EXTREME VALUES OF $\zeta'(\rho)$

NATHAN NG

ABSTRACT. In this article we exhibit small and large values of $\zeta'(\rho)$ by applying Soundararajan's resonance method. Our results assume the Riemann hypothesis.

1. INTRODUCTION

Let $\zeta(s)$ denote the Riemann zeta function and let ρ denote a non-trivial zero of this function. A famous conjecture due to Riemann asserts that all non-trivial zeros ρ have real part equal to one-half. This is the Riemann hypothesis. In this article we are concerned with large and small values of $\zeta'(\rho)$. Note that if $|\zeta'(\rho)|$ were small then we would expect a small gap between consecutive zeros of $\zeta(s)$ nearby. An extreme example of this phenomenon is that if ρ is a multiple zero of the zeta function then $\zeta'(\rho) = 0$. On the other hand, if $\zeta'(\rho)$ were large we would expect a large gap between zeros of $\zeta(s)$ nearby. This has been observed numerically in Odlyzko [11]. Also Soundararajan [15] has conjectured that a zero of $\zeta'(s)$ close to the half line would correspond to nearby pair of close zeros of the zeta function on the half-line. Recall that the phenomenon of a close pair of zeros of $\zeta(s)$ is referred to as Lehmer's phenomenon. One reason for our interest in such small spaces between the zeros of zeta is due to their connection to the non-existence of Landau-Siegel zeros. This connection was first noticed by Montgomery in [6] and Montgomery and Weinberger in [8]. This idea was further explored by Conrey and Iwaniec in [3]. The problem of the true size of $\zeta'(\rho)$ remains an open question. Under the Riemann hypothesis, we have by an argument of Littlewood, that there exists $c_0 > 0$ such that

$$|\zeta'(\rho)| \ll \exp\left(\frac{c_0 \log |\gamma|}{\log \log |\gamma|}\right)$$

where $\gamma = \text{Im}(\rho)$. This last notation shall be employed throughout the article. On the other hand, we are also interested in small values of $|\zeta'(\rho)|$. Consider $\Theta = \inf\{ c \mid |\zeta'(\rho)|^{-1} \ll \gamma^c \}$ defined by Gonek [4] in his study of M(x), the summatory function of the Möbius function. Since the Riemann hypothesis implies $|\zeta'(\rho)| \ll |\rho|^{\epsilon}$ one expects that $\Theta \ge 0$. On the other hand, the GUE conjecture which asserts that the that distribution of consecutive zeros of the zeta function obey the GUE distribution suggests that $\Theta = \frac{1}{3}$ and hence we should have

$$|\zeta'(\rho)| \ll \gamma^{-1/3+}$$

infinitely often.

June 12, 2007. Mathematics Subject Classification (2000). 11M26

NATHAN NG

In this article we shall produce results exhibiting both large and small values of $|\zeta'(\rho)|$. These results are obtained by a novel idea due to Soundararajan [16]. The method, coined the resonance method, will be explained shortly. We begin with the large values result.

Theorem 1. Assume the Riemann hypothesis. For each A > 0 we have

 $|\zeta'(\rho)| \gg_A (\log|\gamma|)^A$

for infinitely many γ .

I would like to note that Soundararajan has informed me that he has proven that

$$\sum_{0 < \gamma < T} |\zeta'(\rho)|^{2k} \gg_k T (\log T)^{(k+1)^2}$$
(1)

by the lower bound method of Rudnick and Soundararajan [12], [13]. Clearly, (1) implies Theorem 1. However, as this remains unpublished, we present our proof of Theorem 1. Thus under the Riemann hypothesis, the lower bound method [12], [13] can give omega results for $\zeta'(\rho)$ of the same strength as the resonance method [16]. This stems from the fact that we are unable to evaluate a certain weighted sum of $\zeta'(\rho)$ without making assumptions about the zeros of Dirichlet *L*-functions (see Proposition 4 parts (*ii*) and (*iii*) that follow). If we are willing to assume an additional hypothesis concerning the location of the zeros of Dirichlet *L*-functions we can improve Theorem 1 significantly and we can obtain a result of the same quality as Soundararajan's results [16]. We shall require the following:

Large zero-free region conjecture. There exists a positive constant c'_0 sufficiently large such that for each $q \ge 1$ and each character χ modulo q the Dirichlet *L*-function $L(s,\chi)$ does not vanish in the region

$$\sigma \geq 1 - \frac{c_0'}{\log \log(q(|t|+4))}$$

where $s = \sigma + it$.

Note that this conjecture is significantly weaker than the generalized Riemann hypothesis. However, it is a sufficiently strong hypothesis to rule out the existence of Siegel zeros. Recall that the classical zero-free region for Dirichlet *L*-functions is $L(s, \chi)$ does not vanish in the region

$$\sigma \ge 1 - \frac{c_1}{\log(q(|t|+3))}$$

for some $c_1 > 0$ with the possible exception of one simple real zero in the case χ is quadratic.

Theorem 2. Assume the Riemann hypothesis and the large zero-free region conjecture. There are arbitrarily large values of γ such that

$$|\zeta'(\rho)| \gg \exp\left(c_2\sqrt{\frac{\log|\gamma|}{\log\log|\gamma|}}\right)$$

where $c_2 = \frac{1}{\sqrt{2}} - \epsilon$ is valid.

We also prove a result for small values of $|\zeta'(\rho)|$. Surprisingly, this proof is significantly easier than the proof of Theorem 2.

 $\mathbf{2}$

Theorem 3. Assume the Riemann hypothesis. We have

$$|\zeta'(\rho)| \ll \exp\left(-c_3\sqrt{\frac{\log|\gamma|}{\log\log|\gamma|}}\right)$$

for infinitely many γ where $c_3 = \sqrt{\frac{2}{3}} - \epsilon$ is valid.

2. NOTATION

We shall use Vinogradov's notation $f(x) \ll g(x)$ to mean there exists a C > 0such that $|f(x)| \leq Cg(x)$ for all x sufficiently large. We denote f(x) = O(g(x))to mean the same thing. Also, f(x) = o(g(x)) means $f(x)/g(x) \to 0$ as $x \to \infty$. We shall consider arbitrary sequences x_n supported on an interval [1, M] and we employ the notation

$$||x_n||_{\infty} = \max_{n \le M} |x_n|$$
 and $||x_n||_p = (\sum_{n \le M} |x_n|^p)^{1/p}$.

We now define some basic arithmetic functions. We define $\mu(n)$, the Mobius function, to be the coefficient of n^{-s} in the Dirichlet series $\zeta(s)^{-1} = \sum_{n=1}^{\infty} \mu(n)n^{-s}$. We define $\Lambda_k(n)$ to be the coefficient of n^{-s} in the Dirichlet series of $(-1)^k \zeta^{(k)}(s)/\zeta(s)$. Another way to express this is $\Lambda_k(n) = (\mu * \log^k)(n)$. Note that $\Lambda_k(n)$ is supported on those integers with at most k distinct prime factors. We define $\tau_k(n)$, the k-the divisor function, to be the coefficient of n^{-s} in the Dirichlet series $\zeta(s)^k = \sum_{n=1}^{\infty} \tau_k(n) n^{-s}$.

3. Explanation of the resonance method

In this section we outline the resonance method. Soundararajan [16] recently invented this simple method to find large values of $|\zeta(1/2 + it)|$ (and also other *L*-functions and character sums). Under the Riemann hypothesis it is known that

$$|\zeta(1/2+it)| \ll \exp\left(\frac{c_1' \log |t|}{\log \log |t|}\right)$$

where $c'_1 > 0$ is explicitly given. However, it has been proven by Montgomery [7], assuming the Riemann hypothesis, that there exist arbitrarily large t such that

$$|\zeta(1/2+it)| \gg \exp\left(c'_2 \sqrt{\frac{\log|t|}{\log\log|t|}}\right)$$

for some positive constant c'_2 . Later, Balasubramanian and Ramachandra [1] gave an unconditional proof of this result with an explicit value $c'_2 < 1$. The new method permits the choice $c'_2 = 1 - \epsilon$. We now sketch the method. Consider the mean values

$$\int_{T}^{2T} \zeta(1/2 + it) |A(it)|^2 dt \text{ and } \int_{T}^{2T} |A(it)|^2 dt$$

where $A(s) = \sum_{n \leq M} x_n n^{-s}$ is a Dirichlet polynomial with arbitrary positive coefficients x_n and $y \leq T^{1-\epsilon}$. A standard calculation shows that

$$\frac{\int_T^{2T} \zeta(1/2+it) |A(it)|^2 dt}{\int_T^{2T} |A(it)|^2 dt} = \left(\frac{\sum_{nu \le M} \frac{x_n x_{nu}}{\sqrt{u}}}{\sum_{n \le M} x_n^2}\right) (1+o(1)) \ .$$

By taking absolute values we deduce that

$$\max_{T \le t \le 2T} |\zeta(1/2 + it)| \ge \left(\frac{\sum_{n \le M} \frac{x_n x_{nu}}{\sqrt{u}}}{\sum_{n \le M} x_n^2}\right) (1 + o(1)) .$$
(2)

The problem is thus reduced to optimizing the fraction on the right. Soundararajan [16] shows that the maximum of the above quotient is

$$\exp\left(\sqrt{\frac{\log M}{\log\log M}}(1+o(1))\right)$$

and this is obtained by choosing $x_n = f(n)$ where f(n) is multiplicative and supported on squarefree numbers. We define f on the primes as follows: let $L = \sqrt{\log M \log \log M}$ and set

$$f(p) = \begin{cases} \frac{L}{\sqrt{p}\log p} & \text{if } L^2 \le p \le \exp((\log L)^2) \\ 0 & \text{else} \end{cases}$$

The strategy of this article is to follow the above argument. We require asymptotic formulae for the mean values

$$S_1 = \sum_{0 < \gamma < T} \zeta'(\rho) A(\rho) A(1-\rho) \text{ and } S_2 = \sum_{0 < \gamma < T} A(\rho) A(1-\rho)$$

where $A(s) = \sum_{n \leq M} x_n n^{-s}$ has arbitrary real coefficients $x_n, y = T^{\theta}$, and $\theta < 1/2$. Observe that if the Riemann Hypothesis is true then $|A(\rho)|^2 = A(\rho)A(1-\rho)$ and thus

$$S_1 = \sum_{0 < \gamma < T} \zeta'(\rho) |A(\rho)|^2 \text{ and } S_2 = \sum_{0 < \gamma < T} |A(\rho)|^2 .$$
(3)

In fact, we shall show that S_1/S_2 is essentially the same quotient of quadratic forms as in (2).

We have the following formulae for S_1 and S_2 :

Proposition 4. (i) Suppose that $|x_n| \ll T^{\epsilon}$ and $\theta < 1$. Then we have

$$S_2 = N(T) \sum_{m \le M} \frac{x_m^2}{m} - \frac{T}{\pi} \sum_{m \le M} \frac{(\Lambda * x)(m)x_m}{m} + o(T)$$
(4)

where N(T) is the number of zeros of the zeta function in the box $0 \leq \text{Re}(s) \leq 1$, $0 \leq \text{Im}(s) \leq T$.

(ii) Suppose that $|x_n| \ll \tau_r(n)(\log T)^C$ for some C > 0 and $\theta < 1/2$. Then we have

$$S_{1} = \frac{T}{2\pi} \left(\sum_{\substack{nu \le M}} \frac{x_{u} x_{nu} r_{0}(n)}{nu} + \sum_{\substack{a,b \le M\\(a,b)=1}} \frac{r_{1}(a,b)}{ab} \sum_{g \le \min(\frac{M}{a},\frac{M}{v})} \frac{x_{ag} x_{bg}}{g} \right) + o(T) \quad (5)$$

where

 $P_2, P_1, R_1, \tilde{R}_1$ are monic polynomials of degrees 2,1,1,1 respectively. α_2, α_1 are arithmetic functions. α_2 is supported on a with $\omega(a) \leq 2$ and α_1 is supported on prime powers. Moreover, $\alpha_1(p^j) \ll \frac{\log p}{p}$, $\alpha_2(p^j) \ll \frac{j(\log p)^2}{p}$, and $\alpha_2(p^jq^k) \ll (\log p)(\log q)(p^{-1}+q^{-1})$.

(iii) Assume the large zero-free region conjecture. The formula for S_1 in (ii) remains valid under the assumption that $x_n = \sqrt{n}f(n)$ and $\theta < 1/3$.

Proof. The proofs of (ii) and (iii) may be found in Theorem 1.3 of [10]. The formula for S_2 in (i) is mentioned without proof on page 6 of [2]. It can be proven by following the argument of [9] Lemma 3.

From Proposition 4, we can explain our strategy for proving Theorem 2. We shall show that in the formulae (5) and (4) for S_1 and S_2 the significant terms are

$$\frac{T\log^2(\frac{T}{2\pi})}{4\pi} \sum_{nu \le M} \frac{x_u x_{nu}}{nu} \text{ and } \frac{T\log(\frac{T}{2\pi})}{2\pi} \sum_{m \le M} \frac{x_m^2}{m}$$

respectively. By choosing $x_n = \sqrt{n}f(n)$ we see that

$$\max_{T \le \gamma \le 2T} |\zeta'(\rho)| \ge \frac{S_1}{S_2} \approx \frac{\log(\frac{T}{2\pi})}{2} \left(\frac{\sum_{rn \le M} \frac{f(n)f(nr)}{\sqrt{r}}}{\sum_{n \le M} f(n)^2} \right) = \exp\left(\sqrt{\frac{\log M}{\log \log M}} (1+o(1))\right)$$

This is the essential content of Theorem 2. In order to make this argument rigorous, we will show that each of the other terms in the formulae for S_1 and S_2 are smaller than the principal terms. The argument for Theorem 3 is very similar. In this case we consider

$$S_3 = \sum_{T < \gamma < 2T} \zeta'(\rho)^{-1} |A(\rho)|^2$$
 and $S_2 = \sum_{T < \gamma < 2T} |A(\rho)|^2$.

As before we will show that the ratio S_3/S_2 gives rise to the same quadratic form as in (2).

4. Large values of $\zeta'(\rho)$: Proof of Theorem 1

In this section we prove Theorem 1. As explained previously our strategy is to evaluate asymptotically S_1/S_2 for a certain choice of coefficients. As we are only assuming the Riemann hypothesis, we are restricted to choosing $x_n = \tau_r(n)$ with $r \in \mathbb{N}$. In the course of this calculation, we shall encounter several other multiplicative functions. We define

$$f_1(n) = \prod_{p^e \mid \mid n} \frac{\sum_{j=0}^{\infty} \frac{\tau_r(p^{e+j})}{p^j}}{\sum_{j=0}^{\infty} \frac{\tau_r(p^j)}{p^j}} \text{ and } f_2(n) = \prod_{p^e \mid \mid n} \frac{\sum_{j=0}^{\infty} \frac{\tau_r(p^{e+j})\tau_r(p^j)}{p^j}}{\sum_{j=0}^{\infty} \frac{\tau_r(p^j)^2}{p^j}} .$$

Note that for i = 1, 2 $f_i(p) = r(1 + O(p^{-1}))$. The asymptotic evaluation of S_1 will require the evaluation of several sums of standard arithmetic functions. We shall employ the following:

Lemma 5. Let $a, b, k, r, u \in \mathbb{N}$. (*i*)

$$\sum_{n \le x} \tau_r(nu) = \frac{f_1(u)x(\log x)^{r-1}}{(r-1)!} (1 + O((\log x)^{-1}))$$

(ii)

$$\sum_{n \le x} \tau_r(n) f_1(n) = \frac{C_0 x (\log x)^{r^2 - 1}}{(r^2 - 1)!} (1 + O((\log x)^{-1}))$$

where

$$C_{0} = \prod_{p} \left(1 - \frac{1}{p}\right)^{r} \sum_{j=0}^{\infty} \frac{\tau_{r}(p^{j})f_{1}(p^{j})}{p^{j}} = \prod_{p} \left(1 - \frac{1}{p}\right)^{r^{2} + r} \sum_{j=0}^{\infty} \frac{\tau_{r}(p^{j})\tau_{r+1}(p^{j})}{p^{j}} .$$
 (6)
(*iii*)
$$\sum_{n \leq \tau} f_{2}(n) = \frac{C_{1}x(\log x)^{r-1}}{(r-1)!} (1 + O((\log x)^{-1}))$$

where

$$C_1 = \prod_p \left(1 - 1/p\right)^r \sum_{j=0}^\infty \frac{f_2(p^j)}{p^j} = \prod_p \left(1 - 1/p\right)^r \frac{\sum_{j=0}^\infty \frac{\tau_r(p^j)\tau_{r+1}(p^j)}{p^j}}{\sum_{j=0}^\infty \frac{\tau_r(p^j)^2}{p^j}} \ .$$
(7)

(iv)

$$\sum_{n \le x} \frac{\tau_r(an)\tau_r(bn)}{n} = C_2 f_2(a) f_2(b) \frac{(\log x)^{r^2}}{(r^2)!} (1 + O((\log x)^{-1}))$$

where

$$C_2 = \prod_p \left(1 - 1/p\right)^{r^2} \sum_{j=0}^{\infty} \frac{\tau_r(p^k)^2}{p^k} \, .$$

Notice that it follows immediately from (6) and (7) that $C_0 = C_1 C_2$. (v)

$$\sum_{n \le x} \Lambda_k(n) = kx(\log x)^{k-1} (1 + O((\log x)^{-1})) \ .$$

(vi) For i = 1, 2(vii) For i = 1, 2(vii) For i = 1, 2 $\sum_{n \le x} \Lambda(n) f_i(n) = rx(1 + O((\log x)^{-1})) .$ (vii) For i = 1, 2 $\sum_{n \le x} \Lambda_2(n) f_i(n) = (r^2 + r)x(\log x)(1 + O((\log x)^{-1})) .$

Proof. Since the proofs of (i) - (iv) are very similar we shall just prove part (iv). We give a sketch of the proof as the argument is standard (see for example [14]). We define the Dirichlet series $H(s) = \sum_{n=1}^{\infty} \tau_r(an) \tau_r(bn) n^{-s}$ and since τ_r is multiplicative we have the factorization

$$H(s) = \prod_{(p,ab)=1} \left(\sum_{k=0}^{\infty} \frac{\tau_r(p^k)^2}{p^{ks}} \right) \prod_{p^e \mid |a|} \sum_{k=0}^{\infty} \frac{\tau_r(p^{e+k})\tau_r(p^k)}{p^{ks}} \prod_{p^f \mid |b|} \sum_{k=0}^{\infty} \frac{\tau_r(p^k)\tau_r(p^{f+k})}{p^{ks}} \ .$$

Next we define for $s \in \mathbb{C}$ and $n \in \mathbb{N}$

$$F(s;n) = \prod_{p^e \mid \mid n} \left(\frac{\sum_{k=0}^{\infty} \frac{\tau_r(p^{e+k})\tau_r(p^k)}{p^{ks}}}{\sum_{k=0}^{\infty} \frac{\tau_r(p^k)^2}{p^{ks}}} \right) \ , \ G(s) = \prod_p (1 - 1/p^s)^{r^2} \sum_{k=0}^{\infty} \frac{\tau_r(p^k)^2}{p^{ks}}$$

and thus $H(s) = \zeta(s)^{r^2} F(s, ab) G(s)$. Moreover, we notice that $F(1; n) = f_2(n)$ and $G(1) = C_2$. By Perron's formula,

$$\sum_{n \le x} \frac{\tau_r(an)\tau_r(bn)}{n} = \frac{1}{2\pi i} \int_{\kappa-iU}^{\kappa+iU} H(s+1) \, \frac{x^s ds}{s} + O\left(\frac{\left(\log x\right)^{r^2}}{U} + \frac{1}{x^{1-\epsilon}} \left(1 + x\frac{\log U}{U}\right)\right)$$

with $\kappa = (\log x)^{-1}$. Let $\Gamma(U)$ denote the contour consisting of $s \in \mathbb{C}$ such that $\operatorname{Re}(s) = -\frac{c'}{\log(|\operatorname{Im}(s)|+2)}$ and $|\operatorname{Im}(s)| \leq U$ for an appropriate c' > 0. We deform the contour past $\operatorname{Re}(s) = 0$ line to $\Gamma(U)$ picking up the residue at s = 0. The residue at s = 0 equals

$$C_2 f_2(a) f_2(b) \frac{(\log x)^{r^2}}{(r^2)!} (1 + O((\log x)^{-1}))$$

which corresponds to the main term. Employing standard bounds for $\zeta(s)$ in the zero-free region we can show that contribution of the integral on $\Gamma(U)$ is smaller than the main term for an appropriate choice of U by at least one factor of $\log x$. Part (v) is a well known fact. Part (vi) follows from the fact that Λ is supported on the prime powers and $\Lambda(p^j) = \log(p)$. Part (vii) follows from the fact that Λ_2 is supported on those n with $\omega(n) \leq 2$ and moreover $\Lambda_2(pq) = 2\log p \log q$, $\Lambda_2(p) = (\log p)^2$, and $f_i(p) = r(1 + O(p^{-1}))$.

We are now prepared to prove Theorem 1. In the course of the proof, we will encounter the following integrals:

$$i(u,v) := \int_0^1 x^u (1-x)^v \, dx = \frac{u!v!}{(u+v+1)!} ,$$

$$c_X(u,v) := \int_1^X \frac{(\log X/t)^u (\log t)^v}{t} \, dt = (\log X)^{u+v+1} i(u,v)$$
(8)

where $X \ge 1$.

Proof of Theorem 1. By Proposition 4 we may write $S_1 = \tilde{S}_1 + o(T)$ where

$$\tilde{S}_1 = \frac{T}{2\pi} \left(\sum_{nu \le M} \frac{x_u x_{nu} r_0(n)}{nu} + \sum_{\substack{a,b \le M \\ (a,b)=1}} \frac{r_1(a,b)}{ab} \sum_{g \le \min(\frac{M}{a},\frac{M}{v})} \frac{x_{ag} x_{bg}}{g} \right)$$

and

$$r_{0}(n) = \frac{1}{2} P_{2}(\log(\frac{T}{2\pi})) + \sum_{d|n} g(d) ,$$

$$g(d) = -(P_{1}(\log(\frac{T}{2\pi})) + \log d)\Lambda(d) + \frac{\Lambda_{2}(d)}{2} .$$
(9)

Thus we have $\tilde{S}_1 = \frac{T}{2\pi} \left(\frac{P_2(\log(T/2\pi))}{2} T_1 + T_2 + T_3 \right)$ where

$$T_{1} = \sum_{nu \leq M} \frac{x_{u} x_{nu}}{nu} ,$$

$$T_{2} = \sum_{dnu \leq M} \frac{g(d) x_{u} x_{dnu}}{dnu} ,$$

$$T_{3} = \sum_{\substack{a,b \leq M \\ (a,b)=1}} \frac{r_{1}(a,b)}{ab} \sum_{g \leq \min(\frac{M}{a},\frac{M}{v})} \frac{x_{ag} x_{bg}}{g} .$$
(10)

4.1. Evaluation of T_1 . Now by Lemma 5 (i) and (ii) we have

$$\begin{split} T_1 &= \sum_{u \le M} \frac{\tau_r(u)}{u} \int_{1^-}^{M/u} t^{-1} d\left(\sum_{n \le t} \tau_r(nu)\right) \\ &\sim \sum_{u \le M} \frac{\tau_r(u) f_1(u)}{u} \frac{(\log M/u)^r}{r!} = \frac{1}{r!} \int_{1^-}^M \log(M/t)^r t^{-1} d\left(\sum_{u \le t} \tau_r(u) f_1(u)\right) \\ &\sim \frac{1}{r!} \int_{1}^M \frac{(\log(M/t)^r}{t} \frac{C_0(\log t)^{r^2 - 1}}{(r^2 - 1)!} dt \; . \end{split}$$

By (8) it follows that

$$T_1 \sim \frac{C_0}{r!(r^2-1)!} c_M(r,r^2-1) = \frac{C_0(\log M)^{r^2+r}}{(r^2+r)!}$$
.

4.2. Evaluation of T_2 . Since the calculation of T_2 and T_3 are rather similar to that of T_1 we shall not record every step of their calculation. By Lemma 5 (i) we have

$$T_2 \sim \sum_{d \leq M} \frac{g(d)}{d} \sum_{u \leq M/d} \frac{\tau_r(u)}{u} \frac{f_1(du) \log(M/du)^r}{r!}$$

•

As g is supported on those integers d with $\omega(d) \leq 2$ we have

$$T_{2} \sim \sum_{d \leq M} \frac{g(d)f_{1}(d)}{d} \sum_{u \leq M/d} \frac{\tau_{r}(u)}{u} \frac{f_{1}(u)\log(M/du)^{r}}{r!}$$

= $\frac{1}{r!} \sum_{d \leq M} \frac{g(d)f_{1}(d)}{d} \int_{1}^{M/d} \frac{\log(M/dt)^{r}}{t} \frac{C_{0}(\log t)^{r^{2}-1}}{(r^{2}-1)!} dt$
= $\frac{C_{0}}{(r^{2}+r)!} \sum_{d \leq M} \frac{g(d)f_{1}(d)}{d} (\log M/d)^{r^{2}+r}$

where we have invoked Lemma 5 (ii) and (8). By (9), Lemma 5 (vi) and (vii) we obtain

$$\sum_{n \le x} g(n) f_1(n) \sim x \left(\frac{r^2 - r}{2} \log x - r P_1(\log(\frac{T}{2\pi})) \right) \; .$$

From this we deduce

$$T_{2} = \frac{C_{0}}{(r^{2}+r)!} \int_{1}^{M} \frac{\left(\log M/t\right)^{r^{2}+r}}{t} \left(\frac{r^{2}-r}{2}\log(t) - rP_{1}(\log(\frac{T}{2\pi}))\right) dt$$
$$\sim \frac{C_{0}}{(r^{2}+r)!} \left(\frac{r^{2}-r}{2}c_{M}(r^{2}+r,1) - \frac{r}{\theta}c_{M}(r^{2}+r,0)\right) \left(\log M\right)^{r^{2}+r+2}$$

and it follows from (8) that

$$T_2 \sim \frac{C_0 (\log M)^{r^2 + r + 2}}{(r^2 + r + 2)!} \left(\frac{r^2 - r}{2} - \frac{r}{\theta} (r^2 + r + 2) \right) \; .$$

4.3. Evaluation of T_3 . By Lemma 5 (*iv*) it follows that

$$T_3 \sim \frac{C_2}{(r^2)!} \sum_{\substack{a,b \leq M \\ (a,b)=1}} \frac{r_1(a,b)f_2(a)f_2(b)}{ab} \left(\log \min\left(\frac{M}{a},\frac{M}{b}\right)\right)^{r^2}$$

where $r_1(a, b)$ is defined by (6). We shall write this last sum as $T'_3 + T''_3$ where T'_3 is the sum over the terms for which $a < b \le M$ and T''_3 consists of the terms for which $b < a \le M$. We have

$$T'_{3} \sim \frac{C_{2}}{(r^{2})!} \sum_{b \leq M} \frac{f_{2}(b) \log(M/b)^{r^{2}}}{b} \sum_{\substack{a < b \\ (a,b)=1}} \frac{(1/2)\Lambda_{2}(a) - \Lambda(a)R_{1}(\log(T/b))}{a} f_{1}(a)$$

since it may be checked that the contribution from the term $-\tilde{R}_1(\log (T/b)) \alpha_1(a) - \alpha_2(a)$ is $\ll (\log T)^{r^2+r+1}$. By Lemma 5 (vi) and (vii)

$$\sum_{a \le x} f_1(a) \left((1/2)\Lambda_2(a) - \Lambda(a)R_1(\log(T/b)) \right) \sim \frac{(r^2 + r)}{2} x \log x - rR_1(\log(T/b)) x$$

and it follows that

$$T_3' \sim \frac{C_2}{(r^2)!} \sum_{b \le M} \frac{f_2(b) \log(M/b)^{r^2}}{b} \int_1^b \frac{(1/2)(r^2 + r) \log t - rR_1(\log(T/b))}{t} dt$$
$$= \frac{C_2}{(r^2)!} \sum_{b \le M} \frac{f_2(b) \log(M/b)^{r^2}}{b} \left(\frac{r^2 + r}{4} (\log b)^2 - rR_1(\log(T/b)) \log b\right) .$$

By Lemma 5 (iii)

$$T_{3}' = \frac{C_{2}}{(r^{2})!} \int_{1}^{M} \frac{\log(M/t)^{r^{2}}}{t} \left(\frac{r^{2}+r}{4}(\log t)^{2} - rR_{1}(\log(T/t))\log t\right) \frac{C_{1}}{(r-1)!}(\log t)^{r-1} dt$$
$$= \frac{C_{0}(\log M)^{r^{2}+r+2}}{(r^{2}+r+2)!} \left(\frac{(r^{2}+5r)(r+1)r}{4} - \frac{r^{2}(r^{2}+r+2)}{\theta}\right) .$$

Next, we consider those terms with $b < a \leq M$. We have

$$T_3'' \sim \frac{C_2}{(r^2)!} \sum_{a \le M} \sum_{\substack{b < a \\ (a,b) = 1}} \frac{(1/2)\Lambda_2(a) - \Lambda(a)R_1(\log(T/b))}{a} \frac{f_1(a)f_2(b)\log(M/a)^{r^2}}{b}$$

since we can show, as before, that the contribution from the term $-\tilde{R}_1(\log (T/b)) \alpha_1(a) - \alpha_2(a)$ is $\ll (\log T)^{r^2+r+1}$. Since $\sum_{b \leq x} f_2(b) \sim \frac{C_1}{(r-1)!} x (\log x)^{r-1}$, a similar calculation as above yields

$$T_3'' \sim \frac{C_0}{(r^2)! r!} \int_{1^-}^M \frac{\log(M/t)^{r^2} (\log t)^r}{t} d\sigma(t)$$

NATHAN NG

with $\sigma(t) = \sum_{a \le t} \left((\Lambda_2(a)/2 - \Lambda(a)\log T) + \frac{r}{r+1}\Lambda(a)\log(a) \right) f_2(a)$. By Lemma 5 (vi) and (vii) $\sigma(t) \sim \left(\frac{r^2+r}{2} + \frac{r^2}{r+1}\right) t \log t - rt(\log T)$ and thus

$$T_3'' \sim \frac{C_0}{(r^2)!r!} \left(\left(\frac{r^2 + r}{2} + \frac{r^2}{r+1} \right) c_M(r^2, r+1) - r(\log T) c_M(r^2, r) \right)$$
$$= \frac{C_0(\log M)^{r^2 + r+2}}{(r^2 + r+2)!} \left(\left(\frac{(r^2 + r)(r+1)}{2} + r^2 \right) - \frac{r(r^2 + r+2)}{\theta} \right).$$

Collecting our results for T_1, T_2 , and $T_3 = T'_3 + T''_3$ we have

$$\begin{split} S_1 &\sim \frac{C_0 T (\log M)^{r^2 + r + 2}}{(r^2 + r + 2)!} \left(\frac{(r^2 + r + 2)(r^2 + r + 1)}{\theta^2} + \left(\frac{r(r - 1)}{2} - \frac{r(r^2 + r + 2)}{\theta} \right) \right. \\ &+ (r^2 + r) \left(\frac{r^2 + 5r}{4} + \frac{r + 1}{2} + \frac{r^2}{r^2 + r} \right) - \frac{(r^2 + r + 2)(r^2 + r)}{\theta} \right) \\ &\geq \frac{C_0 T (\log M)^{r^2 + r + 2}}{(r^2 + r + 2)!} \frac{r^2 + r + 2}{\theta^2} (r^2 + r + 1 - \theta(r^2 + 2r)) \\ &\gg \frac{r^4 T (\log M)^{r^2 + r + 2}}{\theta^2 (r^2 + r + 2)!} \end{split}$$

for $0 < \theta < \frac{1}{2}$ and $r \in \mathbb{N}$. On the other hand, we have the simple bound

$$S_2 \le \frac{T\log(\frac{T}{2\pi})}{2\pi} \sum_{m \le M} \frac{\tau_r(m)^2}{m} \ll \frac{T}{\theta} (\log M)^{r^2 + 1}$$

and thus $\max_{T \leq \gamma \leq 2T} |\zeta'(\rho)| \geq \left|\frac{S_1}{S_2}\right| \gg_r (\log M)^{r+1} \gg (\log T)^{r+1}$. \Box

5. Larger values of $\zeta'(\rho)$: Proof of Theorem 2

In this section we shall evaluate S_1/S_2 for the choice $x_n = \sqrt{n}f(n)$. Before embarking on this task we will require a few results concerning the coefficients f(n). Moreover, we shall encounter several other multiplicative functions. We define g and h to be multiplicative functions supported on the squarefree numbers. Their values at any prime p are given by

$$g(p) = 1 + f(p)^2$$
 and $h(p) = 1 + f(p)p^{-1/2}$

It will also be convenient to introduce the notation

$$Q_1 = \prod_p \left(1 + f(p)^2 + \frac{f(p)}{\sqrt{p}} \right) , \ Q_2 = \prod_p \left(1 + f(p)^2 \right) .$$

Lemma 6. (i)

$$\sum_{nu \leq M} \frac{f(u)f(nu)}{\sqrt{n}} = \mathcal{Q}_1(1+o(1)) ,$$

(ii)

$$\sum_{n \le M} f(n)^2 \le \mathcal{Q}_2 \; ,$$

(iii)

$$\frac{\mathcal{Q}_1}{\mathcal{Q}_2} = \exp\left(\sqrt{\frac{\log M}{\log\log M}}(1+o(1))\right) \;.$$

(*iv*) For i = 1, 2

$$\sum_{a \le M} \frac{\Lambda_i(a) f(a)}{\sqrt{a}g(a)} \ll (\log T)^{i/2+\epsilon} \; .$$

Proof. (i) We denote the sum to be estimated S. Thus

$$\mathcal{S} = \sum_{n \le M} \frac{f(n)}{\sqrt{n}} \sum_{\substack{u \le M/r \\ (n,u)=1}} f(u)^2 = \sum_{n \le M} \frac{f(n)}{\sqrt{n}} \left(\prod_{\substack{(p,n)=1}} (1+f(p)^2) - \sum_{\substack{u > M/n \\ (n,u)=1}} f(u)^2 \right) \ .$$

By Rankin's trick the error term is bounded by

$$\sum_{n \le M} \frac{f(n)}{\sqrt{n}} \left(\frac{n}{M}\right)^{\alpha} \sum_{\substack{u=1\\(u,n)=1}}^{\infty} f(u)^2 u^{\alpha} \le \frac{1}{M^{\alpha}} \prod_{p} \left(1 + p^{\alpha} f(p)^2 + f(p) p^{\alpha - 1/2}\right)$$

for any $\alpha > 0$. On the other hand, since f is multiplicative the main term equals

$$\prod_{p} \left(1 + f(p)^2 + \frac{f(p)}{\sqrt{p}} \right) + O\left(\frac{1}{M^{\alpha}} \prod_{p} \left(1 + f(p)^2 + \frac{f(p)p^{\alpha}}{\sqrt{p}} \right) \right)$$

We deduce

$$S = Q_1 + O\left(\frac{1}{M^{\alpha}} \prod_p \left(1 + p^{\alpha} f(p)^2 + \frac{f(p)p^{\alpha}}{\sqrt{p}}\right)\right) . \tag{11}$$

However, it is shown in [16] that the ratio of the error term to the main term in (11) is $\ll \exp(-\alpha \frac{\log M}{\log \log M})$ for the choice $\alpha = \frac{1}{(\log L)^3}$. It follows that $\mathcal{S} = \mathcal{Q}_1(1 + o(1))$. (*ii*) We have the simple identity

$$\sum_{n \le M} f(n)^2 \le \sum_{n \ge 1} f(n)^2 = \mathcal{Q}_2 .$$

(*iii*) Note that

$$\frac{\mathcal{Q}_1}{\mathcal{Q}_2} = \prod_p \left(1 + \frac{f(p)}{\sqrt{p}(1+f(p)^2)} \right) \ .$$

Taking logarithms of the product we see that

$$\log(\mathcal{Q}_1/\mathcal{Q}_2) = \sum_p \log\left(1 + \frac{f(p)}{\sqrt{p}(1+f(p)^2)}\right) = \sum_{\substack{L^2 \le p \le \exp((\log L)^2)}} \frac{L}{p \log p(1+o(1))}$$
$$= \frac{L}{\log L^2} (1+o(1)) = \sqrt{\frac{\log M}{\log \log M}} (1+o(1)) .$$

(iv) We have

$$\sum_{a \le M} \frac{\Lambda(a) f(a)}{\sqrt{a}g(a)} = L \sum_{p \le M} \frac{1}{pg(p)} \ll L \sum_{p \le M} \frac{1}{p} \ll (\log T)^{1/2 + \epsilon}$$

Note that Λ_2 is supported on integers *a* satisfying $\omega(a) \leq 2$ and *f* is supported on squarefree integers. Moreover $\Lambda_2(p) = (\log p)^2$ and $\Lambda_2(pq) = 2\log p \log q$. From this, we deduce that

$$\sum_{a \le M} \frac{\Lambda_2(a)f(a)}{\sqrt{a}g(a)} \ll \sum_{p \le M} \frac{\Lambda_2(p)f(p)}{\sqrt{p}g(p)} + \sum_{pq \le M, p \ne q} \frac{\Lambda_2(pq)f(pq)}{\sqrt{p}qg(pq)}$$
$$\ll L \sum_{p \le M} \frac{\log p}{p} + L^2 \left(\sum_{p \le M} \frac{1}{p}\right)^2 \ll (\log T)^{1+\epsilon} .$$

Proof of Theorem 2. We have from Proposition 4 that

$$\frac{S_1}{S_2} = \frac{\frac{1}{2}P_2(\log(\frac{T}{2\pi}))\Sigma_0 - P_1(\log(\frac{T}{2\pi}))\Sigma_1 - \frac{1}{2}\Sigma_2 + \Sigma_3 + \Sigma_4}{\log(\frac{T}{2\pi})\Sigma_5 - 2\Sigma_6} + o(1)$$

where for i = 0, 1, 2

$$\Sigma_i = \sum_{nu \le M} \frac{f(u)f(nu)(\log n)^i}{\sqrt{n}}$$

and

$$\Sigma_{3} = \sum_{nu \leq M} \frac{f(u)f(nu)(\Lambda * \log)(n)}{\sqrt{n}} ,$$

$$\Sigma_{4} = \sum_{\substack{a,b \leq M \\ (a,b)=1}} \frac{r_{1}(a,b)}{\sqrt{ab}} \sum_{g \leq \min(\frac{M}{a},\frac{M}{b})} f(ag)f(bg) ,$$

$$\Sigma_{5} = \sum_{m \leq M} f(m)^{2} ,$$

$$\Sigma_{6} = \sum_{mn \leq M} \frac{\Lambda(n)f(m)f(mn)}{\sqrt{n}} .$$

By Lemma 6

$$\Sigma_0 = Q_1(1+o(1)) \text{ and } \Sigma_5 \le Q_2(1+o(1))$$
. (12)

We shall prove the following bounds for the other five sums:

Lemma 7. We have:

$$\Sigma_1 \ll \mathcal{Q}_1(\log T)^{1/2+\epsilon} , \ \Sigma_2, \Sigma_3 \ll \mathcal{Q}_1(\log T)^{1+\epsilon} ,$$

$$\Sigma_4 \ll \mathcal{Q}_1(\log T)^{3/2+\epsilon} , \ \Sigma_6 \ll \mathcal{Q}_2(\log T)^{1/2+\epsilon} .$$

Theorem 2 now easily follows. We deduce from (12) and Lemma 7 that

$$S_1 = (1/2)Q_1 \log^2(\frac{T}{2\pi}) \left(1 + O((\log T)^{-1/2+\epsilon})\right)$$

and $S_2 \leq \mathcal{Q}_2 \log(\frac{T}{2\pi}) \left(1 + O((\log T)^{-1/2 + \epsilon})\right)$. By Lemma 6 (*iii*)

$$\left|\frac{\mathcal{S}_1}{\mathcal{S}_2}\right| \ge (1/2)\log(\frac{T}{2\pi})\frac{\mathcal{Q}_1}{\mathcal{Q}_2}(1+o(1)) \ge \exp\left(\sqrt{\frac{\log M}{\log\log M}}(1+o(1))\right)$$

and thus we establish Theorem 2. \Box

It suffices to prove Lemma 7.

Proof of Lemma 7. We proceed to bound the various Σ_i . We begin with

$$\Sigma_i = \sum_{un \le M} \frac{f(u)f(nu)(\log n)^i}{\sqrt{n}}$$

for i = 1, 2. We evaluate this by writing $(\log n)^i = \sum_{k|n} \Lambda_i(k)$. Inserting this expression we obtain

$$\begin{split} \Sigma_{i} &= \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}} \sum_{\substack{nu \leq M/k \\ (nu,k)=1}} \frac{f(u)f(nu)}{\sqrt{n}} \leq \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}} \sum_{\substack{n \leq M/k \\ (n,k)=1}} \frac{f(n)}{\sqrt{n}} \sum_{\substack{u \geq 1 \\ (u,kn)=1}} f(u)^{2} \\ &\leq \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}} \sum_{\substack{n \leq M/k \\ (n,k)=1}} \frac{f(n)}{\sqrt{n}} \prod_{(p,kn)=1} (1+f(p)^{2}) = \mathcal{Q}_{2} \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}} \sum_{\substack{n \leq M/k \\ (n,k)=1}} \frac{f(n)}{\sqrt{n}g(kn)} \\ &\leq \mathcal{Q}_{2} \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}g(k)} \sum_{n=1}^{\infty} \frac{f(n)}{\sqrt{n}g(n)} = \mathcal{Q}_{2} \prod_{p} \left(1 + \frac{f(p)}{\sqrt{p}g(p)}\right) \sum_{k \leq M} \frac{\Lambda_{i}(k)f(k)}{\sqrt{k}g(k)} \,. \end{split}$$

The expression in front of the last sum is clearly Q_1 . Thus by Lemma 6 (*iv*)

 $\Sigma_1 \ll \mathcal{Q}_1(\log T)^{1/2+\epsilon}$ and $\Sigma_2 \ll \mathcal{Q}_2(\log T)^{1+\epsilon}$.

Next note that $(\Lambda * \log)(r) \leq (\log r)^2$ and hence $\Sigma_3 \leq \Sigma_2 \ll (\log T)^{1+\epsilon}$. Next we estimate Σ_4 :

$$\begin{split} \Sigma_4 &= \sum_{\substack{a,b \le M \\ (a,b)=1}} \frac{r_1(a,b)}{\sqrt{ab}} \sum_{g \le \min(\frac{M}{a},\frac{M}{b})} f(ag) f(bg) \\ &\le \mathcal{Q}_1 \sum_{\substack{a,b \le M \\ (a,b)=1}} \frac{f(a)f(b)|r_1(a,b)|}{\sqrt{ab}g(a)g(b)} \\ &\ll \mathcal{Q}_1 \left(\sum_{v \le M} \frac{x_v}{\sqrt{v}g(v)} \right) \left(\sum_{a \le M} \frac{\Lambda_2(a)f(a)}{\sqrt{a}g(a)} + \log T \sum_{a \le M} \frac{\Lambda(a)f(a)}{\sqrt{a}g(a)} \right) \\ &\le \prod_p \left(1 + \frac{f(p)}{\sqrt{p}} + f(p)^2 \right) (\log T)^{3/2 + \epsilon} \end{split}$$

by Lemma 6 (iv). Finally we have

$$\Sigma_6 = \sum_{ur \le M} \frac{\Lambda(r)f(u)f(ur)}{\sqrt{r}} = \sum_{r \le M} \frac{\Lambda(r)f(r)}{\sqrt{r}} \sum_{\substack{u \le M/r \\ (u,r)=1}} f(u)^2 \le \prod_p (1+x_p^2) \sum_{r \le M} \frac{\Lambda(r)f(r)}{\sqrt{r}g(r)} \,.$$

Once again by Lemma 6 (iv) we obtain $\Sigma_6 \ll Q_2 \ll (\log T)^{1/2+\epsilon}$. \Box

6. Small values of $\zeta'(\rho)$: Proof of Theorem 3.

Proof of Theorem 3. We begin by noting that Theorem 3 is automatically true if there are infinitely many multiple zeros. Now assume that there are only finitely many multiple zeros of $\zeta(s)$. Suppose there exists a positive constant C' such that for all $\gamma > C'$ all zeros of the zeta function are simple. We will now show that for each T sufficiently large that there exists a $\gamma \in [T, 2T]$ such that

$$|\zeta'(\rho)|^{-1} \ge \exp\left(c_5(1+o(1))\sqrt{\frac{\log T}{\log\log T}}\right)$$
(13)

and Theorem 3 follows. We now establish (13). Consider the sums

$$S_3 = \sum_{T_1 < \gamma < T_2} \zeta'(\rho)^{-1} |A(\rho)|^2$$
 and $S_2 = \sum_{T_1 < \gamma < T_2} |A(\rho)|^2$

where $A(s) = \sum_{k \le M} x_k k^{-s}$ and x_k is an arbitrary real sequence. Here we choose T_1, T_2 such that

$$\zeta(\sigma + iT_j)^{-1} \ll T_j^\epsilon$$

where $T_1 = T + O(1)$ and $T_2 = 2T + O(1)$. This is possible by Theorem 14.16 of [17]. We shall establish:

Proposition 8. Assume the Riemann hypothesis and that all but finitely many of the zeros of the Riemann zeta function are simple. If $||\frac{x_n}{n}||_1 \ll T^{\epsilon}$

$$S_3 = \frac{T_2 - T_1}{2\pi} \sum_{hn \le M} \frac{\mu(n)x_h x_{nh}}{nh} + O\left(T^{\epsilon}(M||x_n||_{\infty} + ||x_n||_1 + T^{\frac{1}{2}}||x_n^2||_1^{\frac{1}{2}})\right)$$

for T sufficiently large.

Moreover by Proposition 4 we have

$$S_2 = (N(T_2) - N(T_1)) \sum_{m \le M} \frac{x_m^2}{m} - \frac{T_2 - T_1}{\pi} \sum_{m \le M} \frac{(\Lambda * x)(m)x_m}{m} + o(T)$$

respectively. We now choose $x_m = \sqrt{m}\mu(m)f(m)$ and suppose that $M < T^{2/3-10\epsilon}$. Note that $||x_n||_{\infty} \ll M^{\frac{1}{2}+\epsilon}, ||x_n||_1 \ll M^{1+\epsilon}$ and thus

$$S_3 = \frac{T_2 - T_1}{2\pi} \left(\sum_{hn \le M} \frac{f(h)f(nh)}{\sqrt{n}} + o(1) \right)$$

and

$$S_2 = (N(T_2) - N(T_1)) \sum_{m \le M} f(m)^2 - \frac{T_2 - T_1}{\pi} \sum_{m \le M} \frac{(\Lambda * f)(m)f(m)}{m} + o(T) .$$

The second sum in S_2 is bounded by

$$\sum_{mp \le M} \frac{(\log p) f(m) f(mp)}{\sqrt{p}} \ll \sum_{p \le b} \frac{\log p f(p)}{\sqrt{p}} \sum_{\substack{m \le M/p \\ (m,p) = 1}} f(m)^2 \ll \left(\sum_{m \le M} f(m)^2\right) (\log T)^{1/2 + \epsilon}$$

With these observations in hand we obtain

$$\max_{T \le \gamma \le 2T} |\zeta'(\rho)|^{-1} \ge \log(\frac{T}{2\pi})^{-1} \left(\frac{\sum_{hn \le M} \frac{f(h)f(nh)}{\sqrt{n}}}{\sum_{m \le M} f(m)^2}\right) (1 + o(1))$$

and by Soundararajan's calculation we obtain

$$\max_{T \le \gamma \le 2T} |\zeta'(\rho)|^{-1} \ge \exp\left((1+o(1))\sqrt{\frac{\log M}{\log\log M}}\right)$$

for $M < T^{\frac{2}{3}-10\epsilon}$ which yields (13).

It now suffices to establish Proposition 8.

Proof of Proposition 8. We consider the integral

$$I := \frac{1}{2\pi i} \int_{c+iT_1}^{c+iT_2} \zeta(s)^{-1} A(s) A(1-s) \, ds \; .$$

with $c = 1 + O((\log T)^{-1})$. Moving the contour left to the 1 - c line yields $I = S_3 + H + I' + O(1)$ where

$$I' := \frac{1}{2\pi i} \int_{1-c+iT_1}^{1-c+iT_2} \zeta(s)^{-1} A(s) A(1-s) \, ds$$

and H are the horizontal contributions. We know from Proposition 4 that

$$I = \frac{T_2 - T_1}{2\pi} \sum_{nu \le M} \frac{\mu(n) x_u x_{nu}}{nu} + O(M^{\epsilon}(||x_n||_{\infty}M + ||x_n||_1)) .$$

Next we consider the contribution from the horizontal terms. We may verify that $|A(s)A(1-s)| \leq M ||\frac{x_n}{n}||_1^2 + ||x_n||_1 ||\frac{x_n}{n}||_1$ for $1-c \leq \operatorname{Re}(s) \leq c$. Furthermore, since we have chosen the T_j such that $\zeta(\sigma + iT_j)^{-1} \ll T_j^{\epsilon}$, $H \ll T^{\epsilon}(M + ||x_n||_1)$. We now consider the contribution of the left hand side. We have that $\zeta(s) = \chi(s)\zeta(1-s)$. Since $\chi(s) \asymp T^{1/2}$ and $\zeta(1-s) \asymp \log T$ for $\operatorname{Re}(s) = 1-c$ we have

$$I' \ll (T^{1/2}\log T)^{-1} ||\frac{x_n}{n}||_1 \int_{T_1}^{T_2} |A(1-c+it)| dt$$
$$\ll (\log T)^{-1} ||\frac{x_n}{n}||_1 \left(\int_{T_1}^{T_2} |A(1-c+it)|^2 dt\right)^{1/2}$$

The mean value theorem for Dirichlet polynomials asserts

. 9

$$\int_{T_1}^{T_2} \left| \sum_{n \le N} \frac{a_n}{n^{it}} \right|^2 dt = (T_2 - T_1) \sum_{n \le N} |a_n|^2 + O\left(\sum_{n \le N} n |a_n|^2 \right) \,.$$

Since $1 - c = O((\log T)^{-1})$

$$\int_{T_1}^{T_2} |A(1-c+it)|^2 dt \ll T \sum_{n \le M} x_n^2 + \sum_{n \le M} \frac{x_n^2}{n} \ll T ||x_n^2||_1$$

Thus we deduce that $I' \ll T^{\frac{1}{2}}(\log T)^{-1}||\frac{x_n}{n}||_1||x_n^2||_1^{\frac{1}{2}}$. Collecting estimates yields Proposition 8. \Box

Acknowledgements. The author thanks Professor Soundararajan for suggesting this problem.

References

- R. Balasubramanian and K. Ramachandra, 'On the frequency of Titchmarsh's phenomenon for ζ(s)-III', Proc. Indian Acad. Sci. 86 (1977) no.4 341–351.
- [2] J.B. Conrey, A. Ghosh, D. Goldston, S.M. Gonek, and D.R. Heath-Brown, 'On the distribution of gaps between zeros of the zeta-function', Quart. J. Math. Oxford (2) 36 (1985) no. 141 43-51.
- [3] B. Conrey and H. Iwaniec, 'Spacing of zeros of Hecke L-functions and the class number problem', Acta. Arith. 103 (2002) 259–312.

NATHAN NG

- [4] Steve Gonek, 'Some theorems and conjectures in the theory of the Riemann zeta function', unpublished manuscript, Feb. 1999.
- [5] Dennis A. Hejhal, 'On the distribution of log $|\zeta'(\frac{1}{2} + it)|$ '. Number theory, trace formulas and discrete groups (Oslo, 1987), 343–370, Academic Press, Boston, MA, 1989.
- [6] H.L. Montgomery, 'The pair correlation of zeros of the zeta function', Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, AMS, Providence, R.I., 1973)
- [7] H.L. Montgomery, 'Extreme values of the Riemann zeta function', Comment. Math. Helv. 52 (1977) no.4 511–518.
- [8] H.L. Montgomery and P.J. Weinberger , 'Notes on small class numbers', Acta Arith. 24 (1974) 529–542.
- [9] Nathan Ng, 'The fourth moment of ζ'(ρ)', Duke Mathematical Journal, 125 (2004) no.2 243– 266.
- [10] Nathan Ng, 'Discrete mean values of the Riemann zeta function and Dirichlet polynomials', submitted, http://www.mathstat.uottawa.ca/~nng362/RESEARCH/research.html.
- [11] A. M. Odlyzko, 'The 10²⁰-th zero of the Riemann zeta function and 120 million of its neighbors', unpublished manuscript, 1992,

http://www.dtc.umn.edu/~odlyzko/unpublished/index.html.

- [12] Z. Rudnick, K. Soundararajan, 'Lower bounds for moments of L-functions', Proc. Natl. Acad. Sci. USA 102 (2005) no. 19 6837–6838.
- [13] Z. Rudnick, K. Soundararajan, 'Lower bounds for moments of L-functions: symplectic and orthogonal examples', Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory (Editors: Friedberg, Bump, Goldfeld, and Hoffstein), Proc. Symp. Pure Math., vol. 75, Amer. Math. Soc., 2006.
- [14] A. Selberg, 'Note on a paper of L.G. Sathe, J. of the Indian Math. Soc. B', 18 (1954) 83-87.
- [15] K. Soundararajan, 'The horizontal distribution of zeros of $\zeta'(s)$ ', Duke Mathematical Journal, 91 (1998) 33–59.
- [16] K. Soundararajan, 'Extreme values of L-functions at the central point', preprint.
- [17] E.C. Titchmarsh, 'The theory of the Riemann zeta function', 2nd ed., Oxford Univ. Press, New York, 1986.

Nathan Ng

Department of Mathematics and Statistics University of Ottawa 585 King Edward Ave. Ottawa, ON Canada K1N6N5 nng@uottawa.ca