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Abstract. In this article we compute a discrete mean value of the
derivative of the Riemann zeta function. This mean value will be im-
portant for several applications concerning the size of ζ ′(ρ) where ζ(s)
is the Riemann zeta function and ρ is a non-trivial zero of the Riemann
zeta function.

1. Introduction

In this article we compute a discrete mean value of the Riemann zeta
function, ζ(s). Throughout, ρ = β + iγ will denote a non-trivial zero of
the Riemann zeta function and T will be a large parameter. Moreover, we
define the Dirichlet polynomials

X(s) =
∑
n≤M

xn
ns

and Y (s) =
∑
n≤M

yn
ns

where xn and yn are arbitrary real sequences and M = T θ with 0 < θ < 1/2.
We shall evaluate the following mean value:

(1) S =
∑

0<γ<T

ζ ′(ρ)X(ρ)Y (1− ρ) .

However, our main purpose for evaluating S is to employ it for an application
concerning large values of ζ ′(ρ). In an accompanying paper [13] we prove
the following results:

Theorem 1.1. Assume the Riemann Hypothesis. For each A > 0, we have

|ζ ′(ρ)| � (log |γ|)A

for infinitely many ρ = 1
2

+ iγ.

In order to strengthen this result we will require an additional assumption
concerning the location of zeros of Dirichlet L-functions.

Large zero-free region conjecture.
There exists a constant c0 > 0 sufficiently large such that for each q ≥ 1
and each character χ modulo q the Dirichlet L-function L(s, χ) does not
vanish in the region

σ ≥ 1− c0
log log(q(|t|+ 4))
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where s = σ + it.

The value of c0 required may be calculated and c0 = 100 suffices but is
not minimal. We note that this large zero-free region conjecture is signifi-
cantly weaker than the Generalized Riemann Hypothesis which asserts that
all non-trivial zeros of each Dirichlet L-function lie on the one-half line.
On the other hand, this zero-free region is still much larger than what has
currently been proven. For example, this conjecture rules out the existence
of Siegel zeros.

Theorem 1.2. Assume the Riemann hypothesis and the large zero-free con-
jecture for Dirichlet L-functions. There exists a constant c2 > 0 such that

|ζ ′(ρ)| � exp

(
c2

√
log |γ|

log log |γ|

)
for infinitely many ρ = 1

2
+ iγ.

The methods employed to prove Theorems 1.1 and 1.2 are based on
Soundararajan’s [17] resonance method. This method has proven to be suc-
cessful in determining extreme values of L-functions and character sums. In
the article [13] we also succeed in exhibiting small values of |ζ ′(ρ)| too.

We also note that an asymptotic evaluation of S has other important
applications. Soundararajan has informed me that he can prove under the
assumption of the Riemann hypothesis that∑

0<γ<T

|ζ ′(ρ)|2k �k T (log T )(k+1)2 .

This proof requires our formula for S and follows the lower bound method
of Rudnick and Soundararajan [14], [15]. We observe that this is stronger
than Theorem 1.1.

Our evaluation of S will be split in two cases depending on the properties
of the coefficients xn and yn. The cases we shall consider are:

Case 1. The divisor case. The coefficients shall satisfy the bounds

(2) |xn|, |yn| ≤ τr(n)(log T )C

for r ∈ N and C ≥ 0 where τr(n) is the r-th divisor function. We shall also
assume

(3) |xmn| � |xm||xn| and |ymn| � |ym||yn| .
Case 2. The resonator case. In this case we will take xn = yn = f(n)
where f is a multiplicative function supported on the squarefree integers.
For a prime p we define

(4) f(p) =

{
L

log p
if L2 ≤ p ≤ exp((logL)2)

0 else
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where L =
√

logM log logM .

The resonator coefficients have recently been employed by Soundarara-
jan [17] and they arose in a certain optimization problem related to finding
extreme values of ζ(1/2 + it). We shall refer throughout this article to case
one as the divisor case and case two as the resonator case. Our evaluation
of S in the divisor case will be unconditional whereas the evaluation of S
in the resonator case will depend on the (as yet) unproven large zero-free
region conjecture.

We now state our result for S. We let cj for j = 1, 2, 3, . . . denote positive
constants.

Theorem 1.3. (i) If xn, yn satisfy (2), (3) then

S =
T

2π

∑
nu≤M

xuynur0(n)

nu
− T

4π

∑
nu≤M

yuxun
nu

R2

(
log( T

2πn
)
)

+
T

2π

∑
a,b≤M
(a,b)=1

r1(a, b)

ab

∑
g≤min(M

a
,M

b
)

yagxbg
g

+ Ẽ
(5)

where for 0 < θ < 1/2 we have for any A′ > 0

Ẽ �A′ T (log T )−A
′
+ T

3
4
+ θ

2
+ε .

The other quantities are defined as follows:

r0(n) = P2(log( T
2π

))− 2P1(log( T
2π

))(log n) + (Λ ∗ log)(n) ,

r1(a, b) = 1
2
Λ2(a)−R1

(
log( T

2πb
)
)
Λ(a)− R̃1

(
log( T

2πb
)
)
α1(a)− α2(a) ,

P1, P2, R1, R̃1, R2 are monic polynomials of degrees 1, 2, 1, 1, 2 respectively
and α1, α2 are arithmetic functions. In fact, α1 is supported on prime pow-
ers, α2 is supported on integers n such that ω(n) ≤ 2. More precisely,

α1(p
α) = log p

p−1
, α2(p

α) = − (α+1)(log p)2

p−1
+ D log p

p−1
− log p

(p−1)2
for some D ∈ R, and

α2(p
αqβ) = −(log p)(log q)( 1

p−1
+ 1

q−1
) for α, β ∈ N.

(ii) Assume the large zero-free region conjecture. If xn = yn = f(n) where
f is defined by (4) then there exists a c1 > 0 such that (5) remains true with

Ẽ � T exp
(
− c1 log T

log log T

)
+ T

3
4
+ 3θ

2
+ε

for 0 < θ < 1/6.

Remarks. 1. It is possible to obtain an intermediate result to Theorems
1.1 and 1.2. In fact, one can show that if the Riemann hypothesis is true
and there are no Siegel zeros then there exists a c3 > 0 such that

|ζ ′(ρ)| � exp(c3(log |γ|)1/4)
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infinitely often. The proof of this result rests on deriving Theorem 1.3 for
the sequences xn = yn = g(n) where g is multiplicative and supported on
squarefree integers. On primes it is defined by

g(p) =

{
c(logM)1/4 log logM

log p
if A ≤ p ≤ B

0 else

for some c > 0. The evaluation of S in this case is very similar to the two
other cases worked out in the article. However, due to the length of this
article we have decided not to present this case.

2. Various mean values involving ζ ′(ρ) have been explored in several pre-
vious articles. (See [2], [3], [5], [7], [10].) Discrete moments of ζ ′(ρ) have
number theoretic applications to simple zeros of the zeta function [3] and
to the distribution of the summatory function of the Möbius function [11].
More generally, moments of X(ρ+ α) for a Dirichlet polynomial X(s) and
α ∈ C have applications to extreme gaps between the zeros of the zeta
function (see [1],[12]).

3. The argument for this theorem is based on an argument of Conrey,
Ghosh, and Gonek [3] for evaluating the sums

S1 =
∑

0<γ<T

ζ ′(ρ)X(ρ) and S2 =
∑

0<γ<T

ζ ′(ρ)ζ ′(1− ρ)X(ρ)X(1− ρ)

where xn = µ(n)P
(

log(M/n)
logM

)
and P is a polynomial. The evaluation of

S2 requires the assumption of the generalized Lindelöf hypothesis whereas
S1 may be computed unconditionally. Oddly, this point is never stressed
in [3]. In a future article, we shall evaluate the above sums with arbitrary
coefficients by the methods of this article.

4. The proof of the bound for Ẽ in Theorem 1 is obtained by an argument
which is very similar to the proof of the Bombieri-Vinogradov theorem.
Recall that it asserts that for each A > 0∑

q≤M

max
(a,q)=1

max
y≤T

∣∣∣∣ψ(y; a, q)− y

φ(q)

∣∣∣∣� T (log T )−A + T 1/2M(log TM)6 .

Improving our value of M beyond
√
T in Theorem 1.3 lies as deep as im-

proving the Bombieri-Vinogradov theorem for M larger than
√
T .

5. In this article we must impose some conditions on the location of zeros of
Dirichlet L-functions. More precisely, we assume the large zero-free region
conjecture for Dirichlet L-functions in order to evaluate S in the resonator
case. The central reason for applying this conjecture is that the coefficients
f(n) satisfy

∑
n≤M f(n)2 ∼M exp( c log T

log log T
). Now the general setup for eval-

uating S1 in the article of [3] is to use an argument similar to proving the
Bombieri-Vinogradov theorem. However, this type of argument provides a
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savings of (log T )−A for any A from the main term. As the resonator coeffi-
cients xn = yn = f(n) become very large in mean square we will be unable
to obtain an asymptotic formula with only a savings of a power of a loga-
rithm. The central reason for applying the large zero free region conjecture
is that it allows us to have a savings of exp(− c log T

log log T
) for a large enough c

which balances the large average size of the resonator coefficients. On the
other hand, for the evaluation of S2 in [3] the coefficients xn, yn are bounded
in size. In that case the Generalized Lindelöf hypothesis is invoked in order
to bound a sixth integral moment of L(s, χ) on average on the critical line
and has nothing to do with the size of the coefficients xn, yn as in our case.

Acknowledgements. I would like to thank K. Soundararajan for suggest-
ing this problem. Also thanks to H. Kadiri for a useful question.

2. Notation

Throughout out this article we shall denote a series of positive constants
by cj and Cj for j = 1, 2, . . .. We remark that some of the constants Cj
will depend on the numbers r and C given in (2). For T large we define
L = log(T ). We shall also consider arbitrary sequences x = {xn} supported
on the interval [1,M ]. We shall employ the notation

||x||∞ = max
n≤M

|xn| and ||x||p = (
∑
n≤M

|xn|p)1/p .

We shall use Vinogradov’s notation f(x) � g(x) to mean there exists
a C > 0 such that |f(x)| ≤ Cg(x) for all x sufficiently large. We denote
f(x) = O(g(x)) to mean the same thing.

In addition, we will encounter a host of familiar arithmetic functions.
Let ω(n) denote the number of distinct prime factors of n. For r > 0 we
define τr(n), the r-th divisor function, to be the coefficient of n−s in the
Dirichlet series ζr(s). If r = 2 we write τ(n) = τ2(n). Similarly Λ(n) is
the coefficient of n−s in the Dirichlet series of −ζ ′(s)/ζ(s). This yields the
expression Λ(n) =

∑
d|n µ(d) log n

d
. Moreover, we have its generalization

Λk = µ ∗ logk. An equivalent definition is that Λk(n) is the coefficient of
n−s in the Dirichlet series (−1)kζ(k)(s)/ζ(s). Furthermore, Λk(n) = 0 is
supported on those integers with at most k prime factors. We also define
j(n) =

∏
p|n
(
1 + 10p−1/2

)
.

3. The Dirichlet polynomial coefficients xn

We record some properties of the coefficients that will be employed through-
out the article:

Properties of the divisor coefficients.
Let xn and yn satisfy (2) and (3). We have the standard estimates:

||x||∞ , ||y||∞ � T ε ,

||xn

n
||1 , ||yn

n
||1 , ||x

2
n

n
||1 , ||y

2
n

n
||1 , ||xn(τk∗y)(n)

n
|| � L C′(6)



6 NATHAN NG

for some C ′ > 0 and k ∈ N. We remark that the above bounds remain true
when the above sequences are multiplied by j(n).

Properties of the resonator coefficients.
Let f be defined by (4). We have the following estimates:

f(mn) � f(m)f(n) ,

||f ||∞ ≤M1/2+ε for M sufficiently large ,

||f ||1 �M exp
(
(1 + o(1))

√
logM

log logM

)
,

(7)

||f 2||1 �M exp
(
(0.5 + o(1)) logM

log logM

)
,∑

n≤M

f(n)

n
� exp

(
(1 + o(1))

√
logM

log logM

)
,

∑
n≤M

f(n)2

n
� exp

(
(0.5 + o(1)) logM

log logM

)
,

(8)

(9)
∑
n≤M

j(n)(τr ∗ f)(n)f(n)

n
� exp

(
(0.5 + o(1)) logM

log logM

)
,

(10)
∑
n≤T

(τ ∗ f)(n)2

n
,
∑
n≤T

(f ∗ f)(n)2

n
� T ε .

We now give an indication of how to prove (9). The proofs of the other
inequalities are similar. We denote Σ the sum to be estimated.

Σ ≤
∞∑
n=1

j(n)(τr ∗ f)(n)f(n)

n
=
∏
p

(
1 +

j(p)(τr ∗ f)(p)f(p)

p

)
.

Since j(p) = 1 +O(p−1/2), f(p) = L
log p

, (τr ∗ f)(p) = L
log p

+ r we obtain

log(Σ) ≤
∑

L2≤p≤exp((logL)2)

(
L2

p(log p)
+O

(
L

p(log p)
+

L2

p3/2

))
.

By the prime number theorem∑
L2≤p≤exp((logL)2)

1

p(log p)2
=

1

8(logL)2
(1 + o(1))

and thus Σ ≤ exp
(

logM
2 log logM

(1 + o(1))
)
.

4. Preliminary manipulations of S and proof of Theorem 1.3

Proof. We commence with our evaluation of S. We start with some initial
manipulations. Recall that our goal is to evaluate

S =
∑

0<γ<T

ζ ′(ρ)X(ρ)Y (1− ρ) .
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The functional equation for the Riemann zeta function is ζ(s) = χ(s)ζ(1−s),
where

χ(1− s) = χ(s)−1 = 2(2π)−sΓ(s) cos(πs/2) .

Differentiating the functional equation,

ζ ′(s) = −χ(s)

(
ζ ′(1− s)− χ′

χ
(s)ζ(1− s)

)
.

From this last equation it follows that

S = −
∑

0<γ<T

χ(ρ)ζ ′(1− ρ)X(ρ)Y (1− ρ)

=
1

2πi

∫
C

ζ ′

ζ
(1− s)χ(s)ζ ′(1− s)X(s)Y (1− s) ds

where C is the positively oriented rectangle with vertices at 1 − κ + i, κ +
i, κ+ iT, and 1− κ+ iT , and κ = 1 + L −1. Moreover, we choose T so that
the distance from T to the nearest zero is � L −1. The bottom edge of this
contour is clearly O(1). On the top edge we have the standard bounds

χ(s) � T 1/2−σ ,

ζ ′(1− s) � T σ/2+ε ,

X(s) �M1−σ||xn

n
||1 ,

Y (1− s) �Mσ||yn

n
||1 ,

ζ ′

ζ
(1− s) � L 2 .

Note that the last bound only holds for s = σ+ it as long as |t− γ| � L −1

for all imaginary ordinates γ. Combining these bounds shows that the top
edge of the contour is bounded by MT 1/2+ε. Next note that

ζ ′

ζ
(1− s) =

χ′

χ
(s)− ζ ′

ζ
(s)

and

χ(s)ζ ′(1− s) = −ζ ′(s) +
χ′

χ
(s)ζ(s)

imply the right-hand side of the integral is
(11)

SR =
1

2πi

∫ κ+iT

κ+i

(
χ′

χ
(s)2ζ(s)− 2

χ′

χ
(s)ζ ′(s) +

ζ ′

ζ
(s)ζ ′(s)

)
X(s)Y (1− s) ds .

The left-hand side is

SL =
1

2πi

∫ 1−κ+i

1−κ+iT

ζ ′

ζ
(1− s)χ(s)ζ ′(1− s)X(s)Y (1− s) ds .

By the variable change s→ 1− s the left side equals −IL where

IL =
1

2πi

∫ κ+iT

κ+i

χ(1− s)
ζ ′

ζ
(s)ζ ′(s)X(s)Y (1− s) ds .
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We have now demonstrated that

S = SR − IL +O(MT 1/2+ε)

with SR and IL defined as above. We now set up the evaluation of IL. We
begin by writing

ζ ′

ζ
(s)ζ ′(s)A(s) =

∞∑
m=1

a(m)m−s

where
a(m) =

∑
uvw=m

Λ(u) log(v)xw .

It thus follows

IL =
∑
k≤M

yk
k

∞∑
m=1

a(m)
1

2πi

∫ κ+iT

κ+i

χ(1− s) (m/k)−s ds

and we invoke

Lemma 4.1. Let r, κ0 > 0 we have

1

2πi

∫ κ+iT

κ+i

χ(1− s)r−s ds = δ(r)e(−r) + E(r, c)r−κ

uniformly for κ0 ≤ κ ≤ 2 where δ(r) = 1 if r ≤ T/2π and δ(r) = 0
otherwise. Moreoever,

E(r, κ) � T κ−1/2 +
T κ+1/2

|T − 2πr|+ T 1/2
.

This result follows from Lemma 2 of [7]. Applying Lemma 4.1 yields IL =
M+ T 1/2E ′1 + T 3/2E ′2 where

(12) M =
∑
k≤M

yk
k

∑
m≤ kT

2π

a(m)e
(
−m
k

)
,

(13) E ′1 = T 1/2
∑
k≤M

|yk|
∞∑
m=1

|a(m)|
mκ

,

(14) E ′2 = T 3/2
∑
k≤M

|yk|
∞∑
m=1

|a(m)|
mκ

(|T − 2πm/n|+ T 1/2)−1 .

Note that

E ′1 � ||y||1
∑
m≤M

|xm|
m

ζ ′

ζ
(κ)ζ ′(κ) � L 3||y||1||xm

m
||1 .

We next consider E ′2. We split this into the cases: (i) |T − 2πm/n| > T/2,

(ii)
√
T ≤ |T − 2πm/n| ≤ T/2, and (iii) |T − 2πm/n| ≤

√
T . In case (i),

gm,n(T ) � T−1 and we have

E ′21 � T−1||y||1
∞∑
m=1

|a(m)|
mκ

� T−1L 3||y||1||xm

m
||1 .
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In case (ii) we begin by assuming without loss of generality that
√
T ≤

2πm/n − T ≤ T/2. We divide this into � log T intervals of the shape

T + P < 2πm/n < T + 2P with
√
T � P � T . We denote the interval

I = [nT
2π

+ nP
2π
, nT

2π
+ 2nP

2π
]. Note that |a(m)| ≤ ||x||∞τ(m) log2m and hence

E ′22 � ||x||∞
∑
P

∑
n≤M

|yn|
∑
m∈I

τ(m) log2m

mP

� T−1||x||∞
∑
P

∑
n≤M

|yn|
nP

∑
m∈I

τ(m) log2m

� T−1||x||∞
∑
P

∑
n≤M

|yn|
nP

(nP )L 3 � T−1L 4||x||∞||y||1 .

In the second inequality above we apply an estimate for the divisor sum
in short intervals. For a precise statement, see Lemma 6.3 which occurs
later in the article. In the last case we have |T − 2πm/n| ≤

√
T and

gm,n(T ) � T−1/2. Put J = [ n
2π

(T −
√
T ), n

2π
(T +

√
T )]. We now have

E ′23 � T−1/2||x||∞
∑
n≤M

|yn|
∑
m∈J

τ(m) log2m

m
� T−3/2||x||∞

∑
n≤M

|yn|
n

(n
√
T )L 3

� T−1L 3||x||∞||y||1 .

Combining our estimates yields T 1/2E ′1 + T 3/2E ′2 is bounded by

T 1/2(L 3||y||1||xm/m||1 + L 4||x||∞||y||1) � T 1/2L 4||y||1||x||∞
and hence

(15) S = SR −M+O(T 1/2L 4||y||1||x||∞)

where SR and M are given by (11) and (12) respectively. We now simplify
our expression (12) for M. The first step will be to express the additive
character e(−m/k) in terms of multiplicative characters. In order to do this
we write m/k = m′/k′ with (m′, k′) = 1. We have the well-known identity

e
(
−m
k

)
= e

(
−m

′

k′

)
=

1

φ(k′)

∑
χ mod k′

τ(χ)χ(−m′)

where for a character χ modulo k′, τ(χ) =
∑k′

a=1 χ(a)e(a/k′) is the usual
Gauss sum. Now note that τ(χ0) = µ(k′), where χ0 is the principal character
modulo k′. Hence

(16) e
(
−m
k

)
=
µ(k′)

φ(k′)
+

1

φ(k′)

∑
χ mod k′

χ6=χ0

τ(χ)χ(−m′) .

The basic idea is that when we insert the expression (16) back in (12) that
µ(k′)/φ(k′) term will account for the main term of M and the sum over
non-principal characters modulo k′ will be an error term. Before commenc-
ing with this strategy, we must first convert the above sum to a sum over
primitive characters. This is since we shall invoke an analytic version of
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the large sieve inequality involving only primitive characters. If a charac-
ter χ modulo k′ is induced by the primitive character ψ modulo q then
we have τ(χ) = µ(k′/q)ψ(k′/q)τ(ψ) (see [4, p. 67]). We shall use the no-
tation

∑∗
ψ mod q to denote summation over primitive characters modulo q.

Therefore

1

φ(k′)

∑
χ mod k′

χ6=χ0

τ(χ)χ(−m′) =
1

φ(k′)

∑
q|k′
q>1

∑∗

ψmod q

µ

(
k′

q

)
ψ

(
k′

q

)
τ(ψ)ψ(−m′)

since (m′, k′) = 1 implies (m′, q) = 1 and thus χ(−m′) = ψ(−m′). The next
step is to rewrite this formula in terms of m and k. Let g = (m, k). By the
Möbius inversion formula, we have

f (m′, k′) = f

(
m

g
,
k

g

)
=
∑
d|g

∑
e|d

µ

(
d

e

)
f

(
m

e
,
k

e

)
for any function f . Moreover, note that the condition d | g is equivalent to
d | m, d | k. Thus we derive

1

φ(k′)

∑
χ mod k′

χ6=χ0

τ(χ)χ(−m′)

=
∑
d|m
d|k

∑
e|d

µ(d/e)

φ(k/e)

∑
q|k/e
q>1

∑∗

ψmod q

µ

(
k

eq

)
ψ

(
k

eq

)
τ(ψ)ψ

(
−m
e

)

=
∑
q|k
q>1

∑∗

ψmod q

τ(ψ)
∑
d|m
d|k

∑
e|d
e|k/q

µ(d/e)

φ(k/e)
ψ

(
− k

eq

)
ψ
(m
e

)
µ

(
k

eq

)

=
∑
q|k
q>1

∑∗

ψmod q

τ(ψ)
∑
d|m
d|k

ψ
(m
d

)
δ(q, k, d, ψ)

(17)

where

(18) δ(q, k, d, ψ) =
∑
e|d
e|k/q

µ(d/e)

φ(k/e)
ψ

(
− k

eq

)
ψ

(
d

e

)
µ

(
k

eq

)
.

By (12), (16), and (17) we have now shown that M = M0 + E where

(19) M0 =
∑
k≤M

yk
k

∑
m≤ kT

2π

a(m)
µ(k/(m, k))

φ(k/(m, k))
,

(20) E =
∑
k≤M

yk
k

∑
m≤ kT

2π

a(m)
∑
q|k
q>1

∑∗

ψmod q

τ(ψ)
∑
d|m
d|k

ψ
(m
d

)
δ(q, k, d, ψ) .

Thus we conclude by (15) and above decomposition of M that

(21) S = SR −M0 − E +O(T 1/2L 4||y||1||x||∞) .
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The remainder of the article will be devoted to computing asymptotic ex-
pressions for SR and M0 and for providing an upper bound for E . The
evaluation of SR is straightforward and will be done in the next section.
The evaluation of M0 is also essentially elementary. The most involved
part of the argument will be in bounding E . In fact, we shall establish the
following results which will imply our theorem:

Proposition 4.2. We have

SR =
T

2π

∑
nu≤M

r0(n)xuynu
nu

+O(T ε(||y||∞M + ||y||1))

where r0(n) = P2(log( T
2π

)) − 2P1(log( T
2π

))(log n) + (Λ ∗ log)(n) and P2, P1

are monic polynomials of degrees 2, 1 respectively.

Proposition 4.3. (i) We have in the divisor case

(22) M0 =
T

2π

∑
u,v≤M
(u,v)=1

c(u, v)H(M ;u, v)

uv
+
T

4π

∑
gv≤M

ygxgv
gv

R2

(
log( T

2πv
)
)
+ E0

where

(23) E0 � T exp(−c4
√

log T )||xn

n
||1|| (τ3∗|x|)(n)yn

n
||1 ,

H(M ;u, v) =
∑

g≤min(M/u,M/v)
yugxvg

g
,

c(u, v) = −1
2
Λ2(a) +R1

(
log( T

2πv
)
)
Λ(u) + R̃1

(
log( T

2πv
)
)
α1(u) + α2(u) ,

and R1, R̃1, R2 are monic polynomials of degrees 1, 1, 2. Moreover, α1, α2 are
arithmetic functions supported on those n with ω(n) ≤ 2. More precisely,

α1(p
α) = log p

p−1
, α2(p

α) = − (α+1)(log p)2

p−1
+ D log p

p−1
− log p

(p−1)2
for some D ∈ R, and

α2(p
αqβ) = −(log p)(log q)( 1

p−1
+ 1

q−1
) for α, β ∈ N.

(ii) In the resonator case, we have, assuming the large zero-free region con-
jecture for the Riemann zeta function, the same result as above but with

(24) E0 � T exp
(
− c′4 log T

log log T

)
||xn

n
||1|| (τ3∗|x|)(n)yn

n
||1 .

Theorem 4.4. (i) If xn, yn satisfy (2), (3) then for 0 < θ < 1/2 we have
for any A′ > 0

(25) E �A′ T (log T )−A
′
+ T

3
4
+ θ

2
+ε .

(ii) Assume the large zero-free region conjecture. If xn = yn = f(n) where
f is defined by (4) then for 0 < θ < 1/6 we have

(26) E � T exp
(
− c5 log T

log log T

)
+ T

3
4
+ 3θ

2
+ε .
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By (21), Propositions 4.2-4.4, and the bounds for the coefficients given in
section 3 we obtain

S =
T

2π

∑
nu≤M

xuxnur0(n)

nu
− T

4π

∑
gv≤M

ygxgv
gv

R2

(
log( T

2πv
)
)

− T

2π

∑
u,v≤M
(u,v)=1

c′(u, v)H(M ;u, v)

uv
+ E0 + E +O(T ε(||y||∞M + ||y||1))

where E0 and E are as in the proceeding propositions. Setting r1(u, v) =
−c′(u, v) we see that we obtain the principal term of Theorem 1.3. By (23)

and (6) we obtain an error term of the form T (log T )−A
′
+T

3
4
+ θ

2
+ε as asserted.

By (24) and (9) we obtain the error term T exp
(
− c1 log T

log log T

)
+ T

3
4
+ θ

2
+ε. �

5. Evaluation of SR: Proof of Proposition 4.2

In this section we evaluate the term SR. Recall that

SR =
1

2πi

∫ κ+iT

κ+i

(
χ′

χ
(s)2ζ(s)− 2

χ′

χ
(s)ζ ′(s) +

ζ ′

ζ
(s)ζ ′(s)

)
X(s)Y (1− s) ds .

The above integral will be evaluated by considering the more general ex-
pression:

Jk = Jk(T ) =
1

2πi

∫ κ+iT

κ+i

(
χ′

χ
(s)

)k
D(s)X(s)Y (1− s) ds

where D(s) =
∑∞

n=1 αnn
−s and k ∈ Z≥0. Suppose that

∑∞
n=1 |αn|n−σ �

(σ − 1)−α as σ → 1. We will establish:

Lemma 5.1. Suppose |αn| � nε and we have coefficients xn, yn satisfying
||xn/n||1, ||yn/n||1 � T ε. Then for k ∈ N

Jk =
(−1)kTPk(log( T

2π
))

2π

∑
nu≤M

αnxuynu
nu

+O (T ε(||y||∞M + ||y||1) )

where Pk is a monic polynomial of degree k.

Proof of Proposition 4.2. By our expression for SR above it suffices to apply
Lemma 5.1 in the cases k = 2, αn = 1, k = 1, αn = −(log n), and k = 0, αn =
(Λ ∗ log)(n). Thus

SR ∼
T

2π

∑
nu≤M

xuynu
nu

(
P2(log( T

2π
))− 2P1(log( T

2π
))(log n) + (Λ ∗ log)(n)

)
with an error O(T ε(||y||∞M + ||y||1) as claimed. �

Proof of Lemma 5.1. We have the estimate χ′

χ
(s) = − log |t|

2π
+O(1/(1+ |t|))

valid for 1/2 ≤ σ ≤ 2 and t ≥ 1. Thus

Jk =
1

2πi

∫ κ+iT

κ+i

(− log(t/2π))k +Ok

(
L k−1t−1

)
)D(s)X(s)Y (1− s) ds .
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One checks that the error term contributes � T ε||y||1. Exchanging sum-
mation and integration order yields

Jk =
∑
n,u,v

αnxuyv(−1)k

nκuκv1−κ2π

∫ T

1

(log(t/2π))k
( v

nu

)it
dt+O (T ε||y||1)

where s = κ+ it. We now write Jk = Jd + Jnd where Jd consists of the the
diagonal terms v = nu and Jnd consists of the terms v 6= nu. We have

Jd =
(−1)k

2π

∑
nu≤M

αnxuynu
nu

∫ T

1

logk(t/2π) dt .

It is simple to see that
∫ T

1
logk

(
t

2π

)
dt = TPk

(
log( T

2π
)
)
+Ok(1) where Pk is

monic of degree k. Moreover, since |αn|, ||xn

n
||1, ||yn

n
||1 � T ε we have

Jd =
(−1)kTPk(log( T

2π
))

2π

∑
nu≤M

αnxuynu
nu

+O (T ε) .

The remainder term is

Jnd =
∑
n,u,v
v 6=nu

αnxuyv
nκuκv1−κ

1

2π

∫ T

1

logk(t/2π)
( v

nu

)it
dt .

For v 6= nu the integral is � L k(| log v
nu
|)−1 and hence

Jnd � L k+α||xn/n||1
∑
v≤M
v 6=nu

|yv|
v1−κ| log

(
v
nu

)
|
.

Since κ = 1 + O(L −1) it suffices to bound S(h) =
∑

v≤M
v 6=h

|yv|| log v
h
|−1.

If h ≥ 1.1M , we have S(h) � ||y||1. We now suppose h < 1.1M . The
contribution to S(h) from those v ≥ 1.5h and v ≤ 0.5h is bounded by ||y||1.
Consider the interval I = [0.5j, 1.5j] ∩ [1,M ]. For those integers k not in
this interval we obtain∑

k/∈I

|yk|
| log(k/j)|

�
∑
k≤j/2

|yk|+
∑

3j/2≤k≤M

|yk| � ||y||1 .

Either I = [j/2, 3j/2], [1, 3j/2], [j/2,M ]. In the first case

∑
k∈I

|yk|
| log(j/k)|

=

j/2∑
s=1

|yj−s|
| log(j/(j − s))|

+

j/2∑
s=1

|yj+s|
| log(j/(j + s))|

� j

j/2∑
s=1

|yj−s|
s

+ j

j/2∑
s=1

|yj+s|
s

� ||y||∞j(log j) .

The argument for the second and third cases is analogous. We deduce
Jnd � T ε(||y||∞M + ||y||1) and thus the lemma is established. �
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6. Preliminary lemmas

In the section we prove several lemmas that will aid us in evaluating M0

and bounding E . Lemmas 6.1 and 6.5 will be applied in our evaluation of
M0. Lemmas 6.1, 6.4, 6.6, and 6.7 shall be invoked when we bound E . The
next lemma tells us how to decompose an arithmetic function which is the
convolution of other arithmetic functions.

Lemma 6.1. Let f1, f2, . . . , fj be arithmetic functions and let D ∈ N. Given

a decomposition D = d1d2 · · · dj we define the integers Di =
∏j−i

u=1 du for
1 ≤ i ≤ j − 1 and Dj = 1. We have the identities∑

m≤X
(m,k)=1

(f1 ∗ f2 ∗ · · · ∗ fj)(mD)

=
∑

d1d2···dj=D

∑
m1m2···mj≤X
(mi,kDi)=1

f1(m1dj)f2(m2dj−1) · · · fj(mjd1) ,
(27)

(28)
∑

(m,k)=1

(f1 ∗ f2 ∗ · · · ∗ fj)(mD)

ms
=

∑
d1d2···dj=D

j∏
i=1

∑
(mi,kDi)=1

fi(midj−i)

ms
i

.

Proof. The proof of this argument follows the proof of Lemma 3 of [3] (p.
506). The case j = 2 follows from the identity

(f1 ∗ f2)(mD) =
∑
g|D

∑
h|m

(h,D
g

)=1

f1(gh)f2

(
mD

gh

)
.

By making the identifications g = d2,
D
g

= d1, h = m1, and m
h

= m2 we

obtain (27), (28) for j = 2. For j > 2 the assertion follows by induction. �

We now introduce some arithmetic functions that will appear in our eval-
uation of M0. We define η1(k) =

∑
p|k

log p
p−1

, η2(k) = −
∑

p|k
p log p
(p−1)2

,

g(h, k) =
∑

a|h,a=pt

(a,k)=1

Λ(a) log p

p− 1
.

(29)

Moreover, we define arithmetic functions φj(n) for j = 1 . . . 4 as follows:

φ1(n) =
∑
k|n

µ(k)η1(k) , φ2(n) =
∑
k|n

µ(k)η2(k) ,

φ3(n) =
∑
k|n

µ(k)g(h, k) , φ4(n) =
∑
k|n

µ(k)η1(k) log k .
(30)

We prove that the φj are supported on integers n such that ω(n) ≤ 2.
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Lemma 6.2. φ1, φ2, φ3 are supported only on the prime powers and are
given by:

φ1(p
α) = − log p

p− 1
, φ2(p

α) =
p log p

(p− 1)2
, φ3(p

α) =
log p

p− 1
log(pα)

for α ≥ 1. However, φ4 is supported on those n with ω(n) ≤ 2 and is given
by

φ4(p
αqβ) = (log p)(log q)

(
1

p− 1
+

1

q − 1

)
, φ4(p

α) = −(log p)2

p− 1

where α, β ≥ 1.

Proof. These formulae for the φi may be proved directly from their defini-
tions, however it is simpler to employ generating functions. Put A(s) =∑∞

n=1 φ4(n)n−s where φ4(n) =
∑

hk=n µ(k)(
∑

p|k f(p)) log k and f(x) =
log x
x−1

. We have

A(s) =
∑
h,k≥1

µ(k) log k

hsks

∑
p|k

f(p) =
∑
p

f(p)
∞∑
h=1

1

hs

∑
p|k

µ(k) log k

ks

=
∑
p

f(p)µ(p)

ps
ζ(s)

∑
(k1,p)=1

µ(k1) log(pk1)

ks1

=
∑
p

f(p)µ(p)

ps
ζ(s)

 log p

1− 1
ps

ζ(s)−1 +
∑

(k1,p)=1

µ(k1) log(k1)

ks1

 .

It may be verified that∑
(k1,p)=1

µ(k1) log(k1)

ks1
= (1− 1/ps)−2 log p

ps
ζ(s)−1 + (1− 1/ps)−1 ζ

′(s)

ζ(s)2

and thus

A(s) =
∑
p

f(p)µ(p)

ps

(
log p

(1− 1/ps)
+

log p

ps(1− 1/ps)2
+

1

(1− 1/ps)

ζ ′(s)

ζ(s)

)
=
∑
pj ;j≥1

f(p)µ(p) log p

pjs
+
∑
pj ;j≥2

f(p)µ(p) log p(j − 1)

pjs
+
∑
pj

f(p)µ(p)

pjs
ζ ′(s)

ζ(s)

=
∑
pj

f(p)µ(p) log(pj)

pjs
+

∑
pj

f(p)

pjs

(−ζ ′(s)
ζ(s)

)
.

Let θ(n) be supported on prime powers defined by θ(pj) = f(p). We write∑
pj

f(p)

pjs

(−ζ ′(s)
ζ(s)

)
=
∑
n≥1

t(n)

ns
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with t(n) = (θ ∗ Λ)(n). It follows easily that φ4 is supported on those n
such that ω(n) ≤ 2. We begin by supposing that ω(n) = 2 and n = pαqβ.
Thus

(31) t(pαqβ) =
∑

uv=pαqβ

Λ(u)θ(v) = (log p)f(q) + (log q)f(p) .

Next for n = pα

(32) t(pα) =
∑
uv=pα

Λ(u)θ(v) =
∑

i+j=α,i,j≥1

log pf(p) = (α− 1)f(p)(log p) .

Since φ4(n) = f(n)µ(n) log(n) + t(n) the result follows from (31) and (32).
�

The next result provides an estimate for divisor sums in short intervals.
This is Theorem 2 of [16].

Lemma 6.3. Let α, β be real numbers and let a, q, k be integers. Suppose
that 0 < α, β < 1/2, k ≥ 2, and (a, k) = 1. We have as t→∞,∑

t−u≤n≤t
n≡a(q)

τk(n) � u

q

(
φ(q)

q
log t

)k

uniformly in a, q, and t provided that q < t1−α and tβ < u ≤ t.

We will also require a short interval estimate for τk ∗ x where x is an
arbitrary arithmetic function.

Lemma 6.4. Let T � w � T 2 and M ≤
√
T . Let x be an arithmetic

function supported on [1,M ]. Then∑
t−u≤n≤t

(τk ∗ x)(n) � u(log t)k−1||xn/n||1

where u = wU−1, exp(c
√

logw) ≤ U ≤ exp( 2 logw
log logw

) and w
2
≤ t−u ≤ t ≤ w.

Proof. Notice that our sum may be rewritten as∑
t−u<n≤t

(τk ∗ x)(n) =
∑
b≤M

xb
∑

t
b
−u

b
≤a≤u

b

τk(b) .

By our conditions on u and t, u
b
�
(
t
b

)ε
for all 1 ≤ b ≤ M . Hence by

Lemma 6.3∑
b≤M

xb
∑

t
b
−u

b
≤a≤ t

b

τk(a) � u(log t)k−1
∑
b≤M

xb
b
� uL k−1||xn

n
||1 .

�

The next lemma evaluates asymptotically a sum that will appear in our
evaluation of M0. The proof of this lemma is very similar to the asymp-
totic evaluation of

∑
n≤x Λ(n) that occurs in the proof of the prime number

theorem.
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Lemma 6.5. Let h, k ∈ N, h, k ≤M and x ≥ 1 such that log x � log T .∑
u≤x

(u,k)=1

(Λ ∗ log)(hu) =
xφ(k)

k

(
1

2
(log x)2 + 2 log(x/e) log h+ (Λ ∗ log)(h)

+(C0 − η1(k)) log(x/e) + C1η1(k)− η2(k)− g(h, k))

+O(τ(h)x exp(−C2

√
log T ))

for some explicit constants Cj for j = 0, 1, 2 and η1, η2, g1, g2, and g are the
arithmetic functions defined above. Note if we further assume that ζ(s) is
non-vanishing in the region Re(s) ≥ 1− c0

log log(|Im(s)|+4)
then the above error

term may be reduced to

O
(
τ(h)x exp

(
−C′

2 log T

log log T

))
.

Proof. Put A(z) =
∑

(u,k)=1(log ∗Λ)(hu)u−z. We have by Perron’s formula

∑
u≤x

(u,k)=1

(Λ∗log)(hu) =
1

2πi

∫ κ+iU

κ−iU
A(z)xz

dz

z
+O

(
xκ

∞∑
n=1

(Λ ∗ log)(hn)

nκ(1 + T | log(x/n)|)

)

for κ = 1 + O((log x)−1) (see [18, p. 132]). First note that (Λ ∗ log)(hn) �
τ(h)2(log n)2τ(n)2. In the last sum above the contribution from those n not
in [0.5x, 2x] is

� τ(h)x

U

∑
n≥1

(log n)2τ(n)2

nκ
� τ(h)x(log x)6

U
.

We now consider the contribution from those n ∈ [0.5x, 2x]. We begin with
the interval [0.5x, x). This yields the contribution

� τ(h)L 2
∑

x
2
≤n<x

τ(n) min(1, U−1| log(x/n)|−1) .

Since | log(x/n)|−1 � x
|x−n| this sum is

�
∑

x− x
U
≤n<x

τ(n) +
x

U

∑
x
2
<n<x− x

U

τ(n)

x− n
.

By an application of Lemma 6.3 the first sum is� x
U

log x. Now dividing the
second sum into K � U intervals of length x

U
and invoking again Lemma

6.3 we see that

x

U

∑
x
2
<n<x− x

U

τ(n)

x− n
� x

U

K∑
k=1

U

kx

∑
x−(k+1) x

U
≤n<x−k x

U

τ(n)

�
K∑
k=1

k−1x log x

U
� x log x logU

U
.
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Combining estimates we deduce for U ≤ x∑
u≤x

(u,k)=1

(Λ ∗ log)(hu) =
1

2πi

∫ κ+iU

κ−iU
A(z)xz

dz

z
+O

(
τ(h)xL 6

U

)
.

In a moment we shall give a decomposition of A(z) in terms of other well
known Dirichlet series and thus we shall show that it has a triple pole at
z = 1. Let σ0(t) = 1 − c′

log(|t|+2)
+ it for t ∈ R. We shall shift the contour

left to Re(s) = σ0(U). Therefore∑
u≤x

(u,k)=1

(Λ ∗ log)(hu) = Rez=1

(
A(z)xzz−1

)
+

1

2πi

∫ σ0(U)+iU

σ0(U)−iU
A(z)xz

dz

z

+O

((∫ σ0(U)+iU

κ+iU

+

∫ σ0(U)−iU

κ−iU

)
A(z)xz

dz

z
+
τ(h)xL 6

U

)
.

(33)

By Lemma 6.1

A(z) =
∑
ab=h

∑
(c,ak)=1

log(bc)

cz

∑
(d,k)=1

Λ(ad)

dz
:=
∑
ab=h

A1(z; a, b)A2(z; a) .

A calculation shows that

A1(z; a, b) = Φ(z; ak) (log(b)ζ(z)− ζ ′(z)− ζ(z)η(z; ak))

where for n ∈ N

Φ(z;n) =
∏
p|n

(
1− p−z

)
, η(z;n) :=

Φ
′
(z;n)

Φ(z;n)
=
∑
p|n

log p

pz − 1
.

Also

A2(z; a) =


− ζ′

ζ
(z)− η(z; k) if a = 1

log p
1−p−z if a = pl , (a, k) = 1

log p if a = pl , p | k
0 else

.

It is convenient to define Λ̃(a; z) = (log p)/(1 − p−z) = Λ(a)(1 + 1
pz−1

) for

a = pl. Thus we have A(z) = B1(z) +B2(z) +B3(z) where

(34) B1(z) =

(
−ζ

′

ζ
(z)− η(z; k)

)
Φ(z; k) (−ζ ′(z) + ζ(z)(log h− η(z; k)) ,

(35) B2(z) =
∑
a|(h,k)

Λ(a)Φ(z; ak) (−ζ ′(z) + ζ(z)(log(h/a)− η(z; ak))) ,

(36) B3(z) =
∑
a|h

(a,k)=1

Λ̃(a; z)Φ(z; ak) (−ζ ′(z) + ζ(z)(log(h/a)− η(z; ak))) .
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We define Rj = Resz=1(Bj(z)x
z/z) for j = 1, 2, 3. We remark that η(1; k) =

η1(k), η
′(1; k) = η2(k), Φ(1; k) = φ(k)

k
,

Φ′(1; k) = Φ(1; k)η1(k) =
φ(k)

k
η1(k) ,

Φ(2)(k) = Φ(1; k)
(
η(1; k)2 + η′(1; k)

)
=
φ(k)

k

(
η1(k)

2 + η2(k)
)
.

(37)

We now list several Laurent series that we require in the residue computation

xz

z
= x

(
1 + log(x/e)(z − 1) +

(
1

2
(log x)2 − log(x/e)

)
(z − 1)2 + · · ·

)
,

Φ(z;n) = Φ(1;n) + Φ
′
(1;n)(z − 1) +

1

2
Φ(2)(1;n)(z − 1)2 + · · · ,

ζ ′(z)2

ζ(z)
=

1

(z − 1)3

(
1 + a1(z − 1) + a2(z − 1)2 + · · ·

)
,

−ζ ′(z) =
1

(z − 1)2

(
1 + b2(z − 1)2 + · · ·

)
,

with aj, bj ∈ R. Note that

B1(z) = Φ(z; k)

(
ζ ′(z)2

ζ(z)
− ζ ′(z) (log(h)− 2η(z; k)) + ζ(z)(η(z; k)2 − log(h)η(z; k))

)
.

We begin by writing R1 = R11 +R12 +R13 where

R11 = Resz=1

(
Φ(z; k)

ζ ′(z)2

ζ(z)

xz

z

)
,

R12 = Resz=1

(
−ζ ′(z)Φ(z; k) (log(h)− 2η(z; k))

xz

z

)
,

R13 = Resz=1

(
ζ(z)Φ(z; k)(η(z; k)2 − log(h)η(z; k))

xz

z

)
.

We deduce from the above Laurent series that

R11 = x((1/2) log(x)2Φ(1; k) + log(x/e)((a1 − 1)Φ(1; k) + Φ′(1; k))

+ (a2Φ(1; k) + a1Φ
′(1; k) + Φ(2)(1; k)) .

By (37) this simplifies to

R11 =
xφ(k)

k

(
1

2
log(x)2 + log(x/e)((a1 − 1) + η1(k)) + (a2 + a1η1(k) + η1(k)

2 + η2(k))

)
.

Similar calculations yield

R12 =
xφ(k)

k
((log(x/e) + η1(k))(log h− 2η1(k))− 2η2(k))

and R13 = xφ(k)
k

(η1(k)
2 − η1(k) log h). Combining our formulae we have

R1 =
1

2
(log x)2 + log(x/e)(log h+ a1 − 1− η1(k)) + a1η1(k)− η2(k) .

(38)
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We next deal with R2. Note that

Resz=1

(
−ζ ′(z)Φ(z; ak)

xz

z

)
= xΦ(1; ak) (log(x/e) + η1(ak)) ,

Resz=1

(
ζ(z)Φ(z; ak)(log(h/a)− η(z; ak))

xz

z

)
= xΦ(1; ak) (log(h/a)− η1(ak)) ,

and thus

R2 = x
∑
a|(h,k)

Λ(a)
φ(ak)

ak
(log(x/e) + log(h/a)) .

Now observe that φ(ak)
ak

= φ(k)
k

if a | k and φ(ak)
ak

= φ(k)
k

(1− 1/p) if (a, k) = 1
and hence

R2 =
xφ(k)

k

∑
a|(h,k)

Λ(a) (log(x/e) + log(h/a)) .(39)

We now consider R3. Since

Resz=1

(
−ζ ′(z)Λ̃(a, z)Φ(z; ak)

)
= xΦ(1; ak)

(
Λ̃(a; 1) log(x/e) + Λ̃′(a; 1) + Λ̃(a; 1)η1(ak)

)
,

Resz=1

(
ζ(z)Λ̃(a; z)Φ(z; ak)(log(h/a)− η(z; ak))

)
= xΦ(1; ak)Λ̃(a; 1) (log(h/a)− η1(ak)) ,

it follows that

R3 = x
∑
a|h

(a,k)=1

Φ(1; ak)(Λ̃(a; 1)(log(x/e) + log(h/a)) + Λ̃′(a; 1)) .
(40)

By the identities Φ(1; ak) = φ(ak)
ak

= φ(k)
k

(1 − 1/p), Λ̃(a; 1) = Λ(a) p
p−1

,

Λ̃′(a; 1) = −Λ(a) p log p
(p−1)2

we derive

R3 =
xφ(k)

k

∑
a|h

(a,k)=1

Λ(a)

(
log(x/e) + log(h/a)− log p

p− 1

)
.

Combining R2 and R3 we have

R2 +R3 =
xφ(k)

k

∑
a|h

Λ(a) (log(x/e) + log(h/a))−
∑
a|h

(a,k)=1

Λ(a) log p

p− 1


=
xφ(k)

k
(log(x/e) log h+ (Λ ∗ log)(h)− g(h, k)) .(41)

Combining our expressions for R1 (38) and R2 +R3 (41) we see that

residue =
xφ(k)

k

(
1

2
(log x)2 + 2 log(x/e) log h+ (Λ ∗ log)(h)

+ (C0 − η1(k)) log(x/e) + a1η1(k)− η2(k)− g(h, k) .
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It suffices to compute the other error terms in (33). We have the standard
bounds |(ζ ′/ζ)(z)| � (log |z|), |ζ(j)(z)| � (log |z|)j for j = 1, 2, Re(z) ≥
1 − c′

|Im(z)| and |Im(z)| ≥ 3 (see [18, p. 146, p. 158]). Note that by our

decomposition A(z) = B1(z) +B2(z) +B3(z) we have

|B1(z)| � (logU + η1/2(k))j(k)(log
2 U + logU(log h+ η1/2(k)) ,

|B2(z) +B3(z)| � j(k)
∑
a|h

Λ(a)j(a)(log2 U + logU(log h+ η1/2(ak)))

and thus |A(z)| � j(k)L 3. It follows that the horizontal integrals in (33)
are bounded by∫ c

σ0(U)

|A(σ ± iU)|xσ dσ

|σ ± iU |
� xcj(k)L 3

U
� j(k)xL 3

U

and the leftmost vertical integral in (33) is bounded by

xσ0(U)

∫ U

−U

|A(σ0(U) + iu)|du
|σ0(U) + iu|

� xj(k)L 3 log(U) exp

(
− c log x

log(|U |+ 2)

)
.

If we choose U = exp(β
√

log x) for an appropriate β > 0 then these last
two error terms are O(j(k)x exp(−β′

√
log x)) for some β′ > 0. We finally

deduce from (33) that∑
u≤x

(u,k)=1

(Λ ∗ log)(hu) = residue +O
(
(τ(h) + j(k))x exp

(
−C2

√
log x

))
.

However, note that one can show j(k) � exp(o(
√

log k)) and hence the er-
ror term can be written as O(τ(h) exp(−C2

√
log x)) for a smaller C2.

We give a brief sketch how to adapt this argument for the resonator
case assuming the large zero-free region conjecture for ζ(s). Obviously, the
residue term will remain unchanged. Instead in this case, we will move the
contour further left to the line Re(s) = σ1(U) where σ1(t) = 1− 0.25c0

log log(|t|+4)
.

In this region, one can establish that |(ζ ′/ζ)(z)| � (log log |z|), |ζ(j)(z)| �
(log log |z|)j for |z| � 1. These results may be proven exactly as in Lemma
6.8 that follows. We deduce

xσ1(U)

∫ U

−U

|A(σ1(U) + iu)|du
|σ1(U) + iu|

� xj(k)L 3 log(U) exp
(
− c log x

log log(|U |+2)

)
on the left edge of the contour. Choosing U = exp( β log x

log log x
) for some β > 0

yields the smaller error term. �

We shall require a bound for δ (18) that occurs in the decomposition (20).

Lemma 6.6. For d, k, q ∈ N, ψ a primitive character modulo q and kq � T
we have

|δ(q, kq, d, ψ)| � (d, k) log log T

φ(k)φ(q)
.

Moreover, if kq is squarefree then this bound may be replaced by (d, k)/(φ(k)φ(q)).
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Proof. Now for any a, b ∈ N we have φ(ab)θ((a, b)) = φ(a)φ(b) where θ(n) =∏
p|n(1 − 1/p). However, one can show that θ(n) � (log log |3n|)−1. From

these observations it follows that

|δ(q, kq, d, ψ)| � log log(kq)
∑
e|(d,k)

φ(e)

φ(kq)
� (d, k) log log T

φ(q)φ(k)
.

The second stated bound is obtained by the same method. �

Lemma 6.7. Let h be a positive multiplicative function. Let 1 ≤ k, q ≤M .
We shall provide a bound for

θ(σ) =
∑
d|kq

(d, k)h(d)

dσ
.

(i) We first establish:

θ(σ) �
{

(1 ∗ h)(k)||h(n)
n
||1 if σ = 1√

k(1 ∗ h)(k)||h||∞T ε if σ = 1/2
.

(ii) We assume that kq is squarefree, h(p) � f(p) where f is defined by (4),

and q ≥ η :=
(

2.5L
log L

)
. Then we obtain

θ(σ) �

{
(1 ∗ h)(k) exp

(
o(
√

L )
)

if σ = 1
√
k(1 ∗ h)(k)T ε if σ = 1/2

.

Proof. (i) We put g = (d, k), d = gd1, and k = dk1 so that

θ(σ) =
∑
g|k

g
∑

d|kq,g=(d,k)

h(d)

dσ
�
∑
g|k

g1−σ
∑
d1|q

h(gd1)

dσ1

� k1−σ
∑
g|k

h(g)
∑
d1|q

h(d1)

dσ1
.

If σ = 1 then we have the bound (1 ∗ h)(k)||h(n)
n
||1 and if σ = 1

2
then we

apply
∑

d1|q
h(d1)√
d1
� ||h||∞T ε. These bounds prove part (i). For part (ii) kq

is squarefree and thus (k, q) = 1. It follows that

θ(σ) =
∑
d|k

h(d)d1−σ
∑
e|q

h(e)e−σ ≤ k1−σ(1 ∗ h)(k)
∑
e|q

h(e)e−σ .

Since q is squarefree and h is multiplicative

log
∑
e|q

h(e)

eσ
=
∑
p|q

log

(
1 +

h(p)

pσ

)
�
∑
p|q

h(p)

pσ
�
∑
p|q

f(p)

pσ
.

Noting that f is supported on those n such that n ≥ L2 we obtain∑
p|q,p>L2

f(p)

p
=

∑
p|q,p>L2

L

p(log p)
� Lω(q)

L2 logL
� log q

L log(L) log log q
= o(

√
logM)



A DISCRETE MEAN VALUE 23

for L =
√

logM log logM and q ≥ exp
(

2.5L
log L

)
. Now denote the prime

divisors of q as r1, · · · , rk. Let p1, · · · , pk denote the first k primes. We have
that ∑

p|q

f(p)

p1/2
≤

∑
pi≤2 log q

L

(log p)p1/2
� L(log q)1/2

(log log q)2
= o(log T )

for exp
(

2.5L
log L

)
≤ q ≤M . �

The final lemma in this section provides bounds for L(k)(s, χ) k = 1, 2

and L
′

L
(s, χ) for s just to the left of Re(s) = 1 in the critical strip. We have

Lemma 6.8. Suppose that χ is a primitive Dirichlet character modulo q.
For s = σ + it we put τ = |t|+ 4.
(i) There exists a constant c > 0 such that if Re(s) ≥ 1− c

log(qτ)
then

|L(k)(s, χ)| � log(qτ)k ,

∣∣∣∣L′

L
(s, χ)

∣∣∣∣� log(qτ) .

(ii) Assume the large zero-free region conjecture. If Re(s) ≥ 1 − c0/4
log log(qτ)

then

|L(k)(s, χ)| � log log(qτ)k ,

∣∣∣∣L′

L
(s, χ)

∣∣∣∣� log log(qτ) .

Proof. Part (i) is classical and and the proofs can be found in [9, pp. 331-
343]. For part (ii) we shall follow the argument for bounding ζ(s) presented
in [18] pages 158-160. We put a = (1 − χ(−1))/2 and we suppose without
loss of generality that t > 0. Suppose that there exists c0 such that if
ρ = β + iγ is a zero of L(s, χ) then

β < 1− c0
log log(q(|γ|+ 4))

.

In fact we can thus deduce that minρ

(
1
ρ

+ 1
z−ρ

)
≥ 0 for z = a + ib where

b ≥ b0 is sufficiently large and a ≥ 1 − c0/2
log log qt

(This follows from the

argument in [18, pp. 158-159]). We now let s = σ + it be a fixed complex

number with t sufficiently large and σ ≥ 1− c0/4
log log qt

. We put s0 = 1+ η+ it

with η = c0/4
log log qt

. Suppose that w is a complex number satisfying |w| ≤ 4η.

The point s0 + w = σ′ + it′ satisfies t′ ≥ b0 and σ′ ≥ 1− c0/2
log log qt

and thus

(42) Re

(
1

ρ
+

1

s0 + w − ρ

)
≥ 0 .

Consider the function

F (w) =
L′(s0, χ)

L(s0, χ)
− L′(s0 + w, χ)

L(s0 + w, χ)
.
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By the explicit formula for L
′

L
(s, χ) (see chapter 14 of [4])

F (w) =
1

s0 + w − 1
− 1

s0 − 1
+

1

2

(
Γ′

Γ

(
s0 + w

2
+

a

2

)
− Γ′

Γ

(s0

2
+

a

2

))
−
∑
ρ

(
1

ρ
+

1

s0 + w − ρ

)
+
∑
ρ

(
1

ρ
+

1

s0 − ρ

)
.

By (42) and Stirling’s formula it follows that

Re(F (w)) ≤ A log log qτ +

∣∣∣∣∣Re
∑
ρ

(
1

ρ
+

1

s0 − ρ

)∣∣∣∣∣ .
Now the sum is �

∑
ρ

1
|ρ||s0−ρ| since Re(s0) � 1. Writing ρ = β + iγ we

divide the above sum into intervals. Note that s0 = 1 + η + it with t > 0.

I1 = [2t,∞) , I2 = [t+ h, 2t| , I3 = [t− h, t+ h] , I4 = [1, t− h] ,

I5 = [−1, 1] , I6 = [−1,−t] , I7 = (−∞,−t) .

Moreover, we set for j = 1, . . . , 7 σj =
∑

γ∈Ij(|ρ||s0 − ρ|)−1 . Before pro-

ceeding we note that |ρ| =
√
β2 + γ2 ≥ max(|γ|, |β|) and

|s0 − ρ| =
√

(1 + η − β)2 + (γ − t)2 ≥ max((1 + η − β), |γ − τ |) .
We define N(t, χ) to be the number of zeros of L(s, χ) in the box −1

2
≤

Re(s) ≤ 3
2

and |Im(s)| ≤ t. We shall employ the well-known bound
N(t, χ) � t log(q(|t|+ 2)). We have

σ1 =
∑
γ≥2τ

1

γ|t− γ|
�
∑
γ≥2t

γ−2 � log qt

t
,

σ2 �
∑

t+h≤γ≤2t

1

γ(γ − t)
�
∫ 2t

t+h

dN(u, χ)

u(u− t)
� log(qt)

∫ 2t

t+h

du

u(u− t)
� log(qt) log(t/h)

t
,

σ3 =
∑

t−h≤γ≤t+h

1

γ(1 + η − β)
� log log qτ

c′0

N(t+ h, χ)−N(t− h, χ)

t

� h log(qt) log log qτ

t
,

σ4 =
∑

1≤γ≤t−h

1

|ρ||s0 − ρ|
�

∑
1≤γ≤t−h

1

γ(t− γ)
�
∫ t−h

1−

dN(t, χ)

t(t− h)

� (log qt)

∫ t−h

1

du

u(u− h)
� log qt

t− h
.

σ5 =
∑
|γ|≤1

1

|ρ||s0 − ρ|
� t−1

∑
|γ|≤1

|ρ|−1 � t−1β−1
minN(1, χ) ,

where βmin is the smallest positive real zero of L(s, χ). By the large zero-free
region conjecture βmin >

c0
log log(4q)

and thus

σ5 � t−1 log log(q) log(q) .
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Similarly,

σ6 =
∑

−t≤γ≤−1

1

|ρ||s0 − ρ|
�

∑
−t≤γ≤−1

1

|γ||t− γ|
� t−1

∑
−t≤γ≤−1

1

|γ|
� log qt

t
,

σ7 =
∑
γ≤−t

1

|ρ||s0 − ρ|
�
∑
|γ|≥t

1

|γ|2
� log qt

t
.

Combining bounds and choosing h = t/ log(qτ) we derive

Re(F (w)) � A log log(qτ) +
h log(qτ) log log(qτ)

t
� log log(qτ) .

Since we have |s− s0| ≤ 2η it follows from the Borel-Caratheodory theorem
that ∣∣∣∣L′L (s, χ)

∣∣∣∣� log log(qτ) +

∣∣∣∣ζ ′ζ (s0, χ)

∣∣∣∣� log log(qτ) .

Therefore

log

(
L(s, χ)

L(s0, χ)

)
=

∫ s

s0

L′

L
(w, χ) dw � |s− s0| log log(qτ) � 1 .

Now note that | logL(s0, χ)| ≤ log ζ(1 + η) = log3(qτ) + O(1) and it fol-
lows that logL(s, χ) � log3(qτ) for Re(s) ≥ 1 − c0

log log qτ
. Now writing

L(s, χ) = exp(logL(s, χ)) we have we have |L(s, χ)| ≤ exp(| logL(s, χ)|) ≤
exp(log3(qτ) +O(1)) � log log(qτ). �

7. Evaluation of M0: Proof of Proposition 4.3

With the previous lemmas in hand we are now set to evaluate M0.

Proof. In (19) we set l = (m, k), m = lm1, and k = lk1 to obtain

M0 =
∑
l≤M

∑
k1≤M/l

ylk1
lk1

µ(k1)

φ(k1)

∑
lm1≤ lk1T

2π
(m1,k1)=1

a(m1l) .

Rewriting k1 as k

(43) M0 =
∑
lk≤M

ylkµ(k)

lkφ(k)
S

(
kT

2π
; l, k

)
where

S

(
kT

2π
; l, k

)
=

∑
m≤ kT

2π
(m,k)=1

a(ml) and a(r) =
∑
uv=r
v≤M

(Λ ∗ log)(u)xv .

Note that by Lemma 6.1 we may decompose this as

S

(
kT

2π
; l, k

)
=
∑
gh=l

∑
gv≤M

(v,kh)=1

xgv
∑
uv≤ kT

2π
(u,k)=1

(Λ ∗ log)(hu) .
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We have by Lemma 6.5 that

∑
u≤ kT

2πv
(u,k)=1

(Λ ∗ log)(hu) =
Tφ(k)

2πv
(X1(h, k, v) +X2(h, k, v)) +O

(
τ(h)kT

v
exp(−C2

√
log T )

)(44)

since log(kT
v

) � log T and

X1(h, k, v) =
1

2
log
(
kT
2πv

)2
+ 2log

(
kT

2πve

)
log(h) + (Λ ∗ log)(h) ,

X2(h, k, v) = (C0 − η1(k))log
(
kT

2πve

)
+ a1η1(k)− η2(k)− g(h, k) .

We set M0 = M′
0 +M′′

0 where M′
0 is the contribution in M0 arising from

X1 and X2 in (44) and M′′
0 denote contribution arising from the the error

term in (44). First the error term is

M′′
0 � T exp(−C2

√
log T )

∑
lk≤M

|ylk|
lφ(k)

∑
gh=l

τ(h)
∑
v≤M/g

|xgv|
v

� T exp(−C2

√
log T ) log logM ||xn

n
||1
∑
lk≤M

(τ ∗ |x|)(l)|ylk|
lk

� T exp(−C3

√
log T )||xn

n
||1|| (τ3∗|x|)(n)yn

n
||1 .

We now deal with M′
0:

M′
0 =

T

2π

∑
lk≤M

ylkµ(k)

lk

∑
gh=l

∑
gv≤M

(v,kh)=1

xgv
v

(X1(h, k, v) +X2(h, k, v))

=
T

2π

∑
ghk≤M

yghkµ(k)

ghk

∑
gv≤M

(v,kh)=1

xgv
v

(X1(h, k, v) +X2(h, k, v)) .

By the variable change hk = u we have

M′
0 =

T

2π

∑
gu≤M

ygu
gu

∑
gv≤M
(v,u)=1

xgv
v

∑
hk=u

µ(k)(X1(h, k, v) +X2(h, k, v)) .

Next we will check that∑
hk=u

µ(k)X1(h, k, v) = −1
2
Λ2(u) + log

(
T

2πve

)
Λ(u) + 1

2
log
(
T

2πv

)2
δ(u) .
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This follows immediately from the identities:∑
d|u

µ(d) = δ(u) :=

{
1 if u = 1
0 if u > 1

,

∑
d|u

µ(d) log d = −Λ(u) ,

∑
d|u

µ(d)(log d)2 = −2(log u)Λ(u) + Λ2(u) ,∑
de=u

µ(d)(log d)(log e) = (log u)Λ(u)− Λ2(u) ,

Λ2(u) = Λ(u) log(u) + (Λ ∗ Λ)(u) .

Our next step is to compute
∑

hk=u µ(k)X2(h, k, v). We recall that Lemma
6.2 gives us

φ1(u) =
∑
hk=u

µ(k)η1(k) , φ2(u) =
∑
hk=u

µ(k)η2(k) ,

φ3(u) =
∑
hk=u

µ(k)g(h, k) , φ4(u) =
∑
hk=u

µ(k)η1(k) log(k) .
(45)

It follows from the definitions (30) and Lemma 6.2 that∑
hk=u

µ(k)X2(h, k, v) = log
(

T
2πve

)
(C0δ(u)− φ1(u))

− C0Λ(u)− φ4(u) + a1φ1(u)− φ2(u)− φ3(u) .

(46)

Combining these identities we arrive at∑
hk=u

µ(k)(X1(h, k, v) +X2(h, k, v)) = −1
2
Λ2(u) +R1

(
log( T

2πv
)
)
Λ(u)

+ 1
2
R2

(
log( T

2πv
)
)
δ(u) + α1(u)R̃1

(
log( T

2πv
)
)

+ α2(u)

(47)

where R1, R2, R̃1 are monic polynomials of degrees 1, 2, 1. Note that α1(u) =
−φ1(u) and α1 is supported on prime powers. In fact, α1(p

α) = log p
p−1

. Also

α2(u) = a1φ1(u)−φ2(u)−φ3(u)−φ4(u) and it is supported on those integers
n with ω(n) ≤ 2. Moreover, we have

α2(p
α) = −(α+ 1)(log p)2

p− 1
− log p

p− 1

(
a1 +

p

p− 1

)
α2(p

αqβ) = −(log p)(log q)

(
1

p− 1
+

1

q − 1

)
.

(48)

Therefore

M′
0 =

T

2π

∑
gu≤M

ygu
gu

∑
gv≤M
(v,u)=1

xgv
v

(
−1

2
Λ2(u) +R1

(
log( T

2πv
)
)
Λ(u)

+1
2
R2

(
log( T

2πv
)
)
δ(u) +R̃1

(
log( T

2πv
)
)
α1(u) + α2(u)

)
.
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We define H(M ;u, v) =
∑

g≤min(M
u
,M

v )
yugxvg

g
and thus

M0 =
T

2π

∑
u,v≤M
(u,v)=1

c′(u, v)H(M ;u, v)

av
+
T

4π

∑
gv≤M

ygxgv
gv

R2

(
log T

2πv

)
+O

(
T exp(−C3

√
log T )||xn

n
||1|| (τ3∗|x|)(n)yn

n
||1
)(49)

where

c′(u, v) = −1
2
Λ2(u) +R1

(
log( T

2πv
)
)
Λ(u) + R̃1

(
log( T

2πv
)
)
α1(u) + α2(u) .

Now in the resonator case the error term O( τ(h)kT
v

exp(−C2

√
log T )) in (44)

above is just replaced by O( τ(h)kT
v

exp(−C′
2 log T

log log T
)). The argument then pro-

ceeds identically and yields the same formula as above for M0 except with
the error term

O
(
T exp

(
−C′

3 log T

log log T

)
||xn

n
||1|| (τ3∗|x|)(n)yn

n
||1
)
.

�

8. Bounding E: Proof of Theorem 4.4

In (20) we invert summation order and replace the variables k by kq and
m by md to obtain

E =
∑

1<q≤M

∑∗

ψmod q

τ(ψ)
∑
k≤M/q

ykq
kq

∑
d|kq

δ(q, kq, d, ψ)
∑

m≤ kqT
2πd

a(md)ψ(m)

=
∑
k≤M

N
(
M
k
, kT

2π
, k
)

k

(50)

where

(51) N (ξ, z, k) =
∑

2≤q≤ξ

ykq
q

∑∗

ψmod q

τ(ψ)
∑
d|kq

δ(q, kq, d, ψ)
∑

m≤qz/d

a(md)ψ(m) .

In our analysis of N (ξ, z, k) we have to distinguish between the two cases
for the coefficients xn, yn. We define

η =

{
L A in the divisor case

exp
(

2.5 log T
log log T

)
in the resonator case

for an arbitrary positive constant A > 0. We now estimate the sum
N (ξ, z, k) by dividing up the range of q into 2 ≤ q ≤ η and η < q ≤ ξ ≤M .
The case 2 ≤ q ≤ η is analogous to the Siegel-Walfisz theorem. That is, we
shall estimate directly the sum

∑
m≤qz/d a(md)ψ(m) by the classical contour

integral method invoking the zero-free region for Dirichlet L-functions and
Siegel’s bound for the exceptional zero. The case η < q ≤ ξ is analogous to
Gallagher [6] and Vaughan’s [19] proofs of the Bombieri-Vinogradov theo-
rem. Here we shall employ an analytic form of the large sieve inequality for
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Dirichlet characters. Thus we shall divide up E as:

E =
∑

k<M/η

N (η, kT
2π
, k)

k
+

∑
M/η<k≤M

N (M
k
, kT

2π
, k)

k

+
∑

k≤M/η

N (M
k
, kT

2π
, k)−N (η, kT

2π
, k)

k
.

(52)

We abbreviate this to E = E1 + E2 + E3. Shortly we shall establish

Proposition 8.1. (i) If xn, yn satisfy (2), (3) then

(53) E1 + E2 � T exp(−C4

√
log T )

∣∣∣∣∣∣ j(k)τr(k)τr+3(k)
k

∣∣∣∣∣∣
1
η

3
2
+ε

for some C4 = C4(A) > 0 where η = L A.

(ii) Assume the large zero-free region conjecture. If xn = yn = f(n) then

(54) E1 + E2 � exp
(

(−c0/8+o(1)) log T
log log T

) ∣∣∣∣∣∣ j(k)f(k)(τ3∗f)(k)
k

∣∣∣∣∣∣
1
η

3
2 .

where η = exp(2.5 log T
log log T

).

We also show that

Proposition 8.2. (i) If xn, yn satisfy (2), (3) then there exists a C5 > 0
such that

(55) E3 � TL C5|| τr(k)2

k
||21η−1/2 + T

3
4
+ θ

2
+ε

where η = L A.

(ii) Assume the large zero-free region conjecture. If xn = yn = f(n) then

(56) E3 � TL 3||f(k)2

k
||1||f(k)(τ∗f)(k)

k
||1η−

1
2 + ||f ||2∞ T

3
4
+ θ

2
+ε .

where η = exp(2.5 log T
log log T

).

With the above bounds for E1, E2, and E3 we deduce Theorem 4.4 which
provides a bound for E .

Proof of Theorem 4.4. We begin with part (i): the divisor case. Since η =

L A, || τr(k)2

k
||1, || j(k)τr(k)τr+3(k)

k
||1 � L C′

it follows from Propositions 8.1 and
8.2 that

E � T exp(−C6

√
log T ) + TLC7−0.5A + T

3
4
+ θ

2
+ε

for some C6 = C6(A), C7 > 0. Choosing A = 2(A′ + C7) yields

E �A′ T (log T )−A
′
+ T

3
4
+ θ

2
+ε .

We next prove part (ii) of the theorem: the resonator case. Since η =
exp( 2.5L

log L
),

||f(k)2

k
||1 , || j(k)f(k)(τj∗f)(k)

k
||1 � exp

(
(0.5+o(1)) log T

log log T

)
,
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and ||f ||∞ � T θ it follows that

E � T
(
exp

(
(−c0/8+4.25+o(1)) log T

log log T

)
+ exp

(
(−0.25+o(1)) log T

log log T

))
+ T

3
4
+ 3θ

2
+ε

If c0 is sufficiently large we have established there exists a C8 > 0 such that

E � T exp
(
−C8 log T

log log T

)
+T

3
4
+ 3θ

2
+ε. This completes the proof of Theorem 4.4.

We have now reduced the proof to establishing the bounds of Propositions
8.1 and 8.2. �

8.1. Bounding E1, E2: Proof of Proposition 8.1. In this section we will
bound E1 and E2 and thus establish Proposition 8.1. Note that E1, E2 each
take the form

(57) Ei =
∑
k≤M

N (ξ, kT
2π
, k)

k
(i = 1, 2)

with ξ ≤ η.

Proof of Proposition 8.1. We shall evaluateN (ξ, kT
2π
, k) by invoking the bound

from Lemma 6.6 for δ(q, k, d, ψ) and the following:

Lemma 8.3. Let ψ be a non-principal character modulo q, T � w � T 2,
and d� T .
Divisor case. For any A > 0 there exists a C9 > 0 such that∑

m≤w

a(md)ψ(m) �A j(d)(τ ∗ |x|)(d)w exp(−C9

√
log T )

for all q ≤ L A.
Resonator case. Assume the large zero-free region conjecture for L(s, ψ).
Then we have∑

m≤w

a(md)ψ(m) � j(d)(τ ∗ |x|)(d)wexp
(
− (c0/8) log T

log log T

)
.

for q ≤ exp( 2.5L
log L

).

The evaluation of N (ξ, kT
2π
, k) is split in the two cases.

We first consider part (i). That is, xn, yn satisfy (2) and (3). By Lemma
8.3 we obtain for ξ � η = L A

N
(
ξ, kT

2π
, k
)

� kT exp(−C9L
1/2)

∑
q≤ξk

|ykq|
∑∗

ψmod q

|τ(ψ)|
∑
d|kq

|δ(q, kq, d, ψ)|j(d)(τ ∗ x)(d)
d

By Lemma 6.6, |τ(ψ)| ≤ √
q, |xn|, |yn| � L Cτr(n) we see that N (ξ, kT

2π
, k)

is bounded by

� j(k)τr(k)kT

φ(k)
exp(−C10

√
L )

∑
q≤ξ

j(q)τr(q)
√
q
∑
d|kq

(d, k)(τ ∗ τr)(d)
d

.
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By Lemma 6.7 and k
φ(k)

� log L this is further bounded by

� j(k)τr+3(k)τr(k)T exp(−C11

√
L )

∑
q≤η

j(q)τr(q)
√
q .

The last sum is � η
3
2
+ε and thus

N
(
ξ, kT

2π
, k
)
� j(k)τr+3(k)τr(k)T exp(−C11

√
L )η

3
2
+ε

for some C11 > 0. Therefore by (57) we have

E1 + E2 � T exp(−C11

√
log T )

∣∣∣∣∣∣ j(k)τr+3(k)τr(k)
k

∣∣∣∣∣∣
1
η

3
2
+ε .

We now establish part (ii). Here we assume xn = yn = f(n) and η =
exp( 2.5L

log L
). As before N (ξ, kT

2π
, k) is bounded by

kT exp
(
− (c0/8)L

log L

)∑
q≤ξk

f(kq)
∑∗

ψmod q

|τ(ψ)|
∑
d|kq

|δ(q, kq, d, ψ)|j(d)(τ ∗ f)(d)

d
.

By Lemma 6.6 and |τ(ψ)| ≤ √q, we further bound this by

� j(k)f(k)kT

φ(k)
exp

(
− (c0/8)L

log L

)∑
q≤ξ

j(q)f(q)
√
q
∑
d|kq

(d, k)(τ ∗ f)(d)

d
.

By Lemma 6.7 we obtain

� j(k)(τ3 ∗ f)(k)f(k)kT

φ(k)
exp

(
− (c0/8)L

log L
+ o(

√
L )
)∑
q≤η

j(q)f(q)
√
q .

Obviously
∑

q≤η j(q)f(q)
√
q � η

3
2 ||f(k)

k
||1. Thus

N (ξ, kT
2π
, k) � j(k)(τ3 ∗ f)(k)f(k)T exp

(
(−(c0/8)+o(1))L

log L

)
||f(k)

k
||1η

3
2 .

Therefore by (57)

E1 + E2 � T exp
(

(−c0/8+o(1))L
log L

) ∣∣∣∣∣∣ j(k)(τ3∗f)(k)f(k)
k

∣∣∣∣∣∣
1
||f(k)/k||1η

3
2 .

�

8.2. Proof of Lemma 8.3. We now establish Lemma 8.3 which was central
to establishing our bounds for E1, E2.

Proof. Recall that T � w � T 2 and d� T . By Perron’s formula, we have∑
m≤w

a(md)ψ(m) =
1

2πi

∫ κ+iU

κ−iU
A(s, ψ, d)ws

ds

s
+O(ε)

where κ = 1 +O((logw)−1) and

ε�
∑
n6=w

(w
n

)κ
|a(dn)|min

(
1, U−1| log(w/n)|−1

)
+ |a(w)| .

We will first show that ε is small. Let ε = ε1+ε2 where ε1 is the contribution
from those terms with n > 1.5w and n < 0.5w and ε2 consists of the
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other terms. We observe that (Λ ∗ log)(n) ≤ log2 n and hence |a(n)| ≤
(log2 n)(1 ∗ |x|)(n). It follows that ε1 is bounded by

w

U

∞∑
n=1

|a(dn)|
nκ

� w

U
(1∗|x|)(d)

(
L 2

∑
n≥1

(1 ∗ |x|)(n)

nκ
+
∑
n≥1

log2 n(1 ∗ |x|)(n)

nκ

)
.

Observe that
∞∑
n=1

(1 ∗ |x|)(n)

nκ
=

∞∑
a=1

1

aκ

∑
b≤M

|xb|
bκ

� L ||xn/n||1 .

A similar calculation gives
∞∑
n=1

(log n)2(1 ∗ |x|)(n)

nκ
� L 3||xn

n
||1

and thus ε1 � w
U
L 3(1∗ |x|)(d)||xn

n
||1 . We now deal with ε2. Since nd� T 3

the contribution from those terms in 0.5w ≤ n < w is∑
0.5w<n<w

|a(nd)|min(1, U−1| log(w/n)|−1)

� (1 ∗ |x|)(d)L 2
∑

0.5w<n<w

(1 ∗ |x|)(n) min(1, U−1| log(w/n)|−1) .

Since | log(w/n)|−1 � n
|w−n| for w/2 ≤ n < w it follows that the last sum is∑

w−w
U
≤n<w

(1 ∗ |x|)(n) +
w

U

∑
w
2
<n<w−w

U

(1 ∗ |x|)(n)

w − n
.

However by Lemma 6.4 the first sum is � U−1||xn

n
||1 . In the second sum we

divide it up in to intervals of the form [w− (k+1)w
U
, w−kw

U
] for 1 ≤ k ≤ K

with K � U . By another application of Lemma 6.4 the second term is

U−1

K∑
k=1

∑
w−(k+1) w

U
<n<w−kw

U

(1 ∗ |x|)(n)

w − n
� w−1

∑
k≤K

1

k

∑
w−(k+1) w

U
<n<w−kw

U

(1 ∗ |x|)(n)

� w−1
∑
k≤K

1

k

w

U
||xn

n
||1 � U−1L ||xn

n
||1 .

Note that an identical argument applies to the range w < n < 1.5w and
thus ε2 � (1 ∗ |x|)(d)U−1L ||xn

n
||1. In summary,∑

m≤w

a(md)ψ(m) =
1

2πi

∫ κ+iU

κ−iU
A(s, ψ, d)ws

ds

s
+O

(
(1 ∗ |x|)(d)||xn

n
||1wL 3

U

)
.

To complete the proof we require a bound for

(58) I :=
1

2πi

∫ κ+iU

κ−iU
A(s, ψ, d)ws

ds

s
.

In order to achieve this we need some understanding of the generating func-
tion A(s, ψ, d). We will show that the generating function A(s, ψ, d) can be
computed explicitly in terms of L(s, ψ). With our knowledge of A(s, ψ, d)



A DISCRETE MEAN VALUE 33

in hand we shall deform our contour left into the zero-free region of L(s, ψ)
and then bound A(s, ψ, d) on this contour. Since a(n) = (Λ ∗ log ∗x)(n),
Lemma 6.1 yields

(59) A(s, ψ, d) =
∑

d1d2d3=d

A1(s, 1, d1)A2(s, d1, d2)A3(s, d1d2, d3)

where

A1(s, u, v) =
∑
mv<M
(m,u)=1

ψ(m)xmv
ms

,

A2(s, u, v) =
∑

(m,u)=1

ψ(m) log(mv)

ms
,

A3(s, u, v) =
∑

(m,u)=1

ψ(m)Λ(mv)

ms
.

A calculation demonstrates that

A2(s, u, v) = L
′
(s, ψ)Φ(s, ψ, u)−L(s, ψ)Φ

′
(s, ψ, u)+(log v)L(s, ψ)Φ(s, ψ, u)

where Φ(s, ψ, u) =
∏

p|u(1− ψ(p)p−s) =
∑

n|u
µ(n)ψ(n)

ns and

A3(s, u, v) =


−L

′

L
(s, χ)−

∑
p|u

χ(p) log p
ps−χ(p)

if v = 1
log p

1−χ(p)p−s if v = pl, (u, p) = 1

log p if v = pl, p | u
0 else

.

With these expressions in hand we now analyze the behaviour of A(s, ψ, d)
to the right of the line Re(s) = 1. For Re(s) ≥ 1/2, |Φ(s, ψ, u)| ≤ j(d),
|Φ′

(s, ψ, u)| � j(d)(log d) and thus

|A2(s, u, v)| � j(d)(|L′
(s, ψ)|+ |L(s, ψ)|L ) ,

|A3(s, u, v)| � |L′
L

(s, ψ)|+ L .

It follows from (59) and these two last bounds that
(60)

|A(s, ψ, d)| ≤ j(d)
(
|L′

(s, ψ)|+ |L(s, ψ)|L
)(
|L

′

L
(s, ψ)|+ L

) ∑
d1d2d3=d

|A(s, 1, d1)|

Now since |A(s, 1, d1)| � |xd1 |||xn

n
||1M1−σ and by the bounds for L(j)(s, ψ),

L′

L
(s, ψ) from Lemma 6.8 we obtain

(61) |A(s, ψ, d)| ≤ j(d)(τ ∗ |x|)(d)L 3||xn

n
||1M1−σ

unconditionally for Re(s) ≥ 1− c
log(q(|t|+4))

and assuming the large zero-free

region conjecture it is true for Re(s) ≥ 1 − c0/4
log log(q(|t|+4))

. We are now pre-

pared to bound I. The argument is again split in two cases.

Case 1. Divisor case. It follows that A(s, ψ, d) has a meromorphic contin-
uation to all of C. For all non-principal characters, A(s, ψ, d) has at most
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one simple pole in the region {s = σ+ it : σ ≥ σ1(t) = 1− c
log q(|t|+2)

} where

c > 0 is an absolute effective constant. By Siegel’s theorem, this pole, if it
exists is a real number β that satisfies

(62) 1− β �ε q
−ε

where the constant is ineffective. We shall let Γ1 denote the contour σ =
σ1(U) and |t| ≤ U . By (61) and ||xn

n
||1 � L C′

we have

(63) |A(s, ψ, d)| � j(d)(τ ∗ |x|)(d)L C′′

where s = σ0(U) + it, |t| ≤ U , |s − 1| � L −1, and |s − β| � L −1. It
follows from Cauchy’s theorem that∑

m≤w

a(md)ψ(m) �
∫

Γ1

∣∣A(s, ψ, d)w
s

s

∣∣ ds
+
∣∣ress=βA(s, ψ, d)w

s

s

∣∣+ w

U
(τ ∗ |x|)(d)L 4||xn

n
||1 .

(64)

By (63)∫
Γ1

A(s, ψ, d)
ws

s
ds� j(d)(τ ∗ |x|)(d)L C′′

w exp
(

−c logw
log(q(U+2))

)
� j(d)(τ ∗ |x|)(d)L C′′

w exp(−C12

√
logw)

since q ≤ L A and U = exp(C13

√
logw). To bound the residue at s = β

(the possible Siegel zero) we invoke Siegel’s ineffective bound (62) to obtain

wβ ≤ w exp
(
−C13 logw

qε

)
≤ w exp

(
−C13 logw

L εA

)
� w exp

(
−C14

√
L
)

if ε ≤ (2A)−1. Thus

ress=βA(β, ψ, d)
ws

s
� j(d)(τ ∗ x)(d)L C′′

w exp(−C14

√
L ) .

Collecting all estimates yields

(65)
∑
m≤w

a(md)ψ(m) �A j(d)(τ ∗ |x|)(d)w exp(−C15

√
L ) .

where C15 = C15(A) > 0 and q ≤ L A.

Case 2. Resonator case. In this case we assume that for each q that
every primitive Dirichlet L-function L(s, ψ) is non-vanishing in the region

{s = σ + it : σ ≥ σ2(t) = 1 − c0/4
log log(q(|t|+4))

}. We shall let Γ2 denote the

contour with σ = σ2(U) and |t| ≤ U . By (61) and Lemma 6.8

|A(s, ψ, d)| � j(d)(τ ∗ |x|)(d)L 4||xn

n
||1 exp

(
c0/4 logM
log logM

)
where s = σ2(U) + it, |t| ≤ U , |s− 1| � L −1. By Cauchy’s theorem∑

m≤w

a(md)ψ(m) �
∫

Γ2

∣∣∣∣A(s, ψ, d)
ws

s

∣∣∣∣ ds+
w

U
(τ ∗ |x|)(d)L 4||xn

n
||1 .
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Hence∫
Γ2

A(s, ψ, d)
ws

s
ds� j(d)(τ ∗ |x|)(d)L 5||xn

n
||1w exp

(
c0
4

(
logM
log2M

− logw
log2(q(U+2))

))
We choose U = exp(C17 logw

log logw
). Since q ≤ exp( 2.5L

log L
), T � w � T 2 we have∫

Γ2

A(s, ψ, d)
ws

s
ds� j(d)(τ ∗ |x|)(d)||xn

n
||1w exp

(
c0
4
(θ − 1)(1 + o(1)) L

log L

)
As ||xn

n
||1 � exp(o(

√
L )) and 0 < θ < 1

2
we deduce∑

m≤w

a(md)ψ(m) � j(d)(τ ∗ |x|)(d)wexp
(
− (c0/8) log T

log log T

)
for q ≤ exp

(
2.5L
log L

)
. �

8.3. Bounding E3: Proof of Proposition 8.2. We now prove the bound
for

(66) E3 =
∑

k≤M/η

N (M
k
, kT

2π
, k)−N (η, kT

2π
, k)

k
.

Proof of Proposition 8.2. By Perron’s formula applied with U = T 20, T �
w � T 2, and κ = 1 + (logw)−1 we have∑

m≤w

a(md)ψ(m) =
1

2πi

∫ κ+iU

κ−iU
A(s, ψ, d)ws

ds

s
+O(wε) .

Combining this expression with the definition (51) of N we obtain

|N (M
k
, kT

2π
, k)−N (η, kT

2π
, k)| �

∑
η≤q≤M

k

|ykq|
q

·
∑∗

ψmod q

|τ(ψ)|
∑
d|kq

|δ(q, kq, d, ψ)|
(∣∣∣∣∫ κ+iU

κ−iU
A(s, ψ, d)

(
qkT

2πd

)s
ds

s

∣∣∣∣+O(T ε)

)
(67)

By Lemma 6.6 the term containing O(T ε) contributes

� T ε
∑

η≤q≤M
k

|yk||yq|√
q

∑∗

ψmod q

∑
d|kq

(d, k)

φ(k)φ(q)
� T ε

∑
η≤q≤M

k

|yk||yq|σ1(kq)

φ(k)
√
q

� |yk|T εM
3
2 .

The first sum in (67) is bounded by

� |yk|(log L )

φ(k)

∑
η≤q≤M

k

|yq|
√
q

qφ(q)

∑∗

ψmod q

∑
d|kq

µ2(kq)(d, k)

∣∣∣∣∫ κ+iU

κ−iU
A(s, ψ, d)

(
qkT

2πd

)s
ds

s

∣∣∣∣
� |yk|(log L )

φ(k)
max
Q≤M

k

µ2(kQ)
∑
d|kQ

(d, k)

∫ M
k

η

z−1dS(z)
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where

S(z) =
∑
q≤z

q1/2|yq|
φ(q)

∑∗

ψmod q

∣∣∣∣∫ κ+iU

κ−iU
A(s, ψ, d)

(
qkT

2πd

)s
ds

s

∣∣∣∣ .
The next step is to dissect A(s, ψ, d) =

∑∞
m=1 a(md)ψ(m)m−s via Vaughan’s

identity. We define the partial sum of A(s, ψ, d)

F = F (s, ψ, d) =
∑
m≤u

a(md)ψ(m)

ms
,

and the partial sum G(s, ψ) of L(s, ψ)−1 by

G = G(s, ψ) =
∑
m≤v

µ(m)ψ(m)

ms
.

We choose the parameters

u = z2 and v = T 1/2

where z is a real variable satisfying η ≤ z ≤ M
k

. Vaughan’s identity is

A = (A− F )(1− LG) + (F − FLG+ ALG) .

We write this as A = H + I where

H = (A− F )(1− LG) and I = F − FLG+ ALG .

It follows that

1

2πi

∫ κ+iU

κ−iU
A(s, ψ, d)

(
qkT

2πd

)s
ds

s
=

1

2πi

∫ κ+iU

κ−iU
(H+I)(s, ψ, d)

(
qkT

2πd

)s
ds

s
.

By the argument of [3, p. 514] we have∫ κ+iU

κ−iU
I(s, ψ, d)

(
qkT

2πd

)s
ds

s
=

∫ 1
2
+iU

1
2
−iU

I(s, ψ, d)

(
qkT

2πd

)s
ds

s
+O(T−1) .

Next we define

H(z) =
∑
q≤z

|yq|q3/2

φ(q)

∑∗

ψmod q

∫ U

−U
|H(κ+ it)| dt

κ+ |t|

where κ = 1 +O(L −1) and

I(z) =
∑
q≤z

|yq|q
φ(q)

∑∗

ψmod q

∫ U

−U
|I(1/2 + it)| dt

1/2 + |t|
.

With these definitions in hand we obtain

(68) |N (M
k
, kT

2π
, k)−N (η, kT

2π
, k)| � σ1 + σ2 + |yk|M

3
2T ε



A DISCRETE MEAN VALUE 37

where

σ1 =
(Tk)|yk| log L

φ(k)
max
Q≤M

k

µ2(kQ)
∑
d|kQ

(d, k)

d

∫ M
k

η

z−1dH(z) ,

σ2 =
(Tk)1/2|yk| log L

φ(k)
max
Q≤M

k

µ2(kQ)
∑
d|kQ

(d, k)

d1/2

∫ M
k

η

z−1dI(z) .

Next we will show the bounds

(69)

∫ M
k

η

z−1dH(z) � (1 ∗ |x|)(d)L 5||x
2
k

k
||1/21 ||xk

k
||1
(
η−1/2 + T−δk−1/2

)
,

(70)

∫ M
k

η

z−1dI(z) � j(d)τ3(d)|x(d)|2
(
T θ+εk−

1
2 + T

θ
2
+ 1

4
+ε
)

where δ = 1
4
− θ

2
. We deduce

σ1 � TL 7||x
2
k

k
||1/21 ||xk

k
||1
(
η−1/2 + T−δk−1/2

)
|yk|max

Q≤M
k

µ2(kQ)
∑
d|kQ

(d, k)(1 ∗ |x|)(d)
d

,

(71)

(72)

σ2 �
|yk|
k

1
2

max
Q≤M

k

µ2(kQ)
∑
d|kQ

(d, k)j(d)τ3(d)|x(d)|2

d1/2

(
T

1
2
+θ+εk−

1
2 + T

3
4
+ θ

2
+ε
)
.

We now bound |N (M
k
, kT

2π
, k)−N (η, kT

2π
, k)| in the two cases:

Case 1. Divisor case. We have by Lemma 6.7 (i)

σ1 � TL C18
(
η−1/2 + T−δk−1/2

)
τr(k) max

Q≤M
k

µ2(kQ)
∑
d|kQ

(d, k)τr+1(d)

d

� TL C19
(
η−1/2 + T−δk−1/2

)
τr(k)τr+2(k) .

By Lemma 6.7 (i) and |xn|, |yn| � T ε we obtain

σ2 � T
1
2
+θ+εk−1/2 + T

3
4
+ θ

2
+ε .

From (66), (68) and our bounds for σi we have

E3 � TL C19

∑
k≤M/η

τr(k)τr+2(k)

k

(
η−1/2 + T−δk−1/2

)
+ T

1
2
+θ+ε + T

3
4
+ θ

2
+ε

� TL C20η−
1
2 + T

3
4
+ θ

2
+ε

for 0 < θ < 1/2 as claimed.

Case 2. Resonator case. By (69) and (8) we have

σ1 � T exp
(

(0.25+o(1))L
log L

) (
η−1/2 + T−δk−1/2

)
f(k) max

Q≤M
k

µ2(kQ)
∑
d|kQ

(d, k)(1 ∗ f)(d)

d
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By an application of Lemma 6.7 (ii) this is

σ1 � T exp
(

(0.25+o(1))L
log L

) (
η−1/2 + T−δk−1/2

)
f(k)(τ ∗ f)(k) .

By (72), Lemma 6.7 (ii) and f(d), (τ ∗ f)(d) � ||f ||∞T ε (see (7)) we find

σ2 � f(k)||f ||2∞
(
T

1
2
+θ+εk−1/2 + T

3
4
+ θ

2
+ε
)

By (66), (68) and our expressions for the σi

E3 � T exp
(

(0.25+o(1))L
log L

)
||f(k)(τ∗f)(k)

k
||1η−1/2 + ||f ||2∞(T

1
2
+θ+ε + T

3
4
+ θ

2
+ε)

since || f(k)

k3/2 ||1 � 1 and ||f(k)
k
||1 �M ε. �

9. Establishing (69)

The argument of Proposition 8.2 has been reduced to establishing (69)
and (70). In this section we establish (69). We require the large sieve
inequality:
(73)∑

q≤z

q

φ(q)

∑∗

ψmod q

∫ U

−U

∣∣∣∣∣∑
n

anψ(n)n−it

∣∣∣∣∣
2

dt

κ+ |t|
�
∑
n

(n+ z2(logU))|an|2 .

In addition, we define for an arbitrary function φ(s, ψ) the operator

A(φ) =
∑
q≤z

q

φ(q)

∑∗

ψmod q

∫ U

−U
|φ(1/2 + it, ψ)| dt

κ+ |t|
.

Notice that if c is a constant thenA(cφ) = |c|A(φ) and also for two functions
φi = φi(s, ψ) for i = 1, 2 we have A(φ1φ2) ≤ A(φ2

1)
1/2A(φ2

2)
1/2. Recall that

H = (A− F )(1− LG). By (73)

A((A− F )2) =
∑
q≤z

q

φ(q)

∑∗

ψmod q

|A(κ+ it)− F (κ+ it)|2 dt

κ+ |t|

�
∑
m≥u

(m+ z2L )|a(md)|2m−2κ .
(74)

Since |a(md)| � (log2m)L 2(1 ∗ |x|)(d)(1 ∗ |x|)(m) for d ≤ T

A((A− F )2) � (1 ∗ |x|)2(d)L 4 ·
∑
m≥u

(log4m)(1 ∗ |x|)2(m)

m2κ
(m+ z2L ) .

Since 2κ− 1 = 1 +O(L −1) we have∑
m≥u

(log4m)(1 ∗ |x|)2(m)

m2κ−1
=

∑
v1,v2≤M

|xv1 ||xv2|
∑
m≥u

[v1,v2]|m

log4m

m2κ−1

=
∑

v1,v2≤M

|xv1||xv2|
[v1, v2]2κ−1

∑
m′≥ u

[v1,v2]

log4(m′(v1, v2))

(m′)2κ−1
� L 5

∑
v1,v2≤M

|xv1||xv2 |
[v1, v2]
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Since [v1, v2]
−1 = (v1v2)

−1
∑

g|(v1,v2) φ(g) the last expression is

� L 5
∑
g≤M

φ(g)|xg|2

g2
(
∑
v≤M

g

(v,g)=1

|xv|
v

)2 � L 5||x
2
n

n
||1||xn

n
||21 .

An analogous calculation establishes∑
m>u

(logm)4(1 ∗ |x|)(m)2

m2κ
� L 4|| (1∗|x|)

2(k)
k

||1u−1 � L 5||x
2
n

n
||1||xn

n
||21u−1 .

Therefore A((A−F )2) � (1 ∗ |x|)(d)2L 6||x
2
n

n
||1||xn

n
||21. Moreover, in [3] it is

established that A((1− LG)2) � (1 + z2v−1)L 4. Thus we obtain

H(z) ≤
√
zA(|(A− F )(1− LG)|)

� (1 ∗ |x|)(d)L 5||x
2
k

k
||1/21 ||xk

k
||
√
z(1 + zT−1/4)

where in the last line we applied Cauchy-Schwarz. Since M = T θ we deduce∫ M
k

η

z−1dH(z) � (1 ∗ |x|)(d)L 5||x
2
k

k
||1/21 ||xk

k
||1
(
η−1/2 + T

θ
2
− 1

4k−1/2
)
.

10. Establishing (70)

In this section, we are not so precise about bounds. This is since we will
have a small power savings from the main term. We set s = 1/2 + it and
we now provide a bound for I(z). Since I(z) = A(F − FLG + ALG) we
see that

(75) I(z) � A(F 2)1/2A(1)1/2 +A(F 2)1/2A(L4)1/4A(G4)1/4 +A(|LA||G|) .
It follows from (60) that

|A(s, ψ, d)L(s, ψ)| ≤ j(d)τ3(d)T
ε(|L(s, ψ)|2 + |L′

(s, ψ)|2)|B(s)|
for some Dirichlet polynomial B(s) =

∑
m≤y

bm
ms where |bm| � |xd||xm|.

Thus

A(|LA||G|) ≤ j(d)τ3(d)T
εA(|L(s, ψ)|2 + |L′

(s, ψ)|2)|B(s)||G(s, ψ)|)
� j(d)τ3(d)T

εA(|L(s, ψ)|4 + |L′
(s, ψ)|4)1/2A(|B(s, ψ)|4)1/4A(|G(s, ψ)|4)1/4

(76)

It suffices to bound A(φ) for a variety of φ = φ(s, ψ). We have the following
bounds:

(77) A(1) , A(|L(s, ψ)|4) , A(|L′(s, ψ)|4) � z2T ε .

The first bound is trivial and the last two are due to an argument of Mont-
gomery [8]. Next we analyze A(F 2), A(G4), and A(B4). Note that

F (s, ψ) =
∑
k≤u

a(kd)ψ(k)

ks
, G(s, ψ)2 =

∑
k≤v2

βk
ks

, B(s)2 =
∑
k≤M2

γkk
−s

where the coefficients satisfy

a(kd) � T ε(τ ∗ x)(d)(τ ∗ x)(k) , |βk| ≤ τ(k) , |γk| � x(d)2(|x| ∗ |x|)(k) .
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The large sieve (73) inequality yields

A(F (s, ψ)2) � T ε(τ ∗ |x|)(d)2
∑
k≤u

(k + z2L )
(τ ∗ |x|)(k)2

k

� (τ ∗ |x|)(d)2T ε(u+ x2) ,

A(G(s, ψ)4) �
∑
k≤v2

(k + z2L )
τ(k)2

k
� T ε(v2 + z2) ,

A(B(s)4) � x(d)4
∑
k≤M2

(k + z2L )
(|x| ∗ |x|)2(k)

k
≤ T εx(d)4(M2 + z2) .

(78)

By (75), (76), (77) and the bound (a + b)1/n � a1/n + b1/n for a, b > 0,
n ∈ N we have

I(x) � (τ ∗ |x|)(d)z(u1/2 + z)T ε

+ (τ ∗ |x|)(d)z1/2(u1/2 + z)(v1/2 + z1/2)T ε

+ j(d)τ3(d)|x(d)|z(v1/2 + z1/2)(M1/2 + z1/2)T ε .

Recalling that u = z2 and v = T 1/4 this simplifies to

I(z) � j(d)τ3(d)|x(d)|T ε
(
z2 + z3/2T 1/4 + z3/2M1/2 + zT 1/4M1/2

)
.

Since M = T θ∫ M
k

η

z−1dI(z) � j(d)τ3(d)|x(d)|T ε
(
M
k

+ (M
k

)1/2T 1/4 + (M
k

)1/2M1/2 + T 1/4M1/2
)

� j(d)τ3(d)|x(d)|
(
T θ+εk−1/2 + T

θ
2
+ 1

4
+ε
)
.
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