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Abstract

Discrete moments of the Riemann zeta function were studied by
Gonek and Hejhal in the 1980’s. They independently formulated a
conjecture concerning the size of these moments. In 1999, Hughes,
Keating, and O’Connell, by employing a random matrix model, made
this conjecture more precise. Subject to the Riemann hypothesis, we
establish upper and lower bounds of the correct order of magnitude
in the case of the fourth moment.

1 Introduction

This article concerns discrete moments of the derivative of the Riemann zeta
function of the form

Jk(T ) =
∑

0<γ≤T

|ζ ′
(ρ)|2k

where ρ = β+iγ ranges over non-trivial zeros of ζ(s) and k ∈ R. In particular,
we focus on the case k = 2. These moments are discrete analogues of the
ordinary moments of the Riemann zeta function. In recent years there has
been renewed interest in the moments of L-functions, in part due to Keating
and Snaith’s [11] work in random matrix theory. Estimates for the discrete
moments have number theoretic applications (see [2],[12],[13]). To date, few
asymptotic formulae have been established for these moments. However,
Gonek [5] and Hejhal [8] independently conjectured

Jk(T ) � T log(k+1)2 T (1)
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for k ∈ R. Hughes, Keating, and O’Connell [9], applying random matrix
models refined this to:

Random Matrix Model Conjecture For k > −3
2

and bounded,

Jk(T ) ∼ G2(k + 2)

G(2k + 3)
· ak ·N(T ) ·

(
log

T

2π

)k(k+2)

(2)

as T →∞,where G is Barnes’ function defined by

G(z + 1) = (2π)z/2 exp

(
−1

2
(z2 + γz2 + z)

) ∞∏
n=1

((
1 +

z

n

)n

e−z+z2/2n
)

,

γ is Euler’s constant, ak =
∏

p

(
1− 1

p

)k2 ∑∞
m=0

(
Γ(m+k)
m!Γ(k)

)2

p−m, and N(t) de-

notes the number of zeros of ζ(s) in the box with vertices 0, 1, 1 + it, it.

The number a2 = ζ(2)−1 = 6
π2 appears frequently in this article. Con-

jecture (2) agrees with results of Von Mangoldt and Gonek [3] in the cases
k = 0, 1. Furthermore, one verifies J−1(T ) ∼ 3

π3 T is the case k = −1. Gonek
first conjectured this formula by methods similar to Montgomery’s study
of the pair correlation conjecture. When k = 2, (2) reduces to J2(T ) ∼

1
2880π3 T log9 T . We establish that the random matrix theory conjecture is of
the correct order of magnitude in this case. Throughout, we use the notation
L = log T

2π
. Our main result is

Theorem 1 The Riemann hypothesis implies

c1

π3
TL9

(
1 + O

(
log L

L

))
≤ J2(T ) ≤ c2

π3
TL9

(
1 + O

(
log L

L

))
(3)

where

c1 = (
√

a−
√

b)2 = 0.0000687... , c2 = (
√

a +
√

b)2 = 0.0051561... (4)

with a = 61
60480

, b = 97
60480

. In contrast, 1
2880

= 0.0003472....

The same techniques as Theorem 1, permit one to replace ζ
′
(s) by higher

derivatives. We remark that only Theorem 1 depends on RH. All other
lemmas, corollaries, and theorems are independent of any hypothesis. We
establish the following unconditional result which may be of use in future
moment calculations.
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Theorem 2 Let d(n) denote the number of divisors of n and δ = λ/ log
(

T
2π

)
where λ ∈ R and |λ| � 1. Then we have

∑
0<γ<T

∑
m≤ γ

2π

d(m)

mρ+iδ

∑
n≤ γ

2π

d(n)

n1−ρ−iδ
=

3

π3

(
1

5!
− 4

∑
j≥1

(−1)jλ2j

(5 + 2j)!

)
TL5(1 + o(1))

(5)

where ρ = β + iγ ranges over non-trivial zeros of the zeta function with
0 < γ < T . The o(1) term is (log L)/L.

Notation We work with Dirichlet series of the form

(−1)µ+νζ(µ)(s)ζ(ν)(s) =
∞∑

n=1

d(µ,ν)(n)

ns
(6)

where µ, ν ∈ Z≥0. Note that d(µ,ν)(n) = (logµ ∗ logν)(n) where ∗ denotes
convolution. Furthermore, we set d(µ)(n) := d(µ,0)(n). The generalized di-
visor function dk(n) for k > 0 is defined by its generating function ζk(s) =∑∞

n=1
dk(n)

ns . In this article the arithmetic functions

α(n) := d(1,1)(n) = (log n) d(1)(n)− d(2)(n) ,

βt(n) := (at ∗ at)(n) = l2d(n)− 2l d(1)(n) + α(n) ,
(7)

where l = log( t
2π

) and at(n) = log( t
2πn

) appear often. To simplify notation,
we define for an arbitrary sequence a(n, t) with n ∈ Z+ and t ∈ R the
Dirichlet polynomial

Da(σ + it) =
∑
n≤ t

2π

a(n, t)

nσ+it
. (8)

Acknowledgements The author thanks Professor Andrew Granville for
helpful discussions concerning this article.

1.1 Proof of Theorem 1

We commence with the proof of Theorem 1 since the the argument is rather
simple. This proof is subject to Corollary 1, a mean value result, which is a
special case of Lemma 5. However, the proofs of Corollary 1 and Theorem 2
are deferred until later. We first state Corollary 1.
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Corollary 1 We have

Sα =
∑

0<γ≤T

Dα(ρ)Dα(1− ρ) =
61

60480π3
TL9 + O(TL8 log L) , (9)

Sβ =
∑

0<γ≤T

Dβγ (ρ)Dβγ (1− ρ) =
97

60480π3
TL9 + O(TL8 log L) (10)

where ρ = β+iγ ranges through the non-trivial zeros of the zeta function with
0 < γ < T . Note that Dα(s) and Dβγ (s) are Dirichlet polynomials associated
to α(n) and βγ(n) as defined by (8).

Proof of Theorem 1. The approximate functional equation we require is

ζ
′
(σ + it)2 =

∑
n≤ |t|

2π

α(n)

nσ+it
+ χ2(σ + it)

∑
n≤ |t|

2π

βt(n)

n1−σ−it
+ O(log3 t) (11)

where α(n) and βt(n) are defined by (7) and χ(s) = πs− 1
2 Γ(1−s

2
)/Γ( s

2
) is

the factor from the functional equation of the zeta function. It satisfies
ζ(s) = χ(s)ζ(1 − s) and χ(s)χ(1 − s) = 1. Equation (11) is derived in
[1] (Lemma 3 p.29). Let ρ denote a non-trivial zero of the Riemann zeta
function. By (11) we have

ζ
′
(ρ)2ζ

′
(1− ρ)2 =(Dα(ρ) + χ2(ρ)Dβγ (1− ρ) + O(l3))·

(Dα(1− ρ) + χ2(1− ρ)Dβγ (ρ) + O(l3)) (12)

where l = log γ. Summing (12) over zeros that satisfy 0 < Im(ρ) < T yields∑
0<γ<T

ζ
′
(ρ)2ζ

′
(1− ρ)2 = S1 + 2Re(S2) + S3 + S4 (13)

where S1 = Sα + Sβ, S2 =
∑

0<γ<T χ2(1− ρ)Dα(ρ)Dβγ (ρ),

S3 � L3
∑

0<γ<T

(
|Dα(ρ)|+

∣∣χ2(1− ρ)Dβγ (ρ)
∣∣) ,

and S4 � (log6 T )N(T ) � TL7. We have by Corollary 1

S1 = Sα + Sβ =
a + b

π3
TL9 + O(TL8 log L)
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where a = 61
60480

and b = 97
60480

. Note that under the assumption of RH
|χ(1− ρ)| = 1 and |Da(ρ)|2 = Da(ρ)Da(1− ρ) for a real sequence a = a(n, t).
Hence assuming RH, Cauchy-Schwarz implies

|S2| ≤ S
1
2
α S

1
2
β =

√
ab

π3
TL9

(
1 + O(L−1 log L)

)
and also S3 � (N(T )L6)

1
2 S

1
2
1 � TL

7
2 S

1
2
1 . Lastly we note that RH implies

|ζ ′
(ρ)|4 = ζ

′
(ρ)2ζ

′
(1− ρ)2 . (14)

By (13), (14), and collecting our estimates of the Si for i = 1, . . . , 4 we have

c1

π3
TL9(1 + O(L−1 log L)) ≤ J2(T ) ≤ c2

π3
TL9(1 + O(L−1 log L))

for c1, c2 as in (4) and Theorem 1 is established.

In the above calculation RH was used to evaluate S2 and S3 and to guar-
antee the identity (14). It may be possible, by more sophisticated techniques,
to bound S2 and S3 independent of RH and obtain unconditional bounds for
the sum in (13). Moreover, we expect S2 to contribute to the main term of
J2(T ). In contrast, the analogous sum in Ingham’s [10] calculation does not
contribute.

2 Lemmas

Our calculations require an old formula of Landau’s. We apply Gonek’s
uniform version (proven in [4] pp.401-403).

Lemma 1 Let x, T > 1 then∑
0<γ≤T

xρ = − T

2π
Λ(x) + O (x(log(2xT ))(log log 3x))

O

(
(log x) min

(
T,

x

〈x〉

))
+ O

(
(log(2T )) min

(
T,

1

log x

))
(15)

where 〈x〉 denotes the distance from x to the nearest prime power other than
x itself.
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To prove Lemmas 3 and 5 we require estimates for divisor sums. We only
need upper bounds for shifted divisor sums as in (i) below. Moreover, we
do not require the stronger asymptotic formulae that have been proven. In
addition, a Brun-Titchmarsh result for divisor sums is applied.

Lemma 2 (i) If r ≤ x is a positive integer and σ−1(r) =
∑

d|r d−1 then∑
r<n≤x

d(n)d(n− r) � σ−1(r)x log2 x . (16)

(ii) Let λ ∈ R, k ∈ N, a ∈ Z, (a, k) = 1 and k < x1−α for any α > 0, then∑
n≤x

n≡a mod k

dλ
r (n) � x

k

(
φ(k)

k
log x

)rλ−1

. (17)

Proof. Part (i) is Lemma B2 of [10] p.296 and part (ii) is a direct application
of Theorem 2 of [14] p.169.

We prove a general mean value result for sequences which behave like d(n).
Extending the following result to dk(n) for k ≥ 3 would require knowledge of
sums like (16) with d(n) replaced by dk(n). However, such results have not
been proven yet.

Lemma 3 Suppose two sequences a(n)and b(n) satisfy a(n) � logA(n)d(n)
and b(n) � logB(n)d(n) for A, B > 0. Then we define for δ ∈ R the mean
values

I = I(a, b; T, δ) =
∑

0<γ<T

Da (ρ + iδ) Db (1− ρ− iδ) ,

I(a, b; T ) := I(a, b; T, 0)
(18)

and we have

I(a, b; T, δ) =
T

2π

log

(
T

2π

) ∑
n≤ T

2π

a(n)b(n)

n
−
∑

mj≤ T
2π

Λ(j)a(m)b(mj)

mj1−iδ

−
∑

mj≤ T
2π

Λ(j)b(m)a(mj)

mj1+iδ

+ O
(
TLA+B+4 log L

)
.

(19)
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Proof. By swapping summation order

I =
∑

m≤ T
2π

∑
n≤ T

2π

a(m)b(n)

n

( n

m

)iδ ∑
2π max(m,n)≤γ≤T

( n

m

)ρ

. (20)

We decompose I = I1 + I2 + I3 where

I1 =
∑

m≤ T
2π

a(m)b(m)

m
(N(T )−N(2πm)) , (21)

I2 =
∑

m≤ T
2π

∑
m<n

a(m)b(n)

n

( n

m

)iδ ∑
2πn≤γ≤T

( n

m

)ρ

, (22)

and I3 is the remaining piece consisting of terms with n < m. The second
expression in (21) is � LA+B+1

∑
m≤T d2(m) � TLA+B+4 and since N(T ) =

TL
2π

+ O(T ) we deduce

I1 =
T

2π
log

(
T

2π

) ∑
m≤ T

2π

a(m)b(m)

m
+ O(TLA+B+4) . (23)

Note that for u ∈ R and 0 < C < T∑
C<γ<T

uρ = u
∑

C<γ<T

(
1

u

)ρ

(24)

which follows from the symmetry of the zeros about Re(s) = 1
2
. Conse-

quently, we deduce

I3 =
∑

m≤ T
2π

∑
n<m

a(m)b(n)

m

(m

n

)iδ ∑
2πm≤γ≤T

(m

n

)ρ

. (25)

This expression has the same form as I2 except the roles of a(n) and b(n)
have been switched. Thus the evaluation of I3 follows along similar lines to
I2. Putting x = n

m
and noticing n � T , (15) implies∑

2πn≤γ≤T

xρ =

(
− T

2π
+ n

)
Λ(x) + O (x(log(2xT ))(log log 3x))

+ O

(
(log x) min

(
T,

x

〈x〉

))
+ O

(
(log(2T )) min

(
T,

1

log x

))
.

(26)
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By inserting (26) into the inner sum of (22) we obtain I2 = I21+I22+I23+I24

where

I21 =
∑

m≤ T
2π

∑
m<n≤ T

2π
m|n

a(m)b(n)

n

( n

m

)iδ
(
− T

2π
+ n

)
Λ
( n

m

)
(27)

and I22-I24 correspond to the other terms in (26). Applying d(uv) ≤ d(u)d(v)
the second part of this expression is

� LA+B
∑

jm≤ T
2π

d(m)d(mj)Λ(j) � TLA+B+3
∑
j≤T

Λ(j)d(j)

j
� TLA+B+4

since the final sum is �
∑

p≤T
log p

p
. Consequently, we deduce that

I21 = − T

2π

∑
mj≤ T

2π

Λ(j)a(m)b(mj)

mj1−iδ
+ O

(
TLA+B+4

)
. (28)

The next term is

I22 �
∑
n≤ T

2π

∑
m<n

a(m)b(n)

n

( n

m
log log

( n

m

)(
log
(
2

n

m
T
)))

� TLA+B+1 log L
∑
n≤ T

2π

d(n)
∑
m<n

d(m)

m
� TLA+B+4 log L.

(29)

The third term, I23, is bounded by∑
n≤ T

2π

∑
m<n

a(m)b(n)

n
log
( n

m

)(
min

(
T,

n
m

〈 n
m
〉

))
� LA+B

∑
m<n≤ T

2π

d(m)

m

d(n) log n
m

〈 n
m
〉

.

(30)
In the last sum in (30), pairs (m, n) such that 〈 n

m
〉 > 1

4
contribute

� LA+B

∑
m< T

2π

d(m)

m

∑
n≤ T

2π

d(n) log n

� TLA+B+4 .

The remaining pairs satisfy 〈 n
m
〉 ≤ 1

4
. For each pair (m,n) with m < n we

uniquely write n = qm + r with −m
2

< r ≤ m
2

and q = b n
m
c or q = b n

m
c + 1.
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By the identity〈 n

m

〉
=
〈
q +

r

m

〉
=

{ |r|
m

if q = pk and r 6= 0
≥ 1

2
if q 6= pk or r = 0

we need only consider q a prime power. Thus the contribution from those
terms with 〈 n

m
〉 ≤ 1

4
in the final sum in (30) is

σ :=
∑
m<X

d(m)
∑

q≤X
m

+1, q=pk

log(q)
∑

1≤|r|≤m
4

d(qm + r)

|r|
(31)

where X = T
2π

and hence I23 � σLA+B + TLA+B+4. Furthermore, we write
σ = σ1 + σ2 + σ3 according to the cases: (i) q = p prime, (ii) q = pk, k ≥
2, X1−δ < pk ≤ X + 1, and (iii) q = pk, k ≥ 2, pk ≤ X1−δ where δ is a
small positive constant. The contribution from (i) is

σ1 �
∑
m<X

d(m)
∑

q≤X
m

+1

Λ(q)
∑

1≤|r|≤m
4

d(qm + r)

|r|

�
∑
n≤X

d(n)
∑

|r|≤X
4

,|r|<n

1

|r|
∑

qm=n−r

Λ(q)d(m)

(32)

where we wrote n = qm + r and noticed that qm ≤ 2X. Since d(m) ≤
d(qm) = d(n− r) and

∑
qm=n−r Λ(q) = log(n− r) ≤ log(2X) � L, our sum

is bounded by

� L
∑
|r|≤X

4

1

|r|
∑

|r|<n≤X

d(n)d(n− r) � TL3
∑
r≤X

4

σ−1(r)

r
. (33)

The right-most inequality follows by Lemma 2 and thus

σ1 � TL3
∑
r≤X

4

1

r

∑
g|r

1

g
= TL3

∑
g≤X

4

1

g2

∑
s≤X

4

1

s
� TL4 . (34)

Observe that in σ2, condition (ii) implies m � X
q
≤ Xδ and since d(qm+r) �

Xδ we have

σ2 �
∑

m≤Xδ

d(m)
∑

pk�X
m

, k≥2

log(pk)
∑
r≤m

4

d(qm + r)

r

� Xδ log X
∑

m≤Xδ

d(m)
∑

pk�X
m

, k≥2

log(pk) � T
1
2
+δ .

(35)
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In the final piece we have

σ3 �
∑

pk≤X1−δ , k≥2

log(pk)
∑
|r|≤X

2

1

|r|
∑

2|r|≤m<X

m� X

pk , pkm+r<X

d(m)d(pkm + r) .

(36)

By Cauchy-Schwarz, the inner sum in (36) is

�
(

X

pk

) 1
2

log
3
2 X

 ∑
n�X

n≡r mod pk

d(n)2


1
2

. (37)

We now establish∑
n�X

n≡r mod pk

d(n)2 � min(ordp(r), k)2 X(log X)3

pk
. (38)

If (r, p) = 1 (38) is true by (17). On the other hand, suppose (r, p) > 1 and
r = pus with (s, p) = 1. If u ≥ k then we have∑

n�X
n≡0 mod pk

d(n)2 ≤ d(pk)2
∑

j� X

pk

d(j)2 � k2

pk
(X log3 X) .

In the case 1 ≤ u < k, an analogous calculation establishes the other bound
in (38). Combining (36), (37), and (38) we have

σ3 � (X log4 X)
∑

pk≤X1−δ , k≥2

k log(pk)

pk
� TL4 .

Putting together our estimates for the σi, we have σ � TL4 and hence
I23 � TLA+B+4. Finally, I24 is

� L1+A+B
∑
n≤ T

2π

∑
m<n

d(m)d(n)

n

1

log n
m

� L1+A+B
∑
r< T

2π

1

r

∑
r<n≤ T

2π

d(n− r)d(n) .
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Notice that the last sum was already treated in (33) and (34), so we have
I24 � TLA+B+4. Thus we arrive at

I2 = − T

2π

∑
mj≤ T

2π

Λ(j)a(m)b(mj)

mj1−iδ
+ O

(
TLA+B+4 log L

)
. (39)

Starting from (25) an analogous calculation demonstrates that

I3 = − T

2π

∑
mj≤ T

2π

Λ(j)b(m)a(mj)

mj1+iδ
+ O

(
TLA+B+4 log L

)
. (40)

Combining (23), (39), and (40) finishes the proof of the lemma.

In the next lemma, we evaluate the second and third sums of (19).

Lemma 4 Suppose we have two sequences a(n) � logA(n)d(n) and b(n) �
logB(n)d(n) which satisfy for each p ≤ t∑

n≤t

a(n)b(pn)

n
=
∑

u+v=β

suv logu p logv t + O

(
logβ−1 t +

(logC p)(logβ t)

p

)
(41)

where β, C are positive absolute constants, u, v ≥ 0, suv ∈ C, and the implied
constant in the error term depends only on a(n) and b(n). We associate to
an expansion of the form (41) the constant

A(a, b) =
∑

u+v=β

suv
u!v!

(u + v + 1)!
. (42)

Then we have

M(a, b; X, δ) :=
∑

mk≤X

Λ(k)a(m)b(mk)

k1−iδm

= L̃β+1

∞∑
k=0

(iδL̃)k

k!

∑
u+v=β

suv
(u + k)!v!

(u + v + k + 1)!
+ O(L̃max(β,A+B+4))

(43)

where L̃ = log X and δ ∈ R. Moreover if δ = 0, this reduces to

M(a, b; X, 0) =
∑

mk≤X

Λ(k)a(m)b(mk)

km
= L̃β+1A(a, b) + O(L̃max(β,A+B+4)) .

(44)
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Proof. In the sum M(a, b; X, δ) the prime powers pα with α ≥ 2 contribute∑
pα≤X,α≥2

Λ(pα)

pα

∑
m< X

pα

a(m)b(mpα)

m
� L̃A+B+4

∑
pα≤X, α≥2

αΛ(pα)

pα
� L̃A+B+4 .

We arrive at

M(a, b; X, δ) =
∑
p≤X

Λ(p)

p1−iδ

∑
m< X

p

a(m)b(mp)

m
+ O(L̃A+B+4) .

We replace the inner sum above by the expression on the right side of (41).
The contribution to M(a, b; X, δ) coming from the error term in (41) is

L̃β−1
∑
p≤X

log p

p
+ L̃β

∑
p≥2

Λ(p) logC p

p2
� L̃β .

This demonstrates that

M(a, b; X, δ) =
∑

u+v=β

suv

∑
p≤X

Λ(p)

p1−iδ
logu p logv

(
X

p

)
+ O(L̃max β,A+B+4) .

(45)
By Stieltjes integration,

∑
p≤X

Λ(p)

p1−iδ
logu p logv

(
X

p

)
=

∫ X

1

logu t logv

(
X

t

)
dθ(t)

t1−iδ
(46)

where θ(t) =
∑

p≤t log p . The prime number theorem is θ(t) = t+O(t exp(−c
√

log t))
and thus the main part of (46) equals∫ X

1

logu t logv

(
X

t

)
dt

t1−iδ
=

∞∑
k=0

(iδ)k

k!

∫ X

1

logu+k t logv

(
X

t

)
dt

t
(47)

= L̃β+1

∞∑
k=0

(iδL̃)k

k!

∫ 1

0

xu+k(1− x)v dx = L̃β+1

∞∑
k=0

(iδL̃)k

k!

(u + k)!v!

(u + v + k + 1)!

where we made the variable change x = (log t)/L̃. The contribution arising
from the error term in the prime number theorem is easily seen to be L̃β.

12



Combining (45), (46), and (47) establishes the lemma.

Putting together Lemmas 3 and 4 we have the following computation
of the main term of I(a, b; T ) in (18) subject to various conditions on the
sequences a(n) and b(n).

Lemma 5 Suppose we have two sequences a(n) � logA(n)d(n) and b(n) �
logB(n)d(n) such that∑

n≤t

a(n)b(n)

n
= ca,b logβ t + O(logβ−1 t) , (48)

∑
n≤t

a(n)b(pn)

n
=
∑

u+v=β

suv logu p logv t+O

(
logβ−1 t +

(logC p)(logβ t)

p

)
, and

(49)∑
n≤t

b(n)a(pn)

n
=
∑

u+v=β

tuv logu p logv t + O

(
logβ−1 t +

(logC p)(logβ t)

p

)
,

(50)
where ca,b, A,B, β, C are fixed positive constants. Moreover, suppose that (49)
and (50) hold for p ≤ t and the constant in the error term is independent of
p. Then we have

I(a, b; T ) =
TLβ+1

2π
(ca,b −A(a, b)−A(b, a)) + O(T (Lmax(β,A+B+4))) (51)

where A(a, b) and A(b, a) are constants defined by (42).

More notation For arbitrary sequences a(n) and b(n) define the functions

Ta,b(t) =
∑
n≤t

a(n)b(n)

n
and Ta,b;p(t) =

∑
n≤t

a(n)b(pn)

n
. (52)

Furthermore, we use the simplified notation

Tµ,ν(t) := Td(µ),d(ν)(t) and Tµ,ν;p(t) := Td(µ),d(ν);p(t) (53)

for µ, ν ∈ Z≥0. Also define

T(n1,n2),(n3,n4)(t) := Td(n1,n2),d(n3,n4)(n) =
∑
n≤t

d(n1,n2)(n)d(n3,n4)(n)

n
(54)

13



for n1, n2, n3, n4 ∈ Z≥0. Recall that d(µ,ν)(n) is defined by (6) and d(µ)(n) =
d(µ,0)(n). Note that T(µ,0),(ν,0)(t) = Tµ,ν(t). By Lemma 5, we need to evaluate
sums of the form (52) in order to compute the constants A(a, b) in (42). Once
this is done we obtain the main term asymptotic for I(a, b; T ) in (18).

Our calculations require an effective version of Perron’s formula.

Lemma 6 Let F (s) :=
∑

n≥1 ann
−s be a Dirichlet series with finite abscissa

of absolute convergence σa. Suppose there exists a real number α ≥ 0 such
that

∞∑
n=1

|an|n−σ � (σ − σa)
−α (σ > σa) (55)

and that B is a non-decreasing function such that |an| ≤ B(n) for n ≥ 1.
Then for x ≥ 2, T ≥ 2, σ ≤ σa, κ := σa − σ + (log x)−1, we have∑
n≤x

an

ns
=

1

2πi

∫ κ+iT

κ−iT

F (s + w)
xw

w
dw + O

(
xσa−σ(log x)α

T
+

B(2x)

xσ

(
1 + x

log T

T

))
.

(56)

Proof. This is Corollary 2.1 p.133 of [15].

The evaluation of (54) follows closely Theorem 7 of [7] pp.296-297.

Lemma 7 We have T(n1,n2),(n3,n4)(t) = P (log t) + Oε(t
− 1

2
+ε) where P (x) is a

polynomial of degree n1 + n2 + n3 + n4 + 4 with leading coefficient

a2n1!n2!n3!n4!

(n1 + n2 + n3 + n4 + 4)!

n1∑
a=0

n2∑
c=0

(
n3 + 1 + a + c

n3

)(
n4 + 1 + n1 + n2 − a− c

n4

)
.

(57)

A special case of this result is Tµ,ν(t) = Q(log t) + Oε(t
− 1

2
+ε) where Q(x) is a

polynomial of degree µ + ν + 4 with leading coefficient

C(µ, ν) =
µ!ν!

(µ + ν + 4)!

((
µ + ν + 2

µ + 1

)
− 1

)
. (58)

Proof. Define σu,v(n) =
∑

d1d2=n du
1d

v
2 where u, v ∈ C. Let z1, z2, z3, z4 ∈ C

and define the Dirichlet series

F (s; ~z) :=
∑
n≤t

σ−z1,−z2(n)σ−z3,−z4(n)

ns+1

14



where ~z = (z1, z2, z3, z4). Observe the relationship

(−1)n1+n2+n3+n4
dn1

dzn1
1

dn2

dzn2
2

dn3

dzn3
3

dn4

dzn4
4

F (s; ~z)

∣∣∣∣
~z=~0

=
∑
n≥1

d(n1,n2)(n)d(n3,n4)(n)

ns+1
.

(59)
We denote the generating function in (59) F (s). On the other hand, by
Ramanujan’s calculation (see [16] pp.8-9), F (s; ~z) equals

ζ(1 + s + z2 + z4)ζ(1 + s + z1 + z4)ζ(1 + s + z2 + z3)ζ(1 + s + z1 + z3)

ζ(2 + 2s + z1 + z2 + z3 + z4)
.

(60)
By (59) and (60) we deduce that

F (s) := (−1)N
∑

~a∈(Z≥0)4

G~a(s)ζ
(a1)(1+s)ζ(a2)(1+s)ζ(a3)(1+s)ζ(a4)(1+s) (61)

where N = n1 + n2 + n3 + n4 and ~a = (a1, a2, a3, a4) ∈ (Z≥0)
4 ranges over a

finite sum. Moreover, the functions G~a(s) have absolutely convergent Dirich-
let series in Re(s) > −1

2
. A careful examination of (60) reveals that the

leading term in the Laurent expansion of F (s) derives from the expression

(−1)N dn1

dzn1
1

dn2

dzn2
2

dn3

dzn3
3

dn4

dzn4
4

G(1 + s; ~z) (62)

where

G(w; ~z) := ζ(w + z2 + z4)ζ(w + z1 + z4)ζ(w + z2 + z3)ζ(w + z1 + z3) .

An application of the product rule (f(z)g(z))(n) :=
∑n

j=0

(
n
j

)
f (j)(z)g(n−j)(z)

in each of the variables to (62) yields

(−1)N
∑

a,c,e,g

(
n1

a

)(
n2

c

)(
n3

e

)(
n4

g

)
ζ(a+e)(1 + s + z1 + z3)·

· ζ(c+f)(1 + s + z2 + z3)ζ
(b+g)(1 + s + z1 + z4)ζ

(d+h)(1 + s + z2 + z4)

(63)

where a + b = n1, c + d = n2, e + f = n3, and g + h = n4. Thus

F (s) :=
(−1)N

ζ(2 + 2s)

∑
a,c,e,g

(
n1

a

)(
n2

c

)(
n3

e

)(
n4

g

)
·

ζ(a+e)(1 + s)ζ(c+f)(1 + s)ζ(b+g)(1 + s)ζ(d+h)(1 + s) + R(s)

(64)
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where R(s) is a function with a pole of order at most N + 3 at s = 0. Note

that we have the expansions ζ(k)(1+s) = (−1)kk!
sk+1 +ck+· · · and 1

ζ(2+2s)
= 1

ζ(2)
+

c
′
s + · · · for constants ck and c

′
. By combining (64) with these expansions,

we have F (s) = 6
π2 Cs−N−4 +R

′
(s). Here R

′
(s) consists of those terms in the

Laurent expansion with pole of order at most N + 3 and

C =
∑

a,c,e,g

(
n1

a

)(
n2

c

)(
n3

e

)(
n4

g

)
· (a + e)!(c + f)!(b + g)!(d + h)! (65)

We simplify C by applying the identity

l∑
k=0

(
l − k

m

)(
q + k

n

)
=

(
l + q + 1

m + n + 1

)
(66)

valid for integers l,m ≥ 0 and integers n ≥ q ≥ 0 (see [6] p.169). The sum
over g in (65) is

n4∑
g=0

(
n4

g

)
(b + g)!(d + h)! =

n4∑
g=0

n4!

g!(n4 − g)!
(b + g)!(d + n4 − g)!

= n4!b!d!

d+n4∑
g=0

(
b + g

b

)(
d + n4 − g

d

)
= n4!b!d!

(
n4 + b + d + 1

b + d + 1

) (67)

where we applied (66). Similarly, the sum over e is

n3∑
e=0

(
n3

e

)
(a + e)!(c + f)! = n3!a!c!

(
n3 + a + c + 1

a + c + 1

)
. (68)

Since
(

n1

a

)
a!b! = n1! and

(
n2

c

)
c!d! = n2! the total sum is

C = n1!n2!n3!n4!

n1∑
a=0

n2∑
c=0

(
n3 + a + c + 1

n3

)(
n4 + 1 + n1 + n2 − a− c

n4

)
.

(69)

This shows that F (s)s−1 := C
sN+5 + C

′

sN+4 + · · · for constants C and C
′
. Hence

the residue of F (s)tss−1 at s = 0 is P (log t) where P (t) is a polynomial of
degree N + 4 with leading coefficient 6

π2 C/(N + 4)!. By Lemma 6 applied
with α = N + 4, s = σa = 1, and B(t) �ε tε it follows that

T (t) :=
1

2πi

∫ κ+iT

κ−iT

F (w)
tw

w
dw + O

(
(log t)N+4

T
+

1

t1−ε

(
1 + t

log T

T

))
(70)
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where κ = (log t)−1. By the residue theorem, the integral is

P (log t)− 1

2πi

(∫ c+iT

κ+iT

+

∫ c−iT

c+iT

+

∫ κ−iT

c−iT

)
F (w)tw

w
dw . (71)

where c = −1
2

+ ε. We only sketch how to estimate these integrals since the
argument is standard. The first and third integral may be computed by using
known bounds for ζ(s) in the critical strip. The second integral requires the
result ∫ U

1

|ζ(a)(τ + it)|4 �a,τ U (72)

for a ∈ Z≥0 and τ > 1
2
. This may be proven by following the argument of

Theorem 7.5 pp.146-147 of [16]. An appropriate choice of T then yields an

error term of t−
1
2
+ε to complete the proof. For the special case Tµ,ν(t), we

set n1 = µ, n2 = 0, n3 = ν, and n4 = 0. Applying the binomial identity (see
[6] p.174)

n∑
k=0

(
r + k

k

)
=

(
r + n + 1

n

)
(73)

for r, n ∈ Z≥0, (57) reduces to

6

π2

µ!ν!

(µ + ν + 4)!

µ∑
a=0

(
ν + 1 + a

ν

)
=

6

π2

µ!ν!

(µ + ν + 4)!

((
µ + ν + 2

µ + 1

)
− 1

)
(74)

and thus (58) is verified.

We now record the special cases of Lemma 7 which are required in the
proof of Corollary 1. In Table 1, we associate to each pair of sequences (a, b)
the main term of Ta,b(t) in (52).

Table 1

(a, b) Ta,b(t) (a, b) Ta,b(t)

(d, d) ∼ a2 · 1
24

l4 (d(1), d(2)) ∼ a2 · 1
280

l7

(d, d(1)) ∼ a2 · 1
60

l5 (d(1), α) ∼ a2 · 1
420

l7

(d(1), d(1)) ∼ a2 · 1
144

l6 (d(2), d(2)) ∼ a2 · 19
10080

l8

(d, d(2)) ∼ a2 · 1
120

l6 (α, α) ∼ a2 · 17
20160

l8

(d, α) ∼ a2 · 1
180

l6
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We now evaluate Td(µ),d(ν);p(t) in (53).

Lemma 8 Let µ, ν ≥ 0 be integers and let p be any prime ≤ t. We have

Tµ,ν;p(t) = a2 ·

(
2C(µ, ν)lµ+ν+4 +

ν−1∑
k=0

(
ν

k

)
(logν−k p)lµ+k+4C(µ, k)

)

+ Oµ,ν

(
lµ+ν+4

p
+ lµ+ν+3

) (75)

where l = log t, C(µ, k) is defined by (58), and the sum only occurs if ν ≥ 1
and is zero otherwise.

Proof. First note that

Tµ,ν;p(t) =
dν

dzν

∑
n≤t

d(µ)(n)σz(pn)

n

∣∣∣∣∣
z=0

. (76)

Inserting the identity

σz(n1n2) =
∑

m|(n1,n2)

µ(m)mzσz

(n1

m

)
σz

(n2

m

)
in (76) and inverting summations we obtain∑

n≤t

d(µ)(n)σz(pn)

n
=
∑
j≤t

d(µ)(j)σz(p)σz(j)

j
− 1

p

∑
j≤ t

p

d(µ)(pj)pzσz(j)

j
. (77)

Observe that

dν

dzν
σz(p)σz(j)

∣∣∣∣
z=0

=
ν−1∑
k=0

(
ν

k

)
logν−k(p)d(k)(j) + 2d(ν)(j) and (78)

dν

dzν
pzσz(j)

∣∣∣∣
z=0

=
ν∑

k=0

(
ν

k

)
logν−k(p)d(k)(j) (79)

where (79) follows from (78) since σz(p) = 1+pz. Combining (76), (77), (78),
and (79) we deduce that Tµ,ν;p(t) equals

2Tµ,ν(t) +
ν−1∑
k=0

(
ν

k

)
(logν−k p) Tµ,k(t)−

1

p

(
ν∑

k=0

(
ν

k

)
(logν−k p) Tk,µ;p

(
t

p

))
.

(80)
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The trivial bound Tk,µ;p(t) � (logk+4 t)(logµ(pt)) follows from d(k)(j) ≤
(logk j)d(j) and hence the error term is � p−1 logν+µ+4 t. Applying Lemma 7
to each expression in the main term of (80) completes the proof of the lemma.

We now compute A(d(µ), d(ν)).

Lemma 9 Let µ, ν ≥ 0 be integers. We have

A(d(µ), d(0)) = a2 ·
2

(µ + 5)(µ + 4)(µ + 3)(µ + 2)
(81)

and if ν ≥ 1

A(d(µ), d(ν)) = a2 ·
µ!ν!

(µ + ν + 5)!

(
2

(
µ + ν + 2

ν + 1

)
+

(
µ + ν + 2

ν

)
− ν − 3

)
.

(82)

Proof. By Lemma 8

Tµ,ν;p(t) = a2 ·

(
2C(µ, ν)lµ+ν+4 +

ν−1∑
k=0

(
ν

k

)
(logν−k p)lµ+k+4C(µ, k)

)

+ O

(
lµ+ν+4

p
+ lµ+ν+3

) (83)

where l = log t and C(µ, k) is defined by (58). Hence by the definition (42)
A(d(µ), d(0)) equals

a2 · 2
µ!

(µ + 4)!

((
µ + 2

µ + 1

)
− 1

)
(µ + 4)!

(µ + 5)!
= a2 ·

2

(µ + 5)(µ + 4)(µ + 3)(µ + 2)

and if ν ≥ 1, A(d(µ), d(ν)) equals

a2 ·

(
2

C(µ, ν)

µ + ν + 5
+

ν−1∑
k=0

(
ν!

k!(ν − k)!

)(
(ν − k)!(µ + k + 4)!

(µ + ν + 5)!

)
C(µ, k)

)
.

(84)
By (73) the sum in (84) is

µ!ν!

(µ + ν + 5)!

ν−1∑
k=0

((
µ + k + 2

µ + 1

)
− 1

)
=

µ!ν!

(µ + ν + 5)!

((
µ + ν + 2

ν

)
− ν − 1

)
.

(85)
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Therefore (84) and (85) imply (82).

We summarize with a table of values of A(d(µ), d(ν)). In Table 2 the first
column is the pair of sequences (d(µ), d(ν)), the second column is the main
term of Tµ,ν;p(t) as in (75), and the third column is A(d(µ), d(ν)) as computed
by (82). Here we use the notation l = log t and u = log p.

Table 2

(d(µ), d(ν)) main term of Tµ,ν;p(t) A(d(µ), d(ν))

(d, d) a2 · 1
12

l4 a2 · 1
60

(d(1), d) a2 · 1
30

l5 a2 · 1
180

(d(2), d) a2 · 1
60

l6 a2 · 1
420

(d, d(1)) a2 · ( 1
30

l5 + 1
24

l4u) a2 · 1
144

(d(1), d(1)) a2 · ( 1
72

l6 + 1
60

l5u) a2 · 1
420

(d(2), d(1)) a2 · ( 1
140

l7 + 1
120

l6u) a2 · 1
960

(d, d(2)) a2 · ( 1
60

l6 + 1
30

l5u + 1
24

l4u2) a2 · 1
280

(d(1), d(2)) a2 · ( 1
140

l7 + 1
72

l6u + 1
60

l5u2) a2 · 5
4032

(d(2), d(2)) a2 · ( 19
5040

l8 + 1
140

l7u + 1
120

l6u2) a2 · 5
9072

Using the previous table we can compute A(a, b) for the remainder of the
sequences we require for our calculation.

Lemma 10 We have

A(α, d) = a2 ·
1

630
, A(d, α) = a2 ·

1

420
, A(α, d(1)) = a2 ·

1

1440
, (86)

A(d(1), α) = a2 ·
17

20160
, and A(α, α) = a2 ·

23

90720
. (87)

Proof. We employ the following notation: if A(t) =
∑

n≤t an and j ∈ Z≥0

then we define the operator Lj by (LjA)(t) =
∑

n≤t(log
j n) an. Note that if

A(t) =
∑

n≤t an = α logN t + O(logN−1 t) then partial summation implies

(LjA)(t) = α
N

N + j
logN+j t + O(logN+j−1 t) . (88)

By (7) we have the identities

α(n) = log n d(1)(n)− d(2)(n) , α(pn) = (log p + log n)d(1)(pn)− d(2)(pn) .
(89)
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We begin with one example. It follows from (89) that

d(n)α(pn) = (log p) d(n)d(1)(pn) + (log n) d(n)d(1)(pn)− d(n)d(2)(pn)

and hence

Td,α;p(t) = (log p) T0,1;p(t) + (LT0,1;p)(t)− T0,2;p(t) . (90)

By Table 2, (88), and (90) we derive

Td,α;p(t) = uT0,1;p(t)+(LT0,1;p)(t)−T0,2;p(t) = a2 ·
(

l6

90
+

l5u

30

)
+O

(
l5 +

l6

p

)
(91)

where l = log t and u = log p. In a similar fashion we compute

Tα,d;p(t) = (LT1,0;p)(t)− T2,0;p(t) ,

Tα,d(1);p(t) = (LT1,1;p)(t)− T2,1;p(t) ,

Td(1),α;p(t) = (log p) T1,1;p(t) + (LT1,1;p)(t)− T1,2;p(t) , and

Tα,α;p(t) = (log p) (LT1,1;p)(t) + (L2T1,1;p)(t)− (LT1,2;p)(t)

− (log p) T2,1;p(t)− (LT2,1;p)(t) + T2,2;p(t) .

(92)

Thus Table 2, (88), and (92) imply

Ta,b;p(t) =
∑

i+j=A

cij(log
i t)(logj p) + O

(
logA t

p
+ logA−1 t

)
(93)

for the aforementioned sequences (a,b) and appropriate constants cij, A. In
summary, we obtain

Table 3

(a, b) main term of Ta,b;p(t) A(a, b)

(α, d) a2 · 1
90

l6 a2 · 1
630

(d, α) a2 · ( 1
90

l6 + 1
30

l5u) a2 · 1
420

(α, d(1)) a2 · ( 1
210

l7 + 1
180

l6u) a2 · 1
1440

(d(1), α) a2 · ( 1
210

l7 + 1
72

l6u) a2 · 17
20160

(α, α) a2 ·
(

17
10080

l8 + 1
210

l7u
)

a2 · 23
90720
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2.1 Proof of Corollary 1

Proof. We first evaluate Sα = I(α, α; T ). We have α(n) � d(n) log2(n),∑
n≤t

α(n)2

n
= a2 ·

17

20160
log8 t + O(log7 t) , and

∑
n≤t

α(n)α(pn)

n
= a2 ·

(
17

10080
log8 t +

1

210
log7 t log p

)
+ O

(
log7 t +

log8 t

p

)
by Tables 1 and 3. Moreover, A(α, α) = a2 · 23

90720
by Lemma 10. Applying

Lemma 5, we deduce

Sα =
TL9

2π

(
a2 ·

17

20160
− 2A(α, α)

)
∼ 61

60480π3
TL9 =

a2TL9

2π

61

181440
(94)

with an error term O(TL8 log L). Next we consider

Sβ =
∑

0<γ<T

Dβγ (ρ)Dβγ (1− ρ) =
∑

0<γ<T

∑
1≤m,n≤ γ

2π

βγ(m)βγ(n)

mρn1−ρ
. (95)

Before evaluating Sβ, we require some notation. For N ∈ Z≥0, a(n) and b(n)
sequences, define

IN(a, b; T ) =
∑

0<γ<T

logN
( γ

2π

)
Da(ρ)Db(1− ρ) .

Notice that I0(a, b; T ) = I(a, b; T ) of (18). Observe that if a(n) and b(n)
are real sequences then IN(b, a; T ) = IN(a, b; T ) by a consideration similar
to (24). Applying the identity βt(m) = l2d(m) − 2ld(1)(m) + α(m) where
l = log( t

2π
) we obtain

βt(m)βt(n) = l4d(m)d(n)− 2l3d(m)d(1)(n) + l2d(m)α(n)

− 2l3d(1)(m)d(n) + 4l2d(1)(m)d(1)(n)− 2ld(1)(m)α(n)

+ l2α(m)d(n)− 2lα(m)d(1)(n) + α(m)α(n) .
(96)

Inserting (96) in (95) we obtain

Sβ = I4(d, d; T ) + 4I2(d
(1), d(1); T ) + I(α, α; T )

− 4Re(I3(d, d(1); T )) + 2Re(I2(d, α; T ))− 4Re(I1(d
(1), α; T )) . (97)
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Note that if I(a, b; T ) = c1T logM T + O(T logM−1 T ) then partial summa-
tion implies IN(a, b; T ) = I(a, b; T )(logM T + O(logM−1 T )). In an analogous
calculation to that of Sα, we derive by Lemma 5, Tables 1-3, and the partial
summation identity the following:

I(d, d; T ) ∼ a2TL9

2π

(
1

24
− 2 · 1

60

)
=

a2TL9

2π
· 1

120
, (98)

I(d(1), d(1); T ) ∼ a2TL9

2π

(
1

144
− 2 · 1

420

)
=

a2TL9

2π
· 11

5040
, (99)

I3(d, d(1); T ) ∼ a2TL9

2π

(
1

60
− 1

144
− 1

180

)
=

a2TL9

2π
· 1

240
, (100)

I2(d, α; T ) ∼ a2TL9

2π

(
1

180
− 1

420
− 1

630

)
=

a2TL9

2π
· 1

630
, (101)

I1(d
(1), α; T ) ∼ a2TL9

2π

(
1

420
− 17

20160
− 1

1440

)
=

a2TL9

2π
· 17

20160
(102)

where each of these holds with an error term O(TL8 log L). By (97), (94)
and (98) - (102) we have

Sβ ∼
a2TL9

2π

(
1

120
+ 4 · 11

5040
+

61

181440
− 4 · 1

240
+ 2 · 1

630
− 4 · 17

20160

)
.

This simplifies to Sβ = 97
60480π3 TL9 + O(TL8 log L).

2.2 Proof of Theorem 2

Proof. By Tables 1 and 2 we have

Td,d(t) = a2 ·
1

24
log4 t+O(log3 t) , Td,d;p(t) = a2 ·

1

12
log4 t+O(log3 t) . (103)

Therefore by Lemma 3

I(d, d; T, δ) =
T

2π

(
a2

24
L5 − 2Re

(
M

(
d, d;

T

2π
, δ

)))
+ O(TL4 log L) (104)

where δ = λ
L
. Since we have (103) an application of Lemma 4 yields

M

(
d, d;

T

2π
, δ

)
= L5

∞∑
k=0

(iδL)k

k!

a2

12

k!4!

(5 + k)!
+ O(L4) . (105)
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Thus (104) and (105) imply

I(d, d; T, δ) =
a2TL5

2π

(
1

5!
− 4

∑
j≥1

(−1)jλ2j

(5 + 2j)!

)
+ O(TL4 log L) (106)

and we are finished.

References

[1] J.B. Conrey, The fourth moment of derivatives of the Riemann zeta-
function, Quart. J. Math. Oxford (2), 39 (1988), 21-36.

[2] J.B. Conrey, A. Ghosh, S.M. Gonek, Simple zeros of the Riemann zeta
function, Proc. London Math Soc. (3) 76 (1998), no. 3, 497-522.

[3] S.M. Gonek, Mean values of the Riemann zeta-function and its deriva-
tives, Invent. Math. 75 (1984), 123-141.

[4] S.M. Gonek, An explicit formula of Landau and its applications to the
theory of the zeta function, Contemp. Math 143, 1993, 395-413.

[5] S.M. Gonek, On negative moments of the Riemann zeta-function, Math-
ematika 36 (1989), 71-88.

[6] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, second
edition, Addison-Wesley, New York, 1994.

[7] R.R. Hall, The behaviour of the Riemann zeta-function on the critical
line, Mathematika 46 (1999), 281-313.

[8] D. Hejhal, On the distribution of logζ
′
(1/2 + it), Number Theory, Trace

Formulas, and Discrete Groups, K.E. Aubert, E. Bombieri and D.M.
Goldfeld, eds., Proceedings of the 1987 Selberg Symposium, (Academic
Press, 1989), 343-370.

[9] C.P. Hughes, J.P. Keating, and Neil O’Connell, Random matrix theory
and the derivative of the Riemann zeta function, Proceedings of the
Royal Society: A 456 (2000), 2611-2627.

[10] A.E. Ingham, Mean-value theorems in the theory of the Riemann zeta
function, P.L.M.S. (2), 27 (1926), 273-300.

24



[11] J.P. Keating and N.C. Snaith, Random matrix theory and ζ(1/2 + it),
Communications in Mathematical Physics 214 (2000), 57-89.

[12] J. Mueller, On the difference between consecutive zeros of the Riemann
zeta function, J. Number Theory 14 (1982), 327-331.

[13] N. Ng, Limiting distributions and zeros of Artin L-functions, Ph. D.
Thesis, University of British Columbia, fall 2000.

[14] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J.
Reine Angew. Math. 313 (1980), 161-170.

[15] G. Tenenbaum, Introduction to analytic and probabilistic number theory,
Cambridge University Press, Cambridge, 1995.

[16] E.C. Titchmarsh, The theory of the Riemann zeta function, second edi-
tion, Oxford University Press, New York, 1986.
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