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1. INTRODUCTION

If the Riemann hypothesis (RH) is true then the non-trivial zeros of the
Riemann zeta function, {(s), with positive imaginary part, may be written
as 1/2 + iy, with 7, € R and 0 < 73 < 75 < .... Riemann noted that
the argument principle implies that number of zeros of {(s) in the box with
vertices 0,1, 1+4T, and iT is N(T') ~ (T/2m)log (T'/2me). This implies that
on average (Vi1 — ) =~ 27w/ log~y, and hence the average spacing of the
sequence 4, = v, logy,/27 is one. Montgomery [9] investigated the pair
correlation of these numbers and he proposed the fundamental conjecture

b . 9
1.1 i# 1<j4k<N|a<A—4%<b)~ 1 sin Tz "
( ) J Vi =
N a mr

for 0 < a < bas N — oo. Moreover, it is expected that the consecutive
spacings, Yn+1 — Yn, have a limiting distribution function which matches the
distribution of consecutive spacings of the eigenvalues of a large random
Hermitian matrix. See Odlyzko [14] for extensive numerical evidence in
favour of this conjecture and also see Rudnick-Sarnak [15] for a study of
the n-level correlations of %,,. In light of the expected distribution of the
consecutive spacings of zeta Montgomery suggested in [9] that there exist
arbitrarily large and small gaps between the zeros of the zeta function. That
is to say

A = limsup(fp41 — Fn) = 00 and p = liminf(,11 —9,) =0 .

n—oo

In this article, we focus on the large gaps and we assume the generalized
Riemann hypothesis (GRH) is true. This conjecture states that the non-
trivial zeros of the Dirichlet L-functions are on the Re(s) = 1/2 line. We
establish

Theorem 1. The generalized Riemann hypothesis implies A > 3.

Selberg remarked in [16] that he could prove A > 1. Montgomery and
Odlyzko [10] obtained A > 1.9799 assuming the Riemann hypothesis. This
result was then improved by Conrey, Ghosh, and Gonek [2], [3] who obtained
A > 2.337 assuming RH and A > 2.68 assuming GRH. The current record
due to Hall is A > 2.34. Remarkably, Hall’s unconditional result is even
better than what was previously known assuming RH. Hall’s work makes
use of Wirtinger’s inequality in conjunction with asymptotic formulae for
continuous mixed moments of the zeta function and its derivatives. More-
over, Hall is currently attempting to show that the asymptotic evaluation
of all mixed moments of zeta and its derivatives yields A = oco. Theorem 1
extends the earlier work of Conrey et al. in [3]. Their work is based on the
following idea of J. Mueller[11].



4 NATHAN NG

Let H : C — R be continuous and consider the associated functions

(1.2) Ml(H,T):/TH(l/Q—i—it)dt,
(1.3) m(H,T;a)= Y H(1/2+i(y+aq))
(1.4) My(H, T;c) = /C/L m(H,T; a) da

—c/L

where we put L = log(7'/2m). This notation shall be used throughout the
article. Note that
MZ(Hv 2Ta C) _ M2<H7 Ta C)

(1.5) M, (H,2T) — My(H,T)

<1

implies A > =.
Mueller applied this idea with H(s) = |((s)|* and obtained A > 1.9. Now
consider the Dirichlet polynomial

(1.6) A(s) = Za(n)n_s :
n<y

Assuming the Riemann hypothesis, Conrey et al. in [2] applied (1.5) to
H(s) = |A(s)]? with a(n) = dao(n), y = T'~¢ and obtained A > 2.337 (and
p < 0.5172). Here d,.(n) is the coefficient of n~* in the Dirichlet series ((s)".
If 7 is a natural number then d,.(n) equals the number of representations of n
as a product of r positive integers. In recent work [12], we have shown that
the Riemann hypothesis implies A > 2.56 (and p < 0.5162). In [3], Conrey
et al. applied (1.5) to H(s) = |¢(s)A(s)|?> with a(n) = 1 and y = (T/27)2~*
and obtained A > 2.68. However, in this situation it is necessary to assume
GRH in order to evaluate the discrete mean value m(H, T «).

We continue this programme by considering a more general choice for the
coefficient a(n). Precisely, we choose as our function H,(s) = [((s)A(s)|?
where A(s) has coefficients

(1.7) a(n) = d,(n)P (10g”)

logy
for P a polynomial and for r € N. We are able to evaluate the desired
quantities in (1.5) when y = (T/2m)" with n < . Our work builds upon
the work in [3], although there are significant complications arising from
the fact that d,(n) is not completely multiplicative. Ideally, we would like
to evaluate m(|¢(s)A(s)|?, T; «) for an arbitrary Dirichlet polynomial A of
length y = (T/2m)". In a recent preprint [13], we succeeded in evaluating

> (pA(p)A(L - p)

0<y<T

for an arbitrary Dirichlet polynomial A(s). Moreover, we did not assume
that the coefficients of A(s) are multiplicative. The method in [13] is slightly
different as we instead follow the approach of [4]. The same method allows
one to evaluate m(|¢(s)A(s)|?, T; «) for an arbitrary Dirichlet polynomial.
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If we take H(s) = |¢(s)|*, then conjectures of Chris Hughes [8], based on
random matrix theory, would allow us to evaluate (1.2)-(1.4). This led him
(conjecturally) to A > 2.7. In addition, taking H(s) = |((s)|* and assuming
certain conjectures from RMT to evaluate (1.2)-(1.4), Hughes was able to
obtain A > f(k) for some function f(k) growing linearly to infinity as k
goes to infinity. We may think of the choice H,(s) = |((s)A,(s)]* as a kind
of approximation to |[((s)[**2.

We now state the precise result. We define several functions that will

appear in the course of the proof. Given a polynomial P and u € Z>, we
define

(1.8) Qulz) = /1 6" P(a + (1 — ) df .

Given 77 = (ny,n9,n3, M4, N5) € O(Z>0)5 we define

09) int) = [ [ ) (g 2 Qo) Qo
For n € R and 77 = (ny, ng,n3) € (Zs0)® we define

(1.10) / |- T g g (1) Pa) Qu )y

Recall 1 corresponds to the length of our Dirichlet polynomial. Given r > 1
we define the constants
(1.11)

_ —1y\r? = F(r—i—m) ? -m o Ar 1
“T‘E(“‘p "2t ) » )’C"‘<r2—1>!<fr—1>!>2

m=0

With all of these definitions in hand we present our result for m(H,, T; «).

Theorem 2. Suppose r € N and n < 1/2. The generalized Riemann hy-
pothesis implies
(1.12)
C,TLU+V*+1 2 i(r, j A
m(H,, T;a) ~ —ReZz]n]+(r+l)2+l —m('r,'j,n) + k(r,7,m)
s = J!
where z = ial, |z| < 1,
(1.13)
i(rmja 77) = —iP(T, raja T_la 7“—1)77_1+iP(7“+1a T;ja r, T—1>+ip(r, T+17j7 T’—l, T) )
(1.14)

R . 'min(jJ*?) (_1)n+1 <n+2) kp( —n,r+n+2,r+n+ 1)

n=—2

This result is valid up to an error term Oe,T(TL(T—’_l)Z - T1/2+77+6).

We note that it is possible to prove Theorem 2 only assuming the Gen-
eralized Lindelof Hypothesis by following the work of Conrey, Ghosh, and
Gonek [4] on simple zeros of ((s) and the recent preprint [13]. Even this
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assumption may possibly be weakened further since the main theorem in [4]
actually assumes an upper bound for the sixth integral moment of L(s, x)
on average.
As a check on our calculations we took r = 1 and P(xz) = 1. After some

calculation, Theorem 2 here reduces to
(1.15)

6 TL5 0 —1)+ (o L)2+2
m(Hy, Tya) ~ — (=1) .(a )' .

m 2m L (25 +5)!
(3P (2545 25+ 5n2j+6

3 Jj+3

in agreement with Theorem 1 of [3].

i n2j+7 4 7]2(1 . 7]>2j+5> 7

2. THEOREM 2 IMPLIES THEOREM 1

In this section, we deduce Theorem 1 from Theorem 2. The rest of the
article will be devoted to establishing the discrete moment result of Theorem
2. Put n = 1/2 — € with € arbitrarily small. Since Re(2’) = (—1)*(aL)? if
J = 2k and zero otherwise, it follows from (1.12) that

OTTL(T+1)2+1
(2.1) m(H,,2T;a) — m(H,, T;a) = ¢(r,n,a) ————(1+ O(L™1))
m

where

~

5(r.m.0) = 7S (1 (aLn)? (m’(r, 2.m) | k(r.2j n)) |

2j+ 1) " 2j+1

j=1

Integrating (2.1) with respect to « over the interval [—c/L,c/L] we have
My (H,,2T;¢) — Ms(H,., T; ¢) equals

20, LU+ plr+1*+1 i(—l)J 25412 (Ti(r, 2j,m) | k(r,2j, n>>

C . .
7r p (27 + 1)! 2j+1

plus an error O(TL(T+1)2). In the above expression, we may replace n =
1/2 — e by 1/2 yielding

ZOTTL(T+1)2 (r+1)2+1
Mo(H,, 2T ¢) — My(H,, T ) = L .

0 C o 2 -1 7 -1
Z (—1)ic2i+1 (m(r, 2, 1) N k(r, 2],5)) +O(TLI ) .

22j (27 4+ 1)! (27 +1)

j=1
We now recall the following result of Conrey and Ghosh [1].

Lemma 2.1. If y =T" with 0 <n < 1/2 then

- Qr41 (r4+1)2
MI(HWT) ((T’ . 1)!)2(7"2 - 1)'T(10gy) *

/o o7 (1 - )7 Qi (@) — 2(1 — ) Q,(0)Q, 1 (a)) da

(2.2)
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as T — oo. This is valid up to an error term which is O(L™") smaller than
the main term.

Hence, we have
1
M, (H,,2T) — My(H,,T) = C,T(Ln)"+V* / ot
0

(7' (1= )" Q1(a)” = 2(1 — )" Q, 1 (2)Qu (@) dav + O(T LI .
We deduce that
My(H,, 2T ¢) — Ma(H,, T )

pu— r O
My (H,, 2T) — My(H,, 1)~ ") +0)
where
1S (=1 (ri(r,25, ) k(r, 2,1
(2.3) i :—Z QC rinZ5) | K2 p)
D& 2 (25 +1)! 2j + 1
and

Di=x / 0 (1= ) Qs () — 2(1 — )P Q1 ()Q1 () da

We define X, := sup; -, (c) and thus A > 22, We may now compute (2.3)
for various choices of r and P(x). For example, we shall choose ¢ = 37, r = 2
and P(z) = 2%°. We compute the sum as follows: by a Maple calculation
we have

J it (232,25, 1) k(2,25 1)
1 ) )9 ) D) o
D~ § 22] ( : + = 0.999481353 . ...

“ 2+ 10! " 2j+1

for J = 30. On the other hand, we may bound the terms 7 > J. Since
|Qu(x)| < ||P||; we have the crude bound

ip(7)] < ||P|]3(r* — 1)Y(ny + n3 + 1)!
ny ns r \n3

(n1+ng+r2+1)(ng+ 1)
for 7 € (Z>0)®. Tt thus follows that

||P||?(T2—1)!< A(r +2j +1)! )
(

27+1 r2+r+2j+1)!

li(r,24,1/2)| <
and hence

1 i (—1)7 ¢+ 2i(2,24, %) 480HPH Z (c/2)% (25 + 3)!

Dj>J 227 (25 + 1)! (25 + D25+ 7)!
2
< 48¢|| P[[7 Ze—2j(10g(2j)—(10g(c/2)+1))
T V21D(2J)°
48CHPH% e—2J(log(2J)—10g(c/2)—1) _ 10_45

V2rD(2J)5 2(log(2J) — log(¢/2) — 1)
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where we have applied n! > (n/e)”. A similar calculation establishes that

1 i (—1)7c2 1 k(2,25, %)
D 2% (25 +1)

i>J

<1072,

We conclude that fo(37) < 1 and hence establish Theorem 1. We made
our choice of r and P(z) by a computer search. We note that there are
many choices of r and P(z) that improve the work of [3]. For example,
r =3, P(z) =1 yields A > 2.78 whereas r = 2, P(z) = 1 yields A > 2.86.
However, we have not made any serious attempt to find the optimal value
given by this method as our primary goal was to exhibit other sequences
that improved the work of [3]. It would be of some interest to find the
optimal value of ¢ that this method gives and it is likely that a more clever
choice of P will improve Theorem 1.

3. SOME NOTATION AND DEFINITIONS

Throughout this article we shall employ the notation

_ logt
N logy

(3.1) [t], :

for t,y > 0. This will allow us to write several equations more compactly.
In addition, we shall encounter a variety of arithmetic functions. We define
jr(n), A(n), and d,.(n) as follows:

(32) i) =1 +0(p™)
pln

for 7 > 0 and the constant in the O is fixed and independent of 7. Next A(n)
and d,.(n) may be defined by their Dirichlet series generating functions:

and ((s)" = Z dv(n) :

nS

¢l _ Al
G 2w

n=1

Since this article concerns the calculation of discrete mean values of m(H,., T, «)
we need to invoke several properties of d,.. Throughout this article we apply
repeatedly the following facts concerning d,

d d = (1-p)",
a=0
(3.3) Z d.(m)m™' < log" x ,

Z d.(m)*m™! <« log”” z .
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4. INITIAL MANIPULATIONS

In this section we set up the plan of attack for our evaluation of m(H,, T; o).
Recall that T is large, L = log(T'/2m), and € can be made arbitrarily small.
Let R denote the positively oriented contour with vertices a+1, a+i(T+«),
1—a+i(T+a), 1 —a+1i, the top edge of which has a small semicircular in-
dentation centred at 1/2+i(T + «) opening downward and a = 1+O(L™1).
By an application of Cauchy’s residue theorem, the reflection principle, and
RH we have

’

m(H,,T;«a) = L/ g(s —ia)((s)C(1 — 8)A(s)A(1 — s)ds .
2mi Jp C

For s in the interior or boundary of R we have A(s) <, y' 77" and ((s) <.
T(=2)/2+¢ " The first bound is elementary and the second is the convexity
bound. These combine to give ¢(s)((1 — s)A(s)A(1 — s) < yT/**¢. Now
choose T" such that T —2 < T < T —1 such that 7" + « is not the ordinate
of a zero of ((s) and (¢'/¢)(o + iT") < L?, uniformly for —1 < o < 2. A
simple argument using Cauchy’s residue theorem establishes that the top
edge of the contour is y7'*/?*¢. Similarly, the bottom edge of the contour is
< yT* since [((s)] < 1 for |s|] < 1 and |s — 1| > 1. Differentiating the
functional equation, ¢(1 —s) = x(1 — s)((s), we have

Clsia) =X s—ia) - S(sti
(4.1) ¢ (1—s—1ia) . (1—s—ia) c (s +ia) .
where x(s) = 2°7° "L sin(7ws/2)['(1 — s). Now the right edge is
1 a+i(T+a) CI .
(4.2) I = 37 » Z(s —ia)((s)C(1 — s)A(s)A(l — s) ds
and the left edge is by (4.1)
1 e ‘
- it Z(S —ia)((s)C(1 — s)A(s)A(l — s)ds =
% a:(;w) (%(3 +ia) — %(1 e m)) C(s)C(1 = $)A(s)A(1 — s) ds
=1-J
where
1 a+i(T+a) X’
(4.3) J=— (1 —s+ia)((s)C(1 — s)A(s)A(1l — s)ds .

B 2mi a+i X
Combining our above calculations we obtain
(4.4) m(H,,T; o) = 2Rel — J + O (yTz+¢) .

We have reduced our calculation to the evaluation of I and J. The diffi-
cult term to evaluate is I. Thus we begin with the evaluation of .J since
it is rather simple. By Stirling’s formula one has (x'/x)(1 — s + ia) =
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—log(t/2m) + O(t™) fort > 1,1/2 < 0 < 2, and |a| < cL™'. By mov-
ing the contour to the 1/2 line in (4.3) and then substituting the previous
estimate we obtain .J equals

—%/1 (logt/(27))|CA(1/2+it)|* dt+O (/1 |§A(1/2—|—it)|2%+yT§+e) :

The last term comes from the horizontal integral. An integration by parts
shows that the second integral is O(LU"+D**+1) and therefore

L r dt 2 !
J = =5 Mu(H,,T) +/ MI(HT,t)7+O(L("+1) L yTate))
1
where
T T
/\/ll(HT,T):/ HT(1/2+it)dt:/ 1C(1/2 + it) 2| A(1/2 + it)|* dt .
1 1

By Lemma 2.1 above, we deduce

C’TTL(’"“)Q“ ~ 1 ~
J ~ B — (77(r+1)2 1/ a” 1(1 _ Oé)errq(a)Q dov
0

(4.5) 2 [0t )0, (@) da)
0

which is valid up to an error term O(L™!) smaller.

We have now reduced the evaluation of m(H,,T;a) to that of I. We
begin our evaluation of I with some initial simplifications. By the functional
equation (4.2) becomes

1 a+i(T+a)
I=— X(1 —s)B(s)A(1 — s)ds

270 J i
where B(s) = & (s — ia)C2(s)A(s) = 332, ()~ and

(4.6) bG)=— > dr(h)P ([ly) d(m)A(n)n' .

However, Lemma 2 of [4] deals with such integrals.

Lemma 4.1. Suppose B(s) = > 5, b(j)j™" and A(s) = > 4o, a(k)k™
where a(j) < dy, (7)(log j)" and b(j) < d.,(j)(log )2 for some non-negative
integers r1,79,l1,lo and T <y K< T for some € > 0. If

I:/CH (1 — $)B(s)A(1 — s) ds

c+1
then

I= Z Z b(j)e (—j/k) + O(yT= (log T)"+72+h+t2)

k<y j<2T ’ﬂT
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We deduce that

(4.7) I = Z dr( Z b(j)e (—j/k) + O(yT>+) .

k<y J<EL kT

The goal of the rest of this paper is to evaluate the sum in (4.7). We
now give a brief sketch how the proof shall proceed. We define the Dirichlet
series

(s, 0, k) Zb (—j/k)j~

The inner sum in (4.7) can be written by Perron’s formula as

L[ o >(kT)‘“—»www+Ew>

2mi © 2 S

with ¢ > 1. The last formula is obtained by moving this contour left to
Re(s) = 1/2 + L~'. The main term, M (k), arises from the residues of
Q*(s,a, k) at s =1 and s = 1 + i« and the error term, E(k), is given by
the integral along the line Re(s) = 1/2 + L~!. Thus

(4.8) 1:Z%®W§W®+mem%ww_

k<y k<y

The first sum involving M (k) will give the main term of our theorem and can
be computed unconditionally. Nevertheless, the calculation is lengthy and
complicated. The second sum with the E(k) term requires the assumption
of GRH. We now give a brief explanation of how the Generalized Riemann
Hypothesis arises. Recall that Q*(s, a, k) is the Dirichlet series whose co-
efficient of j=° is b(j)e(—j/k). However, if (j,k) = 1 we may decompose
e(—j/k) into multiplicative characters as follows:

(J/k—%Zx

(mod) k

It follows that Q*(s, «v, k) may written as a linear combination of terms con-
sisting of L(s,x) and (L'/L)(s,x). By assuming GRH we can show that
Q*(s,a, k) only has poles at 1 and 1 + i which accounts for the main
term M (k). If GRH were false then Q*(s,«, k) would have extra poles
arising from zeros that violate GRH. This obviously would complicate the
argument. In dealing with the error term E(k) we need a good bound for
Q*(s,a, k). Since the Generalized Riemann Hypothesis implies the Gener-
alized Lindel6f hypothesis, we may assume we have good bounds for L(s, x)
and (L'/L)(s, x). As a consequence we obtain a good bound for Q*(s, a, k)
and hence FE(k). It should be noted that the above argument is only valid
for (j,k) = 1. If (j,k) > 1 there is a similar identity for e(—j/k) and the
same argument, works.
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5. LEMMAS

In this section we present the lemmas that we require for bounding the
contribution coming from the error terms, F(k), and for evaluating the main
term in (4.8). The next lemma is useful for analyzing Dirichlet series that
are products of several other Dirichlet series.

Lemma 5.1. Suppose that A;(s) = > a;(n)n~° is absolutely convergent
foro>1, for1 <j<J, and that

o9 J
a(n)
A =30 2 = T 4y0s)
n=1 j=1
Then for any positive integer d,
YUre | X
n=1 ns =d j=1 n=1
(n,Pj)=1
where Py = T1];_; d;.

This is Lemma 3 of [4] pp.506.

In Lemmas 5.2 and 5.3 we consider the Dirichlet series D(s,h/k) and
Q(s,a, h/k) which arise in the analysis of Q*(s, a, k).
Lemma 5.2. For (h,k) =1 with k > 0 we define

D(s,h/k) =" d(n)n""e(nh/k) (o >1).
n=1
Then D(s,h/k) is reqular in the entire complex plane except for a double
pole at s = 1. Moreover, it has the same meromorphic part as k' =2°C?(s).
This is proven in Estermann [5] pp.124-126.

Lemma 5.3. Let (h,k) =1 and k = [[p* > 0. Fora € R and o > 1
define

(5.1) Qs.ah/k) =~ dg;if(g)e(_”;”h) .

m,n=1

Then Q(s,a,h/k) has a meromorphic continuation to the entire complex
plane. If o« #0, Q(s,a, h/k) has
(1) at most a double pole at s = 1 with same principal part as

/

st (Soamin gt

where

)\(s 1+ia) 1
a(s—1+ic) _ .
(52) 3 a, k Zlogp (Zp + 1 _ p s+ia psf’ia _ 1) ’

plk
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(17) a simple pole at s = 1 + i with residue

1 2 . 4
_kiacﬁ(k)g (1+i0)Re(1 + i)
where
(5.3) Ri(s) = [J=p "+ X1 =p )1 =p")) .
Pk

Moreover, on GRH, Q(s,«, h/k) is reqular in o > 1/2 except for these two
poles.

This is Lemma 5 of [3] pp.217-218. The proof there proceeds by writing
the generating function Q(s, v, h/k) as a linear combination of (L'/L)(s, x)
where L(s, x) is a Dirichlet L-function modulo k. These L-functions con-
tribute the pole at s = 1 +1ia. Moreover, Q(s, o, h/k) is regular for o > 1/2
since (L'/L)(s, x) is regular in this region assuming GRH.

For an arbitrary variable x we define the following generating function
for d,

(5.4) To(x,A) =) di(p/)2’

JZA

Lemma 5.4. For r, A\ € N and z an indeterminate we have
(1—2)T(z,\) = Adr(pk)/ A=) dt .
0
We define for A\, € N the polynomial

Hy, () = Aa:*/ A=) dt .
0

Note that H),(x) is a degree r polynomial and H, ,.(0) = 1. Consequently,
the lemma may be rewritten as

(1 —2)"Th(z,\) = d.(p*)z*Hy . (x) .

Proof. Define the generating functions

A(z,y) = Z(l — )" Tz, Ny
B(z,y) =Y ()\dr(pA) /0 O O IS dt) Ta

We will show that these generating functions are equal and hence we estab-
lish the lemma. Note that

Alx, (1—x)" Zd mJZy = yl ) Zd Nt (yf — 1)

=y (<<11—_ e 1)
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and since \d,.(p*) = rd, 1 (p*7t) for A > 1

B(x,y):r/o (1-t)" (Zd"ﬂ ATyprt ’\) dt—ry/om%dt

A calculation shows that A, (x,y) = B.(z,y) = % and since A(0,y) =
B(0,y) = 0 it follows that A(z,y) = B(z,y).

Our calculations require Perron’s formula.

Lemma 5.5. Let F'(s) := ) - a,n"° be a Dirichlet series with finite ab-
scissa of absolute convergence o,. Suppose there exists a real number ov > 0
such that

o0

Z lan|n™7 < (0 —0,)"% (0> 0,)

n=1

and that B is a non-decreasing function such that |a,| < B(n) for n > 1.
Then for x,T > 2,0 < 04,k := 04 — 0 + (logz)™, we have

(5.5)
W Lot w %= (logx)®  B(2 log T
n _ = F(s+w)x—dw—|—0(x (log ) + (x)(l—i—a:Og )) .
ns  2mi J._r w T x°

n<zx

This is Corollary 2.1 p.133 of [18].

The following Lemma is another place where GRH is invoked. This lemma
gives bounds for Q*(s, a, k) in the critical strip. These bounds are required
for estimating the error term F(k) in (4.8). In fact, GRH shall be invoked
in the form of a Lindelof type bound for Dirichlet L-functions.

Lemma 5.6. Assume GRH. Let y = (T/2m)" where 0 < n < 1/2, k € N
with k <y, and o € R. Set

(5.6) *(s, a, k) Zb (—j/k) (0 >1),

where

= > dn)P (], dm)A(nn'

h<y

Then Q*(s,a, k) has an analytic continuation to o > 1/2 except possible
poles at s =1 and 1 + ia. Furthermore,

Q*(s,a, k) = O(y>T°)

where s = o +it, 3+ L' <o <1+ L' |t| < T, |s—1] > 0.1, and
|s —1—ia| > 0.1.
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Proof. If y is a character mod k, its Gauss sum is 7(x) = S.r_, x(h)e (h/k)
from which it follows that

dlj,dlk X (mod %)

By inserting this identity in (5.6) we obtain

Q' (s, a, k) ZM/d Y. ()X (=d) B(s,d)

dlk (mod%)
where for o > 1, B(s,d) = >272, b(jd)x(jd)j—*. We now write P(z) =
SN, ¢t and hence we obtain
N
(5.7) (s, k) :; logy -Q¥ (s, a, k)
where
x - o'
(5.8)  Qi(s, k) Z Y. TOOX(=d) 5 Bls,di2)|._
" k/d) oz
dlk X(mod%)
B(s,d; z) Zb (dj)x(dj)j—*, and b,( Zd YA(n)n'™ .
"y

Since y is completely multiplicative we note that

B(s,1;2) = (Z x(h > L(s, x)? <Z %) .

An application of Lemma 5.1 implies

(5.9)
B(s,d; z) = Z A1  J152)As(s, fo, [1)Aa(s, f3, [1f2) As(s, fa, f[1f2]3)
J1f2f3fa=

where

Ax(s, f:2) = () 32 APEUUIRE

h<y/f
(5.10)  As(s.for)= Y _ @ = x(NL(s, ) [ [ = xp~)
(n,r)=1 plr
As(s, f,r) = — X(fr)A(fn)(fn)*n=" .
(n,r)=1

We are aiming to show that uniformly for |z| < 0.1L7!

y%T6 if x is principal

(5.11) B(s, d; 2) < { T¢  otherwise
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in the region 0 > 1/2+ L1 |t| < T, and |s—1|,|s — 1 —ia| > 0.1. If (5.11)
holds then we have by applying the Cauchy integral formula with a circle
of radius 0.1L~! that

i Loe ip e
B(s,d:2)]._, < { y2T° if x is principal

0zt T¢ otherwise

By (5.8) and this last identity we have

* € 1 =
Qi(s, o k) < Ty ———— |yzlrl)l+ > 7l
dlk ¢(k/d)d? X#xo0(mod k/d)

Since |7(x)| < 1 if x is principal and |7(x)| < (k/d)"/? otherwise

Qi (s, o k) < T | (y/k)/2Y " dPo(d)™ + K2 d™ | < y'*T
dlk d|k

and hence by (5.7) the desired bound Q*(s, o, k) < yT*/?>* follows. It now
suffices to establish (5.11). If y is principal (mod k/d) then

Ai(s, fr2) < f©) ) nz < y'?.
n<y/f

Now suppose x is non-principal. If y/f < y¢, we have trivially that
| A1 (s, f)| < y¢. Otherwise y/f > y° and by Perron’s formula

Ai(s, fi2) = XU)J” /%%T G(s+z+w) / )wdw +0(1)

2mi _%iT w

foro > 1/2+L71 |t| <T,k=1-0+2L"' where G(w) = > 2, d,(fn)x(n)n™".
By multiplicativity we have

G(w) = L(w, X)T H (2210 X(pa)dr(pe-l—a)p—aw)

i\ a0 X(0%)dr (p)p™
and furthermore by Lemma 5.4 it follows that
G(w) = d(f)L(w, )" T] Har(xy)
PMIf

with x, = x(p)p~°. Since |z,| < p~7 and H, ,(0) =1 it follows that

] Ha(z)| < [[(1+02) < f°.

PMIf pllf

In addition, GRH implies |L(w, x)| < (14 ¢])° (k/d)® for Re(w) > 1/2 and
any € > 0. We now move the contour in the above integral to Re(w) = &’
line where k' = 1/2 — 0 + 2L~ and we have

_ x(Nr

271

Ai(s, f;2) /HIHiTG(s—i-z—l—w)(y/T)wdw—l—O(Te) :

=T
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Since 0.5 < Re(s + z + w) and Re(w) < L™ it follows that

. K +2iT w|
Aussfiz) < FTe gy nt [ e
wozir |0
For f and r dividing d, we have A, (s, f,r) < T for j = 2, 3. This is proven
n [3] pp.219-220. By (5.9) in conjunction with our preceding bounds for
the A; we obtain (5.11) which finishes the lemma.

The purpose of the next five lemmas is to provide a variety of formulae for
mean values of certain multiplicative functions which arise in our asymptotic
evaluation of I (4.7). Lemma 5.7 provides bounds for certain divisor sums.
Lemmas 5.8, 5.9, and 5.11 give asympotic formulae for divisor and other
divisor-like sums. Lemma 5.10 provides a formula for simple prime number
sums.

Lemma 5.7. For a € R and j € Z>¢ we have

GO(1,a,k) =Y p(logp) " + O(C;(k))

plk

where G(s, a, k) is defined by (5.2) and

G- L Y ey

ok P ek a2

Moreover, we have

d,(h)d, (k) (h, k k 2y,
h; ()}fk)( )C’j<(h’k)><<(logx) .

Proof. We remark that the first identity is proven in [3] pp.222-223. The
sum we are considering is bounded by

> B 6,0 1+ 1) Y ola)

h,k<z alh
alk
d(a)*¢(a) d.(h)d,(k)(C;(ak) + 1)
<> ) 7
a<lzx hk<Z
. d.(a)*(Ci(a) + 1 . d.(a)? d.(K)C:(k
< ogayr 32 PG A e 5 o) 5 RO
a<zx a a<lzx a k<Z
Observe that
d.(a)*C;(a lo (u d, (up®)?
SO Sy s )5 5 )
<y p<y ust pe<ya>2 wew WP

P

< (logz)” (Z (lozgﬂp)J) < (logz)™

p
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where we have applied (3.3). A similar argument establishes that
> hea dr(R)Ci(k)k™! < (log )7 *7. Putting together the results establishes
the lemma.

We now introduce the arithmetic function o,(m,s) where r € N and
s € C. It is defined by

(5.12) o,(m,s) = (Z dr(;;m)> o)==y dﬁ]) |

n=1 p*|Im JZA

The second equation is obtained by mutiplicativity. By Lemma 5.4 it follows

that
= [ &M E\ (7).

pMm

The value s = 1 will have a special importance so we set ,.(m) := o,.(m, 1).
In the following calculations we shall often employ the bound

(5.13) lo,(m, s)| < d.(m)j;(m) for Re(s) >7>0.

The function o, is a correction factor that arises due to the fact d, is not
completely mutiplicative. More precisely, we notice in all cases of the fol-
lowing lemma that

> do(mh)f(h) ~ op(m) Y di(
h<t h<t
where f is a smooth function.

Lemma 5.8. Suppose r,n € N, 1 < z,n < %, and F € C*([0,1]). There
exists an absolute constant 1o = 1o(r) such that

> o) = UL [ gt + O () (1)

Suppose m,u,v € N, 1 < y,m < L, p a prime withp < L, and P €

21’ 2w

C1([0,1]). We now deduce the following formulae:

(i) Y O og P ~ 108 (L) [ R0y av,

h<

I

iy 3 el Pt s E‘;@T;! log (%) /0 Fy(6,pm) d6

i) 3 dr(mh)P([m:]y) log(57)" GT(W(LZ(I—O?)?J!)W /0 o Fy(0,m)df ,
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where these formulae are valid up to error terms d,(m)j,, (m)L™ %1
dr(m)jry (M)L™71 d,(m) 7,y (M) L™ respectively and

Fi(0,m) = 0" P ([m], + (1 — [m],)0)
514) Fao,pm) = 0 (logp+ 010 L) P (fply + (1= ) )0)
F3(0,m) = 0" (n~" = 0)"P([m], +0) .
Proof. By the methods of [17]
3 o) _ Y oy e

rl
h<t

for some 75 = 79(r) > 0. We abbreviate this last equation to T'(t) =
M(t) + O(e(n)). For g € C'([0,1]) we have

>y @) = [ ar' g (1) at

- +0 (et (1o + 1o+ o (1910915 ))

The error term is < €(n) and the prmmpal term is

%/j(logtylg([t]z) dt = Tlfglx )"~ 1/ 0 g

by the variable change 6 = [t],. This yields the first formula. Formulae
(1) — (4i7) correspond to the following choices of parameters (n, g(0), x):

(m ,0"P([m], +0), %) 7 <pm  ([pl + 0)" P([pm], +6), Z%) ’
(m (5~ 0) P, +0). L)

We remark that equation (ii7) requires the variable change 6 — [z],0.

In the following lemma we consider averages of the expression o,.(+)%. Tt
is in this lemma that the constant a,;; (1.11) of Theorem 2 appears. It
naturally arises upon considering the Dirichlet series Y- -, ¢(n)o,(n)*n=*.

Lemma 5.9. Let r € N and g € C*([0,1]).
(i) Forp <y pm’me we have

0‘ O‘ m o ar41(lo r?2  pl=[ply 24
§~ Ao (m)opm) r(P)(T;_(llﬁy) /0 57 1g(5) b

m<y

+0 ((log ) (" + (logy) ™))
(i1) For 0 <6 <1 we have

m)o,(m)? ar4+1(10 Y ’-1 -1
5o AT () = BT [ 1g(6) b1+ Of(Gog) )



20 NATHAN NG

Proof. We only prove (i) since (i7) is similar. We begin by noting that

Z ¢(m)gr %)Jr(pm) =0, (p) Z gb(m)o-r (m)

_ Ly ¢<n§>ar<m><ar<%r<m> —o,(pm)
=

Since o,(m) < d,(m)ji(m), d(uv) < do(w)d,(v), and $(up) < Bu)p, it

follows that the second term is

dr(p) ~— dr(n)?51(n)
2~

p

<

< p'(logz)”

n<Z
=p

By equations (36)-(38) of [1] in conjunction with Theorem 2 of [17] we
deduce

> (b(m);;@(m) = a?lz(lfglézr (1+0O((logt)™))

m<t
and hence we arrive at

5 el lpm) _ e QO807 o (g1 410" 11)

m<t

We abbreviate this equation to T'(t) = M (t) +O(E(t)). The sum in (i) may
be expressed as the Stieltjes integral

Yy

[T atwaare = [ st a + o) B0~ [T (0 B

The integral equals

RS

y

ra, P 2 ra, 1—[ply 2
(r2 _—?)! /1 (log )" ~*g ([t],) dt = (—Hy/o‘ &g (8) ds .

r2 —1)!
Moreover, it is clear that the corresponding error term is O ((log t)’”2 p~ !+ (log t)’"z_l) )
In the main calculation of this article we compute certain simple sums
over primes. The following lemma provides the required result
Lemma 5.10. Suppose w >1,0<0 <1, and g € C1([0,1]) then

> 80 () = 30 U gy / F(8) dp

1—ic Y|
p<y'—o P 3=0 J:
+O((logy)“ ™) .

Proof. By Stieltjes integration the sum in question is

do(t)

[ tetosty g 10 20
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where 0(t) = >, logp =t + €(t) and €(t) < texp(—cy/logt). Note that

the main term is

Ny dt K (i) [V . dt
[ etos g @) § =S B8 [T ostg ) 5
1 =0 J: )1
By the variable change § = []y we obtain the required expression for

the principal part. Put h(t) = t**(logt)* g ([t],)t~" and note h(t) <
(logt)v~'t~1 and I/ (t) < (logt)“~'¢2 for t < y. By the above bound for
€(t)

1-6 1-6

/ly h(t)de(t) < h(yl_e)e(y1_0)+/ly R (t)e(t)dt < (logy)“ ™" .

We define f(k) = Ri(1 + ia)/¢(k) where Ry (s) is given by (5.3). In the
following lemmas we shall study the Dirichlet series

(5.15)  Z(s,a) =Y d(mk)f(nk)k™* = dr(mk;(ank)(klj ia)

Since f is multiplicative, it is determined by its values on prime powers.
Consequently, we may define f by the rule

(5.16) f(0®) = (14 aky)p~
where
(5.17) kp = k(o) = (1 —p*)(1—p ) /(1 —p")

which follows from (5.3). Moreover, note that k,(0) = 0.

Lemma 5.11. Put [ =logz and suppose || < (logz)™'. For1<m <T,
n squarefree and n | m we have

ot ) =0 () -0 (S

k<z §=0

where 19 = 1/3 is valid and j.,(m) is defined by (3.2).

Proof. This lemma will follow from an application of Perron’s formula.
However, we begin by analyzing the Dirichlet series Z(s,«). We put m =
I, p = wv with u = [Ln p* and hence by multiplicativity

a,(s,a) By(s, a)
(5.18) Z(s,0) = | [T 2= | I] {7 (H hp(s,a)>
Al hy(s, @) o (hp(SaO‘)) p
where
(5.19) ap = (s, o) = Z dy (p") f (" )p
(5.20) By = Bp(s, ) Zd N F(ph)pT

a>0
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(5.21) hy = hy(s,a) = Zdw(pa)f(pa)p_as :

a>0

In the above product we label

(5.22) Zni(s,a) = 32523 L Zia(s,0) = [ Z’ZEZE; ,

pMu pMv

and we set Zi(s,a) = Z11(s,@)Z12(s, ). Next we remark that the last
product factors as

¢*(1+s) .
(5.23) lglhp(s,oz) = mZg(s,a) = Zsy(s, ) Z3(s, @)

with Z5(s, @) holomorphic in Re(s) > —1/2. This shall follow from the
expressions we derive for «,,, 3,, and h, in the next section. Thus we have
the factorization

(5.24) Z(s,a) = Zy(s,a) Zo(s, ) Zs(s, ) .

By Perron’s formula we have

(5.25) |
k) k) = o [ A s v () (o™ 1))

where ¢ = (logz)™!. Let I'(U) denote the contour consisting of s € C
such that Re(s) = —m where (3 is a sufficiently small fixed positive
number and |[Im(s)] < U. Our strategy will be to deform the contour
in (5.25) to I'(U), thus picking up the pole at s = 0 which shall account for
the main term in the lemma. However, we must also bound the contribution
coming from I'(U) and the horizontal parts of the contour. In the following
section, we shall establish

(5.26) |Z1(s, )| < W

in the cases Re(s) > —1/2, |a| < cL™! and also Re(s) > —¢, |a| < e. More-
over, we have |Zs(s,a)| < 1 in Re(s) > —1/4 by the absolute convergence
of its series. Furthermore, it is known that

C(1+s) — % = O(log(|Im(s)| +2)) and = O(log(|Im(s)| +2))

1
C(1+s)
on I'(U) and to the right of I'(U). By (5.24) and our previous estimates, we
have on I'(U) the bound

3r dr (M) Jry (M)
nl—¢ ’

|Z(s, )| < log(|]Im(s)| + 2)
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We now deform the above contour to I'(U) picking up the residue at s = 0.
It follows that
1 s d, B v
— Z(S’ a)x_ ds < M/ T log(€|+2) (log(t + 2))3r
210 Jrwy S nt—e 0

d,(m)jr, (m) 3 Blog
0 1 r—+1 o
< Ee— (log U)>" ™" exp Toe(U +2)

< W exp(—f1v/log )

by the choice U = exp((2+/log x) for a suitable ;. Similarly, we can show
that the horizontal edges connecting I'(U) to [¢ — iU, ¢ + iU] contribute an
amount d,.(m)j,, (m)n“"tU!. Collecting estimates we conclude

(5.27) Z dy(mk) f(nk) = i< (Z(S, oz)xss_l) + O(d, (M) jiny (m)n1) .

k<z

dt
lt]+1

In the next two subsections we establish the bound (5.26) and in the final
subsection we will compute the residue in (5.27).

5.1. Computing the local factors h,, o, and 3,. We simplify notation
by putting u = p~*~! and s = o 4+ it. By (5.16) and (5.21) we have

h, = Zdr(p“)u“ +k, ZadT(p“)u“ =1 —u)"" 1+ (rk, — Du) .

Note that we have use ad,(p*) = rd,+1(p*~*) for a > 1. By (5.17), k, =
1—p+ O(p~'*¢) and it follows that

(5.28)  h,=(1—p* )"} (1 + + O(N”ﬁ)) .

Equation (5.23) now follows from (5.28). As before we have for A\ > 1

r—1 r
ps—l-l B ps—l—l—ia

By =Y do(p"™u + k> ad, (pt)ut = B+ k.
a=0 a=0

Note that by Lemma 5.4, 8 = d,(p*)(1 — u)™"H,,(u) and hence it follows
that

B=d(p)(1—u)"H(1+0,(p777)) .
Similarly, we note that 4 = u-L(8(u)) from which it follows that
d

B= dr(pA)U(l—U)_r_l((l—U)@HA,r(U)—THA,T(U)) < dp(p)(1—u) ™ ful .

We conclude that
(5.29) By =d. (P )1 —u)"" (140 (|kplp™ 7)) -
Likewise, we have

a, = ]1? Z dr(pa'm)ua + k, (u i dr(paH)Ua) = <ﬁ(1 + ky) + kpB)
a=0 a=0

=
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and it follows from our previous estimates that
(5.30) a, = d (PP (1 —u) T O(([ky| + 1)) -

5.2. Establishing (5.26). With our estimates for «,, 3,, and h, in hand,
we are ready to estimate Zy;(s,a). We have by (5.22), (5.21), and (5.30)
(5.31)

(|kp| +1
Zuts.e)) < [T el < T AL D g, — ey
pMlu P u
In addition, by (5.22), (5.21), and (5.29) it follows that
(5.32)
| Z15(s, )| < H WP( < H d(p")(14+O(|k,|p 7)) |1+ (rk,—1)p~* 7|71
i 7 P

In order to finish bounding these terms, we require a bound for k,. We shall
provide a bound for k, and hence Zj;(s,a) in each of the cases 0 < |a| <
cL™'and 0 < |a <.

Case 1: 0 < |a| < cL™! and Re(s) > —1/2.
By the definition (5.17) it follows that

(5.33) k| < |1 — p™| <, min (1,logp/L)

since [p™®] < exp(|a|logp) and |1 — p'®| < (Ja|logp)elel®?. Let ¢y, e, ...
be effectively computable constants depending on ¢ and . We have |(rk, —
p sl < p_% < 0.5if p > ¢;. If p < ¢q then we may choose T sufficiently
large such that (5.33) yields |k,| < 1/20r. Thus |(rk,—1)p~""!| < 1.1p~2 <
0.8 for all primes p < ¢; as long as T is sufficiently large. By (5.31) and our
aforementioned bounds we obtain,

[ 250 o dla™
. < <
(5 34) |ZH(S, Oé)| ~ D ~ n
pMlu
where v(n) is the number of prime factors of n and
(5.35)
1+0(p~2*) ~1/2
Zha(s, @) d,( ——— | =d,(v 14+ 0(p~Y*9)) .
atsco) =TT <1+O@2ﬁ) @]+ 067

Since c;(n) < nfand Zi(s, ) = Z11(s, a) Z12(s, ) we deduce that Z; (s, o) <
dy(m)j1/3(v)n“"! in the range Re(s) > —1/2 and |o| < L™

Case 2: 0 < |a| < € and Re(s) > —e.
In this case, it follows from (5.17) that
(5.36) |k,| < 4|1 — p™| < min (8pF, 4¢(log p)p°)

by employing again the bounds [p®| < exp(|a|logp) and [1—p*®| < (|a|log p)elalter,
The first bound in (5.36) implies that |(rk, —1)p~*7! < (8r+1)p~ 1+ < 0.5
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if p is sufﬁciently large, say p > cz. If p < c3 then |(rk, — 1)p~—*7!| <
dre(logp) 4 5= < 0.51 for € sufficiently small. Thus

pl €
cad, (p* d,(p* e d,(u) .

Zu(s,a) =[] ( : f: )) 11 5’_76)(1+0<p ) < %E)me)
A p N b n
p*M|up<es p*Mup>es

and

Zip(s,0) = [ (esde@)) [] @)1+ 00 )) < dr(v) iy (v) -
pMvp<es p*|v,p>cs

We conclude that if Re(s) > —e and |a| < € then |7, (s, )| < d,.(m) 7., (m)n1.
This completes our calculation of (5.26). The lemma will be thus completed
once the residue is computed.

5.3. The residue computation. We decompose
(5.37)  Z(s,a)z®s ™t = ((1+ s —ia) " Zi(s,a) Zs(s,a)x*C(1 + 5)*s™t .
We now compute the Laurent expansion of each factor. We have
"(1+s)s =21 +as+ags* +---),
¥ =1+ (logz)s + (logx)*s?/2! +--- |
(145 —ia)™" = f(—ia)+ f (—ia)s + f@(—ia)s? /2 + - -

where we put f(z) = (1 + 2)~". Note that a simple calculation yields
R A A L I

c; + O(lal) j>r+1

and ¢; € R. Next note that Z3(s,a) has an absolutely convergent power
series in Re(s) > —1/2, |a|] < c¢L™t. Tt follows that Z3(0,a) = Z3(0,0) +
O(la]) = 1+ O(|a|) and Z?E])(O, a) < 1 for j > 0. Combining these facts
yields
(5.38) Zs(s,a) = (14 O(|a])) + O(1)s + O(1)s* +
We now compute the Taylor expansion of Z; (s, av). Since k,(0) = 0 it follows
from (5.19), (5.20), (5.21) , and (5.22) that

s ) 1
(5.39) Z1(s,0) = or(m,s+1)

n

By Cauchy’s integral formula with a circle of radius €/2, we establish a
bound for Z7(0, a):

(540)  Z9(0,a) = — / ‘ /2M<< (2)j+1 d,(m) iy (M)

omi (w — a)itt € nt-e

by (5.26). By the Taylor series expansion and (5.40) it follows that

(5.41) Z(0,0) = M 1o <M| |)

n
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since Z1(0,0) = 0,(m)/n. Combining (5.40) and (5.41) we obtain
(5.42)

Zis.) = (T o (H M ))+ZO ) ()31,

n

We are now in a position to compute the residue. It follows from (5.37),
and the above Laurent expansions that the residue at s = 0 is

> 1o £ (—ia) 2090, 0) 28 (0, o),

U1!U2!U3!U4!

res =

w1 +uztuz+ug+us=2r
We first show that those terms with us > 1 contribute a smaller amount.
Since |f#2)(—ia)| < |a|"7% for 0 < uy < r and |f)(—ia)| <, 1 for
r+ 1 <wuy < 2r it follows that the terms with us > 1 contribute

dy.(m)j-(m) T 1] f2) (~ia)|

nl-e wy lug!

<,
ultu2<2r—1

< dr(m>.]‘r(m) Z [ ’a|'f’—u2 + Z [

nlfe
u+ug<2r—1 uF+ue<2r—1
0<u2<r 0<us>r+1
d.(m)j-(m
< drlm)jr(m) 3{1( V-1 )
n

We deduce that res equals

S [ @) (—i) 2890, ) 2890, ) 0 (@(m)y’m(m)l”) .

upug!usluy! nl-e

u1tuzt+uz+ug=2r

The contribution from those terms in satisfying u; + us = 27, us < r is

( > o (uziff”) (21 0 (T2 ap) ) (14 0al)

ultu2=2ru2<r

= (Z ﬁ((ql) (—ia)" "2 + O(|04|T“2+1))> (%m) +0 (%M))

_ @z; (2)% L0 (dr(ﬂ;)ljr:(m)) '

Those terms with u; < r — 1 contribute

dr(m)j‘l’ (m) u u - d7"<m)]7' (m) r—
nl——: Z I 1|f( z)(_m>| < n1——2l 1
ultuz+ugt+us=2r
ur<r—1

since || < ¢cL™' < 1 and the remaining terms are

< dr(m>1jj2<m> Z lu1’a|u1+l—r < dT(m)jTO(m) lr—l )
" ultugtugtus=2r
urtue<2r—1,r<u;<2r—1
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We thus conclude that

e SR () o ()

a=0

and the lemma follows by combining this with (5.27).

We have the Taylor series expansion
Ri(1+ia) = Re(1) + Ri(1)(ia) + RP (1) (i) /2 + - - .
We denote the truncated Taylor series expansion 7y v (a) = Z;V:O R,(f (1) (ia) /5.
Lemma 5.12. We have for | =logz, |a| < (logz)™!, and 0 = 1/3

st S () (it

k<z 7=0 J

Proof. We begin by noting that it suffices to prove

(5.43)
4, (mkYRUNL) _ (~1o,(m)l (r\ ! d (m) o ()1
S e ()t ()

This is since if we multiply the above identity by (i)’ /4! and sum j = 0 to
r we obtain the result. The Dirichlet series generating function for the sum
in question is

= j
iy d(mk) &' o (1 +ia)
k=1

J

Y
=i’ —Z(s,a)

o(nk)ks dod

a=0 a=0

By Perron’s formula it follows that the sum in question is

B T s +0 (d;@ (“‘)gﬁ " 1))

where ¢ = (logz)™'. As in Lemma 5.11 (see the text just after equa-
tions (5.25)) we want to deform the contour [¢ — iU, ¢ + U] to T'(U) and
then pick up the residue at s = 0. As this calculation is analogous to the
preceding lemma we omit the details. This procedure yields

g c+iU dj
@_' —jZ(S, Oé)

(5.44)
(4) j s ; r—1
1 , J
Z dr(mkf)Rnk( ) _ i—jsri% (d—Z(S, Oé) IL’_) L0 (dr(m)]zo_(ev)l > ‘
P P(nk) dad a0 S n
Recall that Z(s,a) = Z1(s, &) Za(s, &) Z3(s, ) where
O'T(m,S—l- 1) <2r<1+5) ()
Zi(5,0) = ——— , Z = Z37(0,0 1
1(37 ) n ) 2(8,04) Cr(l+s—ia) » A3 ( ) )<<

for all 5 > 0. By the product rule we have
(5.45)

dj j U U (%

S 4(s,0)| = D () 20 (5,00 28 (5,00 25" (5,0) .

=0 witustuz=j
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Thus we need to compute
reSs—g <Z§u1) (5,025 (s, 0)Z§u3)(s, O)x53_1>

for all u; +us +u3 = j. In fact, it turns out that the main term arises from
those triples (uq,us,u3) = (0,4,0). We now compute the residue arising
from these terms. We have the Laurent expansions,

oy (m) . oM (m, 1)
29(s,0) = r(r—=1)-(r—(j—1)(=i) e

s e +oee
Zg(S,O) :1+d18+ .

We further remark that by Cauchy’s integral formula we may establish

Zl<S7 0) =

S+"' ,

07(“k) (m,1) < d.(m)j,(m) for some 79 > 0. These terms contribute
res 70(s, 0025 (5,01 Zs (s, 0)2°s ™ =
0 m)rlr = 1)+ (r = (= D) () (m)I757!
n(r+j)! n :

A similar calculation shows that for those triples (u, ug, u3) such that us <
7 — 1 then

dy (m) jry (m)(log )77 -

74 (5,0) 25" (5,0) 28" (5,0)2%s 7! <

By combining the last two expressions with (5.44) and (5.45) completes the
lemma.

We deduce the following corollary to Lemmas 5.11 and 5.12:

Lemma 5.13.
Zdr(mk‘) <f(nk‘) . ,];LS/E,;“LE{:O)‘)) < |Q|T+IL2TW .
k<x

Proof. Note that f(nk) = TZ)’ZT:,E(;) + oM g(a;nk) where g is entire in a.

Moreover, it follows that

;dr(mk) <f(nk) — 7:;?;5{();)) = o g*(a;n, )

where g* entire in . Combining Lemmas 5.11 and 5.12 we deduce that
d,(m) g, (m)L"!

nlfe

Joax "y (a;n, 2)] <

and hence by the maximum modulus principle
d(m)jr, (m)L*

nl—e

\a|H§1?LX*1 lg"(a;m, z)| <

which implies the lemma.
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6. PROOF OF THEOREM 2

In this section we apply the lemmas to manipulate I into a suitable form
for evaluation. Recall that by (4.7)

(6.1) I= Z Z b(j)e(—j/k) + Oc(yT ") .

k<y J_ 27.-

By Perron’s formula with ¢ = 1 + L~! the inner sum is

Zb (=i/k) = 271rz/

—27'r

c+iT

+ O(kT®)

O (s, o k) <k;T> ds

2T S

T

where Q*(s, a, k) = 372, b(j)j~*e(—j/k). Pulling the contour left to ¢y =
1/2 + L™ we obtain

> b(j)e(—j/k) = Ry + Riyia

]<kT

co—iT 60+ZT c+iT kT d
< / / ) Q*(s,a, k) < ) s
27TZ co—1iT co+iT 27 S

where R, is the residue at s = u. By Lemma 5.6 the left and horizontal
edges contribute yT/2*¢. Moreover by (4.6) it follows that

(6.3) Q (s, k) =Y dr(h>P([h]y}>ﬁQ(s, a,h/k)

h<y

where Q(s,a, h/k) is defined by (5.1). We will now invoke Lemma 5.3,
however we require that h,k be relatively prime. Therefore we set % = %

where H = h/(h, k), K = k/(h,k), and (H, K) = 1. We deduce

=> d.(h) <Q(s a, H/K) (QT;;) 31> .

h<y

By an application of Lemma 5.3(7) this is

(6.4) , S
K;d o ((2(3) (%(s —ia) — G(s, K)) (2W§K> 3_1)
_ % dr(h)lf;([h]y)
h<y

(€@ - gtam)on (3572) + (€70 0 - 6 (La. )
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where we put 7 = 1 + ia. Likewise Lemma 5.3(i7) implies

Riyia = Zd e (Q(s a, H/K) (27:;[) 3—1>
(6.5) h=y ) N
_ T f) Z dr<h>§<[h]y> (1) KRetn)

Combining (6.1), (6.2), (6.4), and (6.5) we deduce

T 5 dr(h)dr(k)P([Z]lj)P([k]y)(h, k) (10g ;F;;;( ((C 10)(r) — 6(1, K))

h,k<y

T \2rH o(K)

where G(s, a, K) is defined by (5.2). We may write for j = 0,1 G9(1, o, K) =
> ok P log’t'p + O(C;(K)). By Lemma 5.7, the O(C;(K)) terms con-
tribute O(TLU+D*). Whence

1= L 5 GOLEPELIP(E,I0H (1og rec (C /)7 3 pe logp>

h,k<y p|lK

() ) -G LK) - c%)( T ) KRK(T>> 1 OWT)

o 2(7') T \" KRK(T) 1/2+¢
+(¢/O)( ;{:p log®p — 2 <27TH) o) )+O(yT/ )

where z = 1 + ia. Insertion of the identity

=3 un)f (%)

mlh n|m
mlk

produces
T d,.(h)P(lh],)d, (k)P(lk n
1= T (h)P([ ]})lk( )P(] ]k)zmz#
h,k<y z\'ilz nlm
- (bg% ((c RIGEDIE 1ogp) +(¢re) @
p|2E

e () () S ) rour

‘nk E
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Changing summation order and making the variable changes h — hm and
k — km yields

pn) g~ de(mh)P([mhl, )dy (mk) P,
I DI

hk
m<y nlm hk< L
T 2v—1
08 5 | (¢'/O)( )= i eep | + (<) =)
i 2 €2<T> T “ nkRnk(T) /2+e€
_pl%p log”p = T (27rnh> o(nk) +OWT)

Rearrange this as I = I + I + O(yT"/?>7¢) where

T 1 n d,(mh)P(/mh|,)d,(mk)P(|mk|,
hz%ZEZM()Z (mh) P([mh],)d,(mk)P([mk],)

hk
m<y n|m hk< X
T627 1
: ( 85 2 P logp— ) plog” p) ,
plnk plnk
(6.6)
pn d,(mh) P({mk],)d,(mk) P({mk],)
S P SDIE i
m<y nlm hk<y

-(1%(;6;;;» e (€) -0 (o) ).

The first sum is

u(n) = dy(mh)P(imh],)d, (mk)P(imk],)
L= o Z Z Z

hk
m<y nim hk<X

-(log2 thp logp — Zp log p—l—O(Llogn)) .

plk

A calculation shows that the O(Llogn) contributes O(TL+1?).
¢(m)m~t =37 p(n)n~" we deduce that

(6.7)
[ m d,(mh)P(\mh],)d,.(mk)P(|mk],

hk
m=y hk< X

Since

— - (e} 100 (T+1)
( log thp logp — »_ p“log” p)+0(TL ).

plk
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This puts I in a suitable form to be evaluated by the lemmas
simplify I5 by substituting the Laurent expansions

(/) = (i)' +0(1) ,
(¢/¢) ) = (i) 2 +0(1)
CHr)T7h = (i) + (27 = 1)(ia) ™' + O(1)
n (6.6). The O(1) terms of these Laurent expansions contribute

TL Z Z Z << TLr+?

m<y

. We now

nim  hk<E A
by (3.3) and
Z "3 Z IS dmk) (k)
m<y nlm  h<E k<Xt
d,.(m) d,(m)o.(m)L" 2
TL" TL(T—H) 1
< mz<y - % e <

by (3.3) and Lemma 5.11. Thus we deduce

p(n d,(mh)P([mh],)d,(mk)P([mk],)
Lo ly Ly sd

hk
m<y nlm hk<XL

—m

. T io nkRn (T)
1+ IOg Qﬂ-h].m2 - (Zﬂhn) ¢(n11::)

(ia)?

plus an error term O(TL(T“)2). By Lemma 5.13 we may replace "k(T)
Tj;’zr';]i?) at the expense of the error

< |a|7?2TL Z

m<y

by

Z| |T+1L2T )]7'0( )<< TL(?‘-i—l) )

nlm

Therefore we have

Hn) o~ dy(mh)P(mh],)d, (mk) P(fmik],)
eyt e L

hk
m<y n|m hk<E

' <1 + o IOg 271'}’59712 o (271'7;1n)ia Nk;—?z};)(a)) (Z'Oé)72 + O(TL(7"+1)2) :

A calculation shows that Ri(1) = ¢(k)/k, R, (1) =
it follows that

Tpr(e) _ 1 . Ry (1) (i)
preysala: (1 — log(nk)(ic)) + Z S

—¢(k)log k/k and thus
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We further decompose Iy = Io + I35 + O(TL(’”“)Q) where

' n d,(mh) P([mh],)d,(mk)P([mk],
= 3 Ly #) o el P () P

hk
m<y nlm hk<E
(6.8) _ .
(1 tiadog s — (zﬂm) (1 — (i) log(nk))
(icr)?
(6.9)
and 122 =
= m<y nlm
Sy b (bl ) () (k) ( T ) nkR (1)
e hk 21hn o(nk)
6.1. Evaluation of [;. By (6.7) it follows that
T 2
(6.10) I = G (—Laoo + a1 + ao1,1 — aopz2) + O(T LIV

where for u, v, w € Z>, we define a,, ., to be the sum

s o mh)P “mh]y)drfmpqu]waog B S gy

mh,mk<y plk

By (6.10) it suffices to evaluate a,,, . Inverting summation we have

P’ 10gp d,(mh) P(Imh],)(log h)"
= XS )3 h

m<y p<t h< L

d,(mpk) P ([mpk],) (log pk)"
) (mpk) ([lf])( g pk)

k<L

=pm

By (i) and () of Lemma 5.8 we have
¢(m)o, (m)*p*(logp)* \ (y "+ v\
= i 5 S g () (1

mp<y

/ / F1(01,T7”L>F2<92,pm>d91d92—|—€1+€2—|—63
0 Jo

where

Y

. Lu—l—r 1 w "r dr Lv—i—r—l
€1<<ZU Z(ng) Jro(m)d,.(m)

m<y p<y p
Jro (M) d,(m) L1 (log p)¥o,(pm)L"*"
> 3 ospltonlom) L
m<y p<y
- Lu+r 1 1 w '7_ dr erl
€3<<Z]0 ) Z(ng) ]0(77;) (m) )

m<y p<y
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By (5.13) it follows that

6 <K Lu+v+w+2r—l Z dT(m)2jlr<nm)jTo (m) < Lu+v+w+r2+2r—1 .

m<y

A similar calculation gives ey, e5 < Lutv+wtr+2r=1 " Recalling (5.14) and
rearranging a little, yields

2r+u+v
o = (I(Ogy 1 / / 0r+u 197" 1 Zp logp
T —

p<y

(6.11)

. Z ¢(m)0r$)gr(pm) Guw ([m]y’ [p]y) d91d¢92 + O(Lmax(u,v)+r2+r)

where

(6.12)  guu(6,8) =
(1=0)"(1=B=08)" (B + 02(1 — B —0))" P(6+01(1—0)) P(6+5+02(1—3-9)) .
By Lemma 5.9 (i), (6.11) becomes

“(1
Ao = rC, (10g y)r +2r+u+v/ / 07’+u 197’ 1 Z p ng)

Py p
Bl i
. / 5" flgum ((5, [p]y) ds d91d62 + ey + O(Lmax(u,’u)+r +r>
0
where C, is defined by (1.11) and

€4 & LArTutv Z —(logp)w (erpf1 + LT2*1) < [t tutotw—1

b
p<y

since w > 1. Inverting summation

1 1 1
rvin = 1C,llogyy ™ [ [ [grigrag
0 0 0

*(lo )
Z p gp u,v (57 [p]y> d5d(91d(92 —+ O(LT +2r+u+v+w71) .
p<yl-

An application of Lemma 5.10 yields

2ot oin = (i log )7
Qs = TCT(log y) +2rtutvt Z (]—|>
=0 '

1 1 1 1-6
: / / / / grv-lgr-lsri=lgitw=ly (5 3)dBdsd,dfs(1 + O(L™Y)) .
0 0 0 0

We write

1 1
/ / G u1gr g (8, 3)d0ydls = (1— 5) (1 — B—8) Qysu1(8) Ro(3, )
0 0
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where

1
Qs (6) = / 07 L P(5 4 0,(1— 6)) db) |

0

Ry (6, ) = /01 0571 (8 +02(1— 06— 3))"P(0 + B+ 02(1 — 0 — ) df

and hence

. (ialog y)?
au,’u,w ~ ’I“Or(log y)"’2+2r+u+v+w Z ( j'g y)
Jj=0 )

- 1-5
= Q) [ BT 1= 5 = 6 R(6,0) s
0 0
Now note that

RO(& ﬁ) = Qrfl((s + ﬁ) ) R1<5? ﬁ) = ﬁQrfl((s + ﬁ) + (1 - 5 - ﬁ)@r(é _'_ﬁ) .
We see that

Qo ~ rCr(log y) 2 9rfut Z ((]—')
=0 ‘

1 1-4
/ / F L = 8) (1 = B = 8 T Quir 1 (6)Qr1 (6 + B) dBdS

Gt ~ rC’T(log y) 24 2r+14u+ Z (]—')
j=0 ’

1 1-6
-(// 571 = 0 (1 = 6 — O BV Qur 1 (6)Qr (0 + §) dBd0+
0 0

1 1-6
/ / 57’2_1(1 o 5)r+u(1 — 8- 5)T+1ﬁj+w_lQu+r—l(5)Q7"(5 + ﬂ) dﬂd5) .

For @i = (ny,ng,n3, 4, n5) € (Zso)” we recall the definition (1.9)

1—x1
/ / 1) (1=21—20)"2 253 Qp, (21) Qs (21+22) dxoday
and hence
O it (r+1)?
Q0,01 = TCTL(T+1)2 Z ZTI*'T:P(“ Taj? r—= 17 r—= 1) )

=
0 ipit+(r+1)2+1

a1 = rC, LUt Z Z77+'ip(7“ +1,r4rr—1),
- J°
7=0

0 i s 2
) 2Ipi 1) +1
(002 = 7,,CvTL(r+1) +1 Z n -
Jj=0 J:

zjnj+(’“+1)2+1

ip(r,r,j+1Lr—1,r—1),

o0
2
aio1 = TCrL(TH) i E

S ip(r,r, j+1,r—=1,r—1)+ip(r,r+1,j,r—1,7) .
Jj=0
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Combining these identities with (6.10) we arrive at

(6.13)

I ~ T’C’ L(T‘H)Q"'1 Z '
j=0 J:

’ (_ip('r',r,j,’l"— 17T - 1) +77(ZP(T+ 1,7’,j,7“,7‘ - 1) +iP(T7T+ 1,]‘,7’ - LT)))

and this is valid up to an error which is smaller by a factor O(L™').
6.2. Evaluation of I,;. We recall that

' 1 n d,(mh)P([mh],)d,(mk)P([mk],
JmN%Z_ZMZ (mh)P(] ]f)m( ) P([mk]y)

m<y n|m h k<2

(ia)?

A little algebra shows that the expression within the brackets simplifies to

log ( 5 1;1 ) log(nk) — (1 — (ia) log nk) log (2£n>2 i:; (ia I&gJE?g;n))j .

We may replace logﬁ by log% and log(nk) by logk up to an error

. (1 +ialog 57— — (%hn) (1 — (i) log nk))

of L(logn). This error term contributes O(TLUtD?) as long as we use
la| < cL™!. Tt thus follows that

mh)P(|mhl,)d,(mk)P(/mk|,
121~—Z¢ 3 d,(mh) P(| ]f)zk:( )P ([mkly)

m<y h k<L

.(log (th) log k — (1 — (icr) log k) 1og( >2i Mjiz ))J)

Jj=0

and hence

T o ( i J+1
(614) IQN2—<b11—Z<]+2'j+2O+Z +2|]+2,1)

J:
where

by =3 ¢(m) 3 d,(mh) P([mhl],)(log %})der(mk)lj ([mkly)(log k)*

m<y hk< Y

for u,v > 0. By parts (iii) and (i) of Lemma 5.8 it follows that b,, is
asymptotic to

1 u+r . ro fl=mly !
Sgyl > o(m)or(m)’ log <£> / FS(elam)del/ (6, m)d0,
—_ 0 0

m

m<y
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where I, F3 are given by (5.14). This is valid up to an error O(U2+2T+“+”_1).
Next we exchange summation order and we recall the definitions for the
F; (5.14) to obtain b, , is asymptotic to

<lfiy_ 11”+u+v/ / er 1 _el)uev;rvfl Z Wﬂ([m]y)deldGQ

mSyl—Hl

where g(6) = (1 = §)""P(§ + 01)P(0 + (1 — 0)62). By Lemma 5.9(ii) we
have b, , equals

C, (logy 'r +2r+u+v/ / / er 1 — 0, )u6§+v—15r2—lg(5>d5d81d92

plus an error O(L7+r+max(wv)) - Since Q1 1(8) = [i 05T P(8 + (1 —
9)62) dbs it follows that

buy ~ Cp(logy)” T2+ kp(u,r + v, 7 +v —1)
where we recall (1.10)

1-601
kp(ny,n2,n3) / / 07 (71 —0,)" 67 L (1—8)™2 P(0,46) Qn (8)d0d0,; .

We conclude

(6.15)
= A kp(j+1,r+1,r) kp(j+2,r,r—1)
Toq ~ C 1 r242r42 j ( P ) ) . ) ]
21 ( ogy) ]EZO(ZU) (G +1)! (j+2)!

It can be checked that the error term O(LT2+T+maX(“’”)) contributes an
amount O(L™!) smaller than the main term.

6.3. Evaluation of I. By (6.9)

zaj 2 A (i)t
(6.16) 122———2 2% T Cug

where

d,(mh)P(|mh|, T \"
L3 Ly (5 Pl (T

m<y nlm h<

(6.17) <
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Applying partial summation to (5.43) yields

(6.18)

RU() _
édrmmqu]y) s
o, (m) (—1)75!(;) log (%)

e [ Pl + (1= ), )9)d0 + O(B(w)

where F(y) denotes the error term in (5.43). We apply Lemma 5.8(iii) to
the first factor in (6.17) and we apply (6.18) to the second factor of (6.17)
to obtain

(—=1)751(;) (log y)**" , y \ 7+ 1(n)
Cug = (r—D!r+j5-—1)! Z or(m) (E) nltio

m<y nlm

1*[m]y 1 .
/0 Fg(@l,m)dﬁl/o 057 P([m], + (1 — [m],)62) db,

where F3(6;,m) = 677 (n~t — 6,)“P([m], + 0,). Further simplification gives

—1)751(") (log )2+ 2
CuJ- _ ( ) (] gy / / Qr 10r+] 1 -1 9 )u Z O'T(m)

(r—DYr+j—1) <, m

p(n) (
n1+icx
nlm

Next note that Y n717 = m) +O(|a] 3

n|m

-1 j] logy 2r+u+j
Cuj = ( ) ( / / 07" 16r+J l — _9 )u

(r—Dr+j4—1)!

m<y

— [ml,)" P (0 + [m],) P ([m], + (1~ [m],)0z) 6

nlm T ~1). Thus we have

2. % (1= [m],)"™ P (01 + [m],) P ([m], + (1 — [m],)02) dohdb

plus an error term of the shape

S o, (m)? 1
Zrju |0 (logy) >~ % > -

m<y nlm
(6.19) ) )
. 2rutj or(n) or(k) e 2rtutj—1
<<7"737U |OZ|L Z TL2 Z k’ <<r,],u L .
n<y k<y/m

Note that we can write down the constant in the O term explicitly in terms
of r, 7, and u. Applying Lemma 5.9 to the inner sum we derive

a?“-i-l(_l)j ! (r) (log 3/)T2+2T+u+j
Cug = (r—Dlr+j—D(r2—-1)!

1-61
/ / / L0 (7t — 0,) 6" L R(6)d6d6, b
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where R(6) = (1 —0)"P(0; + )P0+ (1 —§)b,) and this is valid up to an
error of Or7j7u(L”2+27"+“+j ~1). If we recall the definition @, (8 fo oy P
(1—0)02) df, and then execute the integration in the 6- varlable this becomes
a,1 (=171 (7) (log y)™ 2+t
Cug ™ 7’—1) r+j—1(2—1)

/ / O (7 — 01)"5" (L = 8 P(By + 6) Qi1 (6)ddb; .

Recalling definitions (1.10) and (1.11) we have

(r = DICH(=1)75!(7) (log ) +2rteti
. = k 5 " — 1
(6.20) Cuj CESE] pu,r+7,r+75—1)

+ Oy ju (L2t

Combining (6.16) and (6.20) establishes that Iy is —(r—1)!1C, L (log y)"* +2+2
multiplied by the series

k‘p(U,T+j,T+j_1)

L (=17 (5) ielog y) 7 & (iavlog y)®
3 }:( gy)

— 1)! !
= (r+j—1)! — u!
— (=1)7(;},) (ialogy) & (ialogy)
J+2 ialog y) . .
= k 2 1
2 (r+j+1) D helur £i 42 i+
7=0 u=0
r—2

_ j+2 772 /{: . 49 1
2 THH,Z p(n—j,r+j+2,r+j+1)
where in the second line we replaced 7 —2 by 7 and in the third line we made
the variable change n = w4 7 in the inner sum. Moreover, it can be checked
that the error term O, j,,(L™ 2 +*+/=1) when substituted in (6.16) is smaller
than the main term by a factor of O(L™1). We now write Iy = Iy + Iy

where I, is the contribution from the j = 0 term and I,, is the rest:

, (r — 1)Cr21L(r+1)2+1 oo Znnn+(7‘+1)2+1

6.21) I,, = — k 2 1
(6.22)
" T 2 >
j -1 !CT—L(T—H) +1 n, nt(r+1)2+
22 (r ) o nE 1 Zn

3 (=1)(;12)

kp(n —jor+j+2r+j+1).
=i+t )

1<j<min(n,r—2)

6.4. Evaluating I. We collect our estimates to conclude the evaluation of
I. Since I = I+ I+ +15, plus error terms it follows from (6.13), (6.15), (6.21),
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and (6.22) that

(6.23)
T prinzn N J it (r+1)%+1 7”%(7”,77>j) ; N .
]NC’T%L > i + e (rym, 5) + ea(r,m, 5)
j=1 :
+CT()

where CT(I) denotes the constant term in the above Taylor series,

%(7",7’],].) = _iP(Tv r,j,r—l,7“—1)17_1+(ip(7“+1,7‘,j, T,T—1)+ip(r, T—Fl,j,’l“—].,?“—l)) )

3 (r,, ) = _k‘P(j +2,r,r — 1)_|_k'p(j +1,r+ 1,r)_(r —Dkp(j,r +2,7+1)
RGEC G +2) G+ 1) 20r +1);! !
min(j,r—2 wl T
ks(r,m, j) = —(r—1)! (JZ | (=) (“2) kp(j—u, r+u+2, r+u+1)
2\, "M, 0) = . — (]—U)'<T+U+1>‘ r\J ) ) .

Next remark that we may conveniently combine k(r,n,j) = ki(r,n,7) +
ko(r,1m,j) to obtain
(6.24)

min(j,r—2) (—]_)u( r )

k(r,n,7) = —(r—1)! ZQ T ;:J;ij 1)!k‘p(j—u,r+u+2,r+u+1) .

This completes the evaluation of I.

6.5. The final details. We now complete the proof of Theorem 2. In order
to abbreviate the following equations we put

(6.25) 0= C’T2£L(T+1)2+1, a= n(rﬂ)g_l, b= 77(”1)2, and ¢ = 77(7”+1)2+2 )
T

Recall that the discrete moment we are evaluating satisfies
(6.26) m(H,,T;a) = 2Re(I) — J + O(yT"*) .
Moreover, we showed (4.5) that J = CT(J)(1+ O(L™")) where

CT(J)=-0(a | o '(1-a)”Q,_1(a)?da
o S

=3 0 (L O, (@)Q ) da) .

We shall now combine (6.23) and (6.27) in (6.26) to finish the proof. In par-
ticular we shall now prove that 2CT(/) = CT(J) and hence CT(m(H,,T,a)) =
0. This was expected since the constant term in the Taylor series of (p+ «)

is zero for each p. Moreover, this fact that the constant term must be
zero provides a consistency check of our calculation. We now verify that
2CT(I) = CT(J). Recall that CT(I) = CT(I;) + CT(Iy) + CT(Iy).
From (6.13) we have

CT(h) =
rf (=bip(r,r,0,r — 1,r — 1)+ c(ip(r+1,r,0,7,r — 1)+ ip(r,r +1,0,7 — 1,7))) .
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Each of the above integrals has the form

(6.28) / / T = "1 =y — 2)°Qur (2)Qu (i + y) dyda

for (u,v) = (r,7), (r +1,7),(r,7 + 1). Note that we have the identity

(6.29) (1—2)""Q,(z) = /0 - B"P(x+ 5)dS .

One may deduce from (6.29) that

a2 Que) = [ s Qe dy

and hence

(6.28) = ! /O 2”71 = )" Qu 1 (2)Qu () da

)
It follows that

CT(I) =0 (b /O 27N = ) HQ 1 (2)Qr (3) da

e (/ 1 R, ) dr
0

r+1 /01 21— 2)? Q1 (2) Qs (2) dﬁ)) :

By (6.15) we have CT(I) = O+t (kp(1,r4+1,7) — (1/2)kp(2, 7,7 —1)).
Expanding out the factor (7! — 6;)? in the definition of kp we have

97](T+1)2+1]€p(2, o — 1) ~ Qn(r+1)2+1

2 —6,
> (2) (—1)7p~ =9 / 1 / 1 0,611 = 8) P(6 + 61)Q,—1(0) dod; .
0 0

=0
However, by (6.29) this simplifies to
(6.30)

1
077(T+1)2+1kp(27’]",7" B 1) ~ 0 (&/ 5r271(1 . 5)21”@7“71(5)2 do
0

—2b / 1 51— 6)2 Q1 (5)Q,(5) do
0

1
c / 5”1 = 8)22Q,-1(8)Qryr (6) dé) .
0
Moreover, a similar calculation establishes
(6.31)
OO (1, 4+ 1,7) ~ 6
1 1
(b / 571 = 82 Q,_1(8)Q,(0) db — ¢ / 51— 5)27"+2QT(5)2d6) .

0 0
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Combining (6.30) and (6.31) establishes
1
GHQ)—G(—%/,NQ%l—ﬁerﬂﬁﬂw
0
1
+%/"NL%1—®”“QPﬂ®QA®d5
0

—e [0 51012 (00) B

In a similar way, it follows from (6.21)

CT(L,) = —92((7;1 %c / 5711 = 8)2H2Q, 1 (6)Qrin (8) dO

Combining constant terms yields CT(I) = 0(cya + c2b + c3¢) where

1

1
€1 = —5/0 0T (1 = 6)7 Qe (0)2d0
1 2
& = / 51— 8P Q, 1 (5)Q0(8) b

c3 = / 57" —1 27’+2

~(Qr<5)2(1—1>+@~1(5)@“(5)( r —%— (r—1) )) ds |

r+1

Observe that ¢3 = 0 and hence we have shown that

CT(I) = 6-

1 1

(—%/1N2%1—®”QTN®%M+b/1N2%1—&”“QTN&Q4&mQ.
0 0

However, glancing back at (6.27) we see that 2CT(/) = CT(J). By this

fact, (6.23), (6.24), and (6.26) we finally deduce m(H,,T; ) is asymptotic

to

J!

T o . .
Crﬂ_ L0+ 1R, (Z (ia L)yt +) )2+1 (7’@(7"{7773) —l—k(?“,n,j))) ‘
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