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Abstract. In this article we consider M(x), the summatory function of the

Möbius function, in short intervals. More precisely, we give an argument which
suggests that M(x + h)−M(x) for 0 ≤ x ≤ N is approximately normal with

mean ∼ 0 and variance ∼ 6h
π2 where h and N satisfy appropriate conditions.

This argument is conditional on the assumption of a version of the Hardy-

Littlewood prime k-tuples conjecture adapted to the case of the Möbius func-
tion.

1. Introduction

Let µ(n) denote the Möbius function, a multiplicative function supported on
squarefree integers. We have µ(1) = 1 and for n = p1 . . . pk > 1 squarefree we have
µ(n) = 1 if k is even and µ(n) = −1 if k is odd. A well-studied function is the
summatory function

M(x) =
∑
n≤x

µ(n) .

It plays an important role in analytic number theory since many questions pertain-
ing to primes can be rephrased in terms of M(x). For example, the prime number
theorem is equivalent to showing that M(x) = o(x) and the Riemann hypothesis is
equivalent to showing that M(x) � x

1
2+ε.

It seems reasonable to expect that the distribution of values of M(x) behaves
like the distribution of values of a function, which is zero on non-squarefree integers,
and whose value ie either −1 or 1 on squarefree integers, the choice of −1 or 1 being
made randomly for each integer. More precisely, a model for M(x) is the function
Mrand(x) =

∑′
n≤xXn where the sum Σ′ is restricted to squarefree integers and the

Xn are a sequence of independent identically distributed random variables such that
Xn = 1 with probability 1/2 and Xn = −1 with probability 1/2. The variance of
Mrand(x) is

∑′
n≤x 1 =

∑
n≤x µ

2(n) = 6x
π2 (1+o(1)) and therefore by the central limit

theorem the distribution function of Mrand(x)/
√

(6x/π2) is the normal distribution

Φ(c) := 1√
2π

∫ c

−∞ e−
ξ2

2 dξ.

In [12] we studied µ(n) in the long interval [1, x]. Assuming RH, we have the
explicit formula

M(x)x−1/2 = 2Re
(∑

γ>0

xiγ

ρζ ′(ρ)

)
where ρ = 1/2 + iγ ranges over non-trivial zeros of the zeta function (see [13]
pages 372-374). Assuming RH and the bound

∑
0<γ<T |ζ ′(ρ)|−2 � T , the author

proved the existence of a limiting distribution for M(ey)e−y/2. Surprisingly, this
1
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distribution is not the normal distribution as was suggested by the above analogy
between M(x) and Mrand(x). If we possess some very fine information concerning
the behaviour of the imaginary ordinates of the zeros of ζ(s) then this distribution
can be described rather explicitly. There is some evidence to suggest that the imag-
inary ordinates of the non-trivial zeros of ζ(s) do not satisfy any Q-linear relations.
Under this additional assumption, the limiting distribution of M(ey)e−y/2 agrees
with the distribution of the random sum

Re
(∑

γ>0

X(γ)
ρζ ′(ρ)

)
(1)

where the X(γ) are independent random variables uniformly distributed on the
unit circle. For further analysis of distributions of this type see [9].

In this note, we shall investigate the behaviour of M(x) in shorter intervals.
More precisely, we are concerned with the distribution of

M(n+ h)−M(n) =
∑

1≤m≤h

µ(n+m)

where 1 ≤ n ≤ N and h ≤ N . As above, we may model this by

Mrand(n+ h)−Mrand(n) =
∑′

1≤m≤hXn+m

where we recall that Σ′ means that we restrict to squarefree integers in the range of
summation. However, in this setting M(n+ h)−M(n) is correctly modelled by its
random version. In fact, this type of reasoning was previously considered by Good
and Churchhouse [7] who made the following conjecture:

Conjecture A. The sums of µ(n) in blocks of length h, where h is large, have
asymptotically a normal distribution with mean zero and variance 6h

π2 .

The goal of this note is to provide some theoretical evidence supporting the
above conjecture. In order to determine the distribution of M(n + h) −M(n) we
shall apply the moment method. We will calculate the moments

νk(N ;h) =
∑
n≤N

(M(n+ h)−M(n))k

and thus deduce a distribution result. This is a well-known argument and has
recently been employed in [8] and [11]. In our analysis of νk(N ;h) we will assume
the following conjecture concerning the Möbius function.

Möbius s-tuple conjecture. Let s ∈ N and D = {d1, . . . , ds} denote s distinct
integers with α1, . . . , αs ∈ N. If at least one αi is odd then there exists 1

2 < β0 < 1
independent of s such that∑

n≤N

µ(n+ d1)α1 . . . µ(n+ ds)αs � Nβ0 (2)

uniformly for all |di| ≤ N .

Note that when |D| = 1 the Riemann hypothesis implies that β0 = 1
2 + ε is an

admissible value. For larger s this is related to a conjecture for s-tuples of primes.
Let D = {d1, . . . , ds} denotes a set of s distinct integers. Hardy and Littlewood
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conjectured that ∑
n≤x

s∏
i=1

Λ(n+ di) = (S(D) + o(1))x (3)

where

S(D) =
∏
p

(
1− 1

p

)−k (
1− ν̃(p;D)

p

)
is the singular series attached to D and ν̃(p;D) denotes the number of distinct
residue classes modulo p among all members of D. In [11] Montgomery and
Soundararajan studied the distribution of ψ(x) =

∑
n≤x Λ(n) in short intervals

by assuming a version of conjecture (3) with the error term o(1) replaced by
O(x−1/2+ε). They determined that distribution of ψ(n+h)−ψ(n) for 1 ≤ n ≤ N is
approximately normal with mean ∼ h and variance ∼ h log(N/h) for an appropriate
range of h and N .

We now state our results for µ(n) in short intervals. For k a natural number we
introduce the notation

Ck =

{
Γ(k+1)

2k/2Γ(k/2+1)
if k is even

0 if k odd
.

By following the argument of [11] we obtain

Theorem 1. Let k be a natural number. Assume the Möbius s-tuple conjecture (2)
holds uniformly for 1 ≤ s ≤ k (i.e. there exists a β0 independent of s such that (2)
holds for all 1 ≤ s ≤ k). If k is even then we have

νk(N ;h) = CkN
(

6h
π2

)k/2
(1 +O((log h)kh−1/2 + k3h−1)) +Ok(Nmax(β0,2/3)hk) (4)

uniformly for h = o(N
2
k (1−max(β0, 2

3 ))) and k ≤ h1/3. If k is odd

νk(N ;h) = Ok(Nβ0hk) . (5)

uniformly for h = o(N
2
k (1−β0)).

Observe that the main term is the k-th moment of a normal random variable
with expectation 0 and variance 6h

π2 . We remark that the first O term in (4) is
independent of k whereas the second one depends on k. In order to remove this
dependence on k we would have to formulate an appropriate version of the Möbius
s-correlation conjecture with an explicit dependence on s. By a familiar argument
we deduce

Theorem 2. Let h = h(N) → ∞ such that log h
log N → 0 as N → ∞. Assume the

Möbius s-tuple conjecture holds for arbitrarily large s. Then the distribution of
M(n+ h)−M(n) for n ≤ N is approximately normal with mean ∼ 0 and variance
∼ 6h

π2 . More precisely,

1
N

#{1 ≤ n ≤ N | M(n+ h)−M(n) ≤ c
√

6h
π2 } → Φ(c) =

1√
2π

∫ c

−∞
e−x2/2 dx

uniformly for |c| ≤ C where C is a fixed positive real number.
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This proof may be obtained by an application of the Berry-Esseen theorem (for
a reference to this type of argument see [3]). Note that the above theorem furnishes
a distribution result for a rather restricted range of h. We actually believe that it
should continue to be true for h ≤ N1−ε.

Conjecture B. For each positive integer k,

νk(N ;h) = (Ck + o(1))N( 6h
π2 )k/2

uniformly for h(N) ≤ h ≤ N1−ε where h(N) →∞.

This leads us to formulate a more precise version of Conjecture A.

Conjecture A′. Suppose that h(N) ≤ h ≤ N1−ε where h(N) →∞. The distribu-
tion of M(n + h) −M(n) for 0 ≤ n ≤ N is approximately normal with mean ∼ 0
and variance ∼ 6h

π2 .

2. Calculation of the moments: Proof of Theorem 1

Proof of Theorem 1. We begin by assuming that k is even. Writing M(n + h) −
M(n) =

∑
1≤m≤h µ(n+m) it follows that

νk(N ;h) =
∑

m1,...,mk
1≤mi≤h

∑
n≤N

µ(n+m1)µ(n+m2) . . . µ(n+mk) .

Suppose that given {m1, . . . ,mk} integers in the box [1, h]k that {d1, . . . , ds} denote
the distinct integers in this set with multiplicites α1, . . . , αs such that

∑s
i=1 αi = k.

Thus we have

νk(N ;h) =
k∑

s=1

∑
α1,...,αsP

i αi=k

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

∑
n≤N

µ(n+d1)α1 . . . µ(n+ds)αs . (6)

Next we note that µ(n)α = µ(n) if α is odd and µ(n)α = µ(n)2 if α is even. By
the Möbius s-tuple conjecture, those s-tuples {α1, . . . , αs} with at least one odd
member will contribute an error term O(Nβ0). Therefore, the principal term will
arise from the s-tuples with all αi even. In this case, we invoke the following strong
theorem of Tsang [14]:

Proposition 3. Let D = {d1, . . . , ds} be distinct integers such that |di| ≤ N and
s ≤ log N

25 log log N . Then∑
n≤N

µ(n+ d1)2µ(n+ d2)2 . . . µ(n+ ds)2 = NA(D) + o(N2/3)

where

A(D) = A(d1, . . . , ds) =
∏
p

(
1− ν(p;D)

p2

)
and

ν(p;D) = #{ a mod p2 | ∃ d ∈ D such that a ≡ d (mod p2)} .
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Tsang obtains this theorem by an application of the combinatorial sieve. It is
important to note that the little o term is completely independent of s. It would
be interesting to reduce the exponent 2

3 .

Combining these last observations we obtain

νk(N ;h) = N
k∑

s=1

∑
α1,...,αs≥1P

i αi=k
αi even

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

A(d1, . . . , ds)

+ o(N2/3
k∑

s=1

∑
α1,...,αs≥1P

i αi=k
αi even

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

1)

+O(Nβ0

k∑
s=1

∑
α1,...,αs≥1P

i αi=k
one αi odd

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

1) .

We now define β1 = max(β0, 2/3). Note that the two error terms combined are
bounded by

Nβ1

k∑
s=1

∑
α1,...,αs≥1P

i αi=k

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

1 = Nβ1hk

and thus

νk(N ;h) = N

k∑
s=1

∑
α1,...,αs≥1P

i αi=k
αi even

(
k

α1, . . . , αs

)
1
s!

∑
d1,...,ds
1≤di≤h

A(d1, . . . , ds) +Ok(Nβ1hk) .

To complete our calculation we shall establish:

Proposition 4.∑
1≤d1,...,ds≤h

di distinct

A(d1, . . . , ds) =
(

6
π2

)s

hs(1 +O((log h)sh−1/2)) .

We will postpone the proof of this proposition until the next section. With
Proposition 4 in hand we have

νk(N ;h) = N
k∑

s=1

∑
α1,...,αs≥1P

i αi=k
αi even

(
k

α1, . . . , αs

)
1
s!

(
6h
π2

)s

(1 +O((log h)sh−1/2))

+Ok(Nmax(β1)hk) .

We begin my remarking that the conditions in the sum force s ≤ k/2 since all αi

are even. The term with s = k
2 contributes

Ck

(
6h
π2

)k/2(
1 +O

(
(log h)k

h1/2

))
.
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The terms with s < k/2 are bounded by∑
s<k/2

k!
s!

(
6h
π2

)s ∑
α1,...,αs≥2P

i αi=k
αi even

1
α1! · · ·αk!

.

The number of ways of writing k = α1 + · · · + αs with each αi ≥ 2 equals the
number of ways of writing k− s = α′1 + · · ·+α′s where each α′i ≥ 1 and thus equals(
k−s

s

)
. The remaining terms are therefore bounded by∑

s<k/2

k!
s!2s

(
k − s

s

)
hs � Ckh

k/2−1k3

if we assume that k ≤ h1/3. Thus we have shown that

νk(N ;h) = CkN

(
6h
π2

)k/2

(1 +O((log h)kh−1/2 + k3h−1)) +Ok(Nβ1hk)

assuming k is even. When k is odd the same argument works. However, in the
expansion (6) we always have at least one αi odd since k is odd. Thus no main
term emerges in this case and the inner sum is bounded by O(Nβ0) for all choices
of indices and we thus obtain νk(N,h) �k h

kNβ0 . �

3. Proof of Proposition 4

Our argument for proving Proposition 4 follows Gallagher’s method [2] for eval-
uating ∑

1≤d1,...,ds≤h

S(d1, . . . , ds) .

This argument provides a savings of O(h−1/2+ε) from the main term. In [11] a more
sophisticated argument is applied which gives a savings of O(h−1+ε). However, this
is not required for our purposes.

Proof of Proposition 4. We write

A(D) =
∏
p

(
1− ν(p;D)

p2

)
=
∑
n≥1

µ(n)ν(n;D)
n2

where we define for squarefree n, ν(n;D) =
∏

p|n ν(p;D). In this argument we shall
apply repeatedly the bounds∑

n≤x

sω(n)

n
� (log x)s and

∑
n≤x

sω(n) ≤ x
∑
n≤x

sω(n)

n
� x(log x)s .

Since |ν(p;D)| ≤ s, it follows that |ν(n;D)| ≤ sω(n) and thus∑
n>x

µ(n)ν(n;D)
n2

�
∑
n>x

sω(n)

n2
� (log x)s

x
.

Set a(n;D) = µ(n)ν(n;D)/n2 and it follows that∑
1≤d1,...,ds≤h

di distinct

A(d1, . . . , ds) =
∑
n≤x

∑
1≤d1,...,ds≤h

di distinct

a(n;D) +O

(
hs(log x)s

x

)
.
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Suppose that n is a fixed squarefree integer≤ x and n = p1 . . . pt (i.e. ω(n) = t). For
each 1 ≤ i ≤ t let νi be a variable satisfying 1 ≤ νi ≤ p2

i and ~ν = (ν1, . . . , νt) ∈ Nt.
It follows that∑

1≤d1,...,ds≤h
di distinct

a(n;D) =
∑

~ν=(ν1,...,νt)

1≤νi≤p2
i

t∏
i=1

a(pi; νi)(
∑

D=(d1,...,ds)
1≤di≤h

∀pi|n ν(pi,D)=νi

1 +O(hs−1)) (7)

where a(p; ν) = µ(p)ν
p2 . By a lattice point argument employing the Chinese remain-

der theorem the inner sum is((
h/n2

)s
+O

((
h/n2

)s−1
)) t∏

i=1

(
p2

i

νi

)
σ(s, νi)

where we assume that n ≤
√
h and σ(s, ν) denotes the number of maps from

{1, . . . , s} onto {1, . . . , ν}. Inserting this last expression in (7) we obtain∑
1≤d1,...,ds≤h

di distinct

a(n;D) = (h/n2)sα(n) +O((h/n2)s−1β(n)) +O(hs−1γ(n))

where

α(n) =
∑

~ν

t∏
i=1

a(pi; νi)
(
p2

i

νi

)
σ(s, νi) =

∏
p|n

p2∑
v=1

a(p; ν)
(
p2

ν

)
σ(s, ν) ,

β(n) =
∑

~ν

t∏
i=1

|a(pi; νi)|
(
p2

i

νi

)
σ(s, νi) =

∏
p|n

p2∑
v=1

|a(p; ν)|
(
p2

ν

)
σ(s, ν) ,

γ(n) =
∑

~ν

t∏
i=1

|a(pi; νi)| =
∏
p|n

p2∑
v=1

|a(p; ν)| .

We now estimate α(n), β(n), and γ(n) on average over n. Since |a(p; ν)| ≤ s/p2

and |γ(n)| ≤ sω(n)n−1 it follows that∑
n≤x

γ(n) � (log x)s .

Similarly, by the identity
∑p2

v=1

(
p2

v

)
σ(s, v) = p2s, we obtain

|β(n)| ≤
∏
p|n

s

p2

p2∑
v=1

(
p2

ν

)
σ(r, ν) ≤

∏
p|n

s

p2
p2s = sω(n)n2s−2

and thus ∑
n≤x

β(n)
n2(s−1)

�
∑
n≤x

sω(n) � x(log x)s .

Similarly, it may be checked that |α(n)| ≤ sω(n)n2s−2 and thus∑
n>x

α(n)
n2s

�
∑
n>x

sω(n)

n2
� (log x)s

x
.
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Collecting estimates yields∑
1≤d1,...,ds≤h

di distinct

A(d1, . . . , ds) = hs
∞∑

n=1

α(n)
n2s

+O

(
hs
∑
n>x

α(n)
n2s

+ hs−1x(log x)s

)
.

As α(n) is a multiplicative function
∞∑

n=1

α(n)
n2s

=
∏
p

(
1 +

α(p)
p2s

)
.

Since a(p, ν) = −ν/p2 we have

α(p)
p2s

= − 1
p2s+2

p2∑
ν=1

ν

(
p2

ν

)
σ(s, ν) .

However, by the identity
p2∑

v=1

ν

(
p2

ν

)
σ(s, v) = (p2)s+1 − (p2 − 1)sp2

and it follows that
α(p)
p2s

= − 1
p2s+2

(p2s+2 − (p2 − 1)sp2) = −1 +
(

1− 1
p2

)s

.

Therefore
∑∞

n=1 α(n)n−s = ζ(2)−2 = ( 6
π2 )s and we deduce that∑

1≤d1,...,ds≤h
di distinct

A(d1, . . . , ds) =
(

6h
π2

)s

+O

(
hs(log x)s

x
+ hs−1x(log x)s

)

which is valid for x ≤
√
h. The choice x =

√
h completes the proof. �

4. Equivalent formulations

In this section we present several equivalent formulations of the asymptotic for-
mula for νk(N ;h). It follows from Theorem 1 that for k even the Möbius randomness
conjecture implies that∫ X

1

(M(x+ h)−M(x))k dx ∼ µkX(6h/π2)k/2

for h(X) ≤ h ≤ Xc0/k for an appropriate c0 > 0 and h(X) → ∞ as X → ∞.
However, it is plausible that this actually holds in the larger interval h(X) ≤ h ≤
X1−ε. We have the following variant of the above asymptotic formula.

Proposition 5. Let k be a positive even integer. Assume the Riemann hypothesis.
The following statements are equivalent:∫ X

1

(M(x+ h)−M(x))k dx ∼ µkX(6h/π2)k (8)

holds uniformly for Xε ≤ h ≤ X1−ε.∫ X

1

(M(x+ δx)−M(x))k dx ∼ µk

k/2 + 1
Xk/2+1(6δ/π2)k/2 (9)
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holds uniformly for X−1+ε ≤ δ ≤ X−ε.

The proof follows an argument given by Chan [1]. He proved similar identities
relating integrals of ψ(x+ h)− ψ(x)− h to integrals of ψ(x+ δx)− ψ(x)− δx.

We now mention some work related to the conjectured asymptotics (8) and (9).
Peng Gao has informed me that he can prove under the assumption of the Riemann
hypothesis that for X ≥ 2 and h ≥ (logX)A with A explicit and fixed that∫ X

1

(M(x+ h)−M(x))2 dx = o(Xh2) .

Observe that this is slightly stronger than the trivial bound O(Xh2). In addition,
Gonek [5], [6] has some unpublished work concerning the case k = 2 of (9). He
undertook a study of the function

G(X,T ) =
∑

0<γ,γ′<T

Xi(γ−γ′) ω(γ − γ′)
ζ ′(ρ)ζ ′(ρ′)

for a certain smooth weight ω. This is analogous to Montgomery’s pair correlation
function

F (X,T ) =
∑

0<γ,γ′<T

Xi(γ−γ′)ω(γ − γ′)

where ω(u) = 4/(4 + u2). In [4] very precise relations between the behaviour of
F (X,T ) and the second moment of ψ(x + h) − ψ(x) − h are established. In the
same fashion Gonek studied the behavioiur of G(X,T ). This is more difficult than
the study of F (X,T ) due to the erratic behaviour of ζ ′(ρ)−1. He develops various
formulae for G(X,T ) assuming the Riemann hypothesis and an upper bound of the
form |ζ ′

(ρ)|−1 � |ρ|1/2−ε. This led him to conjecture that∫ X

1

(
M(x+ δx)−M(x)

x

)2

dx ∼ 6δ
π2

(logX)

for δ ≥ 1/X. Note that this follows from (9) by partial integration (at least for δ
in an appropriate range).

5. Generalizations

Our argument for evaluating νk(N ;h) may be generalized considerably. For
example, it works for the Liouville function λ(n) which is defined to be λ(n) =
(−1)Ω(n) where Ω(n) is the total number of prime factors of n. We define its
summatory function to be L(x) =

∑
n≤x λ(n). In order to compute its moments

νk(N,h) =
∑
n≤N

(L(n+ h)− L(n))k

we need to consider ∑
n≤N

λ(n+ d1)α1 · · ·λ(n+ ds)αs

where {d1, . . . , ds} are distinct and s ≤ k. Observe that λ(n)α = 1 if α is even and
λ(n)α = λ(n) if α is odd. Therefore if all αi are even then the above sum exactly
equals N . In addition, we require an analogue of the Möbius s-tuple conjecture for
λ.
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Liouville s-tuple conjecture. Let s ∈ N and D = {d1, . . . , ds} denote s distinct
integers with α1, . . . , αs ∈ N. If at least one αi is odd then there exists 1

2 < β0 < 1
independent of s such that∑

n≤N

λ(n+ d1)α1 . . . λ(n+ ds)αs � Nβ0

uniformly for all |di| ≤ N .

Assuming the above holds uniformly for 1 ≤ s ≤ k we see that

νk(N,h) = CkNh
k/2(1 +O(k3h−1)) +Ok(Nβ0hk)

as long as k is even and k ≤ h1/3. It follows that L(n+ h)−L(n) for 1 ≤ n ≤ N is
approximately normal with mean ∼ 0 and variance ∼ h for h = h(N) which satifies
h→∞ and log h

log N → 0.

It appears that the argument applied to µ(n) and λ(n) may be applied to a
much wider class of real multiplicative functions f with mean value 0 and satisfying
|f(n)| ≤ 1. In order to determine

νk(N,h) =
∑
n≤N

(f(n+ h)− f(n))k

we would require a formula for∑
n≤N

f(n+ d1)α1 · · · f(n+ ds)αs

with {d1, . . . , ds} distinct and all αi even. Also, if at least one αi is odd, we would
require a bound of the shape∑

n≤N

f(n+ d1)α1 · · · f(n+ ds)αs � Nβ0 .

It would be interesting to determine the class of multiplicative functions which
satisfies this bound.

Acknowledgements. The author would like to thank A. Granville for suggesting this
problem.
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