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1. INTRODUCTION

Every Dirichlet L-function L(s, χ) has infinitely many nontrivial zeros, and our knowledge
about their vertical distribution is rather good. Our understanding of the algebraic nature of their
imaginary parts, on the other hand, is extremely meager. We have no reason to doubt that these
imaginary parts are haphazard transcendental numbers that have no algebraic relationships among
them; in particular, any vertical arithmetic progression should contain at most two zeros of L(s, χ).
We are very far, however, from being able to prove such a statement. The purpose of this article
is to improve our knowledge concerning the number of zeros of L(s, χ) in a vertical arithmetic
progression.

Our main theorem provides a lower bound for the number of points in an arithmetic progression
on the critical line at which a Dirichlet L-function takes nonzero values.

Theorem 1.1. Let χ be a nonprincipal Dirichlet character modulo q, and let a and b be real
numbers with b 6= 0. Then

#
{

1 ≤ k ≤ T : L
(
1
2

+ i(a+ kb), χ
)
6= 0
}
� T

log T
, (1)

where the implicit constant depends on a, b, and q.

As stated, the theorem does not cover the case of the Riemann zeta function; however, a minor
modification of our methods would establish the analogous lower bound #

{
1 ≤ k ≤ T : ζ

(
1
2

+

i(a+ kb)
)
6= 0
}
� T/log T .

We remark that our method of proof would work perfectly well for other vertical lines <(s) = σ
inside the critical strip besides the critical line <(s) = 1

2
itself. On these other lines, however, a

stronger result is already implied by zero-density estimates. Specifically, Linnik [15] proved that
for any 0 < δ < 1

2
, there exists 0 < ε(δ) < 1 such that L(s, χ) has �χ,δ T

1−ε(δ) zeros in the
rectangle {1

2
+ δ ≤ <(s) ≤ 1, |=(s)| ≤ T}. By the functional equation for Dirichlet L-functions,

the same quantity bounds the number of zeros in the rectangle in the rectangle {0 < <(s) ≤
1
2
− δ, |=(s)| ≤ T}. In particular, L(s, χ) is nonvanishing at almost all the points in any vertical

arithmetic progression σ+ i(a+ kb) with σ 6= 1
2
. (The lone exception is when χ is imprimitive, in

which case L(s, χ) does have infinite arithmetic progressions of zeros on the imaginary axis; but
these are easily understood.)

Putnam [23] proved that the set of zeros of ζ(s) does not contain any sequence of the form
{1
2

+ ikb : k ∈ N}. (In fact, this result immediately implies that such a sequence contains infinitely
many points that are not zeros of ζ(s), via the simple trick of replacing b by a multiple of itself.)
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Later, Lapidus and van Frankenhuysen [13, Chapter 9] extended this result to a certain class of L-
functions including Dirichlet L-functions. Moreover, they showed that there exist arbitrarily large
values of T such that

#
{

1 ≤ k ≤ T : L
(
1
2

+ ikb, χ
)
6= 0
}
� T 5/6.

They were able to establish a stronger lower bound under the assumption of the Generalized Rie-
mann Hypothesis (GRH), namely that there exist arbitrarily large values of T such that

#
{

1 ≤ k ≤ T : L
(
1
2

+ ikb, χ
)
6= 0
}
�ε T

1−ε

for any ε > 0. Even this conditional lower bound is improved by the lower bound in our uncon-
ditional Theorem 1.1; moreover, Theorem 1.1 applies to inhomogeneous arithmetic progressions
1
2

+ i(a+ kb), whereas Lapidus and van Frankenhuysen’s result applies only in the case a = 0.
The technique used to prove Theorem 1.1 can be adapted to bound the least term in an arithmetic

progression on the critical line that is not a zero of L(s, χ).

Theorem 1.2. Let a and b be real numbers satisfying 0 ≤ a < b, let D > 8 log 2 be a real number,
and let χ be a nonprincipal Dirichlet character (mod q).

(a) If b ≥ 2π, then there exists a positive integer

k �D b3q exp
( D log(b3q)

log log(b3q)

)
for which L(1

2
+ i(a+ kb), χ) 6= 0.

(b) If 0 < b ≤ 2π, then there exists a positive integer

k �D b−1q exp
( D log q

log log q

)
for which L(1

2
+ i(a+ kb), χ) 6= 0.

Again, a minor modification of our methods would establish, for b ≥ 2π, that there exists a
positive integer k �D b3 exp

(
(D log b3)/log log b3

)
for which ζ

(
1
2

+ i(a + kb)
)
6= 0. In the case

a = 0, van Frankenhuijsen [35] established that ζ(1
2

+ ikb) is nonzero for some positive integer
k ≤ 13b, which is superior in this homogeneous case. (Note that when 0 < b < 2π, the very
first term 1

2
+ i(a + b) in the arithmetic progression is not a zero of ζ(s), since the lowest zero

of the Riemann zeta-function has imaginary part exceeding 14.) In an unpublished manuscript,
Watkins [36] showed that L(1

2
+ ikb, χ) 6= 0 for some positive integer

k �χ exp
(
( 8
3π

+ o(1))b(log b)2
)
. (2)

Theorem 1.2 results in a better dependence upon b; we also make explicit the dependence upon q
and allow inhomogeneous arithmetic progressions 1

2
+ i(a+ kb).

Motivation for considering the above theorems is provided by the following far-reaching con-
jecture:

Conjecture (“LI”). The nonnegative imaginary parts of the nontrivial zeros of DirichletL-functions
corresponding to primitive characters are linearly independent over the rationals.

It appears Hooley [9] was the first to mention this conjecture in the context of Dirichlet L-
functions. Recently there has been significant interest in this conjecture, as Rubinstein and Sarnak
[26] established theorems revealing a close connection between LI and “prime number races”
in comparative prime number theory. Following their work, several researchers investigated the
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link between LI and prime number races (see the survey of Granville and the first author [8] for
references to the literature).

The LI conjecture is a natural generalization of a much older conjecture for the zeros of the
Riemann zeta function:

Conjecture 1. The positive imaginary parts of the nontrivial zeros of the Riemann zeta function
are linearly independent over the rationals.

Wintner [37, 38, 39] mentions the connection between the diophantine properties of the imagi-
nary parts of the zeros of the zeta function and the asymptotic distribution of the remainder term
in the prime number theorem. In [39] he indicates that Conjecture 1 reveals deeper information
about this distribution function. Later this idea was explored further by Montgomery [19] and then
by Monach [16]. Soon after Wintner’s articles, Ingham proved that Conjecture 1 implies that the
Mertens conjecture is false.

Unfortunately, theoretical results that provide direct evidence for LI or for Conjecture 1 are
sorely lacking. Moreover, the only numerical study of such linear relations of which we are aware
is Bateman et al. [2], who refined Ingham’s result by showing that it suffices to consider only
integer linear relations a1γ1+· · ·+anγn = 0 where each |aj| ≤ 1 except possibly for a single |aj| =
2. They verified numerically that no such relations exist among the smallest twenty ordinates γj of
zeros of ζ(s).

However, there are several interesting consequences of LI that are more amenable to analysis.
For example, any set containing 0 is linearly dependent, and so LI implies:

Conjecture 2. L(1
2
, χ) 6= 0 for all Dirichlet characters χ.

There are several impressive partial results in the direction of Conjecture 2. Jutila [12] proved
that there are infinitely many characters χ (quadratic, with prime conductor) for which L(1

2
, χ) 6=

0; later Balasubramanian and Murty [1] showed that L(1
2
, χ) 6= 0 for at least 1

25
of the Dirichlet

characters χ with prime conductor. For general conductors q, Iwaniec and Sarnak [11] proved that
L(1

2
, χ) 6= 0 for at least 1

3
of the even primitive characters, while in the special case of quadratic

characters, Soundararajan [32] showed that L(1
2
, χ) 6= 0 for at least 7

8
of the quadratic characters

with conductor divisible by 8.
When discussing the zeros of Dirichlet L-functions, it is typical to speak of the “set” of zeros but

actually mean the multiset of zeros, where each zero is listed according to its multiplicity. Since
any multiset with a repeated element is linearly dependent, LI has the following implication as
well:

Conjecture 3. Every zero of every Dirichlet L-function is simple.

There is ample numerical evidence for Conjecture 3: extensive calculations of zeros of ζ(s)
(see [21] and [34]) verify that all its known zeros are simple, and similarly, calculations by Rumely [28]
of zeros of many Dirichlet L-functions confirm that all their known zeros are also simple. As for
theoretical evidence, Levinson [14] proved that at least 1

3
of the zeros of ζ(s) are simple, which

was later improved by Conrey [5] to 2
5
. Moreover, in his seminal work on the pair correlation of

zeros of ζ(s), Mongomery [17] proved that if the Riemann Hypothesis is true then at least 2
3

of
the zeros of ζ(s) are simple; furthermore, his pair correlation conjecture implies that almost all
of its zeros are simple. Similar remarks apply to Dirichlet L-functions under the generalized pair
correlation conjecture (see [27]). Unconditionally, it seems that Bauer [3] was the first person to
prove that a Dirichlet L-function has infinitely many simple zeros. Recently, Conrey, Iwaniec,
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and Soundararajan have proven a technical theorem which roughly asserts that 14
25

of the zeros of
all Dirichlet L-functions are simple. Assuming the Generalized Riemman Hypothesis, Ozluk [22]
proved a related theorem which also roughly asserts that 11

12
of the zeros of all Dirichlet L-functions

are simple.
(We remark in passing that under this “multiset” interpretation, LI actually implies the General-

ized Riemann Hypothesis, since any violating zero β + iγ would force another zero at 1− β + iγ,
thus causing a repetition of the imaginary part γ. One could reformulate the LI conjecture to be
independent of the truth or falsity of the Generalized Riemann Hypothesis if desired.)

We turn now to consequences of the LI conjecture to zeros in arithmetic progressions. Given a
Dirichlet character χ, let us define a χ-ordinate to be a real number γ such that L(σ + iγ, χ) = 0
for some 0 < σ < 1, and a Dirichlet ordinate to be a nonnegative real number γ that is a χ-ordinate
for some Dirichlet character χ.

Conjecture 4. Let a and b be positive real numbers.
(a) For any Dirichlet character χ, at most two points in the inhomogeneous arithmetic progres-

sion {a+ kb : k ∈ Z} are χ-ordinates. When a = 0, at most one point in the homogeneous
arithmetic progression {kb : k ∈ Z} is a χ-ordinate.

(b) No real number is a χ-ordinate for two different Dirichlet characters χ.

Conjecture 4(a) follows from the fact that any three distinct elements of an arithmetic progres-
sion are linearly dependent (or even two distinct elements, if the arithmetic progression contains
0). Conjecture 4(b) is a result of interpreting LI as discussing the multiset of Dirichlet ordinates.
One important special case of Conjecture 4(a) comes from restricting to the central line:

Conjecture 5. Let a and b be positive real numbers, and let χ be a Dirichlet character. At most
two points in the vertical arithmetic progression {1

2
+ i(a+ kb) : k ∈ Z} are zeros of L(s, χ).

Theorem 1.1 goes some distance towards proving Conjecture 5 and hence serves as actual theoret-
ical evidence in favor of the LI conjecture.

We conclude this discussion with an observation of Silberman [31], who singles out the follow-
ing seemingly simple consequence of LI:

Conjecture 6. There does not exist a real number ω such that every Dirichlet ordinate is a rational
multiple of ω.

However, not only is Conjecture 6 apparently intractable at the moment, it is unknown whether
any Dirichlet L-function at all (including the Riemann ζ-function) has even a single nontrivial
zero whose imaginary part is irrational!

In Section 2 we describe the strategy of our proofs of Theorems 1.1 and 1.2: in short, we multiply
L
(
1
2

+ i(a + kb), χ
)

by a mollifier and investigate the first and second moments of the resulting
mollified sums. The main tools in these proofs are the approximate functional equation for L(s, χ),
a suitable version of which is proved in Section 3, and a theorem of Bauer [3] (see Lemma 5.4)
concerning mollified second moments of L(s, χ) integrated on the critical line. The error terms that
result from the approximate functional equation depend in a slightly delicate way on the distance
between (b log n)/2π and the nearest integer; Section 4 contains a few technical lemmas needed
to handle these terms. With these preliminaries accomplished, we prove Propositions 5.2 and 5.6,
from which Theorem 1.1 directly follows, in Section 5. (It seems likely that we could achieve the
lower bound in Theorem 1.1 without using a mollifier at all, but the use of the mollifier simplifies
the argument; for example, it allows us to get an asymptotic formula for the first moment that is
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uniform in the spacing b between points in the arithmetic progression.) The technically simpler
Theorem 1.2 is proved in Section 6.

2. MOMENTS AND MOLLIFIERS

In this section we describe our strategy for establishing Theorems 1.1 and 1.2. As is not un-
common when investigating the nonvanishing of functions defined by Dirichlet series, both proofs
depend upon sums of values of L(s, χ) weighted by a mollifier of the form

M(s, χ, P ) =
∑

1≤n≤X

µ(n)χ(n)

ns
P
(

1− log n

logX

)
. (3)

In this definition, X is a positive parameter, and P can be any polynomial; the proofs of Theo-
rems 1.1 and 1.2 employ the simple polynomials P1(x) = x and P2(x) = 1, respectively.

We introduce the notation
sk = 1

2
+ 2πi(α + kβ)

for integers k. (This notation differs from that of Theorems 1.1 and 1.2 by the change of variables
a = 2πα and b = 2πβ; this normalization simplifies a number of formulas that will be encountered
later.) We define the corresponding first and second moments

S1(T, P ) =
T∑
k=1

L(sk, χ)M(sk, χ, P )

and

S2(T, P ) =
T∑
k=1

|L(sk, χ)M(sk, χ, P )|2,

both functions of a positive parameter T . A common application of the Cauchy–Schwarz inequality
reveals that

#{1 ≤ k ≤ T : L(sk, χ) 6= 0} ≥ |S1(T, P1)|2

S2(T, P1)
;

therefore to establish Theorem 1.1, we seek a lower bound for the first moment S1(T, P1) and an
upper bound for the second moment S2(T, P1). In fact we can establish that

S1(T, P1) ∼ T (4)

(see Proposition 5.2) and
S2(T, P1)� T log T (5)

(see Proposition 5.6), which combine to yield

#{1 ≤ k ≤ T : L(sk, χ) 6= 0} � T

log T

and hence Theorem 1.1. In the proof, the lengthX of the Dirichlet polynomial definingM(s, χ, P )
is taken to be a power of T , namely X = T θ: the asymptotic formula (4) holds for any 0 < θ < 1,
while the estimate (5) holds for any 0 < θ < 1

2
. In summary, this discussion shows that we have

reduced the proof of Theorem 1.1 to verifying Propositions 5.2 and 5.6.
We remark that we expect a better bound than (5) for the second moment. We did not try to

asymptotically evaluate (5) directly; rather we used Gallagher’s lemma [18, Lemma 1.2] to es-
timate the sum by related integrals which were evaluated by Bauer [3]. The use of Gallagher’s
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lemma, however, produces a factor of log T which presumably is merely an artifact of the argu-
ment. It is possible that a more careful evaluation could show that S2(T, P1) � T ; this stronger
upper bound would improve Theorem 1.1 to the statement that a positive proportion of the points
in a vertical arithmetic progression are not zeros of L(s, χ). We have, however, been unable to
realize such an improvement thus far.

The proof of Theorem 1.2 is conceptually much simpler, since all we need to show is that

S1(T, P2) =
T∑
k=1

L(sk, χ)M(sk, χ, P2) 6= 0

for T sufficiently large as a function of β and the conductor q of χ. In fact, we show that
S1(T, P2) = T + o(T ), where the error term is bounded by an explicit function of T , β, and
q. It then suffices to determine the least T such that the error term is smaller than T .

We briefly mention how our work relates to previous arguments. Lapidus and van Frankenhuy-
sen [13, Chapter 9] consider the expression

∞∑
k=−∞

xsk

sk
L(sk, χ)

where sk = 1
2

+ 2πikβ and x and is a real variable. They developed an explicit formula for this
expression which allowed them to deduce non-vanishing results for L(sk, χ). Watkins’s bound
(2) is derived from an explicit formula for a variant of the above sum. We observe that all of the
arguments rely on the calculation of certain discrete means of L(sk, χ).

3. TRUNCATED DIRICHLET SERIES

It is crucial to our method that L(s, χ) can be well-approximated inside the critical strip by a
suitable truncation of its defining Dirichlet series. The following proposition is essentially [25,
Corollary 1], though we have placed more attention upon the dependence on q (particularly for
imprimitive characters) and on s. In order to keep this article self-contained, we provide a proof.
Throughout we use the traditional notation s = σ + it to name the real and imaginary parts of s.

Proposition 3.1. Let χ be a nonprincipal Dirichlet character modulo q, and let C > 1 be a
constant. Uniformly for all complex numbers s with σ > 0 and all real numbers x > C|t|/2π,

L(s, χ) =
∑
n≤qx

χ(n)n−s +OC

(
q1/2−σx−σ(log q)

(
1 + min

{
σ

x log q
,
|t|
σ

}))
. (6)

The dependence upon C of the constant implicit in the OC notation is quite mild, something like
min{1, 1/(C−1)}; we emphasize that the implicit constant does not depend upon the character χ.
We remark that the methods used to prove Proposition 3.1 would also show that if χ = χ0 is the
principal character (mod q), then

L(s, χ0) =
∑
n≤qx

(n,q)=1

n−s − φ(q)

qs
x1−s

1− s
+OC

(
2ω(q)q−σx−σ(log q)

(
1 + min

{
σ

x log q
,
|t|
σ

}))
, (7)

where ω(n) denotes the number of distinct primes dividing n. However we do not include the
details, as we will not need to consider this case in our application.
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We begin with two lemmas that will be used in service of the important formula given in
Lemma 3.4 below. We use the standard notation ζ(s, α) =

∑∞
n=0(n + α)−s for the Hurwitz

zeta function (valid for σ > 1), as well as the fractional-part notation {x} = x− bxc.

Lemma 3.2. Let α, x, and N be real numbers with x > α > 0 and N > x. Let s be a complex
number with σ > 0. Then

ζ(s, α) =
∑

0≤n≤x−α

(n+α)−s+
{x− α} − 1/2

xs
− x1−s

1− s
−s
∫ N

x

{u− α} − 1/2

us+1
du+O

(
|s|
σ
N−σ

)
.

Proof. We use the following simple summation-by-parts formula [33, p. 13]: if φ is a function with
a continuous derivative on [a, b], then∑

a<n≤b

φ(n) =

∫ b

a

φ(u) du+

∫ b

a

({u} − 1
2
)φ′(u) du+ ({a} − 1

2
)φ(a)− ({b} − 1

2
)φ(b). (8)

Applying this formula with φ(n) = (n+α)−s on the interval (x−α,M ] for a large integer M , we
have ∑

0≤n≤M

(n+ α)−s =
∑

0≤n≤x−α

(n+ α)−s +

∫ M

x−α
(u+ α)−s du

− s
∫ M

x−α

{u} − 1/2

(u+ α)s+1
du+

{x− α} − 1/2

xs
+

1

2(M + α)s

=
∑

0≤n≤x−α

(n+ α)−s +
(M + α)1−s

1− s
− x1−s

1− s

− s
∫ M+α

x

{u− α} − 1/2

us+1
du+

{x− α} − 1/2

xs
+

1

2(M + α)s
.

Taking the limit of both sides as M goes to infinity, which is valid for σ > 1, we see that

ζ(s, α) =
∑

0≤n≤x−α

(n+ α)−s − x1−s

1− s
+
{x− α} − 1/2

xs
− s

∫ ∞
x

{u− α} − 1/2

us+1
du. (9)

However, both sides of equation (9) are meromorphic functions of s for σ > 0 (the convergence
of the integral is justified by equation (10) below), and therefore equation (9) is valid in that larger
half-plane by analytic continuation.

The only thing that remains to be proved is that

s

∫ ∞
x

{u− α} − 1/2

us+1
du = s

∫ N

x

{u− α} − 1/2

us+1
du+O

(
|s|
σ
N−σ

)
;

but this follows easily from the estimate

s

∫ ∞
N

{u− α} − 1/2

us+1
du� |s|

∫ ∞
N

1

uσ+1
du =

|s|
σ
N−σ. (10)

�

At this point we introduce two other standard pieces of notation: the complex exponential e(y) =
e2πiy of period 1, and the Gauss sum τ(χ) =

∑q
a=1 χ(a)e(a/q).
7



Lemma 3.3. Let x and N be real numbers satisfying 0 < x < N , let s be a complex number, and
let q be a positive integer. For any primitive character χ (mod q),

−sq−s
q∑

a=1

χ(a)

∫ N

x

{u− a/q} − 1/2

us+1
du =

sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du.

Proof. The standard Fourier series

{y} − 1

2
= − 1

2πi

∑
ν∈Z\{0}

e(νy)

ν

is valid for all non-integer real numbers y; therefore for any real number α,

−
∫ N

x

{u− α} − 1/2

us+1
du =

1

2πi

∫ N

x

( ∑
ν∈Z\{0}

e(ν(u− α))

ν

)
du

us+1
.

The bounded convergence theorem allows us to exchange the integral and sum, yielding

−
∫ N

x

{u− α} − 1/2

us+1
du =

1

2πi

∑
ν∈Z\{0}

e(−να)

ν

∫ N

x

e(νu)

us+1
du.

We now set α = a
q
, multiply both sides by sq−sχ(a), and sum over a to obtain

−sq−s
q∑

a=1

χ(a)

∫ N

x

{u− a/q} − 1/2

us+1
du

=
sq−s

2πi

∑
ν∈Z\{0}

(
1

ν

∫ N

x

e(νu)

us+1
du

) q∑
a=1

χ(a)e(−νa/q).

Since χ is primitive, the innermost sum is
q∑

a=1

χ(a)e(−νa/q) = χ̄(−ν)τ(χ)

for any integer ν [20, Corollary 9.8], which establishes the lemma. �

The following lemma provides the main formula upon which rests our proof of Proposition 3.1.

Lemma 3.4. Let α, x, and N be real numbers satisfying 0 < x < N , let s be a complex number
with σ > 0, and let q > 1 be an integer. For any primitive character χ (mod q),

L(s, χ) =
∑
n≤qx

χ(n)n−s + (qx)−s
q∑

a=1

χ(a)
(
{x− a

q
} − 1

2

)
+
sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du+O

(
|s|
σ
N−σq1−σ

)
.

Proof. We write the Dirichlet L-function in the form [7, page 71]

L(s, χ) = q−s
q∑

a=1

χ(a)ζ
(
s, a

q

)
.
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Using Lemma 3.2, we write

L(s, χ) = q−s
q∑

a=1

χ(a)

[ ∑
0≤n≤x−a/q

(
n+ a

q

)−s
+
{x− a/q} − 1/2

xs

− x1−s

1− s
− s

∫ N

x

{u− a/q} − 1/2

us+1
du+O

(
|s|
σ
N−σ

)]
= q−s

q∑
a=1

χ(a)
∑

0≤n≤x−a/q

(
n+ a

q

)−s
+ (qx)−s

q∑
a=1

χ(a)
(
{x− a

q
} − 1

2

)
− sq−s

q∑
a=1

χ(a)

∫ N

x

{u− a/q} − 1/2

us+1
du+O

(
|s|
σ
N−σq1−σ

)
, (11)

where the term −q−s
∑q

a=1 χ(a)x
1−s

1−s vanishes because χ is nonprincipal (here we use the assump-
tion q > 1). The first term on the right-hand side of equation (11) can be simplified using the
change of variables m = qn+ a:

q−s
q∑

a=1

χ(a)
∑

0≤n≤x−a/q

(
n+ a

q

)−s
=

∑
1≤m≤qx

χ(m)m−s.

Using this simplification, together with Lemma 3.3 for the third term on the right-hand side, equa-
tion (11) becomes

L(s, χ) =
∑
n≤qx

χ(n)n−s + (qx)−s
q∑

a=1

χ(a)
(
{x− a

q
} − 1

2

)
+
sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du+O

(
|s|
σ
N−σq1−σ

)
,

which establishes the lemma. �

We must establish two somewhat technical estimates before arriving at the proof of Proposi-
tion 3.1.

Lemma 3.5. For any nonprincipal character χ (mod q), any positive real number x, and any
complex number s,

(qx)−s
q∑

a=1

χ(a)({x− a
q
} − 1

2
)� q1/2−σx−σ log q.

Proof. It suffices to show that

q∑
a=1

χ(a)
(
{x− a

q
} − 1

2

)
� √q log q
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uniformly in x; since the left-hand side is a periodic function of x with period 1, we may assume
that 0 ≤ x < 1. Setting b = bqxc, we have

q∑
a=1

χ(a)
(
{x− a

q
} − 1

2

)
=

b∑
a=1

χ(a)
(
x− a

q
− 1

2

)
+

q∑
a=b+1

χ(a)
(
x− a

q
+ 1− 1

2

)
=

q∑
a=b+1

χ(a)− 1
q

q∑
a=1

aχ(a) +
(
x− 1

2

) q∑
a=1

χ(a)

= −
b∑

a=1

χ(a)− 1
q

q∑
a=1

aχ(a),

since
∑q

a=1 χ(a) = 0. Using the notation Sχ(u) =
∑

1≤a≤u χ(a), we see that

q∑
a=1

χ(a)
(
{x− a

q
} − 1

2

)
= −Sχ(b)− 1

q

∫ q

0

u dSχ(u)

= O(
√
q log q)− 1

q
(qSχ(q)− 0) + 1

q

∫ q

0

Sχ(u) du

= O(
√
q log q) + 0 +O(

√
q log q)

by the Pólya–Vinogradov inequality [20, Theorem 9.18]. �

Lemma 3.6. Let χ (mod q) be a primitive character, and let s be a complex number. Let C > 1 be
a constant, and let N and x be real numbers with N > x > C|t|/2π. Then

sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du�C |s|q1/2−σx−σ−1.

Proof. The main step of the proof is to show that∫ N

x

e(νu)

us+1
du� 1

xσ+1

1

|ν| − C−1
(12)

for any nonzero integer ν. Indeed, if we have the estimate (12) then

sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du� |s|q1/2−σ

∑
ν∈Z\{0}

1

|ν|
· 1

xσ+1

1

|ν| − C−1

= |s|q1/2−σx−σ−1
∞∑
ν=1

1

ν(ν − C−1)
�C |s|q1/2−σx−σ−1

by the Gauss sum evaluation |τ(χ)| = q1/2 [20, Theorem 9.7].
To establish the estimate (12), we may assume without loss of generality that t ≥ 0, since

conjugating the left-hand side is equivalent to replacing t by−t and ν by−ν. We begin by writing∫ N

x

e(νu)

us+1
du =

∫ N

x

e2πiνu−it log u

uσ+1
du = −i

∫ N

x

(
2πiν − it

u

)
e2πiνu−it log uG(u) du,

10



where we have set G(u) = 1/
(
uσ(2πνu− t)

)
. Integrating by parts,∫ N

x

e(νu)

us+1
du = −iei(2πνu−t log u)G(u)

∣∣∣∣N
x

+ i

∫ N

x

ei(2πνu−t log u)G′(u) du

� |G(N)|+ |G(x)|+
∫ N

x

|G′(u)| du.

It is easy to check that G(u) is positive and decreasing for u > t/2π when ν > 0, while G(u) is
negative and increasing for u > 0 when ν < 0. Since x > Ct/2π and C > 1, we conclude that
|G(u)| is decreasing for u ≥ x. Therefore∫ N

x

e(νu)

us+1
du� |G(x)|+

∫ ∞
x

(
− sgn(ν)G′(u)

)
du

= |G(x)|+ |G(x)|

=
2

xσ
1

|2πνx− t|

<
2

xσ
1

2π|ν|x− 2πC−1x
� 1

xσ+1

1

|ν| − C−1

as claimed. �

Proof of Proposition 3.1. We begin by assuming that χ is primitive and q > 1, so that the statement
of Lemma 3.4 is valid:

L(s, χ) =
∑
n≤qx

χ(n)n−s + (qx)−s
q∑

a=1

χ(a)
(
{x− a

q
} − 1

2

)
+
sq−s

2πi
τ(χ)

∑
ν∈Z\{0}

χ̄(−ν)

ν

∫ N

x

e(νu)

us+1
du+O

(
|s|
σ
N−σq1−σ

)
.

Using Lemma 3.5 and Lemma 3.6 to bound the second and third terms on the right-hand side yields

L(s, χ) =
∑
n≤qx

χ(n)n−s +O
(
q1/2−σx−σ log q

)
+OC

(
|s|q1/2−σx−σ−1

)
+O

(
|s|
σ
N−σq1−σ

)
.

Letting N →∞, we obtain

L(s, χ) =
∑
n≤qx

χ(n)n−s +OC

(
q1/2−σx−σ(log q)

(
1 +

|s|
x log q

))
.

However, we know that |s|/x� (σ + |t|)/x� σ/x+ 1, and so this can be rewritten as

L(s, χ) =
∑
n≤qx

χ(n)n−s +OC

(
q1/2−σx−σ(log q)

(
1 +

σ

x log q

))
. (13)

To establish equation (6) for primitive characters, it thus remains to show that

L(s, χ) =
∑
n≤qx

χ(n)n−s +OC

(
q1/2−σx−σ(log q)

(
1 +
|t|
σ

))
. (14)

11



We have

L(s, χ) =
∑
n≤qx

χ(n)n−s +
∑
n>qx

χ(n)n−s =
∑
n≤qx

χ(n)n−s +

∫ ∞
qx

u−s dSχ(u),

where Sχ(u) =
∑

n≤u χ(n). Partial summation yields

L(s, χ) =
∑
n≤qx

χ(n)n−s +
Sχ(u)

us

∣∣∣∣∞
qx

+ s

∫ ∞
xq

Sχ(u)

us+1
du.

The Pólya–Vinogradov bound Sχ(u)� q1/2 log q gives

L(s, χ) =
∑
n≤qx

χ(n)n−s +O

(
q1/2 log q

(qx)σ
+ |s|

∫ ∞
xq

q1/2 log q

uσ+1
du

)
=
∑
n≤qx

χ(n)n−s +O

(
q1/2−σx−σ(log q)

(
1 +
|s|
σ

))
.

Since |s|/σ � (σ + |t|)/σ = 1 + |t|/σ, we have established equation (14) and hence the case of
the proposition where χ is primitive.

Now let χ (mod q) be any nonprincipal character; we know that χ is induced by some character
χ∗ (mod q∗), where q∗ | q and q∗ > 1. Define r to be the product of the primes dividing q but
not q∗. Then χ(n) equals χ∗(n) if (n, r) = 1 and 0 if (n, r) > 1. Consequently,∑

n≤qx

χ(n)n−s =
∑
n≤qx

(n,r)=1

χ∗(n)n−s =
∑
n≤qx

χ∗(n)n−s
∑
d|(n,r)

µ(d)

by the characteristic property of the Möbius µ-function. Reversing the order of summation,∑
n≤qx

χ(n)n−s =
∑
d|r

µ(d)
∑
n≤qx
d|n

χ∗(n)n−s =
∑
d|r

µ(d)χ∗(d)

ds

∑
m≤qx/d

χ∗(m)m−s. (15)

Since χ∗ (mod q∗) is primitive, we may use the already established equation (6) on the right-hand
side of equation (15), with qx/q∗d in place of x; we obtain∑
n≤qx

χ(n)n−s

=
∑
d|r

µ(d)χ∗(d)

ds

(
L(s, χ∗) +OC

(
(q∗)1/2−σ

( qx
q∗d

)−σ
(log q)

(
1 + min

{
q∗dσ

qx log q
,
|t|
σ

})))

= L(s, χ∗)
∑
d|r

µ(d)χ∗(d)

ds
+OC

(
(q∗)1/2q−σx−σ(log q)

(
1 + min

{
σ

x log q
,
|t|
σ

})∑
d|r

1

)

= L(s, χ∗)
∏
p|r

(
1− χ∗(p)

ps

)
+OC

(
2ω(r)(q∗)1/2q−σx−σ(log q)

(
1 + min

{
σ

x log q
,
|t|
σ

}))
.

Note thatL(s, χ∗)
∏

p|r
(
1−χ∗(p)/ps

)
= L(s, χ); thus to establish equation (6) for all nonprincipal

characters, it suffices to show that 2ω(r)(q∗)1/2 � q1/2 in the error term. But this follows from the
12



calculation

2ω(r)
(q∗)1/2

q1/2
≤
∏
p|r

2 ·
∏
pα‖q
p|r

(pα)−1/2 ≤
∏
p|r

(2p−1/2) ≤ 2√
2

2√
3
,

and so the proof of the proposition is complete. �

4. SUMS INVOLVING THE DISTANCE TO THE NEAREST INTEGER

In our proofs of Theorems 1.1 and 1.2, we need to estimate sums of the shape
∑

min(T, ‖β log n‖−1)
over certain sets of natural numbers. An important point is that the summand is very large when n
is close to one of the integers

Ej =
⌊
ej/β

⌋
.

For this reason, we begin by bounding the above sum when n ranges from Ej to Ej+1. We have
made the effort to keep explicit all dependences of the implicit constants on β, particularly with an
eye towards the application to Theorem 1.2.

Lemma 4.1. Let T ≥ 1 and β > 0 be real numbers. Uniformly for all integers j ≥ 0,∑
Ej≤n≤Ej+1

min{T, ‖β log n‖−1} � T +
e1/β

β

j + 1

β
ej/β.

Proof. For convenience we will split the interval [Ej, Ej+1] into two intervals at the point Hj =⌊
e(j+1/2)/β

⌋
. For the first half of the interval, note that∑
Ej≤n≤Hj

min{T, ‖β log n‖−1} ≤ 2T +
∑

Ej+2≤n≤Hj

(β log n− j)−1

� T + 1
β

∑
2≤h≤Hj−Ej

(
log(Ej + h)− j

β

)−1
,

where we have set h = n− Ej . Since

log(Ej + h)− j

β
≥ log

(
ej/β − 1 + h

)
− j

β
= log

(
1 +

h− 1

ej/β

)
,

the last upper bound becomes∑
Ej≤n≤Hj

min{T, ‖β log n‖−1} � T + 1
β

∑
2≤h≤Hj−Ej

(
log

(
1 +

h− 1

ej/β

))−1
. (16)

The term (h− 1)/ej/β can be bounded above by

h− 1

ej/β
≤ Hj − Ej − 1

ej/β
≤ e(j+1/2)/β − (ej/β − 1)− 1

ej/β
= e1/2β − 1;

by the concavity of log(1 + x) on the interval 0 ≤ x ≤ e1/2β − 1, we infer that

log

(
1 +

h− 1

ej/β

)
≥ h− 1

ej/β
log(1 + (e1/2β − 1))

e1/2β − 1
=

h− 1

2βej/β(e1/2β − 1)
.

13



Therefore equation (16) becomes

∑
Ej≤n≤Hj

min{T, ‖β log n‖−1} � T + 1
β

∑
2≤h≤Hj−Ej

βej/β(e1/2β − 1)

h

≤ T + ej/β(e1/2β − 1) log(Hj − Ej)

≤ T + ej/β(e1/2β − 1) log e(j+1/2)/β = T + (e1/2β − 1)
j + 1/2

β
ej/β.

(17)

Similarly, consider∑
Hj≤n≤Ej+1

min{T, ‖β log n‖−1} ≤ 2T +
∑

Hj≤n≤Ej+1−2

(j + 1− β log n)−1.

Note that for 2 ≤ h ≤ Ej+1 −Hj , by the convexity of log(1− x)−1,

j + 1

β
− log(Ej+1 − h) ≥ j + 1

β
− log(e(j+1)/β − h

)
= log

(
1− h

e(j+1)/β

)−1
≥ h

e(j+1)/β
.

Therefore∑
Hj≤n≤Ej+1

min{T, ‖β log n‖−1} � T +
e1/β

β

∑
2≤h≤Ej+1−Hj

ej/β

h

≤ T +
e1/β

β
ej/β log(Ej+1 −Hj)

≤ T +
e1/β

β
ej/β log e(j+1)/β = T +

e1/β

β

j + 1

β
ej/β. (18)

The lemma follows from adding the upper bounds (17) and (18) and noting that e1/2β − 1 ≤ 1
β
e1/β

for β > 0. �

With the previous lemma in hand, we may now obtain a bound for weighted averages of min{T, ‖β log n‖−1}
over arbitrary intervals.

Proposition 4.2. For any real numbers B > A ≥ 1,

∑
A<n≤B

n−1/2 min{T, ‖β log n‖−1} � e1/β

e1/2β − 1

(
TA−1/2 +

e1/β

β
B1/2(logB + β−1)

)
(19)

uniformly for T ≥ 1 and β > 0. In particular, for β ≥ 1,∑
A≤n≤B

n−1/2 min{T, ‖β log n‖−1} � βTA−1/2 +B1/2 logB. (20)

14



Proof. If we choose nonnegative integers I and J such that e−1/βA < eI/β ≤ A and B ≤ eJ/β <
Be1/β , we have∑

A<n≤B

n−1/2 min{T, ‖β log n‖−1} ≤
∑

EI<n≤EJ

n−1/2 min{T, ‖β log n‖−1}

�
∑
I≤j≤J

(Ej + 1)−1/2
∑

Ej<n≤Ej+1

min{T, ‖β log n‖−1}

�
∑
I≤j≤J

e−j/2β
(
T +

e1/β

β

j + 1

β
ej/β

)
by Lemma 4.1. This last expression is essentially the sum of two geometric series:∑

A≤n≤B

n−1/2 min{T, ‖β log n‖−1} � T
∑
j≥I

e−j/2β +
e1/β

β

J

β

∑
j≤J

ej/2β

� T
e−I/2β

1− e−1/2β
+
e1/β

β

J

β

eJ/2β

1− e−1/2β
.

Since eI/2β > A1/2e−1/2β and eJ/2β < B1/2e1/2β (which in turn implies J
β
< logB + 1

β
), this

becomes∑
A≤n≤B

n−1/2 min{T, ‖β log n‖−1} � e1/2β

1− e−1/2β

(
TA−1/2 +

e1/β

β
(logB + β−1)B1/2

)
,

which is the same as the assertion (19). When β ≥ 1, the simpler assertion (20) follows the first
assertion by bounding the appropriate functions of β (although it must be checked a little carefully
that the bound is indeed valid when B is very close to 1). �

5. MANY POINTS IN ARITHMETIC PROGRESSION ARE NOT ZEROS

Having completed all of the preliminaries necessary to proceed to the proofs of the main theo-
rems, in this section we establish Theorem 1.1. As mentioned in Section 2, to prove Theorem 1.1
it suffices to verify the estimates (4) and (5). These estimates are established below in Proposi-
tions 5.2 and 5.6, respectively.

Let χ (mod q) be a fixed primitive character. Let α and β be fixed real numbers, and define
sk = 1

2
+ 2πi(α + kβ). Recall that for P1(x) = x,

M1(s) = M(s, χ, P1) =
∑
m≤X

χ(m)µ(m)

ms

(
1− logm

logX

)
;

here X = T θ where the parameter 0 < θ < 1 will be specified later. We note the trivial bound

M1(
1
2

+ it)�
∑
m≤X

m−1/2 � X1/2. (21)

We define the corresponding first and second moments

S1(T, P1) =
T∑
k=1

L(sk, χ)M1(sk) (22)

15



and

S2(T, P1) =
T∑
k=1

|L(sk, χ)M1(sk)|2. (23)

The smoothing factor 1 − (logm)/ logX in the definition of the mollifier M1(s) has been intro-
duced so that evaluating the second moment is more convenient, although it slightly complicates
the evaluation of the first moment.

In the course of our analysis, we will encounter the coefficients

an =
∑
`m=n
`≤qU
m≤X

µ(m)

(
1− logm

logX

)
, (24)

where U is a parameter to be specified later. The mollifier M1(s) has been chosen to make the
coefficients an small; the following lemma gives us more precise information.

Lemma 5.1. We have an = Λ(n)/ logX for 1 < n ≤ X , while |an| ≤ 2ω(n) for X < n ≤ qUX .

Proof. The bound |an| ≤ 2ω(n) for any n follows from the fact that each term in the sum (24)
defining an is at most 1 in size, while the number of nonzero terms is at most the number of
squarefree divisors m of n. Now suppose 1 < n ≤ X , so that the sum defining an includes all of
the factorizations of n; we can then evaluate exactly

an =
∑
m|n

µ(m)

(
1− logm

logX

)
=
∑
m|n

µ(m)− 1

logX

∑
m|n

µ(m) logm = 0 +
1

logX
Λ(n)

using two well-known divisor sums. �

We are now ready to establish the required lower bound for the first moment S1(T, P1); in fact
we can obtain an asymptotic formula.

Proposition 5.2. Let T be a positive integer, and define S1(T, P1) as in equation (22), where
X = T θ with 0 < θ < 1. Then S1(T, P1) = T +Oχ,α,β,θ

(
T/
√

log T
)
.

Proof. In this proof, all constants implicit in the O and � notations may depend upon χ (hence
q), α, β, and θ. Set U = 3(|α| + |β|)T , and notice that U > 2|α + kβ| = 2| Im sk|/2π for any
1 ≤ k ≤ T . Therefore Proposition 3.1 can be applied (with σ = 1

2
) to yield

L(sk, χ) =
∑
`≤qU

χ(`)

`sk
+O(T−1/2).

Using this truncated series and the bound (21), we obtain

L(sk, χ)M1(sk) =
∑
`≤qU

χ(`)

`sk

∑
m≤X

χ(m)µ(m)

msk

(
1− logm

logX

)
+O

(
|M1(sk)|T−1/2

)
=
∑

n≤qUX

χ(n)an
nsk

+O
(
X1/2T−1/2

)
,

16



where an is defined in equation (24). Therefore, since a1 = 1,

S1(T, P1) =
T∑
k=1

( ∑
n≤qUX

χ(n)an
nsk

+O
(
X1/2T−1/2

))

=
∑

n≤qUX

χ(n)an
n1/2+2πiα

T∑
k=1

n−2πikβ +O
(
T 1/2X1/2

)
= T +O

( ∑
1<n≤qUX

|an|
n1/2

min{T, ‖β log n‖−1}+ T 1/2X1/2

)
, (25)

where we have used the standard geometric series estimate

T∑
k=1

n−2πikβ � min{T, ‖β log n‖−1}. (26)

Thanks to Lemma 5.1, the sum in the error term in equation (25) can be bounded above by∑
1<n≤qUX

|an|
n1/2

min{T, ‖β log n‖−1} ≤ 1

logX

∑
1<n≤Y

Λ(n)

n1/2
min{T, ‖β log n‖−1}

+
1

logX

∑
Y <n≤X

Λ(n)

n1/2
min{T, ‖β log n‖−1}+

∑
X<n≤qUX

2ω(n)

n1/2
min{T, ‖β log n‖−1}

for any positive integer Y ≤ X . In the first sum we bound the minimum by T and use the
Chebyshev bound

∑
n≤x Λ(n)� x; in the second sum we use Λ(n) ≤ logX; and in the final sum

we use 2ω(n) � nε, where ε = 1
5

min{θ, 1− θ}. The result is

∑
1<n≤qUX

|an|
n1/2

min{T, ‖β log n‖−1} � TY 1/2

logX

+
∑

Y <n≤X

n−1/2 min{T, ‖β log n‖−1}+ (qUX)ε
∑

X<n≤qUX

n−1/2 min{T, ‖β log n‖−1},

which in conjunction with Proposition 4.2 yields

∑
1<n≤qUX

|an|
n1/2

min{T, ‖β log n‖−1} � TY 1/2

logX
+ TY −1/2 +X1/2 logX

+ T 2ε
(
TX−1/2 + (TX)1/2 log TX

)
.

We conclude from equation (25) that

S1(T, P1) = T +O

(
TY 1/2

logX
+ TY −1/2 +X1/2 log T

+ T 2ε
(
TX−1/2 + (TX)1/2 log T

)
+ T 1/2X1/2

)
.
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Choosing Y = log T and simplifying the error terms yields

S1(T, P1) = T +O

(
T√

logX
+ T 2ε

(
TX−1/2 + T 1/2X1/2 log T

))
= T +O

(
T√

log T
+ T 1−θ/2+2ε + T (θ+1)/2+2ε log T

)
.

By the choice of ε, the error term is O
(
T/
√

log T
)
, which establishes the proposition. �

We turn now to the derivation of an upper bound for the corresponding second moment S2(T, P1).
Rather than parallel the evaluation of the first moment by using a discrete method, we will employ
a version of Gallagher’s lemma to convert the problem into one of bounding certain integrals. We
say that a set S of real numbers is κ-well-spaced if |u− u′| ≥ κ for any distinct elements u and u′

of S .

Lemma 5.3. Let F and G be differentiable functions, and let T1 < T2 be real numbers. If S is a
κ-well-spaced set of real numbers contained in [T1 + κ/2, T2 − κ/2], then∑

u∈S

|F (u)G(u)|2 �κ

∫ T2

T1

∣∣F (t)G(t)
∣∣2 dt

+

(∫ T2

T1

∣∣F (t)G(t)
∣∣2 dt)1/2(∫ T2

T1

∣∣F (t)G′(t)
∣∣2 dt)1/2

+

(∫ T2

T1

∣∣F (t)G(t)
∣∣2 dt)1/2(∫ T2

T1

∣∣F ′(t)G(t)
∣∣2 dt)1/2

.

Proof. Setting f(t) = H(t)2 in [18, Lemma 1.2] gives∑
u∈S

|H(u)|2 ≤ 1

κ

∫ T2

T1

|H(t)|2 dt+

∫ T2

T1

|2H(t)H ′(t)| dt.

When we set H(u) = F (u)G(u) and use the triangle inequality, we obtain∑
u∈S

|F (u)G(u)|2 �κ

∫ T2

T1

|F (t)G(t)|2 dt+

∫ T2

T1

|F 2(t)G(t)G′(t)| dt+

∫ T2

T1

|F (t)F ′(t)G2(t)| dt.

Applying the Cauchy–Schwarz inequality to the last two integrals establishes the proposition. �

Lemma 5.3 will allow us to reduce the proof of Proposition 5.6 to evaluating integrals of the
shape ∫ T2

T1

|L(1
2

+ iu, χ)A(1
2

+ iu)|2 du and
∫ T2

T1

|L′(1
2

+ iu, χ)A(1
2

+ iu)|2 du

for certain Dirichlet polynomials A(s). Integrals of this type have played an important role in
analytic number theory. For instance, they were introduced by Bohr and Landau [4] in their work
on zero-density estimates. In [14], Levinson employed such integrals in his famous proof that
at least one third of the zeros of the Riemann zeta function are simple and lie on the critical
line. Recently, Bauer [3] studied integrals of the above type in order to establish analogues of
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Levinson’s theorem to Dirichlet L-functions. In his work he proves the following result. Recall
that M(s, χ, P ) was defined in equation (3).

Lemma 5.4. Let χ (mod q) be a Dirichlet character. Let Q1 and Q2 be polynomials with Q1(0) =
Q2(0) = 0, and let B1 and B2 be the sum of the absolute values of the coefficient of Q1 and
Q2, respectively. Let a and b be distinct, nonzero complex numbers of modulus at most 1. Let
0 < ε < 1

2
be a real number, let T and X be real numbers satisfying T ε ≤ X ≤ T 1/2−ε, and write

L = log(qT/2π). There exists a positive real number δ = δ(ε) such that∫ T

1

L
(
1
2

+ it+ a
L , χ

)
L
(
1
2
− it− b

L , χ̄
)
M
(
1
2

+ it, χ,Q1

)
M
(
1
2
− it, χ̄, Q2

)
dt

= T

(
Q1(1)Q2(1) +

eb−a − 1

b− a
E

)
+Oε(B1B2T

1−δ), (27)

where

E =
log T

logX

∫ 1

0

Q′1(t)Q
′
2(t) dt+

∫ 1

0

(
bQ′1(t)Q2(t)− aQ1(t)Q

′
2(t)
)
dt

− ab logX

log T

∫ 1

0

Q1(t)Q2(t) dt. (28)

In particular,∫ T

1

∣∣L(1
2
+it, χ

)
M
(
1
2
+it, χ,Q1

)∣∣2 dt = T

(
Q1(1)2+

log T

logX

∫ 1

0

Q′1(t)
2 dt

)
+Oε(B

2
1T

1−δ). (29)

The O-constants are uniform in all the parameters as long as q = o(log T ).

Proof. The first assertion is simply a rephrasing of [3, Theorem 1], with the dependence of the
error term on the coefficients of Q1 and Q2 made explicit; the second assertion follows from the
first on setting Q2 = Q1 and letting a and b tend to 0. �

Lemma 5.5. With the notation and assumptions of Lemma 5.4, we have∫ T

1

∣∣L′(1
2

+ it, χ
)
M
(
1
2

+ it, χ,Q1

)∣∣2 dt = ẼTL2 +Oε(B
2
1T

1−δL2),

where

Ẽ =
log T

3 logX

∫ 1

0

Q′1(t)
2 dt+

∫ 1

0

Q1(t)Q
′
1(t) dt+

logX

log T

∫ 1

0

Q1(t)
2 dt.

The O-constant is uniform in all the parameters as long as q = o(log T ).

Proof. Define

g(a, b) =

∫ T

1

L
(
1
2

+ it+ a
L , χ

)
L
(
1
2
− it− b

L , χ̄
)
M
(
1
2

+ it, χ,Q1

)
M
(
1
2
− it, χ̄, Q2

)
dt

− T
(
Q1(1)Q2(1) +

eb−a − 1

b− a
E

)
, (30)
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where E is defined in equation (28); Lemma 5.4 tells us that g(a, b) �ε B1B2T
1−δ uniformly for

|a|, |b| ≤ 1 with a 6= b. When we apply ∂2

∂a ∂b
to both sides of equation (30) and then let a and b

tend to zero, we obtain

∂2g

∂a ∂b
(0, 0) = − 1

L2

∫ T

1

L′
(
1
2

+ it, χ
)
L′
(
1
2
− it, χ̄

)
M
(
1
2

+ it, χ,Q1

)
M
(
1
2
− it, χ̄, Q2

)
dt

+ T

(
log T

3 logX

∫ 1

0

Q′1(t)Q
′
2(t) dt+

1

2

∫ 1

0

(
Q′1(t)Q2(t) +Q1(t)Q

′
2(t)
)
dt

+
logX

log T

∫ 1

0

Q1(t)Q2(t) dt

)
;

upon setting Q2 = Q1, this becomes

∂2g

∂a ∂b
(0, 0) = − 1

L2

∫ T

1

∣∣L′(1
2

+ it, χ
)
M
(
1
2

+ it, χ,Q1

)∣∣2 dt+ ẼT.

We have thus reduced the proposition to showing that ∂2g
∂a ∂b

(0, 0)�ε B
2
1T

1−δ (when Q2 = Q1).
From its definition (30) we see that g(a, b) is holomorphic in each variable. Thus if we set

S1 = {z ∈ C : |z| = 1
3
} and S2 = {w ∈ C : |w| = 2

3
}, then by Cauchy’s integral formula,

∂g

∂a
(a, b) =

1

2πi

∫
S1

g(z, b)

(z − a)2
dz

when |a| < 1
3
, and hence

∂2g

∂a ∂b
(a, b) =

1

(2πi)2

∫
S2

∫
S1

g(z, w)

(z − a)2(w − b)2
dz dw

when |b| < 2
3
. Setting a = b = 0 and using the known bound g(z, w) �ε B1B2T

1−δ, we obtain
∂2g
∂a ∂b

(0, 0)�ε B1B2T
1−δ as required. �

Proposition 5.6. Let T be a positive integer, and define S2(T, P1) as in equation (23), where
X = T θ with 0 < θ < 1

2
. Then S2(T, P1)�χ,α,β,θ T log T .

Proof. In this proof, all constants implicit in the O and � notations may depend upon χ (hence
q), α, β, and θ. Moreover, we may assume β > 0, since S2(T, P1) = S2(T, P1). If we set
T1 = 2π(α+ β/2) and T2 = 2π(α+ β/2 + βT ), then the points {2π(α+ kβ) : 1 ≤ k ≤ T} form
a κ-well-spaced set contained in [T1 +κ/2, T2−κ/2], where κ = 2πβ. By Proposition 5.3 applied
to this set with F (t) = L(1

2
+ it) and G(t) = M1(

1
2

+ it), we obtain

S2(T, P1)� I1 + I
1/2
1 I

1/2
2 + I

1/2
1 I

1/2
3 , (31)

where we have defined

I1 =

∫ T2

T1

|L(1
2

+ it, χ)M1(
1
2

+ it)|2 dt =

∫ T2

1

|L(1
2

+ it, χ)M1(
1
2

+ it)|2 dt+O(1)

I2 =

∫ T2

T1

|L(1
2

+ it, χ)M ′
1(

1
2

+ it)|2 dt =

∫ T2

1

|L(1
2

+ it, χ)M ′
1(

1
2

+ it)|2 dt+O(1)

I3 =

∫ T2

T1

|L′(1
2

+ it, χ)M1(
1
2

+ it)|2 dt =

∫ T2

1

|L′(1
2

+ it, χ)M1(
1
2

+ it)|2 dt+O(1).
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(Actually the definition of I2 should have d
dt
M1(

1
2

+ it) instead of M ′
1(

1
2

+ it), but the two expres-
sions differ only by a factor of i which is irrelevant to the magnitude; a similar comment applies to
the term L′(1

2
+ it, χ) in I3.)

The first integral I1 can be evaluated by Lemma 5.4: taking Q1(x) = x in equation (29) yields

I1 = T2

(
1 +

log T2
logX

)
+O

(
T 1−δ
2

)
� T.

We next apply equation (29) withQ1(x) = x(x−1) logX , so thatM(1
2
+iu, χ,Q1) = M ′

1(
1
2
+iu).

This application of Lemma 5.4 to I2 gives

I2 =
T2
3

log T2 · logX +O
(
T 1−δ
2 log2X

)
� T log2 T.

Finally, we apply Lemma 5.5 with Q1(x) = x to evaluate the last integral:

I3 =

(
log T2

3 logX
+

1

2
+

logX

3 log T2

)
T2 log2( qT2

2π
) +O

(
T 1−δ
2 log2 T2

)
� T log2 T.

Inserting these three estimates into equation (31) establishes the desired upper bound S2(T, P1)�
T log T and hence the proposition. �

As was mentioned in Section 2, the combination of Propositions 5.2 and 5.6 completes the proof
of Theorem 1.1. We remark that our evaluation of the expression on the right-hand side of equa-
tion (31) actually produces an asymptotic formula for that expression. Consequently, any attempt
to remove the factor of log T from the upper bound would need to avoid invoking Gallagher’s
lemma.

6. LOWEST NONZERO TERM

In this final section, we establish Theorem 1.2 which provides a bound for the least k for which
L(sk, χ) 6= 0. Before we begin we define, for any positive real number L, the function

wL(x) = exp

(
L log x

log log x

)
. (32)

It will be convenient to be able to manipulate expressions involving wL(x) according to the fol-
lowing lemma.

Lemma 6.1. For any positive real numbers L, α, and ε:
(a) wL(x)α = wαL(x);
(b) wL(xα)�L,α,ε wαL+ε(x);
(c) if y > xwL(x), then x�L,ε y/wL−ε(y).

Proof. Part (a) is obvious from the definition. Because αL/(log log x+logα) < (αL+ε)/ log log x
for x large (even if logα is negative), we have

wL(xα) = exp

(
L log xα

log log xα

)
= exp

(
αL log x

log log x+ logα

)
�L,α,ε exp

(
(αL+ ε) log x

log log x

)
= wαL+ε(x),
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which establishes part (b). Finally, y/wL−ε(y) is an eventually increasing function, so

y

wL−ε(y)
� xwL(x)

wL−ε(xwL(x))
�L,ε

xwL(x)

wL−ε(x1+ε/L)
,

where the latter inequality holds because wL(x) grows more slowly than any power of x. Applying
part (b), with ε2/L in place of ε and L− ε in place of L and 1 + ε/L in place of α, gives

y

wL−ε(y)
�L,ε

xwL(x)

w(L−ε)(1+ε/L)+ε2/L(x)
= x,

which establishes part (c). �

Let χ (mod q) be a fixed nonprincipal character. Let 0 ≤ α < β be fixed real numbers, and
define sk = 1

2
+ 2πi(α + kβ) as before. Recall that for P2(x) = 1,

M2(s) = M(s, χ, P2) =
∑
m≤X

χ(m)µ(m)

ms
;

here 1 ≤ X ≤ T will be specified later. As in the previous section, we note the trivial bound
M2(

1
2

+ it)� X1/2. We examine the sum

S1(T, P2) =
T∑
k=1

L(sk, χ)M2(sk),

as showing that S1(T, P2) 6= 0 for a particular T is sufficient to show that there exists a positive
integer k ≤ T for which L(sk, χ) 6= 0. It turns out that the simpler mollifier M2 yields a much
better error term for the first moment than the more complicated mollifier M1 from the previous
section, as a comparison of the following proposition with Proposition 5.2 will show.

Proposition 6.2. Suppose that β ≥ 1 and T ≥ max{β, q}. For any constant L > log 2,

S1(T, P2) = T +OL

(
wL(β3/2q1/2T 3/2)β3/4q1/4T 3/4 log βqT

)
.

Proof. Set U = 4βT , and notice that U ≥ 2β(T + 1) ≥ 2(α + kβ) = 2| Im sk|/2π for any
1 ≤ k ≤ T . Therefore Proposition 3.1 implies that

L(sk, χ) =
∑
`≤qU

χ(`)

`sk
+O

(
(βT )−1/2 log q

)
.

Using the trivial bound for M2(sk), we see that

L(sk, χ)M2(sk) =
∑
`≤qU

χ(`)

`sk

∑
m≤X

χ(m)µ(m)

ms
+O

(
|M2(sk)|(βT )−1/2 log q

)
=
∑

n≤qUX

χ(n)bn
nsk

+O
(
X1/2(βT )−1/2 log q

)
,

where the coefficients bn are defined by

bn =
∑
`m=n
`≤qU
m≤X

µ(m).
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Since b1 = 1, we have

S1(T, P2) =
T∑
k=1

( ∑
n≤qUX

χ(n)bn
nsk

+O
(
X1/2(βT )−1/2 log q

))

=
∑

n≤qUX

χ(n)bn
n1/2+2πiα

T∑
k=1

n−2πikβ +O
(
β−1/2T 1/2X1/2 log q

)
= T +O

( ∑
1<n≤qUX

|bn|
n1/2

min{T, ‖β log n‖−1}+ β−1/2T 1/2X1/2 log q

)
,

by the geometric series estimate (26). Just as in the proof of Lemma 5.1, it is easy to show that
|bn| ≤ 2ω(n) for any n. Moreover, if 1 < n ≤ X then the sum defining bn includes all of the
factorizations of n, and so bn = 0 for these values of n. We conclude that

S1(T, P2) = T +OL

( ∑
X<n≤qUX

2ω(n)√
n

min{T, ‖β log n‖−1}+ β−1/2T 1/2X1/2 log q

)
. (33)

From the inequality ω(n) < (1 + o(1))(log n)/ log log n [20, Theorem 2.10], we see that 2ω(n) =
exp

(
ω(n) log 2

)
�L wL(n), where wL was defined in equation (32). Therefore

S1(T, P2) = T +OL

(
wL(qUX)

∑
X<n≤qUX

min{T, ‖β log n‖−1}√
n

+ β−1/2T 1/2X1/2 log q

)
.

By Proposition 4.2 (recalling that we are assuming β ≥ 1),

S1(T, P2) = T +OL

(
wL(qUX)

(
βTX−1/2 + (qUX)1/2 log qUX

)
+ β−1/2T 1/2X1/2 log q

)
= T +OL

(
wL(βqTX)(βTX−1/2 + (βqTX)1/2 log βqTX)

)
.

We now set X =
√
βT/q, which is in the required range 1 ≤ X ≤ T thanks to the hypothesis

T ≥ max{β, q}. We then obtain

S1(T, P2) = T +OL

(
wL(β3/2q1/2T 3/2)β3/4q1/4T 3/4 log βqT

)
as claimed. �

Proof of Theorem 1.2. We begin under the assumption b ≥ 2π, so that β = b/2π ≥ 1. Define
L = 1

2
(D
8

+ log 2) and ε = 1
2
(D
8
− log 2), so that L > log 2 and ε > 0. Suppose that

T > β3q · wD(β3q) = β3q · w8(L+ε)(β
3q).

It follows from Lemma 6.1(c) that β3q < T/w8L+7ε(T ). Therefore Proposition 6.2 implies

S1(T, P2) = T +OL

(
wL(T 2)

(
T

w8L+7ε(T )

)1/4

T 3/4 log T 2

)
= T +OL,ε

(
T
w2L+ε(T ) log T

w2L+7ε/4(T )

)
= T +OL,ε

(
T log T

w3ε/4(T )

)
by Lemma 6.1(b) and (a). Since the error term is o(T ), the first moment S1(T, P2) is nonzero when
T is large enough in terms of L and ε. In other words, S1(T, P2) 6= 0 when T �D β3q · wD(β3q),
which implies Theorem 1.2(a).
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Now suppose that 0 < b < 2π, so that 0 < β < 1. Note that Theorem 1.2(a) implies that
if 2π ≤ c ≤ 4π, then there exists a positive integer j �D q exp

(
D(log q)/ log log q

)
such that

L(1
2

+ i(a + cj), χ) 6= 0, where the implicit constant is independent of c. Applying this remark
with c = d2π/beb which is between 2π and 4π, we see that there exists a positive integer j �D

q exp
(
D(log q)/ log log q

)
such that L(1

2
+ i(a+ bd2π/bej), χ) 6= 0. In other words, there exists a

positive integer k �D d2π/beq exp
(
D(log q)/ log log q

)
such thatL(sk, χ) 6= 0, which establishes

Theorem 1.2(b). �
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