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Abstract

Discrete moments of the Riemann zeta function were studied by
Gonek and Hejhal in the 1980’s. They independently formulated a
conjecture concerning the size of these moments. In 1999, Hughes,
Keating, and O’Connell, by employing a random matrix model, made
this conjecture more precise. Subject to the Riemann hypothesis, we
establish upper and lower bounds of the correct order of magnitude
in the case of the fourth moment.

1 Introduction

This article concerns discrete moments of the derivative of the Riemann zeta

function of the form
Te(T)= > 1 (p)P*

0<y<T

where p = [f+i ranges over non-trivial zeros of ((s) and k € R. In particular,
we focus on the case £ = 2. These moments are discrete analogues of the
ordinary moments of the Riemann zeta function. In recent years there has
been renewed interest in the moments of L-functions, in part due to Keating
and Snaith’s [11] work in random matrix theory. Estimates for the discrete
moments have number theoretic applications (see [2],[12],[13]). To date, few
asymptotic formulae have been established for these moments. However,
Gonek [5] and Hejhal [8] independently conjectured

Jp(T) = Tlog®+V* T (1)
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for k € R. Hughes, Keating, and O’Connell [9], applying random matrix
models refined this to:

Random Matrix Model Conjecture For k > —% and bounded,

) k(k+2)
IT) ~ G N(T) (1og g) @)

as T — oo,where G is Barnes’ function defined by

6+ 1) = e (<5 4722+ TT (14 2) )

n=1
K P(mtk) )2
v is Euler’s constant, aj, = [, (1 — %) > o (%) p~™, and N(t) de-
notes the number of zeros of ((s) in the box with vertices 0,1, 1 + it, it.

The number ay = ((2)7! = 7% appears frequently in this article. Con-
jecture (2) agrees with results of Von Mangoldt and Gonek [3] in the cases
k = 0,1. Furthermore, one verifies J_1(T) ~ 2T is the case k = —1. Gonek
first conjectured this formula by methods similar to Montgomery’s study
of the pair correlation conjecture. When k = 2, (2) reduces to Jo(T) ~
28807r3T log? T. We establish that the random matrlx theory conjecture is of
the correct order of magnitude in this case. Throughout, we use the notation
L =log % Our main result is

Theorem 1 The Riemann hypothesis implies

€l g log L < < @m0 log L
7r3TL (1+O< 17 ))_Jg(T)_WgTL 1+0 7 (3)
where

¢ = (vVa— vb)? = 0.0000687... , ¢; = (vVa+ Vb)? = 0.0051561...  (4)

with a = 60480, b= 60480 In contrast, 2880 = 0.0003472....

The same techniques as Theorem 1, permit one to replace ¢ (s) by higher
derivatives. We remark that only Theorem 1 depends on RH. All other
lemmas, corollaries, and theorems are independent of any hypothesis. We
establish the following unconditional result which may be of use in future
moment calculations.



Theorem 2 Let d(n) denote the number of divisors of n and § = A/ log (%)
where A € R and |\| < 1. Then we have

d(m d(n 3 (1 —1)I\% 5
Z Z m(p+i)(5 Z nl—(p—>i(5 -3 (5 - 42 W) TL°(1+0(1))

0<y<T m< L n<g- Jj=1
(5)

where p = 3 4 1y ranges over non-trivial zeros of the zeta function with
0<~vy<T. Theo(1) term is (log L)/ L.

Notation We work with Dirichlet series of the form

L dmB) (n
(1 (s)cs) = 30 T ()

where 1, € Zso. Note that d**)(n) = (log" xlog”)(n) where * denotes
convolution. Furthermore, we set d®(n) := d*%(n). The generalized di-
visor function di(n) for k > 0 is defined by its generating function ¢*(s) =

Yoy d’jl(sn ). In this article the arithmetic functions

) == d"(n) = (logn) dV(n) —d®(n) ,

a(n
7
Bi(n) == (a; * a;)(n) = 1>d(n) — 21 d(l)(n) + a(n) , ™

where | = log(5=) and a;(n) = log(5%) appear often. To simplify notation,
we define for an arbitrary sequence a(n,t) with n € Z* and t € R the
Dirichlet polynomial

Do +it) =) —5F (8)

Acknowledgements The author thanks Professor Andrew Granville for
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1.1 Proof of Theorem 1

We commence with the proof of Theorem 1 since the the argument is rather
simple. This proof is subject to Corollary 1, a mean value result, which is a
special case of Lemma 5. However, the proofs of Corollary 1 and Theorem 2
are deferred until later. We first state Corollary 1.
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Corollary 1 We have

61
= D> Dalp)Da(1=p) = oo oo TL + O(T L log L) . (9)

0<y<T

97
Sp = Dgs (p)D = TL® +O(TL%log L 10

where p = (3 +i'y ranges through the non-trivial zeros of the zeta function with
0 < <T. Note that D,(s) and Dg_(s) are Dirichlet polynomials associated
to a(n) and B,(n) as defined by (8).

Proof of Theorem 1. 'The approximate functional equation we require is

C(o+it)? = Z :Li o + it) Z oy Zt + O(log® t) (11)

n< it n<g- M
—27

where a(n) and (;(n) are defined by (7) and x(s) = WS*%F(%)/F(E) is
the factor from the functional equation of the zeta function. It satisfies
C(s) = x(s)¢(1 —s) and x(s)x(1 —s) = 1. Equation (11) is derived in
[1] (Lemma 3 p.29). Let p denote a non-trivial zero of the Riemann zeta
function. By (11) we have

((p)*¢' (1 = p)> =(Dalp) + x*(p)Dg, (1 — p) + O(1*))-
(Duo(1 = p) + X*(1 = p)Dg, (p) + O(1%)) (12)

where [ = log~y. Summing (12) over zeros that satisfy 0 < Im(p) < 7" yields

> C(p)*C (1= p)* = 81 + 2Re(Sy) + S5 + S (13)

0<y<T

where S; = S, + S, S2 = ZO<'y<T X2(1 - P)Da(p)Dﬁw (p),

Sy < L? Z (IDa(p)] + |X2(1 - p)ng(p)‘) ’

0<y<T

and S; < (log® T)N(T) < TL". We have by Corollary 1

a+b
3

Sy =8, + S5 = +O(TL?log L)




_ _61 _ 97 .
where a = s and b = 7. Note that under the assumption of RH

Ix(1=p)| =1 and |D,(p)|* = Du(p)Du(1 — p) for a real sequence a = a(n,t).
Hence assuming RH, Cauchy-Schwarz implies

1Ss] < SESE = {T—i_bTLf* (1+O(L " log L))

! 1
and also S5 < (N(T)L)252 « TL2SZ. Lastly we note that RH implies
I = ()¢ (1 =0 (14)
By (13), (14), and collecting our estimates of the S; for i = 1,...,4 we have
C1 _ C2 —
gTLg(l +O(L ! og L)) < Jo(T) < FTL9(1 +O(L ' log L))
for ¢1, ¢y as in (4) and Theorem 1 is established.

In the above calculation RH was used to evaluate S, and S5 and to guar-
antee the identity (14). It may be possible, by more sophisticated techniques,
to bound S5 and S5 independent of RH and obtain unconditional bounds for
the sum in (13). Moreover, we expect Sy to contribute to the main term of
Jo(T). In contrast, the analogous sum in Ingham’s [10] calculation does not
contribute.

2 Lemmas

Our calculations require an old formula of Landau’s. We apply Gonek’s
uniform version (proven in [4] pp.401-403).

Lemma 1 Let x,T > 1 then

S = —%A(m) + O (2(log(22T))(log log 3z))

o 0 <(log ) min (T, %)) +0 ((log(2T)) min (T, 10;)) (15)

where (x) denotes the distance from x to the nearest prime power other than
x itself.




To prove Lemmas 3 and 5 we require estimates for divisor sums. We only
need upper bounds for shifted divisor sums as in (i) below. Moreover, we
do not require the stronger asymptotic formulae that have been proven. In
addition, a Brun-Titchmarsh result for divisor sums is applied.

Lemma 2 (i) If r <z is a positive integer and o_1(r) = 3, d~! then

> dn)d(n—r) < oy (r)zlog’ s . (16)

r<n<x

(it) Let \e R, ke N, a € Z, (a,k) =1 and k < '~ for any o > 0, then

Z dMn) < % ((bgf) logw) : : (17)

n<x
n=a mod k

Proof. Part (i) is Lemma B2 of [10] p.296 and part (i) is a direct application
of Theorem 2 of [14] p.169.

We prove a general mean value result for sequences which behave like d(n).
Extending the following result to di(n) for k& > 3 would require knowledge of
sums like (16) with d(n) replaced by di(n). However, such results have not
been proven yet.

Lemma 3 Suppose two sequences a(n)and b(n) satisfy a(n) < log™(n)d(n)
and b(n) < log®(n)d(n) for A,B > 0. Then we define for 6 € R the mean
values

I=1(a,;;T,8)= Y Da(p+i6)Dy(1—p—is) ,

0<y<T

I(a,b;T) :=I(a,b;T,0) (18)
and we have
T8 = L r a(n)b(n) A(j)a(m)b(my)
Ie,5T,0) = o tog (%> Z no Z mjl=io
n<ox mj< L
(19)

A(i .
mj1+z§
mj<



Proof. By swapping summation order

YY), G e

We decompose [ = ]1 + I3 + I3 where

I = Z M(N(T)—N(zm)), (21)

ST AT G e

and I3 is the remaining piece consisting of terms with n < m. The second
expression in (21) is < LATPH Y d?(m) < TLATPH and since N(T') =
IL 1+ O(T) we deduce
T T b
]1 = — log (_> Z M + O<TLA+B+4> ) (23>

pe m
S27r

Note that foru e Rand 0 < C < T
— 1 p
> w-u Y (3) 1)
C<~y<T C<H<T

which follows from the symmetry of the zeros about Re(s) = %. Conse-
quently, we deduce

SDIDIE Y CO LD SN O IPR

m< L T n<m 2rm<~y<T

This expression has the same form as I except the roles of a(n) and b(n)

have been switched. Thus the evaluation of I3 follows along similar lines to

I,. Putting z =  and noticing n < 7', (15) implies

dooar= (—% + n) A(z) + O (z(log(22T)) (log log 3x))

+0 ((log ) min (T, %)) +0 ((log(ZT)) min (T, 10;)) .

(26)




By inserting (26) into the inner sum of (22) we obtain Iy = Io; + Ioo + o3+ Io4
where

a(m)b(n) /n\® T n
he X X (L))
21 ZT ZT ] o M)A (27)
mgﬂ m<n§§
mln
and Iye-Io4 correspond to the other terms in (26). Applying d(uv) < d(u)d(v)
the second part of this expression is

< LA+B Z d(m)d(mj)A(]) < TLA+B+3 Z A<]>d(]) < TLA+B+4

im< L <T
J <7 27 J

since the final sum is < ) lo}gjp . Consequently, we deduce that

T A(j)a(m)b(my B4
I =~ > “’m(jllé( ‘7)+O(TLf4+ ) (28)

mj<L

The next term is

fa < 37 57 A (Togtos (1) (i (2717))

n<L m<n
— 27

d(m)
TLA+B+1 log L d =AY TLA+B+4 loo L.
< og E (n) E - <K og

n< L m<n
— 27

The third term, I»3, is bounded by

>N WIog (%) <min (ﬂ%)) < 1M Y d(gh) d(n<) lo>g7% |

n< L m<n m m<n< L
In the last sum in (30), pairs (m,n) such that (£) > 1 contribute

< LYY d(m) > d(n)logn | < TLATPH
m

. For each pair (m,n) with m < n we
<r<Fandg=|[r]org=[2]+1

m

The remaining pairs satisfy (%) <
uniquely write n = gm + r with —

wls%h—t
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By the identity

n r Il 5 g=pFandr#0
m/ Q+E 1 > if g#£pforr=0
=32
we need only consider ¢ a prime power. Thus the contribution from those
terms with (£) < 1 in the final sum in (30) is

4
dlgm +r
= Sdm) Y el Y EL
m<X q<E 41, g=p¥ <<

where X = —ﬂ and hence I3 < o LATE 4+ TLATB+ Furthermore, We write
o = 01 + 09 + 03 according to the cases: (i) ¢ = p prime, (ii) ¢ = p*, k >
2, X170 < pF < X +1, and (iii) ¢ = p*, k > 2, p* < X' where § is a
small positive constant. The contribution from (7) is

ne Sdm) ¥ Mo Y A

m<X q<Z 41 I<r|<F
) (32)
<o) X Y A
n=X Ir|<3lr|<n = gm=n—r

where we wrote n = gm + r and noticed that ¢gm < 2X. Since d(m) <
d(gm) =d(n —r)and 3 ., A(g) =log(n —r) <log(2X) < L, our sum
is bounded by

. 3 o_1(r)
<<LZ Z d(n)d(n —r) <TL )  —"=. (33)
|,,,|<X \7‘|<n<X TS%
The right-most inequality follows by Lemma 2 and thus
o <TLPY - Z =TL? Z Z < TL*. (34)
r<X g\r s<X

Observe that in gy, condition (i7) implies m < % < X? and since d(qgm-+r) <
X° we have

e Y dm) Y o) Y MY

m<X9 pk<<%7 k>2 r<7 (35)
< X'logX Y dm) Y log(ph) < T
m<X9 PP >2

9



In the final piece we have

e X 0N Y X dmdtmen).

pk<X1=8 |>2 mg% 2|r|<m<X (36)

By Cauchy-Schwarz, the inner sum in (36) is

[N

1
X\2.
< (ﬁ) log? X d>oodm)?| (37)
n=r mod p¥

We now establish

Z d(n)?* < min(ord,(r), k)

n<X
n=r mod p*

If (r,p) =1 (38) is true by (17). On the other hand, suppose (r,p) > 1 and
r = p*s with (s,p) = 1. If u > k then we have

S dn Zd Xlog X) .

n<X ]<<
n=0 mod p*

In the case 1 < u < k, an analogous calculation establishes the other bound
n (38). Combining (36), (37), and (38) we have

klog(p")
p

o3 < (Xlog'X) ) < TL*.

pP<X1=0, k>2

Putting together our estimates for the o;, we have ¢ < TL* and hence
Ios < TLATBT . Finally, Iy is

< L1+A+B Z Z O < L1+A+B Z Z d n B 7“

n<5 T m<n r<— r<n< T

10



Notice that the last sum was already treated in (33) and (34), so we have
Iy < TLAtB+4 Thus we arrive at

T A(j)a(m)b(my) A+
L=~ }:r i + O (TLM*P*+og L) (39)
mj<s-

Starting from (25) an analogous calculation demonstrates that

I, = T Z A(j)f;i;}l?a(mj) L0 (TLA+B+4 log L) . (40)

mj< 5=

— 27

Combining (23), (39), and (40) finishes the proof of the lemma.

In the next lemma, we evaluate the second and third sums of (19).

Lemma 4 Suppose we have two sequences a(n) < log®(n)d(n) and b(n) <
log?(n)d(n) which satisfy for each p < t

c B
Z a(n)b(pn) _ Z s log plog” t + O <10g5_1t N (log™ p)(log t)>
n

n<t utv=0 p

(41)
where 3, C" are positive absolute constants, u,v > 0, s,, € C, and the implied
constant in the error term depends only on a(n) and b(n). We associate to
an expansion of the form (41) the constant

ulv!

A(a,b) = Z Suvm . (42)
utv=p4
Then we have
A(k)a(m)b(mk)
M(a,b; X,6) = Y P
mk<X (43)
N (T AL (u+ k)lv! .
_ [p+1 (¢ Jmax(8,A+B+1)
; Kt u%ﬂsw(u"‘_v“'k‘*’l)!—}_O( )

where L =log X and § € R. Moreover if § = 0, this reduces to

M(a,b;X,0)= > A(k)a(m)b(mk)

km
mk<X

= L7 A(a,b) + O(Lmex(BA+BHD)
(44)

11



Proof. In the sum M/(a,b; X,d) the prime powers p* with o > 2 contribute

A (07 b (0 - A o -
Z (IZ ) Z a(m)b(mp®) < [ATBt4 2 : a (5 ) < [ATB+
p m p
pr<X,a>2 m< X pe<X, a>2

We arrive at

(a,b; X, 6) = Z 15 +O(LATPH)

p<X

We replace the inner sum above by the expression on the right side of (41).
The contribution to M(a, b; X, ) coming from the error term in (41) is

- logp 1 .
p<X p>2

This demonstrates that

M(a,b; X, 6) Z MZ

ut+v=0 p<X

X ~
log p log (_) _i_O(Lmax/B,A—i-B—HL) )
p

(45)
By Stieltjes integration,

Alp) o (X N e (X)) dO()
Zpliw log" p log (;) :/1 log“t log ) e (46)

p<X

where 0(t) = > ,logp. The prime number theorem is 6(t) = t+O(t exp(—cy/logt))
and thus the main part of (46) equals

X X\ dt = (@6)k (X X\ dt
log“t log” [ — _ = log"tt log" (=) — (4
/1 og"t log (t) e % o /1 og“** ¢ log (t) - (47)

MR (7 ) AL -l (0L (u A k)!
_ Lﬁ-l—l (Z—/ u+k 1—2) de = L,@-H
; Kl v (1 —a)” du kz:% K (utv+tk+1)

where we made the variable change = = (logt)/L. The contribution arising
from the error term in the prime number theorem is easily seen to be LP.

12



Combining (45), (46), and (47) establishes the lemma.

Putting together Lemmas 3 and 4 we have the following computation
of the main term of I(a,b;T) in (18) subject to various conditions on the
sequences a(n) and b(n).

Lemma 5 Suppose we have two sequences a(n) < log™(n)d(n) and b(n) <
log®(n)d(n) such that

Z W = caplog’t + O(log”? ' t) | (48)

n<t

b log® p)(log® t
Za(n> (pn) _ Z swlog”plog”t—i—O (10g51t+ (Og p)(Og )) ,and

n<t n utv=0 p
(49)
log® p)(log”
Z b(n)a(pn) _ Z tu log“plog”t+0 (logﬁ—lt+ (Og p)( 0og t)) 7
n p
n<t utv=0
(50)

where cqp, A, B, 3, C are fized positive constants. Moreover, suppose that (49)
and (50) hold for p <t and the constant in the error term is independent of
p. Then we have

TLo+1
21

where A(a,b) and A(b,a) are constants defined by (42).

I(a,b;T) = (Cap — Ala,b) — A(b,a)) + O(T(Lm>BATBTIY) - (5])

More notation For arbitrary sequences a(n) and b(n) define the functions
a(n)b(n) a(n)b(pn)
T, = —_ (1) = —_—
ot = 3 and 1 (0 = 30 (52)
n<t n<t
Furthermore, we use the simplified notation

Ty (t) := Ty o0 (t) and Ty (1) = Ty g (1) (53)

for p,v € Z>(. Also define

Z d(”l’m)(n)d(”?“"“)(n)

n

(54)

T(n17n2)7(n37n4)<t> = Td(nlvnz),d(n37”4)(n) =
n<t

13



for ny,ng, n3,ng € Zso. Recall that d**)(n) is defined by (6) and d"(n) =
d#9(n). Note that T(,.0) .0 (t) = Ty, (t). By Lemma 5, we need to evaluate
sums of the form (52) in order to compute the constants A(a,b) in (42). Once
this is done we obtain the main term asymptotic for I(a,b;T") in (18).

Our calculations require an effective version of Perron’s formula.

Lemma 6 Let F'(s) :=)_ -, a,n"° be a Dirichlet series with finite abscissa

of absolute convergence o,. Suppose there exists a real number o > 0 such
that

D anln™ < (0= 04)™ (0> 04) (55)

and that B is a non-decreasing function such that |a,| < B(n) for n > 1.
Then for & > 2, T > 2,0 < 04,k := 0, — 0 + (logz)™!, we have

ST T v 7= (logz)* = B(2 log T

an x (a: (log ) N (2x) (1+xo§ )) ‘

= F —d O
n® 27 J._r (S+w)w W T x°

n<x

(56)
Proof. This is Corollary 2.1 p.133 of [15].

The evaluation of (54) follows closely Theorem 7 of [7] pp.296-297.
Lemma 7 We have Tin, n,),(nsma)(t) = P(logt) + O(t72%) where P(x) is a
polynomial of degree ny + ny + ng + ny + 4 with leading coefficient

asn!nalnglng! ii (n3+1+a—|—c> <n4+1+n1+n2—a—c>
(n1 —|— Mo + ns + Ty —f- 4)‘ =0 =0 ng Ty '
(57)

A special case of this result is T), ,(t) = Q(logt) + O(t72%¢) where Q(z) is a
polynomial of degree p+ v + 4 with leading coefficient

C(M,IJ)ZL((u_’—V—FQ)—l) . (58)

(n+v+4) p+1

Proof. Define 0,,(n) = >, ; _, did; where u,v € C. Let 21, 29,23,24 € C
and define the Dirichlet series

F(s;2) =) Ot1,m2 ()0 =2, (1)

ns—l—l

n<t

14



where 2'= (21, 22, 23, z4). Observe the relationship

dm dr drs s

. d(n1.n2) (n)d(”3’”4) (n)
A2 dzy? dzgs dzp (5:2) . '

+n2+n3+
(_1)711 na+ns3+nqg ) ns+1

(59)
We denote the generating function in (59) F(s). On the other hand, by
Ramanujan’s calculation (see [16] pp.8-9), F(s;2) equals

Ctstzo+z)C(L+s+ 2+ 2)C(1+s+ 2+ 2)C(1+s+ 2+ 2)
<(2+28+Zl+22+23+24> '
(60)
By (59) and (60) we deduce that

F(s):= (=D Y Ga(s) ™ (14+8)¢" (145)¢*) (145)¢ 1 (145) (61)

a€(Z>g)*

where N = ny + ny +n3 + ng and @ = (ay, as, az, a4) € (Z>o)* ranges over a

finite sum. Moreover, the functions Gz(s) have absolutely convergent Dirich-

let series in Re(s) > —3. A careful examination of (60) reveals that the

leading term in the Laurent expansion of F'(s) derives from the expression

(_1>N dam dvz s qdm
dzi dzy? dzy® dz)*

G(l1+s;2) (62)

where
G(w; 2) == ((w + 22 + 24)C(w + 21 + 24)C(w + 29 + 23)C(w + 21 + 23) .

An application of the product rule (f(2)g(2))™ = >"_, (?) f9(2)g"=9)(2)
in each of the variables to (62) yields

AP (21) (n;) (Z3> (724) Ottt m) (63)

a,c,e,g

D4 s+ 204+ 23) ¢TI (1 4+ s+ 20 4+ 20) (A + 54 20+ 2)

where a +b=mny,c+d =ng,e+ f =ns3, and g+ h = ny. Thus

F(s) :=C<(2_Tl);) Zg (ff) (@ (23> (?) (64)

¢+ ) FD A+ ) (14 5)C (1 + 5) + R(s)

15



where R(s) is a function with a pole of order at most N + 3 at s = 0. Note

: k _ (=R 11
t%lat we have the expansions (! )/(1—1—5) =+t and o =t
¢ s+ --- for constants ¢, and ¢. By combining (64) with these expansions,

we have F(s) = $Cs V= + R'(s). Here R'(s) consists of those terms in the
Laurent expansion with pole of order at most N + 3 and

C= Z (7;1) ("62) (f’) (Z‘*) (a+e)lc+ Hb+g)ld+h)!  (65)

We simplify C' by applying the identity

!
l—k k l 1
()= G5 )
—\m n m—+n+
valid for integers [, m > 0 and integers n > ¢ > 0 (see [6] p.169). The sum
over g in (65) is
n4g Uz |

> (24> b+ gNd+n)=>" ol

b+ g)(d+ny—g)!
gl(nyg — g)!
9=0 g=0

d+ngy
b+g\[(d+ns—g ng+b+d+1
= 1b1d! — 1b1d!
m.b.d.E (b )( p ) n4.b.d.< btd 1 >

9=0

(67)

where we applied (66). Similarly, the sum over e is

n3

S (23)(a+€)!(c+f)! —ng!a!c!<n3+a+c+1) - (68)

— a+c+1

Since (Zl)a!b! =n,! and (’?)c!d! = ny! the total sum is

ni  no
1 1 —a—
C = nilnalnglny! E <n3 tatct )(”4jL +n1+ng—a c) ‘
a=0 c¢=0 3 4

(69)
This shows that F(s)s™! 1= —&= + s]% +--- for constants C' and C'. Hence
the residue of F(s)t*s™! at s = 0 is P(logt) where P(t) is a polynomial of
degree N + 4 with leading coefficient %C /(N +4)!. By Lemma 6 applied
with o = N +4, s =0, = 1, and B(t) <, t¢ it follows that

T(t) := L/WT F(w)ﬁ dw+ O ((logt)NH + ! - (1 +tIO§T>> (70)

2 i w T ti=
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where k = (logt)~'. By the residue theorem, the integral is

c+iT k—iT
Plogt——(/ / / > dw. 71
( 2mi k41T +iT c ( )

where ¢ = —% + €. We only sketch how to estimate these integrals since the
argument is standard. The first and third integral may be computed by using
known bounds for ((s) in the critical strip. The second integral requires the
result

U
/1 CO(r 1 i) <r U (72)

for a € Z>op and T > % This may be proven by following the argument of
Theorem 7.5 pp.146-147 of [16]. An appropriate choice of T' then yields an
error term of 727 to complete the proof. For the special case T),,(t), we
set ny = pu,ng = 0,n3 = v, and ny = 0. Applying the binomial identity (see

6] p.174) )
Z<r2k>:(r+z+1) (73)

k=0
for r,n € Z>y, (57) reduces to

6 plv! Z v+1l+a) 6 plv! p+v+2 ]
2(u+v+4) o2 (pt v+ 4) pn+1

(74)
and thus (58) is verified.

We now record the special cases of Lemma 7 which are required in the
proof of Corollary 1. In Table 1, we associate to each pair of sequences (a, b)
the main term of 7, ;(¢) in (52).

Table 1
’ (CL, b) ‘ Ta,b(t) ‘ (CL, b) ‘ Ta b(t) ‘
(d,d) ~ Qs - 2—14l4 (d(l), d(2)) ~ Qg - 2§0l7
(d,dV) | ~ap-gl° | (dW,0) | ~ay- 550"
(d(l), d(l)) ~ Qg - ﬁlﬁ (d(2), d(2)) ~ Qg - %18
(c(l, (2;) ~ Qs - ?;2 (a, ) ~ ag - gl
, (v ~ Q9 180

17



We now evaluate T gw),,(f) in (53).

Lemma 8 Let pu,v > 0 be integers and let p be any prime < t. We have

v—1
Tp(t) = az - <20 (o)1t (Z) (log”™* p)IF+*+1C (p, k))
k=0 (75)

lu+u+4

+ O'LL,V ( + l,u+ll+3)

where | =logt, C(u, k) is defined by (58), and the sum only occurs if v > 1
and 1s zero otherwise.

Proof. First note that

Inserting the identity
n n
) = 57 wmmie. () - (32)
m|(n1,n2

in (76) and inverting summations we obtain

d®(n)o,(pn d® (o, (p)o.(j 1 AW (p\p?o,(j
3 ( 31 (p ):Z () j(p) (J)_];Z (pj)jp ) (77)

n<t <t j<t
=p

Observe that

%Uz(p)az(j) B = i (Z) log” " (p)d® (5) + 2d™) (5) and (78)
ijungz(j) = Z (Z) log” " (p)d™® (5) (79)
=0 k=0

where (79) follows from (78) since o,(p) = 1+p*. Combining (76), (77), (78),
and (79) we deduce that T, ,.,(¢) equals

S L I O]

(80)

18



The trivial bound Ty ,.,(1) < (log"¢)(log"(pt)) follows from d®)(j) <
(log® 7)d(j) and hence the error term is < p~*log”™***¢. Applying Lemma 7
to each expression in the main term of (80) completes the proof of the lemma.

We now compute A(d®, d®)).

Lemma 9 Let p,v > 0 be integers. We have

2
d®W 4Oy = ¢, - 1
A ) = S T D+ 9+ 9 (81)
and if v > 1
W gy, v +2 prv+2y
A, ) = az (u+v+5)! (2( v+1 + v v=3)
(82)

Proof. By Lemma 8

v—1
Torr(t) = an - | 201, )17+ + ") (log? " p) 1O (u, k
HyVip
(83)

k=0

lu+u+4

+0 ( 4—l#+”+3>
p

where [ = logt and C(u, k) is defined by (58). Hence by the definition (42)
A(d® | d) equals

. pr2y ) et 2
22(u+4)!((u+1) )(u+5)! W D 31 2)

and if v > 1, A(dW,d™)) equals

aQ'( +y+5 gl(k'u— )<<V_(j)jf5:l;;4)!)c(“’k>>'

(84)

By (73) the sum in (84) is
plv! < w+k+2 ) = ! W+ v+ 2 1
M+V+5'h0 w1 ~ (u+v+5) v '
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Therefore (84) and (85) imply (82).

We summarize with a table of values of A(d®,d™)). In Table 2 the first
column is the pair of sequences (d*,d®)), the second column is the main

term of T}, .,

by (82). Here we use the notation [ = logt¢ and u = log p.

(t) as in (75), and the third column is A(d®),d®)) as computed

Table 2
| (d»),d™) | main term of 7}, ,.,(t) | A(d™,d™) |

(d, d) a9 %lzl a9 - %
dD . d Qo - =[P o - —=
(d(2) d> : . EZG : . e
( al) ‘112560 - az 420
(Ell,)d( ()1)) as - (3—1016 + ?ZSU) as T%ZL
E§(2)7 Zli(l)§ -2 '(<?§7 - @ll(?)) -2 Ef)
s Ao+ (5t + 5al0u as * 57n
@A) | @ (AP + IPut L) | @ o
(1’) @) : 3 A : 240
T e e I

Using the previous table we can compute A(a, b) for the remainder of the
sequences we require for our calculation.

Lemma 10 We have

1 1
— gy — — gy . MWy — g, .
Ao, d) = ay 530 A(d, o) = ay 00 Ala,dV) = ag 440 (86)
17 23
(1) — ey —— = ao -
A(dYV, o) = ay 50160 ° and Ao, o) = ag 90790 ° (87)

Proof.  We employ the following notation: if A(t) = > _, a, and j € Zxg
then we define the operator £7 by (£7A)(t) = 3, _,(log’ n) a,. Note that if
Alt) =2 an = log" t + O(log™ ' t) then partial summation implies

(88)

(L7A)(t) = « logV ¢t + O(log" 1 t)

N+j
By (7) we have the identities

a(n) =logn d¥(n) —d®(n) , a(pn) = (logp +logn)d™ (pn) — d®(pn) .
(89)
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We begin with one example. It follows from (89) that

d(n)a(pn) = (logp) d(n)d™ (pn) + (log n) d(n)d™ (pn) — d(n)d® (pn)

and hence

Taap(t) = (logp) To1,p(t) + (LT01:p)(t) — To2,p(t) - (90)

By Table 2, (88), and (90) we derive
6 Py G
Taa(t) = uToap(t) + (LTop) (1) = Tozp(t) = az-{ g5 + 55 | TO (U + >

where [ = logt and u = logp. In a similar fashion we compute

Toap(t) = (LT10p)(t) — To0p(1)

Toamip(t) = (LT11) (1) — Toap(t)
Ty ap(t) = (logp) Th1p(t) + (LT11)(8) — Tr2(t) , and (92)
T ap(t) = (10gp) (LT1 1) (1) + (L7T1 1) (1) = (LT125) (1)

— (logp) To,1,p(t) — (LT21,) (1) + To2,(t) -

Thus Table 2, (88), and (92) imply

4 4 lo
Topp(t) = Z c;j(log" t)(log’ p) + O <gT + log*™! t) (93)
i+j=A

for the aforementioned sequences (a,b) and appropriate constants c;;, A. In

summary, we obtain

Table 3
| (a,b) | main term of T,p,(t) | A(a,b) |
(o, d) as - 551 as - g5
(d, ) as - (116 115 ) a2~510
(o, dD) | ap- (2}()[7 15150l6 ) | ar g
(dD,a) | ay- (21017 1 l6 ) | as- %
() | ag- (1010780l8 2}0l7 ) las- mon
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2.1 Proof of Corollary 1
Proof. We first evaluate S, = I(a, ; T). We have a(n) < d(n)log?(n),

a(n)® 17
Z — =2 gores —log®t + O(log" t) , and

n<t

a(n)a(pn) 17 N 1 - - log®t
AmAPR) o —L10p%t + — log" ¢1 O (log" ¢t
; n 2 Toog0 08 ' T gpp o8 e | H U lsTt

by Tables 1 and 3. Moreover, A(a, ) = ay -
Lemma 5, we deduce

TL 17 61 a;TL® 61
w=—|az- —2 ~——TL = 94
Sa = o (“2 20160 A(O"o‘)) 6048073 o 1staa0 Y

90720 by Lemma 10. Applying

with an error term O(TL®log L). Next we consider

S= 3 DulDs-p= 3 Y AR

0<y<T 0<y<T 1<m, n<g 7

Before evaluating Sg, we require some notation. For N € Zx, a(n) and b(n)
sequences, define

In(ab:T) = Y log" (=) Dulp) Dol =) -

Notice that Iy(a,b;T) = I(a,b;T) of (18). Observe that if a(n) and b(n)
are real sequences then In(b,a;T) = In(a,b;T) by a consideration similar
o (24). Applying the identity 3,(m) = 1?d(m) — 21d™ (m) + a(m) where
I =log(5=) we obtain
Bi(m)Bi(n) = U'd(m)d(n) — 2°d(m)d"™ (n) + Pd(m)a(n)
—213dY (m)d(n) + 424D (m)d™ (n) — 20d™ (m)a(n) (96)
+ Pa(m)d(n) — 2a(m)dV(n) + a(m)a(n) .

Inserting (96) in (95) we obtain
Sp = I(d,d; T) + 4I,(dV,d"V; T) + I(a, ; T)
— 4Re(I3(d,d"V; T)) + 2Re(Iy(d, o; T)) — 4Re(L(dV, o5 T)) . (97)
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Note that if I(a,b;T) = ;T log™ T 4+ O(T'log™ ' T') then partial summa-
tion implies Iy (a, b; T) = I(a,b; T)(log" T + O(log™ ' T)). In an analogous
calculation to that of S,, we derive by Lemma 5, Tables 1-3, and the partial
summation identity the following:

1(d,d: T) ~ ‘“;TLQ (i 9. %) _ “QQTWLQ . % , (98)
1(dD,dV;T) ~ %WLQ (ﬁ ~2. ﬁ) = af;fg : 5(1)—4110 o (99)
Bt 5 (5 ) = w00
L(dD, 0;T) ~ a22T7TL9 (ﬁ - 2011760 - 1414()) - a22T7rL9 ' 2011760 (102)

where each of these holds with an error term O(TL%log L). By (97), (94)
and (98) - (102) we have

a,TL? 1+4 11+61 41+21_4 17
2m 120 5040 = 181440 240 630 20160 )

Spg ~

This simplifies to Sp = gz L’ + O(T L log L).

2.2 Proof of Theorem 2
Proof. By Tables 1 and 2 we have

1 1
Tia(t) = a2-ﬂ10g4t+0(10g3 t), Tuap(t) = a2~ﬁlog4t+0(log3 t) . (103)

Therefore by Lemma 3

I T0)=— | =L>-2 M(d d;,—,0 O(TL*log L) (104
(0.6:7.0) = o (5207~ 2me (1 (a.d: 0} ) ) + O(TL g ) (108
where § = % Since we have (103) an application of Lemma 4 yields
T = (i0L)F ay K4
M(d,d;—,5) =L° — O(L*) . 105
(’ ’QW’) 2R 2GR (%) (105)
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Thus (104) and (105) imply

| aTL5 (1 (—1)iNY ,

and we are finished.
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