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1. Pólya and Turán conjectures. The Liouville function λ(n) is defined as (−1)Ω(n)

where Ω(n) is the total number of prime factors of n counted with multiplicity. It is a
completely multiplicative function and it is easy to see that

∞
∑

n=1

λ(n)

ns
=

ζ(2s)

ζ(s)
(1)

for Re(s) > 1. If we define
S(x) :=

∑

n≤x

λ(n) (2)

then, by partial summation, we have

∞
∑

n=1

λ(n)

ns
= s

∫ ∞

1

S(t)

ts+1
dt. (3)

Based on numerical data, Pólya [Po] conjectured that

S(x) ≤ 0

for all x ≥ 2. It should be noted that Pólya’s conjecture implies the Riemann hypothesis.
Indeed, by a well-known theorem of Landau, the integral expression in (3) converges to the
right of Re(s) > σ0 where σ0 is the first real singularity of ζ(2s)/ζ(s). For Landau’s theorem,
see for example, [EM, Theorem 10.4.2, p. 132], where the proof is given for Dirichlet series
with non-negative coefficients. However, the proof also works, mutatis mutandis, for Dirichlet
integrals of the form

∫ ∞

1

S(t)

ts+1
dt,

where S(t) is of fixed sign for t sufficiently large. In the case under discussion, ζ(s) has no
real zeros in 1/2 ≤ s ≤ 1, and so the first real singularity is at s = 1/2 coming from the pole
of ζ(2s) on the numerator. Thus, ζ(2s)/ζ(s) is regular for Re(s) > 1/2 which implies that
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there are no zeros of ζ(s) in Re(s) > 1/2 since ζ(2s) is regular and non-vanishing in that
region.

Even if we have S(x) ≤ 0 for x sufficiently large, a similar argument allows us to deduce
the Riemann hypothesis. Unfortunately, Haselgrove [Ha] has shown that S(x) changes sign
infinitely often and so the Pólya conjecture is false. The smallest counterexample is x =
906, 150, 257 for which S(x) = 1. It is to be noted that the estimate

S(x) = O(x1/2+ǫ) (4)

for any ǫ > 0 (where the implied constant may depend on ǫ would also allow us to deduce
the Riemann hypothesis. Indeed, (4) implies that the integral expression in (3) is regular for
Re(s) > 1/2. Thus, ζ(2s)/ζ(s) is regular in that half-plane and by the same reasoning, we
deduce the Riemann hypothesis. In fact, it is not hard to show that (4) is equivalent to the
Riemann hypothesis.

Our goal in this paper is to formulate automorphic generalizations of the Pólya conjecture
and (4) and then investigate when we can expect them to be true.

There is a related conjecture of Turán [T], namely that the sum

∑

n≤x

λ(n)

n
≥ 0

for x sufficiently large. This too has been disproved by Haselgrove [H]. Below, we shall also
investigate modular analogues of the Turán conjecture. In an appendix by Nathan Ng, we
present some numerical evidence related to the modular versions of the Pólya and Turán
conjectures.

Acknowledgements. I would like to thank Michael Rosen for his comments on preliminary
version of this paper. I also thank Nathan Ng for doing the computations recorded in the
Appendices.

2. Modular analogues of Pólya’s conjecture.

Let f be a normalized eigenform of weight k and level N and trivial nebentypus. Let us
write

f(z) =
∞
∑

n=1

af (n)n
k−1

2 e(nz)

where e(z) = e2πiz, as usual. Then,

af (m)af (n) =
∑

d|m,n

af(mn/d2).

It is easy to prove the following:

Lemma 1. Let
F (m, n) =

∑

d|m,n

G(m/d, n/d).

Then
G(m, n) =

∑

d|m,n

µ(d)F (m/d, n/d)
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and conversely.
We can apply the lemma to deduce that

af(mn) =
∑

d|m,n

µ(d)af(m/d)af (n/d). (5)

Now, let us observe that from (1),

∑

d|n

λ(d) =
{

1 if n is a square
0 otherwise.

(6)

Then,
∞
∑

n=1

af(n
2)/n2s =

∞
∑

n=1

af(n)

ns

(

∑

d|n

λ(d)
)

by (6). Interchanging summations, using (5) and observing that λ is completely multiplica-
tive, we find that

∞
∑

n=1

af (n
2)/n2s =

1

ζ(2s)
L(s, f)L(s, fλ) (7)

where L(s, f) =
∑∞

n=1 af (n)/ns and L(s, fλ) =
∑∞

n=1 af(n)λ(n)/ns. Since

L(s, f)L(s, fλ) = L(2s, Sym2(f))/ζ(2s), (8)

as is easily seen by examin Euler factors, we deduce the identity

ζ2(s)
∞
∑

n=1

af(n
2)/ns = L(s, Sym2(f)), (9)

which is of independent interest. Thus, from the previous equation, we have

L(s, fλ) =
L(2s, Sym2(f))

ζ(2s)L(s, f)
. (10)

Now suppose that af (n) are real and consider the hypothesis

∑

n≤x

af(n)λ(n) ≥ 0. (11)

Then, writing the left hand side of (10) as an integral via partial summation, we find that
the right hand side of (10) converges for Re(s) > σ0 where σ0 is the first real singularity of
L(2s, Sym2(f))/ζ(2s)L(s, f). Since L(s, f) has infinitely many zeros on Re(s) = 1/2, and
because L(2s, Sym2(f))/ζ(2s) doesn’t vanish in the half-plane Re(s) > 1/2, we deduce that
this singularity must occur in the half-plane Re(s) ≥ 1/2. This leads to:

Theorem 2. Suppose that L(s, f) 6= 0 for 1/2 < s ≤ 1 and that ords=1/2 L(s, f) ≤ 1.
Then,

Sf(x) :=
∑

n≤x

af(n)λ(n)
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changes sign infinitely often.

Proof. Let us first consider the case L(1/2, f) 6= 0. If Sf(x) is of constant sign for x
sufficiently large, then

L(2s, Sym2(f))/ζ(2s)L(s, f)

is regular for Re(s) > α where α is the first real singularity of the right hand side of (10).
By hypothesis, L(s, f) does not vanish for any real s between 1/2 and 1. Also, ζ(2s) has
no real zeros between 1/4 and 1 and the numerator is regular by a celebrated theorem of
Shimura [Sh]. Thus, the right hand side of (10) is regular for Re(s) > α with α < 1/2. We
also know that L(2s, Sym2(f)) does not vanish on Re(s) = 1/2. Thus L(s, f) has no zeros
for Re(s) ≥ 1/2 which is a contradiction. This deals with the case L(1/2, f) 6= 0. If now,
L(1/2, f) = 0, and s = 1/2 is a simple zero, then ζ(2s)L(s, f) is non-zero at s = 1/2. Thus,
L(2s, Sym2(f))/ζ(2s)L(s, f) is regular for Re(s) ≥ 1/2. But this is a contradiction since
L(s, f) has infinitely many zeros on Re(s) = 1/2.

It is easy to give examples of f which satisfy the hypothesis of Theorem 2.
Thus, the modular analogue of Pólya’s conjecture is false in general. A necessary condi-

tion for it to be true is that L(1/2, f) = 0 for then the right hand side of (10) will have a
singularity at s = 1/2.

It is quite possible that if E is an elliptic curve with large Mordell-Weil rank, then

SE(x) =
∑

n≤x

a(n)λ(n)/
√

n ≥ 0

for all x sufficiently large.
Gonek [Go] and Hejhal [He] have independently conjectured that for Riemann zeta func-

tion, we should have
∑

|Im(ρ)|≤T

1

|ζ ′(ρ)|2 ≪ T (12)

where the summation is over zeros of the zeta function. If we suppose that all the zeros of
L(s, f) are simple (apart from the zero at s = 1/2), then the analogue of the above is

∑

0<|Im(ρ)|≤T

1

|L′(ρ)|2 ≪ T (13)

Murty and Perelli [MP] have shown that almost all zeros of L(s, f) are simple if we
assume the Riemann hypothesis for L(s, f) and the pair correlation conjecture for it. For
the discussion below, we do not need an estimate as strong as the above estimate. If r is the
order of the zero at s = 1/2, what is actually needed is that the order of every zero on the
critical line have order ≤ r − 1 and one would need a similar estimate for

∑

0<|Im(ρ)|<T

|Res
s=ρ

1

L(s, f)
|2 ≪ T. (14)

In fact, one can prove the following.
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Theorem 3. Assume the Riemann hypothesis for L(s, f) and suppose that L(s, f) has a
zero at s = 1/2 of order r. Suppose further that all zeros of L(s, f) on Re(s) = 1/2 are of
order ≤ r − 1 apart from s = 1/2 and that (14) is satisfied. Then,

∑

n≤x

af (n)λ(n) = x1/2pr−2(log x) + O(x1/2(log x)3/2)

where pr−1 is a polynomial of degree r − 2.
Here is an indication of the proof. For the sake of simplicity we shall suppose all zeros

of L(s, f) apart from s = 1/2 are simple. The sum

∑

n≤x

af (n)λ(n)

can be written for c > 1,

1

2πi

∫ c+iT

c−iT

L(2s, Sym2(f))xsds

sζ(2s)L(s, f)
+ O(xc/T )

by Perron’s formula. We will choose T = Tj with Tj→∞ along an appropriate sequence that
doesn’t coincide with any ordinate of a zero of L(s, f). Moving the line of integration to the
left and picking up the residues arising from the zeros of L(s, f), we obtain

Sf (x) = x1/2pr−2(log x) +
∑

|Im(ρ)|<T

L(2ρ, Sym2(f))

ρζ(2ρ)L′(f, ρ)
+

1

2πi

∫

C

L(2s, Sym2(f))xs

sζ(2s)L(s, f)

where C denotes the semi-rectangular path beginning at c+ iTj to a+ iTj and then to a− iTj

ending at c− iTj . The horizontal and vertical integrals are easily estimated by the functional
equation. For the sum over zeros one can use

∑

0<|Im(ρ)|<T

1

|L′(ρ, f)|2 ≪ T

or the more general (14), which is a modular analogue of a conjecture of Gonek [Go]. Breaking
up the sum over the zeros into dyadic intervals of type [U, 2U ] we obtain an error term of

O(x1/2(log x)3/2).

3. Modular analogues of the Turán conjecture.

If we expect that
Sf(x) =

∑

n≤x

af (n)λ(n) ∼ cx1/2(log x)r−2

for r ≥ 4, then by partial summation we deduce that

∑

n≤x

af (n)λ(n)√
n

=
∫ x

1

Sf(t)dt

t3/2
∼ c(log x)r−1
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as x → ∞, for some constant c > 0, so that the sums

Tf(x) =
∑

n≤x

af(n)λ(n)√
n

≥ 0

for sufficiently large x. Unlike the Turán case, these sums are not partial sums of the
corresponding series at the edge of the critical strip. They have the disadvantage of being
the partial sums of the series at the center of the critical strip. It is not difficult to show
that these series actually converge at the center of the critical strip (see for example, [KM,
p. ]).

Thus, we see that if the modular analogue of the Pólya conjecture is true, then so is the
modular analogue of the Turán conjecture.

4. Automorphic analogues.

Let L(s, π) be an automorphic L-function on GL(n). If π is self-dual, then it is reasonable
to ask if

Sπ(x) =
∑

n≤x

an(π)λ(n) ≥ 0.

Certainly the Riemann hypothesis for L(s, π) follows from

Sπ(x) = O(x1/2+ǫ)

since an easy calculation shows that

L(s, π)L(s, π ⊗ λ) =
∏

p

d
∏

i=1

(1 − α2
p,ip

−2s)−1

The above reasoning suggests that if there is a high-order zero at s = 1/2, then the analogue
of the Pólya conjecture should be true for a function which is “primitive” in the sense of
Selberg. It would be interesting to test the conjecture for automorphic forms of higher
dimension.

5. Certain sums of Fourier coefficients.

In this section and the next, we indicate an approach to proving a quasi-Riemann hy-
pothesis. To this end, we will need some estimates on averages of Fourier coefficients of
modular forms. We use the notation m ∼ M to mean M ≤ m ≤ 2M . We will need to
consider sums of the form

∑

m∼M

af(mj)

for j fixed. We will prove that

Theorem 4. We have
∑

m∼M

af (mj) = O(M1/3jǫ),

where the implied constant is independent of M .
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Proof. We have

∑

m∼M

af(mj) =
∑

m∼M

∑

d|m,j

µ(d)af(m/d)af(j/d) (15)

=
∑

d|j

µ(d)af(j/d)
∑

t∼M/d

af (t) (16)

and the inner sum is by an estimate of Rankin [Ra], O((M/d)1/3) from which we easily
deduce the stated estimate.

The interest in knowing the asymptotics of such sums is due to the following:

Theorem 5. Suppose that

∑

k<X

(

∑

d|k,d≤V

µ(d)
)

af (mk) = O(X1/2mǫV ǫ)

then L(s, f) has no zeros for Re(s) > 3/4.

Remark. We say a few words about the hypothesis in Theorem 5. Firstly, if V = 1,
then the hypothesis holds by Theorem 4. If V is bounded then the same is true. If V = X,
then the sum is just af (m) which is clearly mǫ. If we write k = dt in the inner sum and
interchange the sums, we can estimate the inner sum by Theorem 4 to get an upper bound
of O(mǫX1/3V 2/3). This means that the hypothesis is satisfied for V ≤ X1/4. In fact, if even
we can replace the above upper bound by O(mǫX1/3V 2/3−δ) for some small δ > 0, then we
will be able to deduce some quasi-Riemann hypothesis for L(s, f). Thus, the hypothesised
estimate (which can be viewed as a generalization of Theorem 4) seems to lie deeper. We
make some further remarks about it in the final section.

6. Proof of Theorem 5.

We will apply the method of Vaughan to study sums of the form

∑

n≤x

a(n)λ(n)

where a(n) = af (n). Vaughan’s identity can be stated in the following way. It is based on
the formal identity:

A/B = (1 − BG)(A/B) + AG (17)

= (F + (A/B − F ))(1 − BG) + AG (18)

= F + AG − BFG + (A/B − F )(1 − BG) (19)

Suppose now we are given two Dirichlet series

A(s) =
∞
∑

n=1

a(n)

ns
, B(s) =

∞
∑

n=1

b(n)

ns
,

and write
A(s)

B(s)
=

∞
∑

n=1

c(n)

ns
.
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Set
F (s) =

∑

n≤U

c(n)/ns, G(s) =
∑

n≤V

b̃(n)/ns

Then, we have
c(n) = a1(n) + a2(n) + a3(n) + a4(n)

where

a1(n) = c(n) forn ≤ U (20)

= 0 otherwise (21)

a2(n) =
∑

d|n,d≤V

a(n/d)b̃(d) (22)

a3(n) = −
∑

et=n,e≤U

c(e)
(

∑

df=t,f≤V

b(d)b̃(f)
)

(23)

a4(n) = −
∑

de=n,d>U,e>V

c(d)
(

∑

rs=e,s≤V

b(r)b̃(s)
)

(24)

which is the essence of Vaughan’s identity. In the case of interest, A(s) = ζ(2s) and B(s) =
ζ(s) so that

λ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) = λ(n) if n ≤ U (25)

= 0 otherwise (26)

a2(n) =
∑

h2d=n
d≤V

µ(d), (27)

a3(n) = −
∑

mdr=n
m≤U,d≤V

λ(m)µ(d), (28)

a4(n) = −
∑

mk=n
m>U, k≥V

λ(m)
(

∑

d|k,d≤V

µ(d)
)

. (29)

Thus, we can write
∑

n≤x

a(n)λ(n)

as S1 + S2 + S3 + S4 with appropriate notation. We now suppose that the a(n) are the
coefficients (normalized) of our eigenform f . By Cauchy-Schwarz and Rankin-Selberg, we
easily deduce that S1 ≪ U . We can write S2 as

∑

n≤x

(

∑

h2d=n
d≤V

µ(d)
)

a(n) =
∑

d≤V

µ(d)
∑

h≤(x/d)1/2

a(h2d).

The inner sum can be estimated trivially by O((x/d)1/2). This gives S2 ≪ x1/2+ǫV 1/2. For
S3, we have

S3 = −
∑

t≤UV

(

∑

md=t,m≤U,d≤V

µ(d)λ(m)
)

∑

r≤x/t

a(rt).
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By Theorem 4, the inner sum is O((x/t)1/3tǫ), so we get easily S3 ≪ x1/3(UV )2/3+ǫ. Finally,
for S4, we have

∑

V ≤k≤x/U

(

∑

d|k,d≤V

µ(d)
)

∑

U<m<x/k

λ(m)a(mk).

this can be re-written as

∑

U<m<x/V

λ(m)
∑

V <k<x/m

(

∑

d|k,d≤V

µ(d)
)

a(mk).

By hypothesis, the inner sum is ≪ (x/m)1/2mǫ so that we get S4 ≪ x1+ǫ/
√

V . We choose
V = x1/2 and U = Xǫ to get a final estimate of x3/4+ǫ. Thus, L(s, f) has no zeros for
Re(s) > 3/4.

7. Concluding Remarks.

It is clear that the obstacle in proving a quasi-Riemann hypothesis is really the estimation
of the sum S4. It is interesting to note that if the sum

∑

m<x

λ(m)a(mk)

are positive, then one can get the following estimate for S4:

(x/U)ǫ
∑

V <k≤x/U

∑

U<m<x/k

λ(m)a(mk)

which is
≪ (x/U)ǫ

∑

U<m<x/V

λ(m)
∑

V <k<x/m

a(mk)

which by Theorem 4 gives a final estimate of x1+ǫ/V 2/3 which would give a quasi Riemann
hypothesis.
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Appendices: by Nathan Ng

Modular Analogues of Polya’s Conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted a(n). The nor-

malized coefficients will be denoted aE(n) where aE(n) = a(n)/n
1

2 . The Liouville function
is denoted λ(n) where λ(n) = (−1)Ω(n) and Ω(n) is the total number of prime factors of
n (counted with multiplicity). Let SE(x) =

∑

n≤x aE(n)λ(n) be the generalized Polya sum.
Note: In the tables, only the integer part for SE is given.

1 E1 : y2 = x3 + x2 − 7x + 36

rank(E1) = 4

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 201404 2 322163 3 422250 4 511622 5 592659
6 669422 7 740673 8 807658 9 873727 10 935762

11 998750 12 1055369 13 1111007 14 1164917 15 1218562
16 1271467 17 1324716 18 1373508 19 1421993 20 1468089
21 1516194 22 1564940 23 1609313 24 1653517 25 1697040
26 1742414 27 1788221 28 1829214 29 1873512 30 1912127
31 1951990 32 1994299 33 2034881 34 2075782 35 2113478
36 2152129 37 2191081 38 2224929 39 2262398 40 2298416
41 2335326 42 2368912 43 2407780 44 2442943 45 2477384
46 2511918 47 2546599 48 2583300 49 2618861 50 2652814

2 E2 : y2 − 21y = x3 + 67x2 − 10x + 30

rank(E2) = 5

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 217561 2 353203 3 467854 4 570499 5 664760
6 752802 7 836816 8 916978 9 993251 10 1066276

11 1136854 12 1205474 13 1273073 14 1339060 15 1402266
16 1465722 17 1526688 18 1586506 19 1645289 20 1702981
21 1758113 22 1814534 23 1869888 24 1923348 25 1976276
26 2028424 27 2081935 28 2133258 29 2184795 30 2233014
31 2283240 32 2331103 33 2380388 34 2429313 35 2475573
36 2522469 37 2569446 38 2614393 39 2660464 40 2706789
41 2750564 42 2795057 43 2841453 44 2885226 45 2928576
46 2970948 47 3014348 48 3056984 49 3098133 50 3138632
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3 E3 : y2 − 63y = x3 + 351x2 + 56x + 22

rank(E3) = 6

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 386697 2 645957 3 869445 4 1072938 5 1261476
6 1439449 7 1608641 8 1771245 9 1926524 10 2078573

11 2224311 12 2369104 13 2506776 14 2643033 15 2777310
16 2908091 17 3035366 18 3160920 19 3283870 20 3407035
21 3526513 22 3642749 23 3760472 24 3877013 25 3989843
26 4101297 27 4211884 28 4322482 29 4432330 30 4539339
31 4646646 32 4749538 33 4853587 34 4957684 35 5059171
36 5161085 37 5261785 38 5358391 39 5458689 40 5556704
41 5653294 42 5751511 43 5845392 44 5941619 45 6034557
46 6128691 47 6224164 48 6315399 49 6409947 50 6499323

4 E4 : y2 − 168y = x3 + 1641x2 + 161x − 8

rank(E4) = 7

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 594145 2 1015656 3 1385905 4 1725542 5 2043874
6 2346273 7 2634736 8 2914172 9 3183595 10 3445294

11 3699511 12 3948636 13 4191263 14 4430532 15 4663520
16 4893186 17 5118437 18 5341917 19 5560982 20 5776124
21 5989072 22 6197620 23 6406369 24 6612722 25 6814634
26 7014126 27 7213935 28 7410973 29 7604352 30 7796756
31 7987525 32 8177016 33 8362978 34 8549392 35 8733795
36 8918625 37 9099551 38 9279117 39 9458557 40 9636586
41 9813116 42 9989408 43 10161495 44 10332620 45 10503675
46 10675408 47 10847600 48 11016174 49 11182080 50 11350545
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5 E5 : y2 − 2xy + 737y = x3 + 531x2 + 1262x − 110

rank(E5) = 8

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 746346 2 1295215 3 1782625 4 2234026 5 2658572
6 3063518 7 3453141 8 3830537 9 4194361 10 4549210

11 4896000 12 5234904 13 5568477 14 5892719 15 6213424
16 6529903 17 6837707 18 7142781 19 7444932 20 7740555
21 8035595 22 8326564 23 8611872 24 8896498 25 9176337
26 9456621 27 9731143 28 10004300 29 10276113 30 10542562
31 10810469 32 11073349 33 11331322 34 11591076 35 11847572
36 12104436 37 12360929 38 12611653 39 12861357 40 13109258
41 13357360 42 13602367 43 13847412 44 14090376 45 14332387
46 14571373 47 14810372 48 15048835 49 15282605 50 15515199

6 E6 : y2 + 3576y = x3 + 9767x2 + 425x − 2412

rank(E6) = 9

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 628669 2 1090005 3 1498764 4 1878154 5 2232601
6 2572880 7 2898629 8 3215406 9 3521342 10 3820162

11 4108589 12 4394015 13 4671069 14 4946030 15 5213297
16 5477051 17 5738393 18 5994435 19 6248832 20 6499274
21 6742563 22 6985878 23 7225992 24 7467909 25 7702909
26 7934087 27 8166383 28 8396313 29 8621645 30 8847970
31 9068998 32 9289189 33 9509889 34 9725722 35 9941257
36 10156603 37 10369435 38 10582542 39 10791065 40 11003125
41 11209192 42 11415744 43 11619274 44 11824137 45 12026375
46 12226343 47 12427274 48 12629308 49 12827095 50 13024838
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7 E7 : y2 − 15336y = x3 + 1461695x2 − 1414x − 80334

rank(E7) = 10

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 863765 2 1518178 3 2103843 4 2650750 5 3167285
6 3661074 7 4138930 8 4601567 9 5049942 10 5490045

11 5918105 12 6337736 13 6750994 14 7154920 15 7552743
16 7945953 17 8332984 18 8714975 19 9092725 20 9463593
21 9832013 22 10197337 23 10556331 24 10913126 25 11265934
26 11616719 27 11961429 28 12304890 29 12645915 30 12983303
31 13318006 32 13653228 33 13983816 34 14311650 35 14638627
36 14963131 37 15283241 38 15604378 39 15923548 40 16237957
41 16551140 42 16863976 43 17174866 44 17485161 45 17789400
46 18095174 47 18400360 48 18702538 49 19001829 50 19300679

Modular Analogues of Turan’s Conjecture

Let E be an elliptic curve. The coefficients of its L-series will be denoted a(n). The nor-

malized coefficients will be denoted aE(n) where aE(n) = a(n)/n
1

2 . The Liouville function
is denoted λ(n) where λ(n) = (−1)Ω(n) and Ω(n) is the total number of prime factors of n

(counted with multiplicity). Let TE(x) =
∑

n≤x aE(n)λ(n)/n
1

2 be the generalized Turan sum.
Note: In the tables, only the integer part for TE is given.

8 E1 : y2 = x3 + x2 − 7x + 36

rank(E1) = 4

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 347 2 608 3 709 4 773 5 821
6 859 7 920 8 945 9 967 10 987

11 1007 12 1024 13 1039 14 1054 15 1068
16 1082 17 1095 18 1106 19 1118 20 1128
21 1139 22 1149 23 1159 24 1168 25 1176
26 1185 27 1194 28 1202 29 1210 30 1218
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9 E2 : y2 − 21y = x3 + 67x2 − 10x + 30

rank(E2) = 5

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 630 2 743 3 816 4 871 5 916
6 953 7 986 8 1016 9 1042 10 1066

11 1087 12 1108 13 1127 14 1145 15 1161
16 1177 17 1192 18 1207 19 1220 20 1233
21 1246 22 1258 23 1269 24 1280 25 1291
26 1302 27 1312 28 1322 29 1331 30 1340

10 E3 : y2 − 63y = x3 + 351x2 + 56x + 22

rank(E3) = 6

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 1034 2 1250 3 1392 4 1501 5 1591
6 1667 7 1733 8 1792 9 1846 10 1895

11 1940 12 1983 13 2022 14 2059 15 2094
16 2127 17 2159 18 2189 19 2217 20 2245
21 2272 22 2297 23 2321 24 2345 25 2368
26 2390 27 2412 28 2433 29 2453 30 2474

11 E4 : y2 − 168y = x3 + 1641x2 + 161x − 8

rank(E4) = 7

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 1498 2 1848 3 2084 4 2266 5 2417
6 2546 7 2659 8 2761 9 2854 10 2939

11 3017 12 3091 13 3159 14 3224 15 3286
16 3344 17 3399 18 3453 19 3504 20 3553
21 3600 22 3645 23 3689 24 3731 25 3772
26 3811 27 3850 28 3888 29 3924 30 3960
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12 E5 : y2 − 2xy + 737y = x3 + 531x2 + 1262x − 110

rank(E5) = 8

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 1821 2 2278 3 2589 4 2831 5 3031
6 3204 7 3357 8 3495 9 3620 10 3735

11 3842 12 3942 13 4037 14 4125 15 4209
16 4289 17 4365 18 4438 19 4508 20 4575
21 4641 22 4703 23 4763 24 4822 25 4879
26 4934 27 4988 28 5040 29 5091 30 5140

13 E6 : y2 + 3576y = x3 + 9767x2 + 425x − 2412

rank(E6) = 9

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 1548 2 1932 3 2192 4 2396 5 2563
6 2708 7 2836 8 2952 9 3057 10 3154

11 3243 12 3327 13 3405 14 3480 15 3550
16 3617 17 3682 18 3743 19 3802 20 3859
21 3913 22 3965 23 4016 24 4066 25 4113
26 4159 27 4204 28 4248 29 4290 30 4332

14 E7 : y2 − 15336y = x3 + 1461695x2 − 1414x − 80334

rank(E7) = 10

n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)] n [SE(n · 106)]

1 2060 2 2604 3 2977 4 3270 5 3514
6 3725 7 3913 8 4082 9 4236 10 4379

11 4511 12 4635 13 4751 14 4861 15 4966
16 5066 17 5161 18 5252 19 5340 20 5424
21 5506 22 5584 23 5660 24 5734 25 5805
26 5874 27 5941 28 6007 29 6071 30 6133
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