
EXTREME VALUES OF ζ ′(ρ)

NATHAN NG

Abstract. In this article we exhibit small and large values of ζ′(ρ) by ap-

plying Soundararajan’s resonance method. Our results assume the Riemann

hypothesis.

1. Introduction

Let ζ(s) denote the Riemann zeta function and let ρ denote a non-trivial zero of
this function. A famous conjecture due to Riemann asserts that all non-trivial zeros
ρ have real part equal to one-half. This is the Riemann hypothesis. In this article
we are concerned with large and small values of ζ ′(ρ). Note that if |ζ ′(ρ)| were
small then we would expect a small gap between consecutive zeros of ζ(s) nearby.
An extreme example of this phenomenon is that if ρ is a multiple zero of the zeta
function then ζ ′(ρ) = 0. On the other hand, if ζ ′(ρ) were large we would expect
a large gap between zeros of ζ(s) nearby. This has been observed numerically in
Odlyzko [11]. Also Soundararajan [15] has conjectured that a zero of ζ ′(s) close
to the half line would correspond to nearby pair of close zeros of the zeta function
on the half-line. Recall that the phenomenon of a close pair of zeros of ζ(s) is
referred to as Lehmer’s phenomenon. One reason for our interest in such small
spaces between the zeros of zeta is due to their connection to the non-existence of
Landau-Siegel zeros. This connection was first noticed by Montgomery in [6] and
Montgomery and Weinberger in [8]. This idea was further explored by Conrey and
Iwaniec in [3]. The problem of the true size of ζ ′(ρ) remains an open question.
Under the Riemann hypothesis, we have by an argument of Littlewood, that there
exists c0 > 0 such that

|ζ ′(ρ)| � exp
(

c0 log |γ|
log log |γ|

)
where γ = Im(ρ). This last notation shall be employed throughout the article.
On the other hand, we are also interested in small values of |ζ ′(ρ)|. Consider
Θ = inf{ c | |ζ ′(ρ)|−1 � γc } defined by Gonek [4] in his study of M(x), the
summatory function of the Möbius function. Since the Riemann hypothesis implies
|ζ ′(ρ)| � |ρ|ε one expects that Θ ≥ 0. On the other hand, the GUE conjecture
which asserts that the that distribution of consecutive zeros of the zeta function
obey the GUE distribution suggests that Θ = 1

3 and hence we should have

|ζ ′(ρ)| � γ−1/3+ε

infinitely often.
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In this article we shall produce results exhibiting both large and small values of
|ζ ′(ρ)|. These results are obtained by a novel idea due to Soundararajan [16]. The
method, coined the resonance method, will be explained shortly. We begin with
the large values result.

Theorem 1. Assume the Riemann hypothesis. For each A > 0 we have

|ζ ′(ρ)| �A (log |γ|)A

for infinitely many γ.

I would like to note that Soundararajan has informed me that he has proven
that ∑

0<γ<T

|ζ ′(ρ)|2k �k T (log T )(k+1)2 (1)

by the lower bound method of Rudnick and Soundararajan [12], [13]. Clearly, (1)
implies Theorem 1. However, as this remains unpublished, we present our proof
of Theorem 1. Thus under the Riemann hypothesis, the lower bound method [12],
[13] can give omega results for ζ ′(ρ) of the same strength as the resonance method
[16]. This stems from the fact that we are unable to evaluate a certain weighted
sum of ζ ′(ρ) without making assumptions about the zeros of Dirichlet L-functions
(see Proposition 4 parts (ii) and (iii) that follow). If we are willing to assume an
additional hypothesis concerning the location of the zeros of Dirichlet L-functions
we can improve Theorem 1 significantly and we can obtain a result of the same
quality as Soundararajan’s results [16]. We shall require the following:

Large zero-free region conjecture. There exists a positive constant c′0 suffi-
ciently large such that for each q ≥ 1 and each character χ modulo q the Dirichlet
L-function L(s, χ) does not vanish in the region

σ ≥ 1− c′0
log log(q(|t|+ 4))

where s = σ + it.

Note that this conjecture is significantly weaker than the generalized Riemann
hypothesis. However, it is a sufficiently strong hypothesis to rule out the existence
of Siegel zeros. Recall that the classical zero-free region for Dirichlet L-functions is
L(s, χ) does not vanish in the region

σ ≥ 1− c1

log(q(|t|+ 3))
for some c1 > 0 with the possible exception of one simple real zero in the case χ is
quadratic.

Theorem 2. Assume the Riemann hypothesis and the large zero-free region con-
jecture. There are arbitrarily large values of γ such that

|ζ ′(ρ)| � exp

(
c2

√
log |γ|

log log |γ|

)
where c2 = 1√

2
− ε is valid.

We also prove a result for small values of |ζ ′(ρ)|. Surprisingly, this proof is
significantly easier than the proof of Theorem 2.
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Theorem 3. Assume the Riemann hypothesis. We have

|ζ ′(ρ)| � exp

(
−c3

√
log |γ|

log log |γ|

)

for infinitely many γ where c3 =
√

2
3 − ε is valid.

2. Notation

We shall use Vinogradov’s notation f(x) � g(x) to mean there exists a C > 0
such that |f(x)| ≤ Cg(x) for all x sufficiently large. We denote f(x) = O(g(x))
to mean the same thing. Also, f(x) = o(g(x)) means f(x)/g(x) → 0 as x → ∞.
We shall consider arbitrary sequences xn supported on an interval [1,M ] and we
employ the notation

||xn||∞ = max
n≤M

|xn| and ||xn||p = (
∑

n≤M

|xn|p)1/p .

We now define some basic arithmetic functions. We define µ(n), the Mobius func-
tion, to be the coefficient of n−s in the Dirichlet series ζ(s)−1 =

∑∞
n=1 µ(n)n−s. We

define Λk(n) to be the coefficient of n−s in the Dirichlet series of (−1)kζ(k)(s)/ζ(s).
Another way to express this is Λk(n) = (µ ∗ logk)(n). Note that Λk(n) is sup-
ported on those integers with at most k distinct prime factors. We define τk(n),
the k-the divisor function, to be the coefficient of n−s in the Dirichlet series
ζ(s)k =

∑∞
n=1 τk(n)n−s.

3. Explanation of the resonance method

In this section we outline the resonance method. Soundararajan [16] recently
invented this simple method to find large values of |ζ(1/2 + it)| (and also other
L-functions and character sums). Under the Riemann hypothesis it is known that

|ζ(1/2 + it)| � exp
(

c′1 log |t|
log log |t|

)
where c′1 > 0 is explicitly given. However, it has been proven by Montgomery [7],
assuming the Riemann hypothesis, that there exist arbitrarily large t such that

|ζ(1/2 + it)| � exp

(
c′2

√
log |t|

log log |t|

)
for some positive constant c′2. Later, Balasubramanian and Ramachandra [1] gave
an unconditional proof of this result with an explicit value c′2 < 1. The new method
permits the choice c′2 = 1−ε. We now sketch the method. Consider the mean values∫ 2T

T

ζ(1/2 + it)|A(it)|2 dt and
∫ 2T

T

|A(it)|2 dt

where A(s) =
∑

n≤M xnn−s is a Dirichlet polynomial with arbitrary positive coef-
ficients xn and y ≤ T 1−ε. A standard calculation shows that∫ 2T

T
ζ(1/2 + it)|A(it)|2 dt∫ 2T

T
|A(it)|2 dt

=

(∑
nu≤M

xnxnu√
u∑

n≤M x2
n

)
(1 + o(1)) .
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By taking absolute values we deduce that

max
T≤t≤2T

|ζ(1/2 + it)| ≥

(∑
nu≤M

xnxnu√
u∑

n≤M x2
n

)
(1 + o(1)) . (2)

The problem is thus reduced to optimizing the fraction on the right. Soundararajan
[16] shows that the maximum of the above quotient is

exp
(√

log M
log log M (1 + o(1))

)
and this is obtained by choosing xn = f(n) where f(n) is multiplicative and
supported on squarefree numbers. We define f on the primes as follows: let
L =

√
log M log log M and set

f(p) =
{ L√

p log p if L2 ≤ p ≤ exp((log L)2)
0 else

.

The strategy of this article is to follow the above argument. We require asymp-
totic formulae for the mean values

S1 =
∑

0<γ<T

ζ ′(ρ)A(ρ)A(1− ρ) and S2 =
∑

0<γ<T

A(ρ)A(1− ρ)

where A(s) =
∑

n≤M xnn−s has arbitrary real coefficients xn, y = T θ, and θ < 1/2.
Observe that if the Riemann Hypothesis is true then |A(ρ)|2 = A(ρ)A(1 − ρ) and
thus

S1 =
∑

0<γ<T

ζ ′(ρ)|A(ρ)|2 and S2 =
∑

0<γ<T

|A(ρ)|2 . (3)

In fact, we shall show that S1/S2 is essentially the same quotient of quadratic forms
as in (2).

We have the following formulae for S1 and S2:

Proposition 4. (i) Suppose that |xn| � T ε and θ < 1. Then we have

S2 = N(T )
∑

m≤M

x2
m

m
− T

π

∑
m≤M

(Λ ∗ x)(m)xm

m
+ o(T ) (4)

where N(T ) is the number of zeros of the zeta function in the box 0 ≤ Re(s) ≤ 1,
0 ≤ Im(s) ≤ T .
(ii) Suppose that |xn| � τr(n)(log T )C for some C > 0 and θ < 1/2. Then we have

S1 =
T

2π

 ∑
nu≤M

xuxnur0(n)
nu

+
∑

a,b≤M
(a,b)=1

r1(a, b)
ab

∑
g≤min( M

a , M
v )

xagxbg

g

+ o(T ) (5)

where

r0(n) = 1
2P2(log( T

2π ))− P1(log( T
2π )) log n− 1

2 (log n)2 + (Λ ∗ log)(n) ,

r1(a, b) = 1
2Λ2(a)−R1

(
log
(

T
b

))
Λ(a)− R̃1

(
log
(

T
b

))
α1(a)− α2(a) ,

P2, P1, R1, R̃1 are monic polynomials of degrees 2,1,1,1 respectively. α2, α1 are
arithmetic functions. α2 is supported on a with ω(a) ≤ 2 and α1 is supported
on prime powers. Moreover, α1(pj) � log p

p , α2(pj) � j(log p)2

p , and α2(pjqk) �
(log p)(log q)(p−1 + q−1).
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(iii) Assume the large zero-free region conjecture. The formula for S1 in (ii) re-
mains valid under the assumption that xn =

√
nf(n) and θ < 1/3.

Proof. The proofs of (ii) and (iii) may be found in Theorem 1.3 of [10]. The
formula for S2 in (i) is mentioned without proof on page 6 of [2]. It can be proven
by following the argument of [9] Lemma 3. �

From Proposition 4, we can explain our strategy for proving Theorem 2. We
shall show that in the formulae (5) and (4) for S1 and S2 the significant terms are

T log2( T
2π )

4π

∑
nu≤M

xuxnu

nu
and

T log( T
2π )

2π

∑
m≤M

x2
m

m

respectively. By choosing xn =
√

nf(n) we see that

max
T≤γ≤2T

|ζ ′(ρ)| ≥ S1

S2
≈

log( T
2π )

2

∑rn≤M
f(n)f(nr)√

r∑
n≤M f(n)2

 = exp
(√

log M
log log M (1 + o(1))

)
.

This is the essential content of Theorem 2. In order to make this argument rigorous,
we will show that each of the other terms in the formulae for S1 and S2 are smaller
than the principal terms. The argument for Theorem 3 is very similar. In this case
we consider

S3 =
∑

T<γ<2T

ζ ′(ρ)−1|A(ρ)|2 and S2 =
∑

T<γ<2T

|A(ρ)|2 .

As before we will show that the ratio S3/S2 gives rise to the same quadratic form
as in (2).

4. Large values of ζ ′(ρ): Proof of Theorem 1

In this section we prove Theorem 1. As explained previously our strategy is
to evaluate asymptotically S1/S2 for a certain choice of coefficients. As we are
only assuming the Riemann hypothesis, we are restricted to choosing xn = τr(n)
with r ∈ N. In the course of this calculation, we shall encounter several other
multiplicative functions. We define

f1(n) =
∏

pe||n

∑∞
j=0

τr(pe+j)
pj∑∞

j=0
τr(pj)

pj

and f2(n) =
∏

pe||n

∑∞
j=0

τr(pe+j)τr(pj)
pj∑∞

j=0
τr(pj)2

pj

.

Note that for i = 1, 2 fi(p) = r(1 + O(p−1)). The asymptotic evaluation of S1 will
require the evaluation of several sums of standard arithmetic functions. We shall
employ the following:

Lemma 5. Let a, b, k, r, u ∈ N.
(i) ∑

n≤x

τr(nu) =
f1(u)x(log x)r−1

(r − 1)!
(1 + O((log x)−1)) .

(ii) ∑
n≤x

τr(n)f1(n) =
C0x(log x)r2−1

(r2 − 1)!
(1 + O((log x)−1))
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where

C0 =
∏
p

(
1− 1

p

)r ∞∑
j=0

τr(pj)f1(pj)
pj

=
∏
p

(
1− 1

p

)r2+r ∞∑
j=0

τr(pj)τr+1(pj)
pj

. (6)

(iii) ∑
n≤x

f2(n) =
C1x(log x)r−1

(r − 1)!
(1 + O((log x)−1)

where

C1 =
∏
p

(1− 1/p)r
∞∑

j=0

f2(pj)
pj

=
∏
p

(1− 1/p)r

∑∞
j=0

τr(pj)τr+1(p
j)

pj∑∞
j=0

τr(pj)2

pj

. (7)

(iv) ∑
n≤x

τr(an)τr(bn)
n

= C2f2(a)f2(b)
(log x)r2

(r2)!
(1 + O((log x)−1))

where

C2 =
∏
p

(1− 1/p)r2
∞∑

j=0

τr(pk)2

pk
.

Notice that it follows immediately from (6) and (7) that C0 = C1C2.
(v) ∑

n≤x

Λk(n) = kx(log x)k−1(1 + O((log x)−1)) .

(vi) For i = 1, 2 ∑
n≤x

Λ(n)fi(n) = rx(1 + O((log x)−1)) .

(vii) For i = 1, 2∑
n≤x

Λ2(n)fi(n) = (r2 + r)x(log x)(1 + O((log x)−1)) .

Proof. Since the proofs of (i) − (iv) are very similar we shall just prove part (iv).
We give a sketch of the proof as the argument is standard (see for example [14]).
We define the Dirichlet series H(s) =

∑∞
n=1 τr(an)τr(bn)n−s and since τr is multi-

plicative we have the factorization

H(s) =
∏

(p,ab)=1

( ∞∑
k=0

τr(pk)2

pks

) ∏
pe||a

∞∑
k=0

τr(pe+k)τr(pk)
pks

∏
pf ||b

∞∑
k=0

τr(pk)τr(pf+k)
pks

.

Next we define for s ∈ C and n ∈ N

F (s;n) =
∏

pe||n

∑∞
k=0

τr(pe+k)τr(pk)
pks∑∞

k=0
τr(pk)2

pks

 , G(s) =
∏
p

(1− 1/ps)r2
∞∑

k=0

τr(pk)2

pks

and thus H(s) = ζ(s)r2
F (s, ab)G(s). Moreover, we notice that F (1;n) = f2(n) and

G(1) = C2. By Perron’s formula,∑
n≤x

τr(an)τr(bn)
n

=
1

2πi

∫ κ+iU

κ−iU

H(s+1)
xsds

s
+O

(
(log x)r2

U
+

1
x1−ε

(
1 + x

log U

U

))



EXTREME VALUES OF ζ′(ρ) 7

with κ = (log x)−1. Let Γ(U) denote the contour consisting of s ∈ C such that
Re(s) = − c′

log(|Im(s)|+2) and |Im(s)| ≤ U for an appropriate c′ > 0. We deform the
contour past Re(s) = 0 line to Γ(U) picking up the residue at s = 0. The residue
at s = 0 equals

C2f2(a)f2(b)
(log x)r2

(r2)!
(1 + O((log x)−1))

which corresponds to the main term. Employing standard bounds for ζ(s) in the
zero-free region we can show that contribution of the integral on Γ(U) is smaller
than the main term for an appropriate choice of U by at least one factor of log x.
Part (v) is a well known fact. Part (vi) follows from the fact that Λ is supported
on the prime powers and Λ(pj) = log(p). Part (vii) follows from the fact that
Λ2 is supported on those n with ω(n) ≤ 2 and moreover Λ2(pq) = 2 log p log q,
Λ2(p) = (log p)2, and fi(p) = r(1 + O(p−1)) . �

We are now prepared to prove Theorem 1. In the course of the proof, we will
encounter the following integrals:

i(u, v) :=
∫ 1

0

xu(1− x)v dx =
u!v!

(u + v + 1)!
,

cX(u, v) :=
∫ X

1

(log X/t)u(log t)v

t
dt = (log X)u+v+1i(u, v)

(8)

where X ≥ 1.

Proof of Theorem 1. By Proposition 4 we may write S1 = S̃1 + o(T ) where

S̃1 =
T

2π

 ∑
nu≤M

xuxnur0(n)
nu

+
∑

a,b≤M
(a,b)=1

r1(a, b)
ab

∑
g≤min( M

a , M
v )

xagxbg

g


and

r0(n) =
1
2
P2(log( T

2π )) +
∑
d|n

g(d) ,

g(d) = −(P1(log( T
2π )) + log d)Λ(d) +

Λ2(d)
2

.

(9)

Thus we have S̃1 = T
2π

(
P2(log(T/2π))

2 T1 + T2 + T3

)
where

T1 =
∑

nu≤M

xuxnu

nu
,

T2 =
∑

dnu≤M

g(d)xuxdnu

dnu
,

T3 =
∑

a,b≤M
(a,b)=1

r1(a, b)
ab

∑
g≤min( M

a , M
v )

xagxbg

g
.

(10)
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4.1. Evaluation of T1. Now by Lemma 5 (i) and (ii) we have

T1 =
∑

u≤M

τr(u)
u

∫ M/u

1−
t−1d

∑
n≤t

τr(nu)


∼
∑

u≤M

τr(u)f1(u)
u

(log M/u)r

r!
=

1
r!

∫ M

1−
log(M/t)rt−1d

∑
u≤t

τr(u)f1(u)


∼ 1

r!

∫ M

1

(log(M/t)r

t

C0(log t)r2−1

(r2 − 1)!
dt .

By (8) it follows that

T1 ∼
C0

r!(r2 − 1)!
cM (r, r2 − 1) =

C0(log M)r2+r

(r2 + r)!
.

4.2. Evaluation of T2. Since the calculation of T2 and T3 are rather similar to
that of T1 we shall not record every step of their calculation. By Lemma 5 (i) we
have

T2 ∼
∑
d≤M

g(d)
d

∑
u≤M/d

τr(u)
u

f1(du) log(M/du)r

r!
.

As g is supported on those integers d with ω(d) ≤ 2 we have

T2 ∼
∑
d≤M

g(d)f1(d)
d

∑
u≤M/d

τr(u)
u

f1(u) log(M/du)r

r!

=
1
r!

∑
d≤M

g(d)f1(d)
d

∫ M/d

1

log(M/dt)r

t

C0(log t)r2−1

(r2 − 1)!
dt

=
C0

(r2 + r)!

∑
d≤M

g(d)f1(d)
d

(log M/d)r2+r

where we have invoked Lemma 5 (ii) and (8). By (9), Lemma 5 (vi) and (vii) we
obtain ∑

n≤x

g(n)f1(n) ∼ x

(
r2 − r

2
log x− rP1(log( T

2π ))
)

.

From this we deduce

T2 =
C0

(r2 + r)!

∫ M

1

(log M/t)r2+r

t

(
r2 − r

2
log(t)− rP1(log( T

2π ))
)

dt

∼ C0

(r2 + r)!

(
r2 − r

2
cM (r2 + r, 1)− r

θ
cM (r2 + r, 0)

)
(log M)r2+r+2

and it follows from (8) that

T2 ∼
C0(log M)r2+r+2

(r2 + r + 2)!

(
r2 − r

2
− r

θ
(r2 + r + 2)

)
.
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4.3. Evaluation of T3. By Lemma 5 (iv) it follows that

T3 ∼
C2

(r2)!

∑
a,b≤M
(a,b)=1

r1(a, b)f2(a)f2(b)
ab

(
log min

(
M

a
,
M

b

))r2

where r1(a, b) is defined by (6). We shall write this last sum as T ′3 + T ′′3 where T ′3
is the sum over the terms for which a < b ≤ M and T ′′3 consists of the terms for
which b < a ≤ M . We have

T ′3 ∼
C2

(r2)!

∑
b≤M

f2(b) log(M/b)r2

b

∑
a<b

(a,b)=1

(1/2)Λ2(a)− Λ(a)R1(log(T/b))
a

f1(a)

since it may be checked that the contribution from the term −R̃1 (log (T/b))α1(a)−
α2(a) is � (log T )r2+r+1. By Lemma 5 (vi) and (vii)

∑
a≤x

f1(a) ((1/2)Λ2(a)− Λ(a)R1(log(T/b))) ∼ (r2 + r)
2

x log x− rR1(log(T/b))x

and it follows that

T ′3 ∼
C2

(r2)!

∑
b≤M

f2(b) log(M/b)r2

b

∫ b

1

(1/2)(r2 + r) log t− rR1(log(T/b))
t

dt

=
C2

(r2)!

∑
b≤M

f2(b) log(M/b)r2

b

(
r2 + r

4
(log b)2 − rR1(log(T/b)) log b

)
.

By Lemma 5 (iii)

T ′3 =
C2

(r2)!

∫ M

1

log(M/t)r2

t

(
r2 + r

4
(log t)2 − rR1(log(T/t)) log t

)
C1

(r − 1)!
(log t)r−1 dt

=
C0(log M)r2+r+2

(r2 + r + 2)!

(
(r2 + 5r)(r + 1)r

4
− r2(r2 + r + 2)

θ

)
.

Next, we consider those terms with b < a ≤ M . We have

T ′′3 ∼
C2

(r2)!

∑
a≤M

∑
b<a

(a,b)=1

(1/2)Λ2(a)− Λ(a)R1(log(T/b))
a

f1(a)f2(b) log(M/a)r2

b

since we can show, as before, that the contribution from the term−R̃1 (log (T/b))α1(a)−
α2(a) is � (log T )r2+r+1. Since

∑
b≤x f2(b) ∼ C1

(r−1)!x(log x)r−1, a similar calcula-
tion as above yields

T ′′3 ∼
C0

(r2)!r!

∫ M

1−

log(M/t)r2
(log t)r

t
dσ(t)
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with σ(t) =
∑

a≤t

(
(Λ2(a)/2− Λ(a) log T ) + r

r+1Λ(a) log(a)
)

f2(a). By Lemma 5

(vi) and (vii) σ(t) ∼
(

r2+r
2 + r2

r+1

)
t log t− rt(log T ) and thus

T ′′3 ∼
C0

(r2)!r!

((
r2 + r

2
+

r2

r + 1

)
cM (r2, r + 1)− r(log T )cM (r2, r)

)
=

C0(log M)r2+r+2

(r2 + r + 2)!

((
(r2 + r)(r + 1)

2
+ r2

)
− r(r2 + r + 2)

θ

)
.

Collecting our results for T1, T2, and T3 = T ′3 + T ′′3 we have

S1 ∼
C0T (log M)r2+r+2

(r2 + r + 2)!

(
(r2 + r + 2)(r2 + r + 1)

θ2
+
(

r(r − 1)
2

− r(r2 + r + 2)
θ

)
+ (r2 + r)

(
r2 + 5r

4
+

r + 1
2

+
r2

r2 + r

)
− (r2 + r + 2)(r2 + r)

θ

)
≥ C0T (log M)r2+r+2

(r2 + r + 2)!
r2 + r + 2

θ2
(r2 + r + 1− θ(r2 + 2r))

� r4T (log M)r2+r+2

θ2(r2 + r + 2)!

for 0 < θ < 1
2 and r ∈ N. On the other hand, we have the simple bound

S2 ≤
T log( T

2π )
2π

∑
m≤M

τr(m)2

m
� T

θ
(log M)r2+1

and thus maxT≤γ≤2T |ζ ′(ρ)| ≥
∣∣∣S1
S2

∣∣∣�r (log M)r+1 � (log T )r+1. �

5. Larger values of ζ ′(ρ): Proof of Theorem 2

In this section we shall evaluate S1/S2 for the choice xn =
√

nf(n). Before
embarking on this task we will require a few results concerning the coefficients
f(n). Moreover, we shall encounter several other multiplicative functions. We
define g and h to be multiplicative functions supported on the squarefree numbers.
Their values at any prime p are given by

g(p) = 1 + f(p)2 and h(p) = 1 + f(p)p−1/2 .

It will also be convenient to introduce the notation

Q1 =
∏
p

(
1 + f(p)2 +

f(p)
√

p

)
, Q2 =

∏
p

(
1 + f(p)2

)
.

Lemma 6. (i) ∑
nu≤M

f(u)f(nu)√
n

= Q1(1 + o(1)) ,

(ii) ∑
n≤M

f(n)2 ≤ Q2 ,

(iii)
Q1

Q2
= exp

(√
log M

log log M (1 + o(1))
)

.
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(iv) For i = 1, 2 ∑
a≤M

Λi(a)f(a)√
ag(a)

� (log T )i/2+ε .

Proof. (i) We denote the sum to be estimated S. Thus

S =
∑

n≤M

f(n)√
n

∑
u≤M/r
(n,u)=1

f(u)2 =
∑

n≤M

f(n)√
n

 ∏
(p,n)=1

(1 + f(p)2)−
∑

u>M/n
(n,u)=1

f(u)2

 .

By Rankin’s trick the error term is bounded by∑
n≤M

f(n)√
n

( n

M

)α ∞∑
u=1

(u,n)=1

f(u)2uα ≤ 1
Mα

∏
p

(
1 + pαf(p)2 + f(p)pα−1/2

)
for any α > 0. On the other hand, since f is multiplicative the main term equals∏

p

(
1 + f(p)2 +

f(p)
√

p

)
+ O

(
1

Mα

∏
p

(
1 + f(p)2 +

f(p)pα

√
p

))
.

We deduce

S = Q1 + O

(
1

Mα

∏
p

(
1 + pαf(p)2 +

f(p)pα

√
p

))
. (11)

However, it is shown in [16] that the ratio of the error term to the main term in (11)
is � exp(−α log M

log log M ) for the choice α = 1
(log L)3 . It follows that S = Q1(1 + o(1)).

(ii) We have the simple identity∑
n≤M

f(n)2 ≤
∑
n≥1

f(n)2 = Q2 .

(iii) Note that
Q1

Q2
=
∏
p

(
1 +

f(p)
√

p(1 + f(p)2)

)
.

Taking logarithms of the product we see that

log(Q1/Q2) =
∑

p

log
(

1 +
f(p)

√
p(1 + f(p)2)

)
=

∑
L2≤p≤exp((log L)2)

L

p log p(1 + o(1))

=
L

log L2
(1 + o(1)) =

√
log M

log log M
(1 + o(1)) .

(iv) We have∑
a≤M

Λ(a)f(a)√
ag(a)

= L
∑
p≤M

1
pg(p)

� L
∑
p≤M

1
p
� (log T )1/2+ε .

Note that Λ2 is supported on integers a satisfying ω(a) ≤ 2 and f is supported
on squarefree integers. Moreover Λ2(p) = (log p)2 and Λ2(pq) = 2 log p log q. From
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this, we deduce that∑
a≤M

Λ2(a)f(a)√
ag(a)

�
∑
p≤M

Λ2(p)f(p)
√

pg(p)
+

∑
pq≤M,p 6=q

Λ2(pq)f(pq)
√

pqg(pq)

� L
∑
p≤M

log p

p
+ L2

∑
p≤M

1
p

2

� (log T )1+ε .

�

Proof of Theorem 2. We have from Proposition 4 that

S1

S2
=

1
2P2(log( T

2π ))Σ0 − P1(log( T
2π ))Σ1 − 1

2Σ2 + Σ3 + Σ4

log( T
2π )Σ5 − 2Σ6

+ o(1)

where for i = 0, 1, 2

Σi =
∑

nu≤M

f(u)f(nu)(log n)i

√
n

and

Σ3 =
∑

nu≤M

f(u)f(nu)(Λ ∗ log)(n)√
n

,

Σ4 =
∑

a,b≤M
(a,b)=1

r1(a, b)√
ab

∑
g≤min( M

a , M
b )

f(ag)f(bg) ,

Σ5 =
∑

m≤M

f(m)2 ,

Σ6 =
∑

mn≤M

Λ(n)f(m)f(mn)√
n

.

By Lemma 6
Σ0 = Q1(1 + o(1)) and Σ5 ≤ Q2(1 + o(1)) . (12)

We shall prove the following bounds for the other five sums:

Lemma 7. We have:

Σ1 � Q1(log T )1/2+ε , Σ2,Σ3 � Q1(log T )1+ε ,

Σ4 � Q1(log T )3/2+ε , Σ6 � Q2(log T )1/2+ε .

Theorem 2 now easily follows. We deduce from (12) and Lemma 7 that

S1 = (1/2)Q1 log2( T
2π )
(
1 + O((log T )−1/2+ε)

)
and S2 ≤ Q2log( T

2π )
(
1 + O((log T )−1/2+ε)

)
. By Lemma 6 (iii)∣∣∣∣S1

S2

∣∣∣∣ ≥ (1/2)log( T
2π )

Q1

Q2
(1 + o(1)) ≥ exp

(√
log M

log log M (1 + o(1))
)

and thus we establish Theorem 2. �



EXTREME VALUES OF ζ′(ρ) 13

It suffices to prove Lemma 7.
Proof of Lemma 7. We proceed to bound the various Σi. We begin with

Σi =
∑

un≤M

f(u)f(nu)(log n)i

√
n

for i = 1, 2. We evaluate this by writing (log n)i =
∑

k|n Λi(k). Inserting this
expression we obtain

Σi =
∑
k≤M

Λi(k)f(k)√
k

∑
nu≤M/k
(nu,k)=1

f(u)f(nu)√
n

≤
∑
k≤M

Λi(k)f(k)√
k

∑
n≤M/k
(n,k)=1

f(n)√
n

∑
u≥1

(u,kn)=1

f(u)2

≤
∑
k≤M

Λi(k)f(k)√
k

∑
n≤M/k
(n,k)=1

f(n)√
n

∏
(p,kn)=1

(1 + f(p)2) = Q2

∑
k≤M

Λi(k)f(k)√
k

∑
n≤M/k
(n,k)=1

f(n)√
ng(kn)

≤ Q2

∑
k≤M

Λi(k)f(k)√
kg(k)

∞∑
n=1

f(n)√
ng(n)

= Q2

∏
p

(
1 +

f(p)
√

pg(p)

) ∑
k≤M

Λi(k)f(k)√
kg(k)

.

The expression in front of the last sum is clearly Q1. Thus by Lemma 6 (iv)

Σ1 � Q1(log T )1/2+ε and Σ2 � Q2(log T )1+ε .

Next note that (Λ ∗ log)(r) ≤ (log r)2 and hence Σ3 ≤ Σ2 � (log T )1+ε. Next we
estimate Σ4:

Σ4 =
∑

a,b≤M
(a,b)=1

r1(a, b)√
ab

∑
g≤min( M

a , M
b )

f(ag)f(bg)

≤ Q1

∑
a,b≤M
(a,b)=1

f(a)f(b)|r1(a, b)|√
abg(a)g(b)

� Q1

∑
v≤M

xv√
vg(v)

∑
a≤M

Λ2(a)f(a)√
ag(a)

+ log T
∑
a≤M

Λ(a)f(a)√
ag(a)


≤
∏
p

(
1 +

f(p)
√

p
+ f(p)2

)
(log T )3/2+ε

by Lemma 6 (iv). Finally we have

Σ6 =
∑

ur≤M

Λ(r)f(u)f(ur)√
r

=
∑
r≤M

Λ(r)f(r)√
r

∑
u≤M/r
(u,r)=1

f(u)2 ≤
∏
p

(1+x2
p)
∑
r≤M

Λ(r)f(r)√
rg(r)

.

Once again by Lemma 6 (iv) we obtain Σ6 � Q2 � (log T )1/2+ε. �

6. Small values of ζ ′(ρ): Proof of Theorem 3.

Proof of Theorem 3. We begin by noting that Theorem 3 is automatically true if
there are infinitely many multiple zeros. Now assume that there are only finitely
many multiple zeros of ζ(s). Suppose there exists a positive constant C ′ such that
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for all γ > C ′ all zeros of the zeta function are simple. We will now show that for
each T sufficiently large that there exists a γ ∈ [T, 2T ] such that

|ζ ′(ρ)|−1 ≥ exp
(
c5(1 + o(1))

√
log T

log log T

)
(13)

and Theorem 3 follows. We now establish (13). Consider the sums

S3 =
∑

T1<γ<T2

ζ ′(ρ)−1|A(ρ)|2 and S2 =
∑

T1<γ<T2

|A(ρ)|2

where A(s) =
∑

k≤M xkk−s and xk is an arbitary real sequence. Here we choose
T1, T2 such that

ζ(σ + iTj)−1 � T ε
j

where T1 = T + O(1) and T2 = 2T + O(1). This is possible by Theorem 14.16 of
[17]. We shall establish:

Proposition 8. Assume the Riemann hypothesis and that all but finitely many of
the zeros of the Riemann zeta function are simple. If ||xn

n ||1 � T ε

S3 =
T2 − T1

2π

∑
hn≤M

µ(n)xhxnh

nh
+ O

(
T ε(M ||xn||∞ + ||xn||1 + T

1
2 ||x2

n||
1
2
1 )
)

for T sufficiently large.

Moreover by Proposition 4 we have

S2 = (N(T2)−N(T1))
∑

m≤M

x2
m

m
− T2 − T1

π

∑
m≤M

(Λ ∗ x)(m)xm

m
+ o(T )

respectively. We now choose xm =
√

mµ(m)f(m) and suppose that M < T 2/3−10ε.
Note that ||xn||∞ � M

1
2+ε, ||xn||1 � M1+ε and thus

S3 =
T2 − T1

2π

 ∑
hn≤M

f(h)f(nh)√
n

+ o(1)


and

S2 = (N(T2)−N(T1))
∑

m≤M

f(m)2 − T2 − T1

π

∑
m≤M

(Λ ∗ f)(m)f(m)
m

+ o(T ) .

The second sum in S2 is bounded by∑
mp≤M

(log p)f(m)f(mp)
√

p
�
∑
p≤b

log pf(p)
√

p

∑
m≤M/p
(m,p)=1

f(m)2 �

 ∑
m≤M

f(m)2

 (log T )1/2+ε .

With these observations in hand we obtain

max
T≤γ≤2T

|ζ ′(ρ)|−1 ≥ log( T
2π )

−1

∑hn≤M
f(h)f(nh)√

n∑
m≤M f(m)2

 (1 + o(1))

and by Soundararajan’s calculation we obtain

max
T≤γ≤2T

|ζ ′(ρ)|−1 ≥ exp
(
(1 + o(1))

√
log M

log log M

)
for M < T

2
3−10ε which yields (13).
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It now suffices to establish Proposition 8.

Proof of Proposition 8. We consider the integral

I :=
1

2πi

∫ c+iT2

c+iT1

ζ(s)−1A(s)A(1− s) ds .

with c = 1 + O((log T )−1). Moving the contour left to the 1 − c line yields I =
S3 + H + I ′ + O(1) where

I ′ :=
1

2πi

∫ 1−c+iT2

1−c+iT1

ζ(s)−1A(s)A(1− s) ds

and H are the horizontal contributions. We know from Proposition 4 that

I =
T2 − T1

2π

∑
nu≤M

µ(n)xuxnu

nu
+ O(M ε(||xn||∞M + ||xn||1)) .

Next we consider the contribution from the horizontal terms. We may verify that
|A(s)A(1− s)| ≤ M ||xn

n ||
2
1 + ||xn||1||xn

n ||1 for 1− c ≤ Re(s) ≤ c. Furthermore, since
we have chosen the Tj such that ζ(σ+ iTj)−1 � T ε

j , H � T ε(M + ||xn||1). We now
consider the contribution of the left hand side. We have that ζ(s) = χ(s)ζ(1− s).
Since χ(s) � T 1/2 and ζ(1− s) � log T for Re(s) = 1− c we have

I ′ � (T 1/2 log T )−1||xn

n ||1
∫ T2

T1

|A(1− c + it)| dt

� (log T )−1||xn

n ||1

(∫ T2

T1

|A(1− c + it)|2 dt

)1/2

.

The mean value theorem for Dirichlet polynomials asserts∫ T2

T1

∣∣∣∣∣∣
∑
n≤N

an

nit

∣∣∣∣∣∣
2

dt = (T2 − T1)
∑
n≤N

|an|2 + O
(∑

n≤N n|an|2
)

.

Since 1− c = O((log T )−1)∫ T2

T1

|A(1− c + it)|2 dt � T
∑

n≤M

x2
n +

∑
n≤M

x2
n

n
� T ||x2

n||1 .

Thus we deduce that I ′ � T
1
2 (log T )−1||xn

n ||1||x
2
n||

1
2
1 . Collecting estimates yields

Proposition 8. �

Acknowledgements. The author thanks Professor Soundararajan for suggesting this
problem.
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