) = O(T + 5)

Observe that Conditiof (1.7) fgr, > 0 holds for€¢,c, (y, ") and by [20, Theorem 5.8] we have
X< > 1< TlogT.
An<T A <T

Therefore, Theorem 1.4 implies that, under the assumptibgeneralized Riemann hypothesis
and Artin’s holomorphy conjecturdys(y) = (Eél)(y), e Eé’")(y)) has a limiting distribution.

5. CALCULATION OF THE FOURIER TRANSFORMJI

Proof of Theorerh 119Let 7, = (r1(An), ..., 7(\n)) andN € N. By Propositiofi 24, the vector-
valued function

]3(3/) = (01 + §R( i\f: 7‘1()\m)eiy>\m>, o+ §R< i\f: TZ()\m>€iy>\m>)

m=1 m=1

has a limiting distribution:. Since{\,--- , Ay} is linearly independent then by the Kronecker-
Weyl theorem|[[18, Chapter 1] we have

LM [(y\ YAN
YggOY/O g<27r, o | /TNg(a) w,

whereg : RV — R is any continuous function of periddn each of its variables antl (61, . . ., Ox)
is the normalized Haar measure®f which is equal to the Lebesgue measdfie. . . df onTV.
Hence, by takingf (¢1, . .., t,) = exp(—ixt_, &t:) andA = TV in (2.2), we obtain

/ 6_i2£:1 5ktkdluN(t1, cey tg)
R[
_ /T exp ( —iyt [ck + %(Zﬁzlrk(km)e%wmﬂ gk) dw(6y,. ... 0x)
— o1 k1 ok / exp ( — iR (ZZ:1 (Fm . E)ezﬂiem))d% N
']l'N

— e 1%k ckEr ﬂ /1 exp <—i§R ((Fm . @e%w)) de. (5.1)
m=10
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Thus, in view of [2.111) and_(5.1) we deduce that

,&(g) = / €_i2£:15ktk d,u(tl, R ,tg) = lim e‘izi:l&tkdu]v(tl, ceey tg)
R N—oo Jpe

=i I [ esp (<0 (7)) o
m=1"0

If me;«é 0, then

1
—iR —»m_ 27r2€ _ . 7 51 i(2mO+arg(Fm-£)) do
/Oexp< i <(r @e i exp | e ))
:/ exp €] co s (276 + arg(7, - é) )
0
1+arg(7
:/ ) exp(—z|rm §|cos(27rt))dt
arg(im-§)/
:/ - € cos(2mt))dt
0
= JO(‘Zk:lrk( m)€k])- (5.2)

If 7, - € = 0, then [5.2) holds trivially. Hence

—

(€)= e Zim et [T o (| ShmyrnOm)&])-
m=1
]
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