THE SIXTH MOMENT OF THE RIEMANN ZETA FUNCTION AND TERNARY
ADDITIVE DIVISOR SUMS

NATHAN NG

ABSTRACT. Hardy and Littlewood initiated the study of the 2k-th moments of the Riemann zeta function
on the critical line. In 1918 Hardy and Littlewood established an asymptotic formula for the second moment
and in 1926 Ingham established an asymptotic formula for the fourth moment. Since then no other moments
have been asymptotically evaluated. In this article we study the sixth moment of the zeta function on the
critical line. We show that a conjectural formula for a certain family of ternary additive divisor sums implies
an asymptotic formula with power savings error term for the sixth moment of the Riemann zeta function
on the critical line. This provides a rigorous proof for a heuristic argument of Conrey and Gonek [11].
Furthermore, this gives some evidence towards a conjecture of Conrey, Keating, Farmer, Rubinstein, and
Snaith [8] on shifted moments of the Riemann zeta function. In addition, this improves on a theorem of Ivic
[31], who obtained an upper bound for the the sixth moment of the zeta function, based on the assumption

of a conjectural formula for correlation sums of the triple divisor function.

1. INTRODUCTION

The 2k-th moment of the Riemann zeta function is

T
(L1) I(T) = / C(4 + it)|PHdt,

where ¢ denotes the Riemann zeta function and k > 0. This article concerns the behaviour of (1.1) in the
case k = 3. Hardy and Littlewood initiated the study of the moments (1.1). Their interest in these mean
values arose from their relation to the Lindelof hypothesis, which asserts that for any € > 0 | (% +it)| <. te.
In fact, they showed the Lindeldf hypothesis is equivalent to the statement, for any e > 0, I},(T) <. T'*¢
for all K € N. The motivation for studying the moment I;(7T') is that it seems that it might be easier to
obtain an average bound of C(% + it) rather than a pointwise bound. In 1918, Hardy and Littlewood [22]
proved that

(1.2) /0 I¢(% +it)|*dt ~ T(log T)

and in 1926 Ingham [29] proved that

T
T
(1.3) /0 C(5 +dt)|*dt ~ %(logT)‘l.

To date these are the only asymptotic results established for I;(T). In 1996, Conrey and Ghosh [10]

conjectured that
T
42
(1.4) / IC(L + it)|dt ~ %T(logT)g
0 .
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and in 1998, Conrey and Gonek [11] conjectured that

T
24024
(1.5) / IC(L +it)[Bdt ~ %T(logT)w
0 .
for certain specific constants ag and a4 (see (1.8) below). In 1998, Keating and Snaith conjectured that
9k ak 2
(1.6) I (T) ~ (kQ)'T(logT)k
where
L
1.7 gr = k2! -
4 J[[O (k+7)!
and

(L.8) a = 1;[ (1- ;)’“z ni;o (Wﬁm'

Note that (1.6) agrees with (1.2), (1.3),(1.4), and (1.5).
The formulae (1.2) and (1.3) have been refined to asymptotic formulae with error terms admitting power
savings. In 1926, Ingham [29] showed that

(1.9) I(T) = TP(log T) + O(T?*), for any € > 0,
and in 1979, Heath-Brown [24] showed that
(1.10) I(T) = TP4(log T) + O(T5%), for any € > 0,

where Py, P4 are polynomials of degrees 2 and 4 respectively. The error term in (1.9) has been improved
numerous times and the current record is due to Watt [46] who showed O(T'#15 <), The best error term for
(1.10) is O(T'3 7€) due to Motohashi.

Although the asymptotic (1.6) remains open for k > 3, there are a number of results providing upper
and lower bounds. Ramachandra established that Ix(T) > T'(log T)’€2 for positive integers 2k. This
was extended to rational k by Heath-Brown and to all real £ > 0 by Ramachandra, assuming the Riemann
hypothesis. In 2008, Soundararajan [43] showed that on the Riemann hypothesis that I, (T') < T'(log Tk +e,
for any € > 0. Building on this work and introducing a number of new ideas, Harper [23] showed that the
Riemann hypothesis implies I, (T') <, T'(log T)*".

In Ingham’s article [29] on mean values of the Riemann zeta function, he studied the shifted the mean

values
(1.11) Layy o1y (T) = / (5 +a1 +it)((5 + by —it)w(t)dt,

where a1, by are complex numbers satisfying |a1, [b1] < (log T) ™! and w(t) = Lo, 7y(t) *. He showed that
- LTk L-R(a1+b1)/2
(112) Loy 160y (T) :/ (ca+ar+b)+ (%) C(1 = a1 = bn) Jw(t)dt + O(TH R+ 2105 7),

where there error term is uniform in a; and b;. His result for I (7) may be derived by letting a;,b; — 0

(Observe that the integrand is entire in a; and by since the poles cancel). In [34, Theorem 4.2, pp.171-178],

L1 5(¢) is the indicator function of B C R.



Motohashi used spectral theory to develop an asymptotic formula for
(1.13) Iay a2} b by (T) = / (5 + a1 +it)((5 +az +it)((5 + by — t)C(5 + bz — it).w(t)dt.
Let

CA+z1 +y1)¢(L+ 21 4+ 92)C(1 + 32 + y1)C(L + 22 + y2)
C2+x1 +x2+y1 +yo2)

Z($17$27y1,y2) =

Motohashi’s theorem implies that

I{alaa2},{b1752};W(T) ~ / (Z(alaaQablabQ)
(1.14) + (35) T T Z(=by, a3, a1, b) + (55) T T Z(<by, az, by, —an)
+ (ﬁ)ialiblz(ah _b17 —az, b2) + (i)itmibQZ(al, —62’ bl’ —a2)

+ (#)_al—az—ln—sz(—bl, —by, —aq, —02))W(t)dt.

This form of his theorem was observed in [8, p. 52, eq. (1.7.12)]. In fact, Motahashi’s result is much more
precise and he gives an exact formula for (1.13). Based on (1.12) and (1.14), it would be desirable to have a
generalization of these formulae for shifted moments of zeta with more than four shifts. Inspired by (1.14),
Conrey et al. [8] developed a conjecture for shifted moments of the Riemann zeta function. This shall be

described shortly. They considered the mean values

o k
(1.15) I 4.,(T) = / ( H C(E+a;+it)C(3 +b; — it))w(t)dt

— 00
where w is a suitable smooth function, J = {a,...,ax} and J = {b1,...,br}. We now explain the conjecture

of [8] for this mean value, but we shall follow the notation of [28]. In order to do this, we shall first define

several functions.

Definition 1. Let X be a finite multiset of complex numbers. We define the arithmetic function ox(n) to
be the coefficient of n=* in the Dirichlet series (x(s), defined by (x(s) := [[,cx ((s+ ). In other words, if

X =A{z1,...,z} then ox(n) = an---nk:n nyteemy R

Observe that if X = {0,...,0}, (x(s) = ((s)* where k = #X. Thus if, the elements of X are close to
zero, then (x(s) may be thought of as a shifted version of ¢*(s), where k = #X.

Definition 2. Given finite multisets X,Y of complex numbers we define the Dirichlet series.

ZX)Y(S) = Z w

The series Zx,y(s) plays an important role in the study of Iy j.,(T) and will occur frequently in this
article. It should be noted that Zx y (s) has an analytic continuation to the left of £(s) = 0. In fact,

Zxy(s)= ( H C1+s+ax+ y))Ax,y(s)
rzeX,yeY

where Ax y (s) is holomorphic in a half-plane containing s = 0. Precise formulae for Ax y(s) are given in

Lemma 4 which follows.



Examples. (i) Let X = {21} and Y = {y}. Then Zxy(s) = ((1 + s+ x1 + 1) and Zyq,3,0,3(0) =
¢(1 4+ aj + b1). Note that the integrand of (1.12) may be rewritten as

(Z{al},{bl}(o) + (%)wrblZ{fbl},{fal}(o))w(t)-

(ii) Let X = {z1,22} and Y = {y1,y2}. Then a calculation, using a formula of Ramanujan, establishes that

CA+s+z+y1)((1+s+a1+y2)C(1+s+z+y1)((1+s+a2+y2)

Z s) =
Xy (6) C2+2s+z1 +x2+y1 +42)

Observe that 24, a,},{61,6,}(0) = Z(a1, az,b1,bz) and that integrand in (1.14) involves Zx y(0) for various
sets X and Y of size 2 with entries chosen from {%a;, £b;} for j = 1,2. Based on these two examples, it is
reasonable to expect that the general case of | X| = |Y| = k is similar. In order to formulate the conjecture

on the size of I 3.,(T"), we require a definition.

Definition 3. Let I = {a1,...,ax} and let § = {b1,...,by}. Let ®; be the subsets of J of cardinality j and
let W; be the subsets of J of cardinality j for 0 < j < k. If8§ € ®; and T € V; then write 8 = {a;,,...,a;,}
and T = {by,...,b;} where iy < --- <ij andly < --- <l . We define (Js;d7) be the 2k-tuple obtained
from (ay,asg,...,ak;b1,ba,...,bg) by replacing a;. with —b;. and b;, with —a;, for 1 <r < j.

In order to explain this we give some simple examples.
Examples. Let J = {a1,a9,a3}, J = {b1,b2,b3}. If 8 = 0 and T = 0, then (Js;d7) = (J;7). If 8 = {a1}
and T = {bs}, then (Jg;J5) = (—bs,az,a3;b1,b2,—a1). If 8 = {a1,a3} and T = {bs, b3}, then (Js;dy) =
{ag, —ba, —b3; b1, —a1, —az}. If 8 =T and T = J, then (Js;dg) = (—J; —J). The cases of |§] = |T| = 0 are
called O-swaps, the cases of |§] = |T| = 1 are called 1-swaps, and in general the cases of |§| = |T| = k are
called k-swaps. This terminology is introduced in the series of articles [13], [14], [15], and [16].

We are now prepared to state the conjecture of Conrey, Farmer, Keating, Rubinstein, and Snaith [8] for
Iﬂ,a;w (T)

Conjecture 1. Let T > 3. Let I ={ay,...,a;}, let § = {b1,... by}, and assume that |a;|,|b;| < (logT)~*.
Let ®; be the subsets of I = {a1,...,ar} of cardinality j and let U; be the subsets of § = {b1,...,bx} of
cardinality j for 0 < j < k. Then for T sufficiently large

k
o0 t\—8-T
(1.16) Iy 3oo(T) :/ (X3 200.0(52)  +on))woy
oo V4 7r
j=0 8€d;
Tev;
where w is a nice weight function, and where we have defined
(1.17) (%)_S_T — (t/2m) Sees P Syery

for§ € ®; and T € ;.

Remarks

(1) The works of Ingham and Motohashi establish this conjecture in the cases |J| = |J| = 1 and |J| =
al=2.

(2) Conrey, Farmer, Keating, Rubinstein, and Snaith [8] made this conjecture with the o(1) replaced
by O(T~2+€). That is, the total error with the weight included is O(T'2+¢). They gave a heuristic

argument based on a “recipe” (see [8, section 2.2, pp. 53-56]).
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(3) There is some debate on the size of the error term in this conjecture. In the case k = 3 and all shifts
a; = b; = 0, namely I3(T), Motohashi [34, p.218, eq. (5.4.10)] has conjectured that the error term
is Q(T37°) for any fixed § > 0. Similarly, Ivic [30, p. 171] has conjectured that the error term in
this case is O(T3+¢) and Q(T'1).

(4) Zhang [47] studied a related mean value (the cubic moment of quadratic Dirichlet L-functions at the
central point) and found a main term plus secondary term of size Ti.

(5) Recent numerical calculations of these moments currently do not seem give to conclusive evidence

of what is the correct size for the error term.

In this article we shall prove that a certain ternary additive divisor bound implies an asymptotic formula

for I3 5.,(T) in the case |J| = |J] = 3. In the remainder of this article we consider J,J where
(1.18) J={a1,a2,as3} and J = {by,ba, b3}

consist of complex numbers with the size restriction

(1.19) il o3| < o

The family of additive divisor sums we are concerned with are

(1.20) Dygg(r)= Y os(m)ag(n)f(m,n)

r € Z\ {0} and f is a smooth function. Moreover, the partial derivatives of f satisfy growth conditions.
That is, there exist X,Y, and P positive such that

(1.21) support(f) C [X,2X] x [Y,2Y]
and the partial derivatives satisfy
(1.22) aly! fOI) (@, y) < P

In order to state a conjecture for the size of Dy, 5(h), we must introduce several multiplicative functions.

Definition 4. Let X = {x1,...,zx} be a finite multiset of complex numbers and s € C. The multiplicative

function n — gx(s,n) is given by

ZOO ox(pt)
j=0 " pis

(1.23) gx(s,n) = H

p*||n

S ox(p?)

Jj=0  pi°

In other words, for n € N we have Y .°_, ox(nm) _ g (s,n)C(s + 1) - (s + xp).

The multiplicative function n — Gx(s,n) is given by
p(d)d* — p(e) ne
1.24 = — ).
( ) GX(Svn) dz ¢(d) - es gax (57 d )

With these definitions in hand, we may state the additive divisor conjecture.

Conjecture 2 (Additive divisor conjecture AD (¥, C)). Let X,Y,P > 1 be positive parameters such that
Y < X, and f is a smooth function satisfying (1.21) and (1.22). Let I = {a1,a2,a3} and § = {b1,ba, b3} be

sets of distinct complex numbers satisfying |as|, |b;| < (log X)~*. Then there exist (J,C) where 9 € [3, 2)
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and C > 0 such that for every e1,e0 >0

Df;jyg(?") = Z Z H C(1—ay; +a‘j1) H (1 —bi, +bj2)'

i1:1 i2:1 j1¢i1 j2¢i2
> eo(r)Ge(1 —ai,,q)Gg(1 —bi,,q) [ s b
3 )Gl q2_;i1_)bif( 22 oy @D @) biady + O(POXTe),
a=1 max(0,r

uniformly for 1 <r < X3+ez,

Remarks.

(1)

(2)

(3)

The main term in the above conjecture can be derived by following Duke, Friedlander, and Iwaniec’s
d-method [18].
The leading term in the conjecture for > __dg(n)di(n + h) can be worked out with a heuristic

probabilistic calculation. This was recently done independently by Tao [44] and Ng and Thom [36].

n<z

In the case that o3(n) = og(n) = d(n), the divisor function, Duke, Friedlander, and Iwaniec [18]
have shown that an analogous result is available with an error term having ¥ = % and C = %.
Furthermore, they mention that improvements to their argument would reduce C' to % and more
elaborate arguments may lead to C' = %

Conrey and Gonek [11] have conjectured that in the case of Ds(x,r) (the unsmoothed version
Dy g(r)) that 9 = L is valid for 1 < r < \/z. Moreover, Conrey and Keating [15] have sug-
gested that ¥ = % is valid for 1 < r < =€, This is discussed extensively in Ng and Thom [36] where
a probabilstic argument has been given which suggests the error term for Dy(z,r) is uniform in the
range 1 < r < 217¢. Hence it is likely that the above conjecture holds in the wider range r» < X17¢2,
Blomer [5] has shown that there exists C' > 0 such that

Z a(m)a(n) f(m,n) < PCX3+O+e
tym—tan=h

where g(z) = > °_, a(m)m% e(mz) € Sk(N,x) is a primitive cusp form (holomorphic newform)
and © is a non-negative constant such that |A(n)| < n® for for eigenvalues A(n) of the Hecke operator
T, acting on the space of weight 0 Maass cusp forms of level N.

Recently, Aryan [2] has shown in the case that o5(n) = o3(n) = d(n), X =Y, and P = 1, that the
corresponding error term is O(X ztO+),

Unfortunately, for k£ > 3 this currently remains open. In the case of the unsmoothed sum Dg/(x,r)
uniform upper and lower bounds for r < z4, for A > 0, of the correct order of magnitude are known.
Ng and Thom [36] have established lower bounds and Daniel [17] and Henriot [27] have established

upper bounds.

We now introduce a convenient weight w. Let w satisfy the following:

(1.25)
(1.26)
(1.27)

w is smooth,
the support of w lies in [¢1 T, coT] where 0 < ¢ < ¢q,

there exists Ty > 0 such that for every ¢ > 0, T3 < Ty < T and WD) < T,

The main goal of this article is to show that Conjecture 2 implies Conjecture 1.



Theorem 1.1. Let J = {ay,a2,a3}, § = {b1,b2,b3}, and assume the elements of I and J satisy (1.19).
Assume Conjecture 2 holds for some positive 0 and C, then for any e > 0

Baum = [ (35 200.0(L) " uto

(1.28) g
\ T\ 14+C
ofrt+(1)
+ i
wherene =1if C>1andnec=0if 0 < C < 1.

+ ,',ICT%C—%-F%-FETO*C =+ T%+E>

From this theorem, we deduce an asymptotic formula with power savings error term for the sixth moment

of the Riemann zeta function.

Corollary 1.2. If Conjecture 2 (AD(9,C)) is true with 9 € [3,2) and C € (0,1), then there exists a
polynomial Py(z) of degree 9 such that

39
2

r +14C
(1.29) 13(T>=/0 (L +it)|°dt = TPy(log T) + O(TzFc—+%)

and in particular (1.4) holds. If Conjecture 2 (AD(9,C)) is true with ¥ € [§,2) and 1 < C < 3(1 1), then
foranye >0

(1.30) I(T) = /O I¢(% +it)|°dt = TPo(log T) + O(T"'~°).

Remarks.

(1) Conditionally, this confirms Conjecture 1.

(2) This result makes rigorous the argument in [11]. In their work they argued that the I3(T) is asymp-
totic to the sum of mean values of the shape fj%T |Dgo; (3 +it)|? dt where Dyo, (s) = 3, 7o, d3(n)n™*
and 01 + 02 = 3. They then invoked a Theorem of Goldston and Gonek [19] to asymptgtically evalu-
ate these expressions. This required certain conjectural formula for Dy(z,r) =", ., ds(n)ds(n+r)
with sharp error terms, uniform for r < /. -

(3) In a sense, this improves work of Ivic, who showed that certain asymptotic formula for Ds(z,r)
implies I3(T) < T'*¢ for any € > 0. A slight difference in our treatment is that we have chosen to
deal with the additive divisor sums corresponding to og(n) and og(n) where the elements of J and g
are < (logT)~1. This is a mild assumption and it is likely than any proof leading to an asymptotic
formula for Dg(z,r) will also provide an asymptotic formula for Dy,q 4(r).

(4) In our proof we follow an argument of Hughes and Young [28] who evaluated twisted fourth moment

/°° (%)ﬂ.tw% + it)|[*w(t)dt.

for coprime natural numbers h, k satisfying hk < T T Recently, this was improved by Bettin,
Bui, Li, and Radziwilt [4] to hk < T3¢,
(5) In the case that the additive divisor conjecture (Conjecture 2 (AD(Y,C)) is true with the best

possible exponent 9 = % and also C < 1 and Ty = T'¢, this result shows that error term for
I3 4., (T) is O(T3+¢). Note this matches with Ivic and Motohashi’s speculations on the error term
for 13 (T)

(6) Formulae and numerical values for the coefficients of P9 may be found in [8], [9].
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(7) From Theorem 1.1 we can also deduce formulae for the integrals

/ ¢ h)( + Zt)C(]Q)( + Zt)C(]s)( + Zt)C(h)( )C(]o)(é — it)C(jG)(% — it)w(t)dt,

assuming Conjecture 2. Such integrals can be used in detecting large gaps between the zeros of the

Riemann zeta function. For instance see Hall [20].

Proof of 1.2. In this proof J = {a1, as,as} and § = {b1, ba, b3} are each triples of complex numbers. We also
write @ = (a1, as, as), and b = (by, ba, bs). Set f(a@;b) = I Jiw(T) and

(1.31) g(a;z?):/oo (Z 3 2,.3,(0 ( ) S_T)dt.

j=0 8€d;
‘TG\I/

Note that f(a@;b) is holomorphic in a; and b; as long as |a;| < 3 and |b;| < 1. Also by Lemma 2.51 of [§]
and [6, Sections 4.4,4.5] g(a@;b) is holomorphic in a; and b; as long as |a;| < n and |b;| < n for a sufficiently

small fixed 7. It shall be convenient to set ay = —b1,a5 = —bs, and ag = —bs. We have

(1.32) o(@5) = / " w(t)Plog .. By,

where

(1.33)  P(z,d,b) = — Zl’ 2N 0 26) @) S ) gy, . dzs,
] 1 Hz 1(z5 — ai)

such that the integrals f are over small, positively oriented circles centered at the a;,

A(Zl,...,ZG): H (Zj—2i>,
1<i<j<6
3 3

G(Zl,...,ZG) = A(Zl,...,ZG)HHC(l + z; —23+j),

i=1j=1

Az, .-, 2 I;IHH< 1+z1 23+J /H 1_p2+z1)_1(1_p26(23ﬂ)_1'

It follows that for |a;l,|b;| < n that F(a; b) = f(a@b) — g(@b) is holomorphic in each of the variables.

Therefore by six applications of the maximum modulus principle

—, -

(1.34) [F(5:0)] < Max, cc, 4, ce, |F(@ D)

where 0 = (0,0,0), C; = {z; € C | |z| =}, and C; = {z € C | |z| = p;} for i = 1,2,3 where
7], |pj| < (logT)~t. It follows from Theorem 1.1 that
1+C . ,
|F(0; 6)|<<T5£’+E(1T,) T poTiC- Y rer=C | pi+e
0

and thus

oo oo t
/ |C(%+it)|ﬁw(t)dt:/ Pg(log2—>w(t)dt
T
1.35 - e
139 s e (T\IHC 3C—3+%+ep—C 3+
ot (£) perie- i gy i)
0
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where

(_1)3 1 G(Zlv"'726)A2(zlv'~~726) z/2 8 (zj—z34j
(136) P9($) = (3|)2 (271'2)6 e H6 ZG 6( / )27*1( 3+ )dzl . dZG,
i=1%

and w satisfies (1.25), (1.26), and (1.27). Now choose w™ (t) to be a smooth majorant of the Ly o7(t) with
wt =11in [T,27] and wt(t) = 0 for t < T — Tp and 2T + T, and satisfying (wt)¥) <« T, 7. Tt follows that

(1.37)
2T
t s, T\IHC
. _ < _ 9 S te( o
1(2T) I3(T)_/T Pg(log 27r)dt+O(T0(logT) 4T (T)

o) TR e +TH),

The term O(Ty(log T)?) arises from estimating the portions of the integral corresponding to the intervals
[T — T, T)] and [2T,2T + Tp]. In the case C < 1 the third error term is dominated by the second. Now

39
5 H1tC

choose Ty so that the first and second error terms are equal. Solving for Ty we find that Ty =T~ 2+¢ and
thus

(1.38) 13(27) — I5(T) < /

T

2T 39 y140 )

t
Pg(log —)dt + O(T o +e
27
A similar argument with a smooth minorant w™(t) of 1|7 27](t) establishes the same lower bound and thus

2T 39 1140 )

(1.39) I3(2T) = I3(T) = / Pg(log %)dt + O(T22T+E

T
Substituting 2% with j =1,2,..., we find

39 39

T t 9 L14C 39 114c
(1.40) I5(T) = / Pg(log 2—)dt+O(T72+c +E) = TPy (log T) +0(T—2+c +5)

0 s
for some polynomial Pg. In the case that C' > 1 the third error term in (1.37) is now present. We apply a
similar argument to as before, however we choose Ty = T'7°. Thus the error term in (1.28) is O((T% +

T%"‘%)TE). In order for this to be O(T'~¢) we require that ¥ < Z and <31 + 3% < 1. The second

condition is exactly ¥ + % < 1. Following the same argument as above we arrive at (1.30). ]

1.1. Conventions and Notation. In this article we shall use the convention that £ denotes an arbitrarily
small positive constant which may vary from line to line. Given two functions f(z) and g(x), we shall
interchangeably use the notation f(z) = O(g(z)), f(x) < g(z), and g(x) > f(x) to mean there exists
M > 0 such that |f(z)| < M|g(x)| for all sufficiently large z. We write f(z) < g(z) to mean that the
estimates f(z) < g(z) and g(z) < f(z) simultaneously hold. If we write f(z) = O, (g(z)), f(x) <4 g(x), or
f(z) =4 g(x), then we mean that the corresponding constants depend on a. The letter p will always be used
to denote a prime number. For a function ¢ : RT x Rt — C, ™" (z,y) = %%w(&y). Throughout
this article we often use the fact that t € [¢1T, 2T so that ¢ < T

Acknowledgements. Thank-you to Alia Hamieh for helpful discussions regarding this work.

2. THE APPROXIMATE FUNCTIONAL EQUATION AND THE DIRICHLET SERIES Zj 5(s)

One of the difficulties in evaluating mean values of the type (1.1) and (1.15) is that the integration is
on the line R(s) = 1/2 where ¢ does not possess an absolutely convergent Dirichlet series. Instead, in the

critical strip a standard tool is the approximate functional equation. The approximate functional equation
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for ¢(s)* for k = 1,2 were derived by Hardy and Littlewood. Their result asserts that

(2.1) C(s)k = Z dkn(sn) + x(s)" Z CZC( n) + error(s,x,y)

n<z n<y

where xy < (ﬁ)k There are several problems with this version of the approximate functional equation.
First, each of these sums have sharp cutoffs, that is, the sum over n does not decay smoothly. In practice,
it is convenient to sum over all integers with a weight which is smooth. The sharp cutoff functions lead to
poor error terms error(s,x,y). Another problem is the presence of the factor X(s)k. More modern versions

of the approximate functional (see [45, p.92, eq. (4.20.1)]) equation have the shape

(2.2) - Z B, 4 xS 5,0, ) + Ofexp(—et)

n=1
for certain smooth weights 14(n,z) and 7;(n,y) where zy < (5-)* and s = § + it. A classical approach
to evaluating (1.1) is to use the identity |¢(5 + it)|** = ((3 + it)*¢(3 — it)* and then to apply (2.2) with

s =1/2 £ it and then multiply out. Namely,

Iy 5.,(T) = /R ‘ i ZE(:Z Vt(n,x)rw(t)dt —|-/ ‘ i dkl(nzz 7 (n,y) th

2 e N de(m)di(n)
+/Rx(§ —it) Zn;l Wut(m , ) (n, y)dt + - -

The first two sums can be asymptotically estimated by standard mean values techniques if z,y <« T.
However, in the range T < z,y < T?7¢, then these can only be evaluated if sharp asymptotic estimates for
the correlation sums Dy (x,7) = >, . di(n)di(n + r). are available. An additional difficulty with (2.3) is
the presence of the oscillating factor_x( L _it)*. By Stirling’s formula these lead to integrals of the shape
Jw exp(it logw)
unappealing oscillating factors. One way to circumvent the factors x(% —it)¥ is to develop an approximate
functional equation for [¢(3 +it)|?* instead of ¢(§ + it)*. This idea is due to Heath-Brown who showed that

ve(m,x)vy(n,y)dt. These have to be treated with stationary phase and they lead to

(2.4) G rin=2 Y BBO o 0 for £ > 1
o 1m2+zt 55—t

where W, (u) is a smooth weight function supported in [1, ct*] for some ¢ > 0.

In this section, we prove an approximate functional equation for (s(3 +it)(s(5 — it) where J = {a1, as,as}
and J = {by, by, b3} analogous to (2.4). Recall that {5 and (5 are defined in Definition 1. The following
proposition is a straight forward generalization of [28, Proposition 2.1, p. 209] which handles the case
J={aj,as} and J = {by, by }. Before we state the proposition we must define a convenient polynomial which
will be used in the proposition and in our main theorem.

Definition. Let Qg 5(s) where J = {a1,a2,a3} and § = {b1,b2,b3} be an even polynomial satisfying the
following properties: Qg.5(0) = 1, Qg.4(s) is symmetric in the a;’s, and b;’s, invariant under a; — —a; and
b; — —b;, and vanishes at % - '“TH” and at other points obtained by the previous symmetries.

In our argument we shall express Iy 5.,(T") as a certain multivariable integral. This integral shall be

computed by moving contour integrals to the left. At one point some unwanted poles near s = % shall arise.

The role of Qg 4(s) is to cancel these poles and avoid extraneous terms.

10



Proposition 2.1. Let J = {a1,a2,a3} and J = {b1,ba,b3}. Let G(s) be an even, entire function of rapid
decay ? as |s| = oo in any fized strip |R(s)] < A with G(0) =1, and divisible by Qg 5(s). Let

1 G(s)
2. . = — -
(2.5) Vagie(2) = 5 /(1) L 9r.a(s,t)a ds,
where
1 . 1 )
3 5 ta;+s+it 5 +bi+s—it
r(2——)'(*——)

(2.6) g1.3(s,t) = H 1 1
; Staitit, |, =+b;—it
= (25— )T (*5—)

Furthermore, set

l—brL-‘th
(25 —)

l—ai—it

(2

3
(2.7) Xy gy = 75 ot [
i=1 ]_"( 2 5 )F( 8

Then for any A’ > 0, we have
(2.8)

m,n=1 <mn) % n

+O((1+ [th~=").

m,n=1

l+ai+it %erLf’Lt '
)

(m)o—s(n)

G5 +it)(z —it) = ) M(%%Vm;t(w?’mn)+X:La;t > =

(mn)?

Remark. This proposition can be generalized to the case I = {ay,...,ax} and J = {by, ...

6

—at
) Vg a(mmn)

abk}

Proof. Throughout this proof we let A(s) = 7~ 2T(£)((s) and we make use of the functional equation

A(s) =A(1—s). Set

3
(2.9) Agg(s) =T AG+s+ai+it)A(G +s+b; — it),
=1
and
1 G(s)
2.10 I = — Ag 4(s ds.
( ) Y7 o ) 2.3(s)

We shall move the contour to the left to the line R(s) = —1 and apply the residue theorem. The integrand

1

has poles at s =0 and at s = 5 —a; — it and s =

2
3
Agg(0) =TT A +ai + it)A(S + b; — it).

i=1

L b, —it with i = 1,2,3. The residue at s = 0 is

Each residue at the other poles is O((1 + [t|)~*) due to the rapid decrease of G(s) when |(s)| is large. Let

1 G(s)
_27'('2 (_1)Aj78(8) S

IQ ds.

By the residue theorem it follows that
L — Iy = Mg g (0) + O((L + |¢]) ™).

Now observe that
Arg(=s)=A_59(s)

2@ is of rapid decay if for every B > 0, we have |G(s)| < |s|=5 for |R(s)| < A and |S(s)| sufficiently large. An admissible G is

G(s) = Q7,3(s) exp(s?). Observe that A may be chosen to be any positive constant.
11



and thus

1
I, = - —J _j(S)G(S) ds.
2w J ’ s
Set
3
(2.11) Zoga(s) = [[C(3 +s+ai+it)(3+s+b; —it)
i=1
and
3 1 3 3
(2.12) Gyga(s) =m 27272 2=l TTT(L + 5+ a; +it)D(5 + 5+ bi — it).
i=1
A calculation using the definition (2.9) establishes that
(2.13) Agg(s) = Zg5.4(5)Gyg.(s).
It follows that
Gyg,i(s) G(s) 1 G_j,—1.(s) G(s)
Z, 4, (0) = 7/ Z, 4, () =—=—~—2ds+ — Z_g4 _9, (s) — ds
(2.14) -5t 2mi J ) ¢ Gjg:(0) s 2mi Jq) t Gy.5.(0) s
+O((L+[t)™).
It follows from (2.12) and the definitions (2.6) and (2.7) that
Gogi(s) _ 3 G g9(s) 3
2.15 e s,t) and —2——-2 =719 Xq 4.49_9 _q9(s,1t).
(2.15) Gog.0(0) 99.3(s,1) Go.g.0(0) 1.9:9-3,~(8,1)
The second equality makes use of the identity
G_5,9.(0)
X4 = —2=2
PTG ga(0)
By definition Zg 5,(0) = (s(3 +it)(5(3 — it). Combining the above facts
) , 1 _ G(s
G5 +it)¢y(5 —it) = T/ Zjyg.4(s)m 3393,3(8,t)L)d8

T (1) S
(2.16)

1 —3s G(s) —A

to— | Zegaa(8)m P X gg—g,—a(s,t)——ds + O((1 + [t))~7).
™ (1) S

However, we have the Dirichlet series expansions

oo oo

_ og(m)oy(n) - o_g(m)o_g(n)
Zyga(s) = ) ity demi 204 Zg04(5) = > S EPT Swa—

m,n=1 m,n=1

These expressions are inserted in (2.16). Since they are absolutely convergent on R(s) = 1, we may exchange

integration and summation order. Thus by the definition (2.5) we arrive at (2.8). O
The next lemma will give asymptotic estimates for the functions Xy 5.+ and g7 5(s, ).

Lemma 2.2. Ast — oo

t\— Z?:l(ai+bi)
(5 (1+0(t);

(i) gra(s.t) = (§) (L4 O(sP11):

12



: 3\ A
(iii) Forx > t3, Vj 4(z) = O((;) ) , where A is the constant given in Proposition (2.1).

Proof. The first two parts follow from Stirling’s formula and are technical calculations. Since the proof of
(i) is similar and easier than (ii), we leave it as an exercise. Their proof of (ii) will be deferred to Section
8 which contains Appendix 2. Proof of part (iii). Note that we can move the contour right to R(s) = A so
that

V(o) = 1A;G“G@wzms

T 2mi

s
2.17 )
( ) A+ioco |G S)| t3 R(s) C|S|2
o [Ty sy,
A—ioco |S| 8z t
for some positive constant ¢, by part (ii). It follows that Vg g(z) < (g)A as desired. O

o oamor(n) e

In our evaluation of Iy 4., (T) we shall encounter the the Dirichlet series Zj 5(s) = >~ == 34

now provide a factorization of this series into zeta factors times an absolutely convergent product near s = 0.

Lemma 2.3. Let J = {a1,a2,a3} and § = {b1,b2,b3}. We have that

3
Za(s) = ( TI CO+s+ai+5;))Asg(s)

ij=1
where
(2.18) Aga(s) = [[Apa.als)
P

and
(2.19) Apag(s) =Pp=,p= @, p= @, p " p 2 p % p571)
where

P(XlaXQ,XBa }/3.7 }/25 }/37 U)

=1 X1 X XsYoVs(X '+ X+ X (! 4+ Y5 Yy HU?

+ X1 X0 X3Y YoY%
(2.20)

(7 + X7+ XX+ X+ Xa) + (V7 + Y 4 YT )(V + Y + V) - 2) U
— X1 X0 X531 Yo Y3 (X1 + Xo + X3)(Y1 + Yo + Y3)U*
+ (X1 X2 X3Y1 Y5 Y3)2US,

Observe that this implies that Ag 5(s) is absolutely convergent in R(s) > —3 since for every e > 0 Apg 4(s) =
14+ O(p*2727).

Proof. Let s =2z + 1. It is shown in [8] that

Zw — ( I1 <(2z+ai+bj)>3w(z)
n=1 b=l

where

3 L — ;
(2.21) Bog(z)=[11D 1_ pbi—bi
P



It follows that Aj g(s) = [, Apy3,3(s) where

1

3 3 (1 - m)
22 sty = 30 T[T
=1i#

b 1-

It is proven in [8, p.66] that (2.22) is a polynomial in the p~®,p~% and p~'~*. Moreover, this polynomial

is explicitly given in [8, eq.2.67, p.64] and is exactly (2.20). O

3. A FORMULA FOR THE SIXTH MOMENT

We now possess all the tools and lemmas to commence with our evaluation of Iy 4., (T'). At the outset we

assume that the elements of J and J are all distinct. By Lemma 2.1 it follows that

Irgw(T) = i oalm)og () L O:O (T)_ithg;t(ﬂﬁmn)w(t)dt

m,n=1 (mn> 2 n

oo

" E: - H )/?3(%Q_ﬂxh&ﬂﬁﬂrmdﬂ%nnwdwdt+(7(/ w@ﬁ—%ﬁ)

m,n=1 -

= I(z) + 0(1).
Opening the integral formula for V' yields

(3.1) 1= i Ml'/mw(”gmn)s / i (m)_itm(s,t)w(t)dtds,

= (mn)z 2ms s oo \
and
N o - 1 G(s) s [T ymy it
1@ _ 0-_g(m)o -’J(”Ef/ 3 / X g0 gg_o(s, )(t)dtds.
(32) m;:I (mn)% 2mi Joy s (w*mn) oo (n) 25t 9-3,-0(8, )w(t)dtds

We now define the diagonal terms Ig) and I(D2) to be those terms above where m = n. Likewise the

off-diagonal terms I(O1 ) and Ig ) are those terms above where m # n. More precisely,

ad 1 G(8), 3 ov_s [T
. I(l) _ Uj(n)o'g(n)i/ 3, 2 s/ t t dtd
(3.3) D ;771 ami Joy s (m°n7) mga,a(s, Jw(t)dtds,
(2 _ - a,g(n)o,g(n)i G(8), 3 2\—s /OO
(3.4) I; _;771 2 Jy s (m%n?) _OOijg;t g_g._3(s,t)w(t)dtds,
(1) og(m)og(n) 1 / G(s), 5\ s /°° my
. I = - -
(3.5) s gﬁ:ﬂ 3 Jy s () gnals (tydtds,
(2 o_ g( G Y my it
36) IS _m%: (mn 2m/ mn) /_oo(n) X 9-g,-3(s, hw(t)dtds.
Summarizing, we have
(3.7) 19D =19 4+ 19) for j=1,2
and thus
(3.8) I () = (Ip) + 15)) + (1) + 1)) + 0(1).

14



The asymptotic evaluation of Iy ., (T') is reduced to evaluating Ig) and I ) The calculations of the Ig)

are straightforward. The majority of this article concerns the evaluation of the off-diagonal sums I ),

4. DIAGONAL TERMS

In this section we evaluate the diagonal terms Ig).

Proposition 4.1. For every € > 0, there exists 1. > 0 such that for T > T,

Jio / 205 (0)(t)dt

(4.1) 3 G M)

5 oo t %(a +b;) 1y
+ _ZlReSS=_ai2_bj Zjvg(QS)bej/; W(t)(g) dt+O(T4 E)
i,j= 2 oo
and
o0 3
2 i — 2= (ar+bi)
18 */ﬂo(%) Z_g._s(0)w(t)dt

(42) ai+b;

G 0o _ 3 3 (0 tbs

t Zk=1(ak+bk)+2(az+bj) 1
Z ReS _ay +b Zr 3j(28)+bj)/ W(t)(%) dt+O(T4+€)
=1 2 -
Proof. By (3.3), moving the sum inside the integral,
oo
(1) _ m- [ G
Iy _/ By o z:: ms (o) ;o
1 (s)
= — t)Zg.9(2s)dsdt.
/ t)g 0 s T 5.5(s,1)20,9(25)ds
By Lemma 2.2 (ii)
& 1 G(s) / t \3¢ _

4. I(l) :/ R P A R 1 2 1 ) )
(4.3) U= N (52) 1+ OUsitl ™)), 25)dsdt

By Cauchy’s theorem, we move the s integral to the $(s) = ¢ line where € > 0. On this line the contribution
from the O(|s?|t|!) term is

<. |t|35—1/ ‘ (5 +.Zu)| ‘5 + iu|2du < |t|3s—17
—00

e 4 qul
since G is of rapid decay. Since [*_w(t)[t[3 " dt < T3¢, it follows that
° 1 G(s) r t \3s
1“):/ t—/ — ) Z94(28)dsdt + O(T*).
W= g | T () Raaadsit 0@

By Lemma Zjg 5(2s) has poles at

—a — b
(4.4) s=0and s = % for i € {1,2,3} and j € {1,2,3}.
We now move the line of integration to R(s) = —1 + ¢, crossing the poles listed in (4.4). The residue at
s=0is
o
(45) / Zgﬂ(O)W(?ﬁ)dt.
—0o0
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—a;—bj

The residues at s = 5— are

G(=4bi) oo sy
£\ —2(aithy)
(4.6) Res _ —ai-v; Z3,3(25).2b.>/ w(ﬂ(*) ’ dt
=T e oo 2

The s-integral on the line R(s) = —1 + ¢ is

1 G t\3s * |G(—1+e+i
-— () (—) Z3.4(2s)ds < t7%+3€/ I&( 14 ° w)l |u|Bdu < f—iatse,
2mi J_14ey s \2m oo | =gt e+iul

and thus )
* 1 3s , 1
/ W(t) / @(i) 2373(2S)d8dt < / t*1+3s|w(t)|dt < T1+35.
(—%+e)

— 00 % S 2 T/2

Combining (4.5), (4.6), and this last estimate completes the evaluation of Ig). The evaluation of 1,32) can

be done in a completely analogous fashion. For instance, we can show that

o t o\~ Zioi(artbe) 1 G t\3s
I§)=/ w(t)( ) /(1) (8)(—) 2_g,9(2s)dsdt + O(T%).

o 2i s \2r

This formula is obtained from (4.3) by formally replacing J by —J and by replacing J by —J and by inserting

the factor (o)~ 2k=1(*+%) Doing this we obtain

e t o\~ Zioi(antbe) 1 G t \3s
Ig>:/7 w()(5-) /(1) (S)(f) 2 _9(2s)dsdt + O(T*).

o 2i s \2r

As before we shall move the contour in the s-integral left, passing poles at
b
s:Oands:% fore,5=1,...,3.

Calculating the residues as before, we arrive at (4.2). O

5. PROOF OF MAIN THEOREM AND INITIAL EVALUATION OF THE OFF-DIAGONAL TERMS

In this section we begin the evaluation of the off-diagonal terms I g ) In addition, we shall prove Theorem

1.1. This is the most involved part of the argument. We aim to prove

Proposition 5.1. For every € > 0, there exists T, > 0 such that for T > T,

15 + 1 = /_Z (22: > zjs’ag(o)(%)_s_q)w(t)dt

j=1 8€d;
(J'E‘I’j
3 G(L—bz) oo IV
t (a;+bj)
_ Z Res _ —aj—b; Zj’g(28)%/ (}J(t)(*) : ’ dt
(5.1) P 5 —oo 2m

y G<m> o t\— i1 (ar+br)+2(ai+b))
_ Z Res  a;+; 2_37_3(25)%/ w(t)( ) k=1(ar+br)+3 J dt
=T 2it0;
2

“ 2m
1,j=1
T \1+C
+o(T%+ (—TO) + O3+ e C g i)

uniformly for |a;, |bj| < (logT)~!.

The main theorem, Theorem 1.1, follows from Proposition 4.1 and Proposition 5.1.
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Proof of Theorem 1.1. Combining (4.1), (4.2), and (5.1)

b= [T (XX 2 ()" otos

0 =0 8ed;
(5.2) ey

. O(T¥+E (Tz)”c b THC— b+ S ter—C | T;ﬁ).
0
Notice that the sum of residues in (4.1) and (4.2) exactly cancel the two sums of residues in (5.1). Also,
the first terms in (4.1) and (4.2) are added into the first sum of (5.1) making the sum over j € {0, 1,2, 3}.
This result is valid if J and J consist of distinct elements. However, Iy 4., (T") is holomorphic if the a;’s and
b;’s satisfy |a;| < 1 and |b;| < . In addition, by Lemma 2.5.1 of [8] the first term after the equality in
(5.2) is holomorphic if |a;| < ¢ and |b;| < ¢ for a sufficiently small §. It follows that the error term in (5.2)
is holomorphic in the a;, b;, as long they are restricted to small enough disks and is thus continuous in the
a; and b;. By a continuity argument it follows that (5.2) holds in the case that J and J do not consist of

distinct elements. This completes the proof of the main theorem. O

We now begin an initial evaluation of I (01)_ The evaluation of I (02 ) will be similar and we shall only mention

the minor differences in the argument. Let

(5.3) FHo,y) = — /@ G(S)( ! )%/m (E)iitg(s,t)w(t)dt,

©2mi s \m3zy oo \y
so that (m)os(n)
(1) orim)og(n %

We now introduce a smooth partition of unity to simplify the evaluation of this sum. The main reason this
is done is to apply a version of the additive divisor conjecture where the variables are restricted to boxes of
the shape [M,2M] x [N,2N] with M =< N. Let Wy be a smooth function supported in [1,2] such that

(5.4) ZWO(%) =1

where M runs through a sequence of real numbers such that #{M | M < X} <« logX. See [21] for an

example of such a function. Thus
(5.5) 157 =" Iuw
M,N

where

m n

(5.6) T = e w;lUa(m)oa(n)W(M)W(N)f*(mn)

and W (z) = 2~ 2Wy(z). Note that we may assume MN < T3+ by Lemma 2.2 (iii). Observe that f*(z,y)

is small unless o and ¥ close to each other, due to the cancellation in (z/y)~%. This is since

L gt : = g Py (s 797
- z ,t tdt<<7,/ —g(s,Hhw(t)| <« L,
7] () et < s [ [t o) log(e/y) VI3

where we have integrated by parts j times. Therefore

\ T3¢ G(s)] e
) K — P; ds| €« ———.
) < og(aln) T3 /@ o el < T
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If

(5.7) |log(a/y)| > Ty '+,

then for any A > 0 we obtain
fr(z,y) < T35 <774
by choosing j > (A + 3)/e. Letting m —n = r, it follows that

Tin = \/% 3 o3 (m)ars ()W (YW (1) £ m,m) + O(T ),
720 m-n=r

|log(2)|< Ty e
Note that the condition (5.7) implies that % < M < 3N. Note that if M < N/3 or M > 3N, then
|log 2| > log(3/2). Also observe that (5.7) implies that M, N > Ty ~°. For the rest of the article we shall
write M =< N to mean that % < M < 3N. Thus we shall be restricted to evaluating Ips,y in the case where
M =< N. If x —y =r then

(5.8) f(z,y) = 1./(5) G(s)( ! )s%/oo (1+£)_itg(s,t)w(t)dtds.

2mi s \mdxy e

We have thus shown

Proposition 5.2. Let A > 0 be arbitrary and fized. Then we have for M < N

T
Tnn = S S aslm)oa(n)fmn) + 0T
0<|r|<<@T5 m—n=r
where
Cw(E\w (L)L [ G Ly T
(5.9) Ty =w(2 )W (%) 5 /(6) ; (7r3xy) n (1+y) o(s, w(t)dt ds.
For M % N, we have Iy < T4,
In summary, we have established
(5.10) 15 = > IMN-
M,N
Mx=N,MNKT3*¢
M,N>T) "¢

Note that the condition MN < T3%¢ can be added in by Lemma 2.2 (iii) which shows that Vj j is very
small if MN > T3¢, We are now in a position to estimate Ip; x by the conjecture for the ternary additive

divisor problem. It suffices to verify that f satisfies the following condition on its partial derivatives.

Lemma 5.3. We have for M < N that
(5.11) ahy? £ (2, y) < P

where P := (% + TlO)TE.
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This proof of this technical lemma is deferred to Section 8 (Appendix 2). By Conjecture 2

3 3
T
e = TN Y. 2> Il ca—ai+ai) [T < —bi, +05)
0<r|< ‘/é%iNTE i1=1142=1 j1#i1 JaFiz
X Z CZ(T)GJ( ;i;; _)bcfg( 2 ) / f(l’, 7 — r)x—all (SL’ . T)fblz da + O(gM’N)
=1 ¢ ! 2 max(0,r)
where
T M TA\C
12 I _ 4t M TN e

(5.12) M,N N Z (TTO + To)

0<r| < pEN T

Next we consider the contribution of the errors £, n to (5.5).

Lemma 5.4. Let € > 0 and T is sufficiently large with respect to €. Then

T\ 1+C
(5.13) > N < T%“(T) +neT3C- 3% e 0
0
M,N
M=<N,MNgT3t¢

where ne =14 C>1andne=0if C < 1.

Proof. We now estimate sum in the error term. Since M =< N, we have

T M T\C
e - Ta(i 7) M19+6
MN < 7 > T T
O<|r|<<%T5

T MN\C T\¢
— - I+e = V+e
0<|r|< 25 Te 0<|r|< 75 Te

as (z + )¢ <c 2¢ +y©. Thus

En N L T°

T //rMN\C T\¢ M
- e Mﬂ+€ E T*C + (7) Mﬁ+€7T6)
M ((T ) T T
0 0<|r|< 25 Te 0 0
T ;s MN\C T\ 1+C
<r—((F) M7 Y )T () M
M \\T, T
0 0<|r|< 4L Te

Observe that
(5.14) Y O« (H1e)=¢ ifo<C <1,

O<|T‘<<%T5 IOgT lfCZ].

Therefore, if 0 < C < 1, then

T M\C M 1-C T\ 1+C
8MN < TE (7) Mﬁ-‘rs (7TE> +T6(7> Ml?-i—s

(5.15) ! M\, T T

' T T\ 1+C T\ 14+C

— TE(Z*C) 7M’l9+€ TE ( ) M’l9+6 T€ (7) M’ﬂ+€
To + To < To
and it C > 1,
T /M\C T\ 1+C

5.16 € T (G0 ) MU T () M
( ) MmN <K M\, + T
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We have the bounds

T\ 1+C T\ 1+C
Te (7) M19+6 Te (7) Mﬂ—i—s
(5.17) MXN M<T=
T\ 1+C T\ 1+C
< T* (—) (T8+e)+e 1062 T < T+ (7)
TQ TO
and
(5.18)
Z Te%(¥)cMﬂ+e < les Z Z MC-1+9+e o Tl: (Tg+s)0—1+q9Ts _ T%C_%-F%J'_ETO_C.
31e 0 T 34 N=xM T
gl uert:
Therefore (5.13) follows from combining (5.15), (5.16), (5.17), and (5.18). |
This leads to the following result.
Proposition 5.5.
3 3
T\ 14+C
(5.19) =351+ O(T?“(?) n nCT%C*%%*fTO—C)
i1=1iz=1 0
where
1 T > Cz(?")Gg(l—ai ,l)Gg(l —bi ,l)
I((il)ﬂ'z) = Z Z \/W H C(l — @iy + ajl) H C(l - bi2 + bj2) Z ZQ—aIil —big -
M,N r#0 J17i1 J2Fi2 =1
Mx=N
X / flz,z —r)x™% (x — r)_blé dx.
max(0,r)

Note that we can add back in those M and N not satisfying M =< N by the decay of f*(z,y).

1 1
6. FURTHER EVALUATION OF I(()). EVALUATION OF ("

(11,i2)

By (6.6) the evaluation of I(Ol) has been reduced to the evaluation of I'"

(i1si2)" In this calculation we shall

encounter the Dirichlet series

o= c(r)Gy(1 — a1, 0)Gg(1 — by, ¢
(6.1) Hy gigany oy (5) = 303 DG =01, OCa(1 = by, )

£2—a1—b1 ra1+b1+23

‘
Moreover, Hy g.¢q,1,15,3(5) equals a product of ¢ functions times a nice infinite product Cg 5.4, , (5).
Proposition 6.1. (i) For R(s) > 1,

HJ,EJ;{M},{ZH}(S) = C(al +b1 + 25) H C(l +ag, + bkz + 25)65,3;01,171 (3)

k1#1
ko#1
where
(6.2) Cy.3:0a1). (6} (8) = [ [ @23 0ary. 03 (3 9),
P
(6.3) Cgifar}, (b1} (73 8) = Q(p™2,p~ %, p~ b2 p~ P p= p~ P pl pT29),
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and
(6.4)

UVXyYs 1-UX3X;'1-UYsY]!
1-UVXyYs 1—X3X,' 1-YsY, !
UVXyYs 1-UX3X;'1-UYyY,!
1-UVXyYs 1 X3X, ' 1YoVt

UVX3Ys 1-UXoX;'1-UYsY[!
1-UVX3Ys 1-XoX;' 1-Y3Y,!

UVX3Ys 1-UXoX;'1—-UYoY ! ol

1— X1y
1-UVX3Ys 1- XoX;' 1-YoYy! SR

X (1 — UVXQ}/Q)(l - UVX2Y3)(1 - UVX3Y2)(1 - UVX3Y3)

Q(X27X33Yéa1f3;X17Y1;U,V) = <1+ (

Moreover, we have

(6.5) Cy gt by (Pis) =1+ 0(p~272)

and hence Cg g.4,3, (0,1 (8) is absolutely convergent for R(s) > —1.
The following proposition shows that the local factors Cq g.¢4,1,5,3 (p; 5) satisfy certain identities at special

values of s, relating them to the local factors Ap.g (s) which occur in Lemma 4.

Proposition 6.2. Let J = {aj,a2,a3} and J = {b1,ba,b3}. We have the identitites

(i) ‘Aj{al},a{bl}(o) = 8373;{a1},{b1}(0)7

(i) Agg(—a1 —b1) = Cq g.(ar}, (o} (— 252,

(i) C.g:gar} fon) (—252) = Cg_0:{—by}.{—as} (25%2).

This proposition shall be demonstrated in Section 7 (Appendix 1). These identities shall be reduced to
polynomial identities. Alternately parts (i) and (ii) also follow from an identity in [15, Sections 3,4]. In fact,
their argument establishes such identities for general sets J = {aq,aq,...,ax} and J = {b1,ba,...,b;}. Based

on the previous propositions we shall establish the following formulae.

Proposition 6.3. We have

3 3 wo T\ 1+C s 1 e
00 XS, o(rt (D) e b
11,22
i1=14ia=1 T
where
](1) _ * ¢ t 7‘“17171‘22’ 0\dt
i) = | @O{5; Ias, 110, (0)
a b
G 172> oo L
1 2 N\ —2(ai, +biy)
(6.7) _QReSs_“ilzbizZJ,a(QS)(“E%/_mw(t)(%> dt

1
+ D Tlirinykake) T O(T779)
(k1,k2)
kliil,kQ;é’ig
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and

Oy Tbky
iz 2

1 oo t —Qiq —b
Tonimstia k) = 5 ][ €O =ai +a5) [T <0=bs, + bj2)/_ w(t)<§) a

J1#i1 Ja2Fi2

X ( H C(l +a;, + bl2 — Qg — bk2))<(1 — Q4 — biz + ag, + bkz)

l1#i1,la#12
(L1,02)#(k1,k2)

Ay ka
G-l

akl +bk2
) ap, +b
k1 TO%ko

X €9 {ai, }.{biy} (— 3

Remark. It should be observed that the formulae for I ((2‘11) i2) contains the extra unwanted residues T(;, i,);(k; k)

Notice that these do not appear in the formula for I(Ol) + 1(02 ) given by (5.1).

We can also prove an analogous result for I(O2). Note that by (3.6) and (3.5) we see that Ig) is the same
as Ig), except that J — —J and J — —J and there is the additional factor of Xy j.;. It follows that we may
obtain (6.9) from (6.9) by replacing each J by J, each J by J, and inserting a factor (%)~ 37 (@itb) which

comes from the Stirling approximation for Xy 5.+ as derived in Lemma 2.2.

Proposition 6.4.

(2) i 3 (2) 39 T\1+C 3c_1,439 c
(6.9) =3 ZI(Z.M)JFO(TTﬁ(E) +neTACT A 0,

i1=112=1

where

) 7 00 t\— Zk#il “k_zk¢i2 b
I(ilﬂé) o [m w(t) (%) Zjuk#il{ak}’guk¢i2{bk} (0)at

i1 +bi 3(a; i
1 G (“T2> o0 N = S (antby) 2 )
(6.10) - gRGSS:sz(%) ail;rbiz [ww(t)<§> di
1
) Witk ke + O(T27)
(Kk1,k2)
k1#i1,ka#ia
and
(6.11)
by tag
1 > N "Gz ko) ~OrGy kT
Wi iyt k) = 5 1] €O+ =03) JT <O +ai, - %)/ w(t)(ﬁ) a
J17i J2Fiz2 -
X ( H C(l - bll — Ay + bkl + ak2))<(1 + biz +a;, — bkl - akz)
li#i1, a7

(l1,12)# (k1 k2)
G(*i5)

br, tak,

b, +a
X Cog 0 (b} fai )} ()

where r(i1,k1) and r(ia, ko) are defined as follows:
Given distinct elements i,k of {1,2,3}, then r = r(i, k) is the unique number r

(6.12)
such that {1,2,3} = {i, k,r}.

Remark. (i) Notice that the formulae for I ((Z),ﬁé) also contain extra unwanted residues U(;, i,);(k; ko) that

do not appear in (5.1). Fortunately, we shall establish that the T, )k, ko) a0d Wi, 4y):(ky,ks) cancel each
22



other out.
(ii) It is possible to completely avoid having the T, i,):(ky ko) a0d U, 4s); (ks ,k,) terms. This can be done by
ensuring that @y 5(s) vanishes at some of these extra poles. We chose not to do this so that we could see

the cancellation between various terms.

Proposition 6.5. We have that

3 3
(6.13) DD DY Tlviaythrks) + Wiiria)i(hr k) = O-

i1=lio=1  (kq,k2)
k11, kaFio

Proof of Proposition 5.1. Combining Propositions 6.3 and 6.4 we see that we get exactly the first three terms
in (5.1) plus
(6.14)

3

39 T\1tC 30 1y80. 1
Z Z Z (T(i1,i2);(k1,k2) + u(h,iz);(khkz)) + O(T 3 +E(TO) + nCTzc 3+% +ETO c 4 T2+E).

i1=1liz=1  (ky,k2)
k1#i1,ka#io

However, Proposition 6.5 shows that the sum in (6.14) equals 0. Thus we establish (5.1). O

Proof of Proposition 6.3. We shall focus on one of the nine terms. The one with i; = 1, i = 1. We will

obtain the result for other indices just by permuting them appropriately. We have that

Z Z \/7 H C —a1 + ajl) H C(l — b + ij)i C€<T)GJ(1 _620;1(1,167)53(1 — bl’é)

r#£0 M,N Ji1#1 oAl )

oo

/mo:x(o,r) e - r)_blw<ﬂ)w<m]:fr> ﬁ /(E) GS) (ng(i — T))S/ (1 - %)itg(S,t)w(t)dtdsdx.

— 00

Since W (z) = 2~ 2 Wy(a) and Wy satisfies (5.4) we have
x _1 _1 T—T\ 1 _1
%:W(M)M 2 =277 and XN:W( I )N i=(z—r)72.

Using these identities

1 > Cg Gj 1—&1,E)G3(1—b1,£)
1y =13 TT e -a+a) TT¢0-brrb) 37 e
r#0 j1#1 Jo2#1 =1

> lay,  on-i-e, L[ G(s) 1 Sl/oo 1= Y (s, Ow(t)dtdsd
/ (Or)x i (I T) ’ 21 () S (71‘356(.%'—7")) TJ- ( aj) g(s, )W() SI'

max o0

We write I((1 )1) = JT 4+ I7! where It is the sum over r > 0 and I~ is the sum over r < 0. We have that

L eo(r)Ga(1 — ay, £)Gg(1 — by, 0
+:TZHC(1—CL1+%)HC(l—b1+baz Zce . gQalal)blg( L

r=1j1#1 Jo#l =1

oo
X / x_%_“l(x - r)_%_bl
T

% () GES) (7r3x(:1 — r))s% /jo (1 B %)itg(s,t)w(t)dtdsdx

o0
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and

_ > > eo(r)Go(1 — ay, £)Gy(1 — by, 0
=Ty J] ¢t —ai+az) [T (1 —b1+0) Z : ngal)ln( U

r=1j1#1 J2#1 (=1

o0 1 1
X / xTETY (g ) T2
0

L[ Gls), 1 sl [ it
— - 1+~ .
o M (ﬂ%(zﬂ)) T/_oo( +2) gls tpo(t)dtdsds

We let KT and K~ denote the triple integrals appearing in I* and I—. In K* we make the change of

variable x = ry 4+ r to obtain

o0 1 51 0
K+ :/ gTET (g — )T G(s)( (177 g(s, t)w(t)dtdsdx
,, 2m () S m3x(x —r) oo
_maby [y 4 1)k —lfbli/ G(s) t1 /OO (1 itg(s, t)w(t)dtdsd
e [ iy [ S8 y+1y) ) g )iy,
Similarly, by the variable change = = ry
_ 1 1, 1 G(s) 61 o
K = 3—a1 5—b1_~ / t)w(t)dtdsd
| et s ) )" s, )
e [ dmai g y-hen L[ G / Y (1 4 y) (s, (t)didsd
e [yt g [ O () g (14 3)"g(s, D (t)dtdsdy.
Therefore
N = = e(r)Gy(1 — a1, 0)Gy (1 — by, 0)
=T H C(l —a1 +aj1) H C(l —b +b]2 ZZ {2—a1—bipar+by
(615) J1#1 J2#1 r=14=1
%) L oy 1 G(S) 1 s 1 S .
1 a bi_—_ — 1 “g(s, t)w(t)dtdsd
/0 (z+1)72 "z i /(E) s (7r3r2(x+1)x) T[mx (L+2)g(s, Yhwo(t)dtdsda
and
oo o0
_ C/ Gjl_a’vg)GH(l_bvé)
=T H C(l —a —I—Cle) H C(l —b +b]2)zz (2—a1 1b1ra1+b1 :
(6.16) n#l J2#l r=1/=1
< 1y 1 G(s) 1 s _
ai(q bt — (] t)dtdsdx.
/0 R G 2mi Jioy s (7737“ x(m—l—l)) 100 (1+2)"g(s, thw(t)didsde

By the beta function identity B(u,v) = fooo 21 4+ 2) v e = Fr(zjfii”) for R(u), R(v) >0,

by — s+ it)T'(ay + by + 2s)
L(3+ a1 +s+it)

00 1
/ (CL’+ ]_) ’_al s— th—f—bl s+ztd (5
0

and
(3 —a; —s—it)l (a1+bl+25)
( + by +s—it)

oo
/ (1 + {E)_%_bl_s+it$_%_a1_s_itd(£ _
0
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Inserting these identities in (6.15) and (6.16)

= cp(1)Gy (1 —ay, £)Gg(1 — by, €
It = HC(l*alJrajl)HC(l*lerbjz)ZZ E j£2 a1 1b12aligl = )

J17#1 J2#1 r=1/=1

0 SD(L — by — s+ it by +2
/ w(t)i/ ﬁg(s,t)( 312) (3 b 13+Z) (al"i‘ 1t S)dsdt
21 Jioy s w3 (5 + a1 +s+it)

—0o0

and

e r)Gy(1 —a1,0)G4(1 — by, £
T = H C(l —a +aj1) H C(l —b +b]2)zz CZ( ) j(gifalafll;:aﬂgrg} = )

J1#1 2l r=1(=1

/OO w(t) e /<e) G(S)Q(S,t)( . )SF(% NG e PPN

27i s mir2 L(L+by +s—it)

However, we have the following consequence of Stirling’s formula:
Let 0 < R(s) < 1,t € R, and |a1], |b1| < (logT)~!. Then
I‘(% — b1 —s+1it)

— =028 oxp (T (—ay — by — 25))(1 + (AL
Y exp(5 (a1 — b1 — 25))(1+ O(=—))

and
I(3 —a; —s—it)

L(5 + b1+ s —it)
The proof of this is very similar to the proof of Lemma 2.2 (ii) and we leave it as an exercise. Thus

rGg(1 —ay,0)Gg(1 — by, l) [
I+: H C(lia1+ajl) H C(libl+bj2 Z j£2 ay 1b12a1igl . )/ W(t)

n#l J2#1 r=1{=1 -

1 G(S) 1 s —a;—b1—2s i 1+‘3|2
X 3 /(E) Tg(s,t)(ﬂ_gﬂ) T(ay + by + 2s)t exp (5(—a1 — by — 23)) (14 O(—7-))dsdt.

=t~ h 28 axp (T (g — by — 2s))(1+ O(LHELY),

and
= H C(l—al +aj1) H C(l_bl +bj2)ZZCZ Gj£2 a1a1;1rfib1 17 / w
11 i1 r=1 =1 ~
1 G(s) 1 \® —ar—by— i
e o s g(S’t)(77r3r2) D(ag 4 by + 2s)t™ 012 exp ( - ?( ay — by — 2s) ) + O( 1+| ‘ ))ds dt.

We now combine It and I~ to obtain
1) 4 e ()G (1 = ay, £)Gy (1= by, 0)
I(l 1) — ]EIIC(l —a1 + ajl)jEIIC(l - bl + b]2) ZIZI EQ a1 — bl/ral'f‘bl
1 2 r=1{=

* 1 G(S) 1 s —a1—b1—2s s 1+[s|?
/ w(t)5— L g(s,t)(ﬂgr,z) T(ay + by + 2s)t 2cos(Z (ay + by + 2))(1 + O(2HL))ds dr.

— 00
We then move the s integral to the line R(s) = 1 so that we may apply Proposition 6.1 (i). Moving to this

line, swapping summation and integration order

I(l) HCl—a1+aJ1 H(l—b1+bj2)/ w(t)
J17l J2#1 R
1 G
o [ 09 (s 07T+ 1+ 2672 cos( ar + by 4 29)(1 + O atas
(1)
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where Hy g.14,3,(5,}(s) is defined by (6.1). By Lemma 2.2 (ii), g(s,t) = (£)*(1 4+ O(|s|*t™!)) and since
R(s) = 1 we may apply Proposition 6.1 to obtain

o0

I((ll)l)_ [Tca-ai+a;) ] ¢ 1—b1+b72)/ w(t)x

J1#1 J2#1 >

Gy / Clar + b1 + 28)( H C(1+ ag, + by, + 25)) Cq.9:01,6: () Gls) X

(k1,k2)
k1#1ka#1

t \3s
(7) T(ar + by + 25)t~ =22 cos(Z (ay + by + 28)) (1 + O(2HL ) ds dt.
7

We now move the line back to (s) = e. It is at this point in the argument that we make use of the polynomial
Q1.5(s) which divides G(s). Observe that the factor in brackets has poles at 3 — % for ky # 1,ky # 1.
However, these are cancelled by the zeros of Qg 5(s). We now bound the contribution from the O(ﬁ)
term. We have | cos(%2)| < eZI¥G) for |z| > 1 and by Stirling’s formula |T'(z)| < \yIm_%e_l‘y‘ for |y| > 1.
Combining these facts it follows that |I'(a; + b1 + 2s) cos(F (a1 + b1 +2s))| << lu>*~2 where s = & +iu. Also,
since [((0 + iu)| < |u[*/? for o > 0 and €y g, 4, (s) = O(1) in R(s) > —3 + ¢, we find that the error term

contributes
o0 o0 11+ |ul? > w(t
/ w(t)/ | =LA ] 3 P ' Ll g, dt<</ tlEZdt < T

— 00

— 00 — 0o

It follows that I((ll)l) = J(1 %y + O(T¢) where

1 o 1
J(<1>1) I] ca—ai+a;) JT ¢ =01+ bh)/oow(t)—zm, . Clay + by + 23)( II <¢O+an +be,+ 23)) X
J1#1 J2#1 (k1,k2)
k1 #1 ka1

t \3s
Cq,5:a1,b1 () Gis) (%) T(ay + by + 2s)t™ " 017292 cos(Z (ag + by + 2s))ds dt.

By the functional equation in the unsymmetric form ¢(1 — z) = 2' =27~ % cos(%£ )['(2)¢(2)

J(ll)l)* HC a1+aj1 HCl*bl‘Fbjz)/oo W(t)271m'/()< H C(1+ak1+bk2+25)>><

J1#1 J2#1 (k1,k2)
k1#1,ka#1

t\ 3s
(2m) 02501 — ay — by — 28)Cy g0, 0, (s)® (5) mI T2 gy,
S

Further simplification yields

M - t el
Jo H C(I—ai+aj) H C(1—by+0j,) w(t)(%) 5 w(s)dsdt
n#l J2#1 M
where
6.17)  ofs) = ( I <t+an+b +2s))g(1 — a1 — b1 — 25)C g0 b (s)@(i)s.
1 2 »d,d1,01 s 27]—
(k1,k2)
k1 #1 ka#1

©(s) has poles at s = 0, s = —%, and —% for k1 # 1 and ko # 1. We further evaluate J (1 1) by

applying the residue theorem. We move the s contour left past $(s) = 0, picking up residues at the various
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poles. Let

(6.18) R1 = Residue(p(s), s = 0),
b
(6.19) Ra = Residue(p(s), s = —alTM),
b

(6.20) Rs = Z Residue(p(s), s = _ —2|— kz)

k1l

ka#1
By the residue theorem,

1 1
57 o(8)ds =Ry + Ry + R3 + 5 o(s)ds.
M i J-3+e)

Observe that for s = —1 + ¢ + iu the zeta factors in ¢(s) are bounded by (|u| + 1) for some A > 0 and
Cg.g:a1,b: (8) < O(1) since R(s) > —1 + . Therefore

1
21 (¢)

(o)
p(s)ds <« t_%H/ (lu] + 1)%] — & + &+l  min(1, |u|~*)du < T3te

—0o0

and

/OO w(t)(i)_’“_bli (s)ds dt < T5+e
—00 2 271 (1)S0 ’

In addition, as all the poles are simple we have the following residues:

Ri=( TI €Ot an +bi)) <0 = a1 = 51)Cs 0,0, 0),

(k1,k2)
k1#1,ka#1

X G(—‘“H’l) by -t
Re = ( H C(1+ak, + b, —ar — b1)>€3,3;a1,b1(—a1;— L) 7a1+2bl (ﬂ ;
2

(k1,k2)
k1#1,ka#1

. ap, +br
and the residue at s = —="5—2 equals

a b
Ry= T  cO+an +b, —ar, — i) — a1 — by + ak, + k)€ giqar}. o) (— 2522)

k1#L  Li#1la#1
ka#L (I1,l2)#(k1,k2)

G(*aklg_ka ) t akl;rbkz

_ Gy +biy %)
2

It follows that
(6.21) I{Y) =81 + 8+ 85+ O(T3+)

where

oo

81 = H ¢C1—ai+a;) H C(1=1b +b_j2)/ w(t)(%)*alfbl

J1#l Jo#1 >
(6.22) % ( I catan+ bkz))C(l — a1 = b1)Cy,g,qa,} {01} (0)dt
(F1,k2)
kAL ka1
oo t —a1—by
G © [ w0(3) " o0 Ot
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1 0o t 73(a12+171)
S =5 [] ci—arva) [T ci-bi+) [ win(57)
J1#l Jo#l
(6'23) i G(_alJQrbl)
X H C(1+ag, + b, — a1 —b1)Cq g.4a,1, (613 (—H57) 7a1J2rb1 dt,
key K
k1(7fi,kz;1
(6.24)
1 e t —ay—by—
so=3 [[¢0-a+a) [[ca-b+s) 3 [ o) T
J1#1 J2#1 (k1kz) ¥ 7

k1#1,ka#1
ag, +bk
ap. b G(_M)
H C(l + ar, + bl2 — g, — ka))C(l —ay — bl —+ Ak, —+ bk2)ejvg§{al}7{b1}(* kq 5 ko ) _ak1+2bk2 dt
2

11#1,12#1
(L1,l2)#(k1,k2)

We now provide further simplification of 8; and 83. We would like to prove that

o0 t —a1—by
(6.25) 51:/ w(t)( ) 210y, (0)dE.

o 27

Glancing at (6.22), this follows from the identity Ag, | 3,,,(0) = €5 3,14,}.{6,}(0) Which is Proposition 6.2
(1). Next, we show that

G %ﬁbl 00 t \—3(ai+b1)
(6.26) 8g = Ress_alzblzj,a(%)—aé—bl)/ w(t)(ﬁ) dt.

First observe that

1
Res, ey %1,5(25) = 5( I ¢t+atb—a- bl))Ag,g(—a1 ~b).
(i)
(i) 2(1,1)

Thus, in order to prove (6.26), it suffices to prove that Ajg(—a; — b1) = Ggyg;{al}y{bl}(—algbl) which is
Proposition 6.2 (ii). From (6.21), (6.25), (6.26), and (6.24) we arrive at (6.7) in the case that i; =iy = 1.

The case of general i1, 42, follows from a simple permutation of variables. O
Proposition 6.4 may be proven by a calculation analogous to the proof of Proposition 6.3.

Proof of Proposition 6.4. Rather than repeat the proof of Proposition 6.3 line by line we just mention the
differences in the calculation. First, we have the factor Xy j.; present which leads to an extra factor of
(6.27) Xg.go ~ (t/2m)~ Zi=(rtbe)

and second we have J is replaced by —J and J is replaced by —J or

(6.28) a; — —b; and b; — —a; for 1 =1,2, 3.

We could repeat exactly our proof of Proposition 6.3 and obtain the result. However, these differences

mean that the formula in Proposition 6.4 can be obtained by inserting the factor (t/27r)‘2i:1(ak+bk) and

permuting the variables as in (6.28). We shall obtain the formula for I ((12 )1) from I ((11 )1) by doing this. The
first term in I((i)l) is

oo t N\~ X (artbr)+ai+bs
(6.29) / w(t)<%) By Iy (O)dE.

—00
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Note that
(=3¢=b1y;s —Jg—ary) = {a1, —b2, —b3;b1, —az, —az} = (Jfaz,a3) Ifbo.bs})

o0 t —as—a3z—ba—bs
/ W(t)(%) Zg{az,a3)1g{b2,b3}(0)dt'

Similarly, we find the second term of I ((12 )1) is

and thus this equals

a1+by st
1R G( 2 ) E\ — 3 (aptby)+ 2ot
(00 2 ess_qz‘mzj’a(%)’“;bl/ w(t) (%) dt

and the third term is

by Fag
1 o0 t *22:1(Gk+bk)+a1+bl+¥
tplcosn-n)[[c0ra-a) ¥ [ w0(5) i
1#1 Jo#l (k1,k2)
k1#1,ko#1
X ( H C(l—bll—a12+bk1+ak2))§(1+b1+a1—bk2—ak2)

l1#1,l2#1
(I1,02)#(k1,k2)

G(2g2)

by +ak,

br, +a
X Cog g {—bip{—ar} (T %)

Thus we see that the above expression simplifies to

b, tagy

1 o t \ —@ry—br — 2
sy esn-b) [cara-a) ¥ [ wo(s) t
J1#1 J2#1 (k1,k2) >
1L ko 1
(6.31) X ( I -ty —a,+by +ak2))4(1+b1+01*bk1 — ag,)
L1 #L,la#1

(L1,02)#(k1,k2)
G(Patta)

by tak,

b ,
X G_g,_j;{—bl},{—al}( kl;akz)

where we recall that 7 = r1(1, k1) and ro = ra(1, k2) are defined by (6.12). Hence, we find that I((lg)l) equals
the sum of (6.29), (6.30), and (6.31). This is precisely (6.10) in the case (i1,42) = (1,1). The general case
follows from the permutation 1 — 47 and 1 — is. O

Proof of Lemma 6.5. Recall that we are trying to prove that

3 3
(6.32) DD Y Ttk T Uaria)ite b)) = 0-

i1=142=1  (kq,k2)
k1#i1,ka#i2

We aim to prove this by matching terms in the two triple sums. First we show that

(6.33) Ta,12,2) + Uasy22) = 0.
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We begin with a few observations. Note that

(6.34)
1 o0 £\ —a1—bi—22ft2
Ta122) = iC(l —ay +az)((1 —ay +az)C(1— by +b2)¢(1 — by + b3)/ w(t)(E) dt
X (14 az + by —az —b2)¢(1 + ag + b3 — az — b2)C(1 + a3 + bz — az — b2)((1 — a1 — by + az + by)
. G(702+b2)
% €y g {anh o0} (— 452 ——
2
1 > t o —a1—bi— 2242
= —5C(1— a1+ az)((1 = a1 +ag)C(L = by +b2)G(1— by + bg)/ w(t)(ﬂ) dt
X C(l +a3 — QQ)C(]. +b3 — bQ)C(]. +a3 +b3 — as — b2)<(1 — a1 — bl + as + b2)
. G(az-i‘bz)
X €y gifar} fbn} (— B52) —
2

since G is even. We now try to identify a term which will cancel with this. We shall look in the terms coming

(2)

from the second half of the approximate functional equation. We guess the correct term arises from I (3.3)

and is U3 3),(2,2)- Note that 71(3,2) = 72(3,2) = 1 so that

(6.35)
1 oo £\ —a1+b —22tez
Ue,ayi2,2) = 561+ 03 = b1)C(1 403 = b2)¢(1 +as —a1)¢(1 +as — az)/ w(t) (%) dt
X C(l*bl fa1+b2+a2)g(lfbl fa2+b2+a2)§(lfb2fa1+b2+a2)C(1+b3+a3fb27a2)
(be2)
x C_ J,—3;{—bs}.{— ag}( 2+a2) batas
2
1 o0 t \ —ai1t+bi— 7)2+a2
= §C(1 +b3 = b1)C(1 + b3 — b2)C(1 + a3 —a1)¢(1 +az — a2)/ w(t)(27r) dt
X C(l — b1 —a1 + b2 +CLQ)<(1 — b1 + bg)é_(l — ay —|—a2)C(1 +b3 + as — bg — ag)
o) CLE52)
X Cg, 9 (b} {—as} (PF2) —pro
2

Observe that the two expressions we are considering are negatives of each other and add to zero if

(6.36) Cogiar}fbr} (— 572) = Cog _5—by} {—aa} (PF2).

However, this identity is Proposition (6.2) (iii). Thus this establishes (6.33). More generally, we can show
that for (i1,i2) € {1,2,3}? and (ky, k2) € {1,2,3}? such that ki # i1 and ko # i that

(637) ‘I(il,iz);(kh/@) + u(rlﬂ“z);(k’h]w) =0

where we recall that r; = r1 (i1, k1) and ro = ro(is, k2) are defined by (6.12). By an analogous argument this

would be true if
br, +ak2 )

+by,

Ca.3:(as, 00} (7 72) = Cogmgifon o -ars}

This follows from Proposition (6.2) (ili) by a permutation of variables. Finally, summing (6.37) over
’L'1,Z.27]€1, kQ leads to (632) O
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7. APPENDIX 1: PROOF OF PROPOSITIONS 6.1, 6.2

We now establish Proposition 6.1.

Lemma 7.1. Let k € N, I = {1,...,k}, and X = {x1,29,..., 2} are distinct complex numbers.

prime and o > 0

k —T;x
(e —S—x —S—T p o XT;—XT -

(7.1) gx(s,p") = (L=p™>™) (L= p™> ™) Y e [ (A =pm) 7

i=1 p ten\{i}
Proof. We begin by recalling that

a+j
i Z;io %

(7.2) 9x(s,p’) = W

Jj=0 " pr*

We now find an expression for ox (p?) for j > 0. By multiplicativity

C(s+ 1) ((s+zx) Zax HZUX e,

p j=0
On the other hand

C(s+ax1) - C(s+a) = H(l —p eIyl (1 = ps ekl

P
and it follows that
(7.3) iax(pj)p‘js =1 —p o) (L= pT )T
j=0
By partial fractions,
k
(7.4) (L—p > ™)L (1 —p s =)~ 1 = Z(l e H (1= priee)~1
i=1 ee1\{i}

Expanding the right hand side by the geometric series

k
(75) (1 _p—S—ml) (1 _ —s Cﬂk _ Z H a:,—m —1 ip j —js
i=1rLel\{i J=0

From (7.3) and (7.5) we deduce for j >0

k
O'X(pj) — Zp—ﬂiij H (1 _pﬂﬂi—ﬂﬂtz)—l.
=1 LeI\{i}
Hence for a > 1
k 1— —x;— s)a
St =S T 0o
i=1 teI\{i}
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Thus

S ox(@ TP =p" Y ox()p*
=0

Jjza

= p** ( > ox(p)p 7 - af ox(p’)p~? s)
3=0

=0
(7.6) S
_ Qs p Ti—x;\—1
=P Zm IT a-»
i=1 LeI\{i}
k p T
_ T, —Tp\—1
_Zl_p—x7—s H (1-p 0
1=1 LeI\{i}

By (7.2), (7.3), and (7.6) we obtain (7.1) for a > 1. In the case that a« = 0, we observe that the left hand
side equals 1 since gx(s,n) is multiplicative and the right hand side also equals 1 by (7.4). ([

Lemma 7.2. Letk e N, I ={1,...,k}, and X = {x1, 22, ..

and j >1

.,k } be distinct complex numbers. For p prime

(7.7 Gx(s,p) =1 —p7>7") - (L—p~°7%)

Proof. By definition (1.24) it follows that

H (1 _px,ﬂ,—m[)—l-

LeI\{i}

: pd)d® 5~ ple) Pe N 1y, 1 :
S7p] = S, = S - Sap] + Sap]
x(s,77) 2%; ) 2 e 9x (5.5 ) = 9x o) = ox (s, 0™ 4 Sosax ()
=2 gx(s,p’) — - gx(s,p"7").
p—1777 p—1777
Inserting (7.1) in the last expression with o = j and o = j — 1 yields (7.7). O

Observe that we may apply the preceding result in the special case X = J = {ay, az,a3}.

Lemma 7.3. Let J = {a1,a2,a3} be distinct complex numbers, p a prime, and j > 1. Then

(7.8) Gqy(1 — ahpj) =p I

and, in particular,

1— p—1+a1—a3
1 — paz—as

PR S S

1— pa3_02

Gy(1—ay,p) =p @ +p @ —p 1Tamrmro

Proof. By Lemma 7.2 it follows that

] — —1+a1—a —1+a1—a 1
Gyl = an,p/) = (1= p7 (1 = p o)1 -y o)
3 pl—aij _ p(l—a1)—ai(j—1)
p p _ pai—ag)—1
X £ 1 _pfaif(lfal) H (1 p ) ’
=1 LeI\{i}

Note that if 4 = 1, then p' =19 — p1=e1)=a1G=1 = and (1 —p~')(p — 1)~' = p~'. Therefore

Gy(1— ahpj) =(1- p_H‘“l_a?)(l — p—1+a1—a3)

P (1= p)

X ((1 7p71+a17a2)(1 7pa27a1)(1 _ pazfag)
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Simplifying this yields (7.8).
With Lemma 7.3 in hand we can proceed with the proof of Proposition (6.1).

Proof of Proposition (6.1). (i) By ce(r) =30, du(%) we have

= Go(1— a1, 0)Gy(1 — by, 0) ()
Hj’35{a1}>{b1}(8) = Z (2—a1—b1 Ta1+b1+25 Z d'u a
r=1 /(=1 d|(l,r)

=Y Y dun(h)

(=1 =1 d|ldr

Gy(1—a1,0)Gg(1—b1,0)

where oy = and ¢ = a1 + by + 2s. Thus

¢2—a1—by
1 dp()
oo () = 3 o0 D du(h) 3 ~ =D ) — ()
=1 dje r=1,d|r =1 d|l
e e H(d)
@Y 0 Y () = )Yt e
=1 d|e (=1 dle
For p prime and j > 1 we have Zdlpj 51(‘,11 =1- —pll,c. By multiplicativity
— Ga(1— a1, p)Gg(1 = b1,07) 511 gy by _ _
1—c ) ) l—a;—b1—2s a1 —b1+2s—1
ZO‘E Zdl c*H< +Z (pi)2—a1—bs @) A —pm ))
= d|e P j=1
(7.9)

_ H (1 + Z Gy(1— al&g))iigl —b1,p?) (1 _pa1+b1+25,1))'

We shall begin by determining the first two terms of the last expression in brackets. By Lemma 7.3

p Jj=1

Gy(1—ay,p) = p~® +p ™% —p 1H0170708 and Gy(1 — by, p) = p 02 4 p s — p bbb,

Therefore the first two terms equal
10 1+ (pfaz +pfa3 _ p71+a17a27a3)(p7b2 +pfb3 7p71+b17b27b3)(p7172s 7pa1+b172)
( . ) =1 +p—1—a2—b2—2s +p1—a2—b3—25 +p—1—a3—b2—25 +p—1—a3—b3—2s +O(p—2—20' _’_p—2).

It follows that the sum over £ in (7.9) equals

C(1 4 az + by + 25)¢(1 + az + bs +25)((1 4 az + by + 25)C(1 + az + b3 + 25)Cq 5.4, 1,15, 3 (5)

where
(7.11) Cy.3:¢ary (013 () = [ ] Co.0:0ary {00y (03 9)
p
and
Cy.9:{ar} {01} (D5 8 (1+Z Gq( l—al,ﬁj))igzg b1,pj)(1_pa1+b1+2s—1))x
(7.12)

1 1 1 1
(1 - p1+a2+b2+23)) (1 - p1+a2+b3+28)) (1 - p1+a3+b2+25)) (1 - pltastbs+2s) )
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Hence
Hj,g;{al}){bl}(S) e C(al + by + 25)
C(1+ag + by +25)(1 + ag + b +25)C(1 + ag + ba + 25)C(1 + as + b3 + 25)6373;{(11}7{1,1}(5).

We now demonstrate (6.5). It will be convenient to set 7(p) = p~327b2 4 p=a27bs 4 p=as=bz 4 p=as=bs Note
that G3(1 — ay,p’),Gg(1 — by, p’) < p’c. Therefore

— Gy(1 —a1,p?)Gy(1 — by, p’) by+2s—1 - 1 N
3 , e B Y I o .
14+2s 14+20— —1)(1420
(p7) ~ (p €)d = pl—1)( )

1 1
p2+4072€ + p3+2072€ .

=2

<.

<

It follows from (7.10) and the last inequality that

2L Go(1 —a1,p?)Gy(1 — by, p?
(7.13) 1+ . al(ﬁi))uig 1P g _petbrzeety _ g B a0 oy

p1+2s
On the other hand, by multiplying out

Jj=1

1 1 1 1
(1 N 1+a2+b2+2s)) (1 T pltaxtbs+2s) ) (1 N 1+a3+b2+2s)) ( N 1+a3+53+28)>
(7.14) P P P P

r(p) —240
:1_p1+23+0(p 2-4 )

Multiplying (7.13) and (7.14) we obtain

1
(7.15) C,3:{ar} b} (Pis) = 1+ O(ﬁ)
The next step is to derive an explicit formula for Cy 5.¢4,1,15,}(5), namely (6.3). By (7.8) It follows that

Gj(l — al,pj)Gg(l — bl,pj) _ (p(1+a2+b2+25)j 1-— p71+a17a3 1-— p*1+blfb3

(p7)i+2s 1 — paz—as 1 — pb2—bs

—1+4+a1— —14b1 b
_’_p—(1+a2+b3+25)j 1 —p a1—as | _ P 1—02

1 — paz—as 1— pbs—b2
1 _p—1+a1—a2 1— p—1+b1—b3

—(1+a3+b2+2s)j
+p 1 — pa37a2 1 — pbg*bg,

~1+ai— —1+4b1—b
4 p~ (Fastbs+2s)j L—p 72 l—p ™ 2>.

1 — pa37a2 1 — pb37b2
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Since 3272, p N = %, it follows that

Co,3:{ar} (b} (D3 8) =
p-(Fastbat2s) | —ltai—ay | _ p—l+bi—bs
1+ (1 — p-(taztbat2s) | — paz—as 1 b bs

p7(1+a2+b3+2s) 1 _ p71+a17a3 1 _ pflerlfbg

+ 1— p—(1+a2+b3+28) 1— po2—as 1— pbg—bz

(7.16) . p(IFas+hat2s) | p-l+ei—az | = l+bi—bs

1 _ p—(1+a3+b2+28) 1— pag—az 1— pr_bS

_ pa1+b1+2571)

7(1+a3+b3+25) 1 _ m—14+a;—as 1 o~ 14b1—b2
+ p p p )(1

1 _ p—(1+a3+b3+25) 1 _ pag—az 1 _ pbg—bz

1 1 1 1
x (1 - p1+a2+b2+25)> (1 - p1+a2+b3+23)> (1 - p1+a3+b2+2s)) (1 - pltas+bs+2s) )

and thus Cg g.(4,1,{0,1(5) = Hp C3.9:{ar}.{b:} (03 8) where Cq g.44,1 15,3 (p; 5) is defined by (6.3).

Proof of Proposition 6.2. (1) In this proof we set

(7.17) ri=p , for1 <i<3,
(7.18) Y; = p~ Y for 1 <j <3, and
(7.19) u=p L

We aim to show Aj{al}7g{b1}(0> = Cy.9:4a1}.,{6:}(0). Note that (Jq,3,dp,}) = (—b1,0a2,a3; —a1,ba,b3). We
observe that Ay, | 3,, ,(0) is obtained from Ay 5(0) by the transformation a; — —b; and by — —ai. There-

fore

‘Aj{al}73{b1}(0) = HP(pb1’p—a27p—a37pa17p—b2’p—b37p—1) = HP(y;17$27m3a$;17y27y37u)'
p

p

On the other hand,

Cﬂ,g;{al},{bl}(o) = H Q(p_az7p_a37p_b21p_b3;p_alvp_bl;p_17 1) = H Q(x% T3,Y2,Y3;L1, Y15 U, 1)

p p
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Thus (2.14) follows if P(yfl,x%xg,xfl, Y2,Ys, u) = Q(x2, T3, Y2, y3; T1,Y1; U, 1). From the definitions (2.20)
and (6.4) this identity would read

1—yy 'womsay yays(yn + 25 ' + 23 ) (1 +yy ' s D’
o e oy (a5 g ) e as) + (b us 4 ) e +ae) - 2)
— g woxar Yyays (yrt + wo 4 x3) (@7t + v + ys)ut

+ (yf1$2$3$f1y2y3)2uﬁ

_ (1 n ( uzays 1 —uzzry' 1 — uyzy;
1 —uzgys 1—x3z5 1 —ysy;

uxroys 1— U£E3.’E;1 1-— uygyfl

1 —umoys 1 —w3wy' 1 —yoys '

uxrsys 1— uxgxl_l 1-— uygyl_1

1 —uzxsys 1 —xgxgl 1 *y3y2_1

uxrsys 1— uxgxl_l 1-— uygyl_1

)@ —uar'y )

X (1 = uway2)(1 — uzays)(1 — uwsyz) (1 — ur3ys).

1 —uxsys 1 —xorg' 1 —yoys "

However, this may be verified by a Maple calculuation. 3

1+b1

(ii) We now establish Ay g(—a1 —b1) = Cg g.1a,1,{6:} (— ). As above we have

Agg(—ar —br) = HP(CU1,9027$3,y1792,y37U$1_1y71) and
p

ej,H;{al},{bl}(—alJQFbl) = HQ(xQ,xg,yz,yg;xl,yl;u,xflyfl).
p

It suffices to verify P(x1, 22, 3,Y1, Y2, ¥z, uxy 'y~ 1) = Q(2a, 23, Y2, Y3; T1,y1;u, 27 “y; +). This too, was veri-
fied by a Maple calculation.

) (P2572).

(iii) Lastly, we show Cy 5.1a,},{5:} Now

Ca.3:{ar} {or 3 (— 22572) HQ oz pTee pT p Tt pT pT i p T p )

= Cg—9i{—bs}.{~as}

C_g,—0{ by} {—as} (25%2) =HQ(p‘“,p“"‘,pbl,p’”;pa3,pb3;p‘1,p_“2_b2)-
p

It suffices to verify Q(za, 23, Y2, y3; 21, Y150, 25 'y ) = Qe x5y Lys ay Y u, w2y2). Again this
was checked with Maple. O

8. APPENDIX 2: PROOFS OF TECHNICAL LEMMAS

In this section we prove several technical lemmas. We begin with a lemma which makes use of Stirling’s

formula.
8.1. Proof of Lemma 2.2(ii).

Proof. This argument follows closely [24, pp.390-391] We have

(8.1) logT'(z) = (2 — %)logz—z—i-%10g(27r)+0(\z|—1)

3The Maple file is available upon request from the author.
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where the branch of logarithm having argument in (—m, 7). Throughout this argument we use the notation

1 1 . S 1
(8.2) a—§<§+a—|—zt>, B=3. la < (logT) ™"

We begin by assuming |$(s)| < ¢z. Note that

log (o + B) — logI'(ar) = Blog(a) + (a+ B — L) log(1 + B/a) — B+ O(t™H).
Also

(+8- Dozt +8/0) - 5=+ 8- H(2+0((E))) 5= 0(2)
and thus log T(a + ) — log T'(e) = O(2). Tt follows that

1/1 , 1/1 , S |
(8.3) logl"(i (5 +a+it+ s)) - logF(§ (5 +a+ zt)) =3 log(%) + O(T)
Conjugating the above equation and replacing a by @ yields

1/1 , 1/1 , s ; s|?
(8.4) logF(§ (5 +a—it+ s)) — logf(§ (5 +a— zt)) =3 log(—%) + O(%)
Taking a = a; in (8.3) and a = b; in (8.4) we find

(8.5)
logF<%(% +a;+it+5)) - logI‘(%(% +a;+it)) +logf<%(% by —it+s)) - logF<%(% b —it))

- n((§)) vl

Exponentiating and taking the product over j = 1,2, 3 yields

=L (0(4) - ()" o),

Next we deal with the case |(s)| > tz. For convenience, we set s = o + ty. We shall use repeatedly the
Stirling estimate: for 0 < x <1 and |y| > 1,

7|yl

(8.6) ID(z +iy)| = (2m) 2 [y[*~2e™ 2 (1 + O(|2|7Y).

Thus if |y + t| > 1, then

1 ™

(A +a+it+s)] |t+a;+y|“/%—ze—z\t+y+a”l g |t+a//+y|“,§r”*%e*%\t+y+a”l
L(3(3 +a+it)) -

1" 1
‘t+2a“‘—ie—7”<tta ) t"1e 3

where a = o/ + ia”. Similarly, if |y — ¢| > 1, then

FEE +b—it+5s))
L(3(5+0b—it))

(8.7) by =t T e T

mt

e
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Thus if |y —¢| > 1 and |y + t| > 1, these combine to give
(8.8)

a'+o b'4o 1

. lt+a’ +y| 2 3|0 +y—t| 2 e Flttyta’ [+ ty—t])

(jt|=5e=%)?

[ty 2"y — ] F"de Tty

<

In the case that |y —t[ > 1 and [y +¢| > 1, we apply this with a = a; = a; + ia and b = b; = b + ib to
find that

sy e
|y+t| 2 7Z|y7t‘ 7 —1e 1 (It+yl+ly—t))
89 57t <<
(8.9) 99,3 (s,1)] E s
3y 1|5y — #]5 e TUtHulHly—tD
(8.10) <] = if y < O,

j=1

If y >t + (logt)?, it follows from (8.9) and the decay of e~™¥ that this expression is |gq (s, t)| < y?t37 1,
uniformly for o € [0,1]. In the case y € [t + 1,¢ + (logt)?] we have

o_ 1 o g_1 _ 7y 3
Iga,a(s7t)|<<((y+t)2 :(11’ ULBEL =) <t oy F i FOmn
T2e 2

< t%Jr%d(log2 t)% since 0 < 1
< y2t30_1,

since y > ¢+ 1 and o € [0,1]. For y € [Vt,t — 1] and o € [3, 1], we have

el 1 t 1
2z 2(t—y)2 2e 2 \3 t972\3
jan (s 1) < (LFEC2Y) ) < () =t <y,

(8.11) < tFHI(t—y)

This is straightforward in the case o = 1 since t < y2. In the case that o € [0,1) this can be checked by
considering the function h(y) = y2(t — y)i~% on the interval [v/%,¢ — 1]. Elementary calculus shows that
the minimum of % on this interval is > ¢35 and therefore (8.11) follows. Now if y € [t — 1,¢ + 1], then
(5 (34+b—it+s))

| F(%(%-&-b—it)) | < 1 and thus

(8.12) < tve 7.

it + 8T (§+b_it+8))| £+ o 4yt e’ .

Therefore |gg 4(s,t)| < (t3e~7)3 <« y?t37~1 since y € [t — 1,¢ + 1]. The cases for y < —/t are proven in a

similar fashion. O

8.2. Partial derivative bounds. We now provide the bound for the partial derivatives of f(z,y), defined

in (5.9), which occurs in the proof of Proposition 5.1.
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Lemma 8.1. For R(s) = ¢, |3(s)| < VT, i >0,

T gsa(s,t) < |8 T

(8.13)

T(1(L+a;+it+s))T(3(3+b;—it+s 3
Proof. Let pj(st) = ST Sy 6(50) = i logps(s, ) and O(s.t) = T3, 65(5,0)
Observe that

d
(814) %gﬂ,ﬂ(&t) = 9373(87t)®(57t)
and more generally, for ¢ > 1,
d’ 1—1\ d* d’
1 t — t)— t).
(8 5) dtlgg 8(3 ) u+vz_:il< m )dtugj,g(s7 )dtve(‘s? )

We now demonstrate that
d’U
(816) @@(S,t) <K |S|t7v71

which follows from

v

d
dtve (5,t) < |s[t™"! for j = 1,2,3.

Using these facts, we can prove the Lemma by induction. Observe that Lemma 2.2 (ii), (8.16) with v = 0,

(8.17)

and (8.14) imply £g(s,t) < |s|T3~!. This establishes the Lemma in the case i = 1. Now assume the
inductive hypothesis, %g(s, t) < |s|“T3~% for u < i — 1. Combining this with (8.16) and (8.15), we obtain
(8.13) for all i > 0, R(s) = ¢, and |3(s)| < VT.

Thus to complete the proof we must establish (8.17). Note that

0,(5,1) = V(3(3+a+it+s) T3 +a;+it)
° (%(§+a3+zt+s)) T(3(% +a;+it)
U(5(5 +bj—it+s) T'(3(3+b—it)

P33 +bj—it+s) TDEG+b—idt) )

However, we have the asymptotic expansion F%(z) =logz + O(]z|!) and thus
1.1 1.1
0,(s,t) = (10g(2(2+aj+zt)) log<2(2+aj+zt+s))
1 1,1
+10g(2(2+b it—i—s)) 10g<2(2 +b; —it)))—i—O(t‘l)

= %(log(t + 1) —log(t) + log |y — t| — log(t)) + O(t™1)

= %(log (1 + %) + log (1 - %)) +o@t )« %

since |y| < v/T. We now study the higher derivatives of ;. We have

= (37 () v (5) i

* (f)(v)(;(; +b; —it+s)) - (%)(v)(%(% + b —it)))

It is known that (see [1])

(8.18) (E)(v)(z) _ (71)1)71(”0 —1)! I O( 1 )




so that

d’ v—1 v+l 1
a0 = (0 ) (% +aJ+zt+s)) GG +a i)y

: ! —v—1

GGy (%(%erjfit))U)—’—O(t )

Writing s = € + iy, a; = a} +ia}, R = 53+ aj +¢€), and let L is the straight line from R + L+ aj) to
R+ 5(t+y+af) of length |y|. Thus
1 1 ’/ —u-1 ‘
- 27V dz
A +aj+it+s) (33 +a;+it)” L

1 1
R+i(t+y+a))) (R+i(t+al))

:‘(

< wlylmax 2] 77 < ofy|t T,
z€L

since |y| < V/T. In a similar fashion, we can show that
1 1
(A3 +bj—it+5)  (3(3+b;—it)
Combining these facts we derive (8.17).

< vlyltT L

Lemma 8.2. Let M < N and (z,y) € [M,2M] x [N,2N]. Then
M T
m, n r(m,n) m+n — i €
(8.19) xmy" f (x,y) < P where P (rTO + TO)T
where we recall that f is defined by (5.9).

Proof. Let f(x,y) = W(35)W(%)o(z,y) where

d(r,y) = 2im /(E) Gis) (ngxy)s% /OO (1 + ;>_itgg,g(s7t)w(t)dtds

Observe that for i > 0
dz’

i

d Yy
(4) (%) i
(8.20) dxiW<M) <W (M)M < M~ and dziW(N) <W (N)N <N« M~
We shall prove that
(8.21) 2™y (2, y) < P where P = (% + E)TE.
’I"TO TO

By the generalized product rule, applied twice,

fr ey = Y (il)W(“)(M)M Y (ﬁ)w(ﬁ)(%)N_%(h’m(x’y)

i1+i2=m Jitj2=n

< 2 @ 2 G Grey

(8.22) i1+iz=m Jitja=n
m . n .
KM ™NT" .| P*? .| P7?
) 2 <11> . Z, <Jl)
i1+ia=m Ji1t+Jj2=n

=M"T"NT"1+P)"(1+P)"

where we have used < M and y < N. Since P > 1, M =< x, and N < y, we obtain (8.19). We now reduced

the proof of the lemma to establishing (8.21). It will be convenient to compute the derivatives of x~° and
40



y~®. Define a sequence of polynomials P;(s) by Py(s) = 1 and Pj(s) = Hf;é(s + i) for j > 1. Note that

d‘ka $ = (=1)kP.(s)z=*~*. Observe that

1 G(s)y1N\s1 [ d™ d™ s _, _ r —it
2 (m.n) = =) = Sy (14 — .
(823) 0" (ay) = 5 /(5) 2(3) 7 o (1 D) mats ouoeds

By the generalized product rule

g (1) ) = Gt s (1))

(8.24)

It suffices to determine dd;v 1+ 5)*” where 0 < v < n. Write (1+ 5)’“ = F(G(y)) where F(y) = e~"% and
G(y) =log(1 + 7). By the generalized chain rule (Faa di Bruno’s formula)

(8.25) CZ, (1+5) " = 2o FG) - > e (m)Fmt ) (G H (GO (y

v
Yy dy Lmy+-+vm,=v
m=(m1,....,my)€(Zx0)"

where ¢,(m) = ——™ . We must now calculate the derivatives F4)(y) and G)(y). We have

mq 111 omy,, lolme
FU(y) = (—it)e=™ and thus Fmt-+m)(G(y)) = (—it)™ ™1 + 7)7". Observe that G(y) =
log(r +y) —log(y). It follows that GU)(y) = (—1)7~1(j—1)!((y+r)~7 —y~7) and by the mean value theorem

; T
Using the above facts

v

(8.27) ddy” (D) = (e ) 3 e (m)(—it)™ e TT(CD ()™

1-mi+-~4vmy,=v j=1
m=(m1,...,;my)€(Zx0)"

Next note that

v

(8.28) 1w 1;[ (Z,m) (C)mlJr-“ervW.

=1 Y

Furthermore, observe that 1 < " j=1m; < v. We group together those m such that k = Z;}:l m; and
obtain from (8.26) that

v

. 2.
(8.29) E(G%)) = () v

Thus (8.27), (8.28), and (8.29) imply

dv r it 7 —it v
8.30 (1+2) " =(1+5) Ty Y e
(8.30) a +y +y Y ; ko (Y)
where hy.,, (y) are smooth functions on [M, 2M] satisfying
r k
(8.31) By () = (5) .
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Therefore

g (1))

(8.32) whu—n k=1
= (—1)um(s)a:smysn< > (Z) (=1)"Pu(s) itkhk,v(y)> (1 + f)ﬂ‘t
ou,ri)—n k=1

From (8.23) and the last identity, it follows that

3 e = (o Y (1) G [ SRR (s

W, \u/) 2mi s m3xy
where
(8.34) Fu(s) = 2 /OO (14+5) " ntt.)gs. Doty
. v S) = =& - CANS] S, 1)w 9
T/ . Y Y)g
(8.35) hy(t,y) = > e (y).
k=1

We begin by bounding the portion of the integral in (8.33) with |3(s)] > /7. Thus we bound .Z,(s),
assuming |3(s)| > v/T. We have

1.7,(s)] < %/w itk(;)k(;)‘%a +O(|s|2 Hw(t)dt
T k=1

(8.36) < (g)s Z (%)k% /Oo (1 + |5/~ w(t)dt
k=1 >

TN\3 <~ /Tr\F
- - 71
<(5)" 3 () e

since |¥(s)| > V/T. Hence the portion of (8.33) with |(s)| > VT is

v

5 (1) f . (PR (TS (T

utv=n ‘$(5)|Z\/T =1
T * -1 " v Try* —B+m+n+1
< (27r3xy) r Z (u) Z (Z) /?R(s):e |s] |ds|
(8.37) v T k= S()=VT

v

< () THVD B S ()Y (2
utv=n k=1

Y
T 3e n T v
_ T —B+4+m+n (7T€)
< (27r5xy) (\F> u_i;:n (u) To ’

since % < % < T%T6 as r < %TE. Therefore this is

T 3e —B+m+n T £ " 3em—m—n T 5 " 3enm—mm—n
(%%y) (VT) <1+?OT> < T%T (TOT) < T3,
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by the choice B = 3(m + n). Thus we have
(8.38)

xmyrbqs(?n,n)(x’y) — (_1)m Z (n) (_1>u G(S)Pm(S)Pu(S) ( 1 )sfv + O(T6(3")T_mTan),

w) 2mi R(s)=e s w3y
utv=n SEIVT

We now provide a bound for .#,(s) in the case |3(s)| < v/T. For any £ > 0, integration by parts implies

() = (_;)e /_i (_5?02(1;2- T))Zj;(hv(t7y)g(37t)w(t))dt.

Setting ¢ = m + n we have

(8.39) Sy(s) = (= /OO (_“Sg(t _;F)T))mw :li;:; (hv(t7y)g(s,t)W(t))dt

— 00

and by taking absolute values

Y\t 1 T2 | gqmtn
(8.40) sel< (1) % /T | (Bl )als, 00
since log(1 + z) < |z| for |z < 3 and < % < 1. By the generalized product rule
am+n m+n\ da d® d
e (Bt (s, Dw(t)) = ") S () S —g (s )~ aw(t).
D (e (s, ) S () ) (e G0

t1t+iztiz=m+n
i=(i1,i2,i3)€(Z30)®

By Lemma 8.1 and i%w(t) < Ty ™ it follows that

dm+n

g (hq,(t, y)g(s, t)w(t)) < Z ( men > ( i th— |hk;v(y)0 |s|i2¢3e it

i1t+i2tiz=m+n 1,%2,%3 k=11
i1<v

v

<1 Y (X))

i1+i2tiz=m+n k=i
i1 SU

by (8.31) and since ;t%hu(t,y) =0 for 41 > v. Inserting this is (8.40),

v . mi+n—k . .
I, < IS‘m+nT36 Z ( Z Tk—zl (E) )T—'L2TO*’LS.
i1+t2+iz=m+n k=i, "
ilgv

Therefore

™y (z, y)

<G Z0)

(8.41) utv=n

G(S)Pm(s)Pu(s)‘ > (iTk_z-l(%)m“—’“)T_iQTO_@d‘S'

S

i1+i2+is=m4n k=i,
7;1 S’U

YY) X (S

ut+v=n i1+ia+iz=m+4+n k=i,
1SV
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Now

S (ST

i1+iztig=m+n k=i

i1 <v
ST T )
11<v k=i io+iz=m+n—i;

v

S (ST G

11<v  k=iy
v k .
y)ernfk: i ( 1 1 >m+n7z1
= — T 1= _—
Z ('I" Z T + T()
k=0 i1=0
v
y)m+nfk i ( 1
L4 k=i
< Z (7’ h TO
k=0 11:0

v y)m+n—k k( 1 )’ITL—H’L
= T = .
< Z (’I" T()

k=0

k )m+n7i1

Inserting this in (8.41)

as desired. 0
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