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1. Pélya and Turan conjectures. The Liouville function A(n) is defined as (—1)%™
where Q(n) is the total number of prime factors of n counted with multiplicity. It is a
completely multiplicative function and it is easy to see that

s An)  C(25)
Lo T o

(1)

for Re(s) > 1. If we define

then, by partial summation, we have

2“’:) —s [ i(fl)dt. (3)

n

Based on numerical data, Pélya [Po] conjectured that
S(z) <0

for all x > 2. It should be noted that Pdlya’s conjecture implies the Riemann hypothesis.
Indeed, by a well-known theorem of Landau, the integral expression in (3) converges to the
right of Re(s) > o where oy is the first real singularity of ((2s)/({(s). For Landau’s theorem,
see for example, [EM, Theorem 10.4.2, p. 132], where the proof is given for Dirichlet series
with non-negative coefficients. However, the proof also works, mutatis mutandis, for Dirichlet

integrals of the form
0 S(t
1

ts+1 ’

where S(t) is of fixed sign for ¢ sufficiently large. In the case under discussion, ((s) has no
real zeros in 1/2 < s < 1, and so the first real singularity is at s = 1/2 coming from the pole
of ¢(2s) on the numerator. Thus, ((2s)/((s) is regular for Re(s) > 1/2 which implies that
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there are no zeros of ((s) in Re(s) > 1/2 since ((2s) is regular and non-vanishing in that
region.

Even if we have S(z) < 0 for x sufficiently large, a similar argument allows us to deduce
the Riemann hypothesis. Unfortunately, Haselgrove [Ha] has shown that S(z) changes sign
infinitely often and so the Pdlya conjecture is false. The smallest counterexample is x =
906, 150, 257 for which S(z) = 1. It is to be noted that the estimate

S(z) = O(x"/*+) (4)

for any € > 0 (where the implied constant may depend on € would also allow us to deduce
the Riemann hypothesis. Indeed, (4) implies that the integral expression in (3) is regular for
Re(s) > 1/2. Thus, ((2s)/((s) is regular in that half-plane and by the same reasoning, we
deduce the Riemann hypothesis. In fact, it is not hard to show that (4) is equivalent to the
Riemann hypothesis.

Our goal in this paper is to formulate automorphic generalizations of the Pélya conjecture
and (4) and then investigate when we can expect them to be true.

There is a related conjecture of Turdn [T], namely that the sum

ZMZO

n<x n

for  sufficiently large. This too has been disproved by Haselgrove [H|. Below, we shall also
investigate modular analogues of the Turan conjecture. In an appendix by Nathan Ng, we
present some numerical evidence related to the modular versions of the Pélya and Turan
conjectures.

Acknowledgements. 1 would like to thank Michael Rosen for his comments on preliminary
version of this paper. I also thank Nathan Ng for doing the computations recorded in the
Appendices.

2. Modular analogues of Pélya’s conjecture.
Let f be a normalized eigenform of weight £ and level N and trivial nebentypus. Let us
write -
E
fz)=>_as(n)n> e(nz)
n=1

Imiz a5 usual. Then,

ag(m)ag(n) = > as(mn/d*).

dlm,n

where e(z) = e

It is easy to prove the following:

Lemma 1. Let

Fim,n) = Y G(m/d,n/d).

dlm,n
Then
G(m,n) =) p(d)F(m/d,n/d)

dlm,n



and conversely.
We can apply the lemma to deduce that

= > pld)ag(m/d)ag(n/d). (5)

dlm,n

Now, let us observe that from (1),

1 if n is a square
A(d) = { 6
% (d) 0 otherwise. (6)

Then,

NE

asp(n?)/n* = (Z)\ )

1 n=1 dn

n

by (6). Interchanging summations, using (5) and observing that A is completely multiplica-
tive, we find that

> 1
Zl "= e s 1A (7)
where L(s, f) = ag(n)/n® and L(s, fA) =302, ar(n)A(n)/n®. Since
L(s, f)L(s, fA) = L(2s, Sym®(f))/¢(2s), (8)

as is easily seen by examin Euler factors, we deduce the identity

C(5) X ay(n)/n° = Lo, Sym( 1) 0

which is of independent interest. Thus, from the previous equation, we have

L(2s, Sym?*(f))
C(25)L(s, f)

Now suppose that as(n) are real and consider the hypothesis

5" ap(m)A(n) > 0. (11)

n<x

L(s, fA) = (10)

Then, writing the left hand side of (10) as an integral via partial summation, we find that
the right hand side of (10) converges for Re(s) > oy where oy is the first real singularity of
L(2s, Sym?(f))/¢(2s)L(s, f). Since L(s, f) has infinitely many zeros on Re(s) = 1/2, and
because L(2s, Sym?(f))/¢(2s) doesn’t vanish in the half-plane Re(s) > 1/2, we deduce that
this singularity must occur in the half-plane Re(s) > 1/2. This leads to:

Theorem 2.  Suppose that L(s, f) # 0 for 1/2 < s < 1 and that ord,—1/5 L(s, f) < 1.

Then,
Sy(z) =) ag(n)A(n)

n<x
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changes sign infinitely often.

Proof.  Let us first consider the case L(1/2, f) # 0. If S¢(x) is of constant sign for z
sufficiently large, then

L(2s, Sym*(f))/¢(2s) L(s, f)

is regular for Re(s) > a where « is the first real singularity of the right hand side of (10).
By hypothesis, L(s, f) does not vanish for any real s between 1/2 and 1. Also, ((2s) has
no real zeros between 1/4 and 1 and the numerator is regular by a celebrated theorem of
Shimura [Sh]. Thus, the right hand side of (10) is regular for Re(s) > a with a < 1/2. We
also know that L(2s, Sym?(f)) does not vanish on Re(s) = 1/2. Thus L(s, f) has no zeros
for Re(s) > 1/2 which is a contradiction. This deals with the case L(1/2, f) # 0. If now,
L(1/2,f) =0, and s = 1/2 is a simple zero, then ((2s)L(s, f) is non-zero at s = 1/2. Thus,
L(2s, Sym?(f))/¢(2s)L(s, f) is regular for Re(s) > 1/2. But this is a contradiction since
L(s, f) has infinitely many zeros on Re(s) =1/2. =

It is easy to give examples of f which satisfy the hypothesis of Theorem 2.

Thus, the modular analogue of Pélya’s conjecture is false in general. A necessary condi-
tion for it to be true is that L(1/2, f) = 0 for then the right hand side of (10) will have a
singularity at s = 1/2.

It is quite possible that if E is an elliptic curve with large Mordell-Weil rank, then

Se(x) = 3 alm)A(n)/vn > 0

n<x

for all x sufficiently large.
Gonek [Go| and Hejhal [He| have independently conjectured that for Riemann zeta func-

tion, we should have
1
2 TP

[Im(p)|<T

<T (12)

where the summation is over zeros of the zeta function. If we suppose that all the zeros of
L(s, f) are simple (apart from the zero at s = 1/2), then the analogue of the above is

> 1 <T (13)

ociimipi<r 1V (P

Murty and Perelli [MP] have shown that almost all zeros of L(s, f) are simple if we
assume the Riemann hypothesis for L(s, f) and the pair correlation conjecture for it. For
the discussion below, we do not need an estimate as strong as the above estimate. If r is the
order of the zero at s = 1/2, what is actually needed is that the order of every zero on the
critical line have order < r — 1 and one would need a similar estimate for

?<T. (14)

1
2 IR

0<|[Im(p)|<T

In fact, one can prove the following.



Theorem 3. Assume the Riemann hypothesis for L(s, f) and suppose that L(s, f) has a
zero at s = 1/2 of order r. Suppose further that all zeros of L(s, f) on Re(s) = 1/2 are of
order < r — 1 apart from s = 1/2 and that (14) is satisfied. Then,

Z ar(n)A(n) = a:l/zpr_g(log x) + O(:L'l/Q(log x)3/2)

n<x

where p,_1 is a polynomial of degree r — 2.
Here is an indication of the proof. For the sake of simplicity we shall suppose all zeros
of L(s, f) apart from s = 1/2 are simple. The sum

> ar(n)A(n)

n<x

can be written for ¢ > 1,

1 /CHT L(2s, Sym?(f))z*ds
c—iT sC(2s)L(s, f)
by Perron’s formula. We will choose T" = T); with T;—o0c along an appropriate sequence that

doesn’t coincide with any ordinate of a zero of L(s, f). Moving the line of integration to the
left and picking up the residues arising from the zeros of L(s, f), we obtain

L(2p, Sym*(f)) +L/L(28,Sym2(f))xs
Imyer PS2P)L/(f,p)  2miJe sC(25)L(s, f)

+ O(2¢/T)

2mi

S5(x) = &2, 5(log ) +

where C denotes the semi-rectangular path beginning at ¢+47; to a+¢7; and then to a —iT}
ending at ¢—¢Tj. The horizontal and vertical integrals are easily estimated by the functional
equation. For the sum over zeros one can use

1
2 e <t

0<|[Im(p)|<T

or the more general (14), which is a modular analogue of a conjecture of Gonek [Go|. Breaking
up the sum over the zeros into dyadic intervals of type [U,2U] we obtain an error term of

O(x?(log 2)%/?).
|
3. Modular analogues of the Turan conjecture.

If we expect that
Si(@) = ¥ as(m)A(n) ~ a2 (log x) 2

n<x

for r > 4, then by partial summation we deduce that

ap(n)\(n) [ Sy(t)dt
%;B ’ NG _/1 ];3/2

~ c(log z)"*



as r — 00, for some constant ¢ > 0, so that the sums

for sufficiently large x. Unlike the Turan case, these sums are not partial sums of the
corresponding series at the edge of the critical strip. They have the disadvantage of being
the partial sums of the series at the center of the critical strip. It is not difficult to show
that these series actually converge at the center of the critical strip (see for example, [KM,
p. ]).

Thus, we see that if the modular analogue of the Pdlya conjecture is true, then so is the
modular analogue of the Turédn conjecture.

4. Automorphic analogues.
Let L(s, ) be an automorphic L-function on GL(n). If 7 is self-dual, then it is reasonable

to ask if
Se(z) =Y an(m)A(n) > 0.

n<x

Certainly the Riemann hypothesis for L(s, ) follows from
S(z) = O(z/*)

since an easy calculation shows that

d
L(s,m)L(s,m@X) = [[T](1 — a2 p7>)~"

p i=1

The above reasoning suggests that if there is a high-order zero at s = 1/2, then the analogue
of the Pdlya conjecture should be true for a function which is “primitive” in the sense of
Selberg. It would be interesting to test the conjecture for automorphic forms of higher
dimension.

5. Certain sums of Fourier coefficients.

In this section and the next, we indicate an approach to proving a quasi-Riemann hy-
pothesis. To this end, we will need some estimates on averages of Fourier coefficients of
modular forms. We use the notation m ~ M to mean M < m < 2M. We will need to
consider sums of the form

> ag(mj)

m~M

for 5 fixed. We will prove that

Theorem 4. We have
> ap(my) = O(M'3j°),

m~M

where the implied constant is independent of M.



Proof. We have

> ap(mj) = > > pld)ag(m/d)as(j/d) (15)

m~M m~M d|m,j
= 2_uld)ay(j/d) Z/ as(t) (16)

and the inner sum is by an estimate of Rankin [Ra], O((M/d)'/3) from which we easily
deduce the stated estimate. m
The interest in knowing the asymptotics of such sums is due to the following:

Theorem 5. Suppose that

Z( 3 u(d))af(mk)ZO(XWmEVE)

k<X dlk,d<V

then L(s, f) has no zeros for Re(s) > 3/4.

Remark. We say a few words about the hypothesis in Theorem 5. Firstly, if V' = 1,
then the hypothesis holds by Theorem 4. If V' is bounded then the same is true. If V = X,
then the sum is just ay(m) which is clearly m¢. If we write & = dt in the inner sum and
interchange the sums, we can estimate the inner sum by Theorem 4 to get an upper bound
of O(mfX/3V?/3). This means that the hypothesis is satisfied for V < X1/4. In fact, if even
we can replace the above upper bound by O(m¢X3V?/37%) for some small § > 0, then we
will be able to deduce some quasi-Riemann hypothesis for L(s, f). Thus, the hypothesised
estimate (which can be viewed as a generalization of Theorem 4) seems to lie deeper. We
make some further remarks about it in the final section.

6. Proof of Theorem 5.
We will apply the method of Vaughan to study sums of the form

> a(n)A(n)

n<x

where a(n) = ay(n). Vaughan’s identity can be stated in the following way. It is based on
the formal identity:

A/B = (1-BG)(A/B)+ AG (17)
— (F+(A/B—F))(1- BG)+ AG (18)
F+ AG — BFG + (A/B — F)(1 — BG) (19)

Suppose now we are given two Dirichlet series

A =35 Bl =32
and write A( ) - ( )
Bs) ~ 2w



Set

Then, we have

where
ai(n) = ¢(n) forn <U (20)
= 0 otherwise (21)
as(n) = Y a(n/d)b(d) (22)
dn,d<V
as(n) = — > ) X bd)b(f)) (23)
et=n,e<U df=t,f<V
alm) = = 3 dd) 3 brb(s) (24)

which is the essence of Vaughan’s identity. In the case of interest, A(s) = ((2s) and B(s) =
¢(s) so that
A(n) = a1(n) + az(n) + az(n) + as(n),

where
aj(n) = An) ifn<U (25)
= 0 otherwise (26)
on) = Y uld) (27)
) = — 3 Mm@, (28)
wm) = — X Am) > ) (20)
mk=n d|k,d<V

Thus, we can write

> a(n)A(n)

n<x

as S1 + Sy + S3 + 54 with appropriate notation. We now suppose that the a(n) are the
coefficients (normalized) of our eigenform f. By Cauchy-Schwarz and Rankin-Selberg, we
easily deduce that S; < U. We can write Sy as

S (Y wd)aim) = ud) Y alh*d).

n<x  h2d=n d<V h<(z/d)1/2
A<V -

The inner sum can be estimated trivially by O((x/d)"/?). This gives Sy < z'/2*<V1/2, For

Ss, we have
Ss=—> (X wdArm) Y alrt).

t<UV  md=t,m<U,d<V r<z/t

8



By Theorem 4, the inner sum is O((x/t)*/?t¢), so we get easily S5 < x'/3(UV)?/3+¢. Finally,

for Sy, we have
S (X wd) > Ama(mk).

V<k<z/U dk,d<V U<m<z/k
this can be re-written as

> oam Y (X pd)a(mk).

U<m<z/V V<k<z/m dlk,d<V

By hypothesis, the inner sum is < (x/m)"?m¢ so that we get Sy < z'7¢/v/V. We choose
V = 22 and U = X° to get a final estimate of x3/**¢. Thus, L(s, f) has no zeros for
Re(s) > 3/4.

7. Concluding Remarks.
It is clear that the obstacle in proving a quasi-Riemann hypothesis is really the estimation
of the sum Sy. It is interesting to note that if the sum

> Am)a(mk)

m<zx

are positive, then one can get the following estimate for Sj:

(@/U) X2 > Am)a(mk)

V<k<z/UU<m<z/k

which is

< (z/U) > Am) > a(mk)

U<m<z/V V<k<z/m

which by Theorem 4 gives a final estimate of #'7</V?/3 which would give a quasi Riemann
hypothesis.



Appendices: by Nathan Ng

Modular Analogues of Polya’s Conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted a(n). The nor-
malized coefficients will be denoted az(n) where az(n) = a(n)/nz. The Liouville function
is denoted A(n) where A(n) = (=1)*™ and Q(n) is the total number of prime factors of
n (counted with multiplicity). Let Sg(x) = X,<, ap(n)A(n) be the generalized Polya sum.
Note: In the tables, only the integer part for Sg is given.

1 El:y*=a23+2°—Tr+36

rank(FE1) =4
| n [ [Se(n-109] ] n|[Sp(n-10°] ] n|[Se(n-10°] | n|[Se(n-109]| n | [Sk(n-10%)] |

1 201404 | 2 322163 | 3 422250 | 4 511622 | 5 592659
6 669422 | 7 740673 | 8 807658 | 9 873727 | 10 935762
11 998750 | 12 1055369 | 13 1111007 | 14 1164917 | 15 1218562
16 1271467 | 17 1324716 | 18 1373508 | 19 1421993 | 20 1468089
21 1516194 | 22 1564940 | 23 1609313 | 24 1653517 | 25 1697040
26 1742414 | 27 1788221 | 28 1829214 | 29 1873512 | 30 1912127
31 1951990 | 32 1994299 | 33 2034881 | 34 2075782 | 35 2113478
36 2152129 | 37 2191081 | 38 2224929 | 39 2262398 | 40 2298416
41 2335326 | 42 2368912 | 43 2407780 | 44 2442943 | 45 2477384
46 2511918 | 47 2546599 | 48 2583300 | 49 2618861 | 50 2652814

2 E2:y?—2ly=2a®+672>— 10z + 30

rank(E2) =5
| n [ [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°] | n|[Sp(n-109]] n | [Sp(n-10)] ]

1 217561 | 2 353203 | 3 467854 | 4 570499 | 5 664760

6 752802 | 7 836816 | 8 916978 | 9 993251 | 10 1066276
11 1136854 | 12 1205474 | 13 1273073 | 14 1339060 | 15 1402266
16 1465722 | 17 1526688 | 18 1586506 | 19 1645289 | 20 1702981
21 1758113 | 22 1814534 | 23 1869888 | 24 1923348 | 25 1976276
26 2028424 | 27 2081935 | 28 2133258 | 29 2184795 | 30 2233014
31 2283240 | 32 2331103 | 33 2380388 | 34 2429313 | 35 2475573
36 2522469 | 37 2569446 | 38 2614393 | 39 2660464 | 40 2706789
41 2750564 | 42 2795057 | 43 2841453 | 44 2885226 | 45 2928576
46 2970948 | 47 3014348 | 48 3056984 | 49 3098133 | 50 3138632
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3 FE3:vy*— 63y =a®+351x? + 567 + 22

rank(E3) =6
‘ n ‘LSE(H,-loﬁ)]‘ n ‘LSE(H,-loﬁ)]‘ n ‘LSE(n/-106ﬂ ‘ 71‘ [SE(n - 10%)] ‘ 71‘ [SE(n - 10%)] ‘

1 386697 | 2 645957 | 3 869445 | 4 1072938 | 5 1261476
6 1439449 | 7 1608641 | 8 1771245 | 9 1926524 | 10 2078573
11 2224311 | 12 2369104 | 13 2506776 | 14 2643033 | 15 2777310
16 2908091 | 17 3035366 | 18 3160920 | 19 3283870 | 20 3407035
21 3526513 | 22 3642749 | 23 3760472 | 24 3877013 | 25 3989843
26 4101297 | 27 4211884 | 28 4322482 | 29 4432330 | 30 4539339
31 4646646 | 32 4749538 | 33 4853587 | 34 4957684 | 35 5059171
36 5161085 | 37 5261785 | 38 5358391 | 39 5458689 | 40 5556704
41 5653294 | 42 5751511 | 43 5845392 | 44 5941619 | 45 6034557
46 6128691 | 47 6224164 | 48 6315399 | 49 6409947 | 50 6499323

4 F4:y®— 168y = 2° + 16412 + 161z — 8

rank(FE4) =7
| n | [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°]| n|[Se(n-109]] n | [Se(n-10°)] ]

1 594145 | 2 1015656 | 3 1385905 | 4 1725542 | 5 2043874
6 2346273 | 7 2634736 | 8 2914172 | 9 3183595 | 10 3445294
11 3699511 | 12 3948636 | 13 4191263 | 14 4430532 | 15 4663520
16 4893186 | 17 5118437 | 18 5341917 | 19 5560982 | 20 D776124
21 5989072 | 22 6197620 | 23 6406369 | 24 6612722 | 25 6814634
26 7014126 | 27 7213935 | 28 7410973 | 29 7604352 | 30 7796756
31 7987525 | 32 8177016 | 33 8362978 | 34 8549392 | 35 8733795
36 8918625 | 37 9099551 | 38 9279117 | 39 9458557 | 40 9636586
41 9813116 | 42 9989408 | 43 10161495 | 44 10332620 | 45 10503675
46 10675408 | 47 10847600 | 48 11016174 | 49 11182080 | 50 11350545
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5 E5:y*—2xy+ 737y = 2° + 5312? 4+ 12622 — 110

rank(E5) =8

‘ n ‘LSE(H,-loﬁ)]‘ n ‘LSE(H,-loﬁ)]‘ n ‘LSE(n/-106ﬂ ‘ 71‘ [SE(n - 10%)] ‘ 71‘ [SE(n - 10%)] ‘

1 746346 | 2 1295215 | 3 1782625 | 4 2234026 | 5 2658572
6 3063518 | 7 3453141 | 8 3830537 | 9 4194361 | 10 4549210
11 4896000 | 12 5234904 | 13 5568477 | 14 5892719 | 15 6213424
16 6529903 | 17 6837707 | 18 7142781 | 19 7444932 | 20 7740555
21 8035595 | 22 8326564 | 23 8611872 | 24 8896498 | 25 9176337
26 9456621 | 27 9731143 | 28 10004300 | 29 10276113 | 30 10542562

31 10810469 | 32 11073349 | 33 11331322 | 34 11591076 | 35 11847572
36 12104436 | 37 12360929 | 38 12611653 | 39 12861357 | 40 13109258
41 13357360 | 42 13602367 | 43 13847412 | 44 14090376 | 45 14332387
46 14571373 | 47 14810372 | 48 15048835 | 49 15282605 | 50 15515199

6 FEG6:y*+ 3576y = 2° + 976722 + 4255 — 2412

rank(E6) =9
| n | [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°]| n|[Se(n-109]] n | [Se(n-10°)] ]

1 628669 | 2 1090005 | 3 1498764 | 4 1878154 | 5 2232601
6 2572880 | 7 2898629 | 8 3215406 | 9 3521342 | 10 3820162
11 4108589 | 12 4394015 | 13 4671069 | 14 4946030 | 15 5213297
16 5477051 | 17 5738393 | 18 5994435 | 19 6248832 | 20 6499274
21 6742563 | 22 6985878 | 23 7225992 | 24 7467909 | 25 7702909
26 7934087 | 27 8166383 | 28 8396313 | 29 8621645 | 30 8847970
31 9068998 | 32 9289189 | 33 9509889 | 34 9725722 | 35 9941257
36 10156603 | 37 10369435 | 38 10582542 | 39 10791065 | 40 11003125
41 11209192 | 42 11415744 | 43 11619274 | 44 11824137 | 45 12026375
46 12226343 | 47 12427274 | 48 12629308 | 49 12827095 | 50 13024838
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7 ET:y?— 15336y = a3 + 146169522 — 1414z — 80334

rank(ET) =10

‘ n ‘ [SE(n - 109)] ‘ n ‘ [SE(n - 10%)] ‘ n ‘ [SE(n - 10%)] ‘ n ‘ [SE(n - 10%)] ‘ n ‘ [SE(n - 10%)] ‘

1 863765 | 2 1518178 | 3 2103843 | 4 2650750 | 5 3167285
6 3661074 | 7 4138930 | 8 4601567 | 9 5049942 | 10 5490045
11 5918105 | 12 6337736 | 13 6750994 | 14 7154920 | 15 7552743
16 7945953 | 17 8332984 | 18 8714975 | 19 9092725 | 20 9463593
21 9832013 | 22 10197337 | 23 10556331 | 24 10913126 | 25 11265934
26 11616719 | 27 11961429 | 28 12304890 | 29 12645915 | 30 12983303
31 13318006 | 32 13653228 | 33 13983816 | 34 14311650 | 35 14638627
36 14963131 | 37 15283241 | 38 15604378 | 39 15923548 | 40 16237957
41 16551140 | 42 16863976 | 43 17174866 | 44 17485161 | 45 17789400
46 18095174 | 47 18400360 | 48 18702538 | 49 19001829 | 50 19300679

Modular Analogues of Turan’s Conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted a(n). The nor-
malized coefficients will be denoted az(n) where ag(n) = a(n)/nz. The Liouville function
is denoted A(n) where A\(n) = (—1)%™ and Q(n) is the total number of prime factors of n
(counted with multiplicity). Let Tg(z) = <, ap(n)A(n)/n? be the generalized Turan sum.
Note: In the tables, only the integer part for T} is given.

8 FEl:y=a2+2°—Tx+36

rank(FE1) =4
| n | [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°]| n|[Se(n-109]] n | [Se(n-10°)] ]

1 347 | 2 608 | 3 709 | 4 773 5 821
6 89 | 7 920 | 8 945 | 9 967 | 10 987
11 1007 | 12 1024 | 13 1039 | 14 1054 | 15 1068
16 1082 | 17 1095 | 18 1106 | 19 1118 | 20 1128
21 1139 | 22 1149 | 23 1159 | 24 1168 | 25 1176
26 1185 | 27 1194 | 28 1202 | 29 1210 | 30 1218
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9 E2:y*—2ly=2a%+672>— 10z + 30

rank(E2) =5
| n [ [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°] | n|[Sp(n-109]] n | [Sp(n-10)] ]

1 630 | 2 743 | 3 816 | 4 871 | 5 916
6 953 | 7 986 | 8 1016 | 9 1042 | 10 1066
11 1087 | 12 1108 | 13 1127 | 14 1145 | 15 1161
16 1177 | 17 1192 | 18 1207 | 19 1220 | 20 1233
21 1246 | 22 1258 | 23 1269 | 24 1280 | 25 1291
26 1302 | 27 1312 | 28 1322 | 29 1331 | 30 1340

10 E3:y? — 63y = 2 + 3512 + 562 + 22

rank(E3) =6
| n | [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°] | n|[Sp(n-109]] n|[Sp(n-10°)] ]

1 1034 | 2 1250 | 3 1392 | 4 1501 | 5 1591
6 1667 | 7 1733 | 8 1792 | 9 1846 | 10 1895
11 1940 | 12 1983 | 13 2022 | 14 2059 | 15 2094
16 2127 | 17 2159 | 18 2189 | 19 2217 | 20 2245
21 2272 | 22 2297 | 23 2321 | 24 2345 | 25 2368
26 2390 | 27 2412 | 28 2433 | 29 2453 | 30 2474

11 E4:y*— 168y = 2° + 16412° + 161z — 8

rank(FE4) =7
| n [ [Se(n-109] ] n|[Sp(n-10°] ] n|[Se(n-10°] | n|[Se(n-109]| n | [Sk(n-10%)] |

1 1498 | 2 1848 | 3 2084 | 4 2266 | 5 2417
6 2546 | 7 2659 | 8 2761 | 9 2854 | 10 2939
11 3017 | 12 3091 | 13 3159 | 14 3224 1 15 3286
16 3344 | 17 3399 | 18 3453 | 19 3504 | 20 3553
21 3600 | 22 3645 | 23 3689 | 24 3731 | 25 3772
26 3811 | 27 3850 | 28 3888 | 29 3924 | 30 3960
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12 E5:y? — 22y + 737y = 2 + 53122 + 12622 — 110

rank(E5) =8

| n [ [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°] | n|[Sp(n-109]] n | [Sp(n-10)] ]
1 1821 | 2 2278 | 3 2589 | 4 2831 5 3031
6 3204 | 7 3357 | 8 3495 | 9 3620 | 10 3735
11 3842 | 12 3942 | 13 4037 | 14 4125 | 15 4209
16 4289 | 17 4365 | 18 4438 | 19 4508 | 20 4575
21 4641 | 22 4703 | 23 4763 | 24 4822 | 25 4879
26 4934 | 27 4988 | 28 5040 | 29 5091 | 30 5140

13 E6: y? 4+ 3576y = a° + 9767x? + 4252 — 2412

rank(FE6) =9

| n | [Se(n-109] [ n|[Se(n-10°] | n|[Se(n-10°] | n|[Sp(n-109]] n|[Sp(n-10°)] ]
1 1548 | 2 1932 | 3 2192 | 4 2396 | 5 2563
6 2708 | 7 2836 | 8 2952 | 9 3057 | 10 3154
11 3243 | 12 3327 | 13 3405 | 14 3480 | 15 3550
16 3617 | 17 3682 | 18 3743 | 19 3802 | 20 3859
21 3913 | 22 3965 | 23 4016 | 24 4066 | 25 4113
26 4159 | 27 4204 | 28 4248 | 29 4290 | 30 4332

14 E7:y? — 15336y = 2° + 146169522 — 1414z — 80334

rank(E7) =10

| n [ [Se(n-109] ] n|[Sp(n-10°] ] n|[Se(n-10°] | n|[Se(n-109]| n | [Sk(n-10%)] |
1 2060 | 2 2604 | 3 2977 | 4 3270 | 5 3514
6 3725 | 7 3913 | 8 4082 | 9 4236 | 10 4379
11 4511 | 12 4635 | 13 4751 | 14 4861 | 15 4966
16 0066 | 17 0161 | 18 5252 | 19 5340 | 20 0424
21 5506 | 22 0584 | 23 5660 | 24 0734 | 25 5805
26 o874 | 27 0941 | 28 6007 | 29 6071 | 30 6133
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