
Efficient Distributed Spatial Semijoins and their

Application in Multiple-Site Queries

Nawshad Farruque

Department of Mathematics and Computer Science

University of Lethbridge

Lethbridge, Alberta

T1K 3M4 Canada

Email: nawshad.farruque@uleth.ca

Wendy Osborn

Department of Mathematics and Computer Science

University of Lethbridge

Lethbridge, Alberta

T1K 3M4 Canada

Email: wendy.osborn@uleth.ca

Abstract—Applications exist today that require the manage-
ment of distributed spatial data. Since spatial data is more
complex than non-spatial data, performing distributed queries on
it requires the consideration of both local processing (i.e. CPU and
I/O) time and data transmission cost. To reduce these costs, one
can use a distributed spatial semijoin as it eliminates unnecessary
objects before their transmission to other sites and the query site.
In this paper, we propose both new approaches for representing
the spatial semijoin in a distributed setting, and their use for
processing distributed queries consisting of any number of sites.
We have tested our algorithms for four sites, which are a part of
an actual working distributed system. We compare our algorithms
with respect to data transmission cost, CPU time, I/O time and
false positive results. We show that our algorithms are superior
in many cases at optimizing the above criteria.

I. INTRODUCTION

Professionals from different application domains around
the world must deal with the management and analysis of
spatial data that is geographically distributed. One such ap-
plication domain is in emergency and disaster management.
One example is a distributed disaster management application
for earthquake detection across many Canadian cities at risk
[1]. Another example is a distributed emergency management
system for Australia [5]. In both cases, distributing and storing
the associated spatial data locally (as opposed to managing
it centrally) will contribute greatly to real-time response in
emergency situations. Therefore, spatial data has become an
integral part of the world, and storing and querying it has
become an important research subject.

Research in distributed spatial query optimization has
focused on different distributed spatial data operations and
distributed query optimization techniques to reduce the data
transmission cost, CPU time and/or I/O time [11]. Approaches
for processing distributed relational (e.g.alphanumeric) queries
mostly focused on reducing the cost of data transmission,
while considering the CPU and I/O time to be negligible [9].
However, due to the complex nature of spatial data, CPU and
I/O costs must also be taken into consideration [11]. Most
existing research explores the optimization of spatial operators,
such as the spatial join or semijoin, in a distributed envi-
ronment. Existing approaches can be grouped into distributed
spatial join based approaches [6], distributed spatial semijoin-
based approaches on a two-site or simulated multi-site system
[7], [12], [8], and distributed Bloom filter approaches [13].

However, very few explore the use of these operators for pro-
cessing a distributed spatial query that involves more than two
sites. Exceptions to this [13], [8] use a simulated distributed
environment or a parallel environment for evaluation.

Therefore, we explore new optimizations of the spatial
semijoin in a distributed environment, and their use in a
multi-site query processing strategy. We propose two strategies
for compactly representing the spatial semijoin that reduce
both the data transmission and local processing (CPU+I/O)
costs when applied in a distributed spatial query. We uti-
lize a Global Encompassing Minimum Bounding Rectangle
(GEMBR), which is partitioned, mapped and applied in two
different ways to approximate the objects in a spatial joining
attribute. The first is partition indices, while the second is
a Bloom filter [2], [3] representation. We apply each spatial
semijoin in a multi-site distributed spatial query processing
strategy. In addition, we also extend the two-site spatial
semijoin proposed in [12] for multiple sites so that we have a
benchmark strategy for comparison purposes.

We evaluate our query processing strategies in an actual
(i.e. not simulated on one machine) distributed system, and
show how our approaches outperform the extended spatial
semijoin based strategy with respect to processing time and
data transmission cost. We also compared our optimized ap-
proaches with respect to false positive rates.

II. BACKGROUND

In this section, we present background that is utilized in
our strategies - specifically, on the R-tree, spatial semijoin,
and Bloom filter. Our algorithm utilizes the R-tree [4]. The
leaf nodes of an R-tree contain all the minimum bounding
rectangles (MBRs) of the actual spatial objects, which are
actually the tuples of a spatial relation. The non-leaf nodes
contain the MBRs that encompass their child node MBRs.

A spatial join [11] combines tuples from two or more
spatial data sets with respect to a spatial predicate. This predi-
cate can be either a directional spatial relation and topological
spatial relation. A spatial semijoin [12] is a modified spatial
join operation which focuses on reducing data transmission
costs. The semijoin achieves this by: 1) transferring only the
spatial joining attribute and primary key from site 1 to site 2,
2) performing the spatial join of the spatial joining attribute
from site 1 with the relation on site 2, and, 3) transferring only

2014 IEEE 28th International Conference on Advanced Information Networking and Applications

1550-445X/14 $31.00 © 2014 IEEE

DOI 10.1109/AINA.2014.132

1089

the relevant tuples from site 2 back to site 1, which are joined
with the relation at site 1.

Many spatial operators can be optimized by applying the
following two steps [11]: Filter and Refinement. In filter
step the comparison between two spatial objects is evaluated
using the approximations for each object, which are usually
in the form of a minimum bounding rectangle (MBR). In the
refinement step, the comparison between two spatial objects
that pass the filter step is repeated with the actual spatial
objects themselves.

The Bloom filter [2] is an array of m bits which can be
used to compactly represent a set of n items and used for
membership queries. In the context of query processing, a
Bloom filter of m bits can be used to represent a set of n
distinct attribute values. Given all m bits initially set to 0, for
each attribute value in S, the Bloom filter uses k independent
hash functions, each with the range {1, 2,, m} to produce
addresses for k Bloom filter locations and to set the bit at each
address to 1. To check if an attribute value x is member of
set S, x is sent to the same hash functions to re-produce the
addresses. If the bits at the re-produced addresses are set to 1,
the x is a a potential member of S.

However, because hash functions produce collisions, there
is a certain probability of false positives occurring, which
means that an attribute value can pass the Bloom filter test and
not actually exist in S. The false positive rate is quantified in
[3] as the following. Given that hash functions are random and
all attribute values in S have been processed, the probability
of a bit being still 0 is:

pzero =

(
1− 1

m

)kn

≈ 1− e−
kn

m (1)

Hence, the probability of false positives occurring is [3]:

perror = (1− pzero) =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn

m

)k

(2)

It is found that perror is minimum [3] when

k =
m

n
ln 2 (3)

So in our Bloom Filter Based Spatial Semijoin algorithm
(BFSJ, see Section V below) to get the least possible false
positives we have assumed the bloom bit factor (m

n
) is 1.5,

and the number of hash functions required is approximately 1.

III. RELATED WORK

In this section, we present a summary of existing strategies
that process distributed spatial queries using spatial semijoins
[12], [7], [8], Bloom filters [13], or space partitioning methods
[10], [14]. Existing approaches in distributed spatial semijoins
can be classified as: 1) modification to the operator itself [12],
[7], and 2) general distributed query processing strategies [8].

Tan et al. [12] proposed two variants of the distributed
spatial semijoin in order to speed up its processing. The authors
represented the semijoin spatial attribute in two ways: MBRs

that are obtained from an R-tree, and one dimensional ordered
quad-tree-based locational keys. A performance evaluation of
both semijoin operators found the following: 1) The R-tree and
locational keys performed well when the data set is large, but
locational keys performed better when the data set is small,
2) The R-tree performed much better than locational keys
when CPU speed was high, and 3) Building an R-tree for this
purpose incurred significant CPU cost. The main limitation of
this work is that the evaluation took place on one machine
only that simulated a two-site distributed database.

Karam and Petry [7] propose a distributed spatial semijoin
operator that takes MBRs from different levels of the R-tree,
instead of from the same level of the tree. A performance
comparison versus the traditional distributed spatial join shows
that their semijoin is superior when applied to real world data.
However, CPU time is not considered, no comparison versus
the distributed semijoin proposed in [12] is found, and no
strategies that handle more than two sites were found.

Osborn and Zaamout [8] proposed a general distributed
query processing strategy that utilizes MBR-based distributed
spatial semijoins, and worked for queries that involved more
than two sites. The strategy transmits the smaller spatial
attributes to the sites that contain larger relations. After the
semijoin is performed on those sites, the identifiers are then
transmitted back to the originating (smaller) sites, and all
qualifying tuples are sent to the query site for the final
spatial join. An evaluation of their strategy with two-, four-
, and six-site queries, found that the strategy has a lower
data transmission cost - significantly lower in some cases -
over the naı̈ve spatial join approach. Limitations of this work
include no consideration of CPU costs, the implementation and
eavaluation on one machine only that simulated multiple sites.

Hua et al. [13] proposed a new spatial index structure, the
BR-tree, which is an R-tree augmented with Bloom filters on
every node that handle exact-match object queries. The leaf-
node Bloom filters are created from the leaf node objects, while
the non-leaf-level filters are created from its MBRs. Given a
BR-tree at every site in the distributed spatial database, the
central idea of the distributed query processing strategy is to
distribute replicas of all BR-tree root nodes at all sites. Any ob-
ject which is qualified by a root node is transmitted to the BR-
tree that contains the original root node for further processing.
One main limitation of this work are lack of support for spatial
joins or spatial semijoin strategies. Another limitation is that
it is unclear whether any significant geographical distribution
existed between sites.

Patel and Dewitt [10] propose the Partition Based Spatial-
Merge (PBSM) join, which handles the join of two spatial
relations that do not have pre-existing spatial indices. Their
strategy first partitions the universe that contains objects into
multiple partitions, before forming buckets of spatial approx-
imations from each relation that correspond to each partition.
Then each pair of matching buckets (one per relation) are
joined in memory using a plane-sweeping algorithm. Although
our strategies are based on a partition of space, there are
several differences between them and the PBSM strategy.
First, the PBSM strategy is proposed for spatial joins without
considering distribution across sites, while our strategies are
semijoin based and designed for multi-site distributed queries.
Second, it is unclear whether the same universe is assumed by

1090

Fig. 1. GEMBR Partitioning and Mapping

both relations, or if the universe of one relation encompasses
the other. Our strategy does not assume this. We determine
the global space encompassing all objects as part of our
partitioning (and our Bloom filter based) strategy. Finally, we
transmit representations of the partitioned space to/from the
query site, and only transmit to the query site tuples whose
approximations qualify for the query. Our strategy does not
form buckets from all approximations in order to perform
a distributed spatial semijoin. We use the partition to filter
approximations that do not participate in the final query.

Zhou et al. [14] extend the approach from [10] to work
across parallel machines. Although CPU and communication
costs are considered, as well as multiple sites, it is unclear how
geographically distributed the sites involved are for the parallel
strategy. Also, their strategy works with buckets formed from
across all approximations, while again, our strategies only use
the partition of space for compact representation purposes in
a distributed spatial semijoin.

IV. GEMBR PARTITIONING AND MAPPING

This section presents our core algorithms which are used
by the compact representations of the distributed semijoins.
First, the Global Encompassing Minimum Bounded Rectangle
(GEMBR) is calculated. Then, the GEMBR is partitioned and
all object MBRs are mapped onto it. Inside the GEMBR, all
objects MBRs from all relations of all sites will reside.

A. GEMBR Calculation

The GEMBR is the spatial extent of all objects that exist
across all sites in the distributed spatial database. The steps for
GEMBR calculation are as follows. First, the lower left and
upper right coordinates (i.e. (lx, ly) and (hx, hy) respectively)

of the Local Encompassing MBRs (LEMBR) are obtained
from each of the sites. A Local Encompassing MBR (LEMBR)
is the spatial extent of all spatial objects (or their MBRs) that
exist at one site. If an R-tree exists at a site, this LEMBR can
be extracted from the root node of the tree.

Then, the LEMBRs from each of the sites are sent to a
query site. All the (lx, ly, hx, hy) values of all the LEMBRs
are divided into four sets – lx, ly, hx, and hy – and each
set is sorted. From these ordered sets, the lowest (lx, ly) and
the highest (hx, hy) coordinates are identified. These are the
resulting GEMBR coordinates.

For example, suppose we have four LEMBRs from
four sites having the following (lx, ly, hx, hy) coordinates:
(0, 0, 4, 2), (1, 1, 6, 3), (2, 2, 8, 4) and (3, 3, 10, 5). After sort-
ing the values in the lx set in ascending order we have the
following: 0, 1, 2 and 3. We take the first value, 0, which is the
minimum lx value among all values in the lx set. Likewise, we
also find ly, hx and hy values as 0, 10 and 5 respectively. So,
the final GEMBR coordinate (Lx, Ly, Hx, Hy) is (0, 0, 10, 5).
This example is shown in Figure 1.

After determining the GEMBR co-ordinates, it is sent
to each of the sites in parallel. Then, using the partition
information n sent by the query site, the copy of the GEMBR
at each client site is partitioned into n × n partitions, and
indexed from lower left corner to upper right corner using
positive integer, i, where 0 ≤ i ≤ n × n, which we call
partition indices. Currently, the partition information n is a
constant value, which is stored at the query site, or can be
provided by the user when specifying a query.

Then, the object MBRs at each client site are then mapped
onto the partitioned GEMBR. If an R-tree is used, the object
MBRs can be obtained from its leaf nodes, which results in

1091

lower I/O costs.

B. GEMBR Partitioning and Mapping

After the GEMBR is calculated and transmitted to each
site, GEMBR partitioning and mapping takes place on each
site in parallel to partition the space and map the local object
MBRs to the local GEMBR copy.

First, the GEMBR space is partitioned into n partitions
along the x axis and n partitions along the y axis. The total
number of GEMBR partitions is n × n. The length of each
partition along the x axis and y axis is calculated. Referring
to the GEMBR example shown in Figure 1, where the GEMBR
has the lower coordinate (Lx = 0, Ly = 0) and upper
coordinate (Hx = 10, Hy = 5). Also, assume that the number
of specified partitions n along an axis is 5. We need to create
5 × 5 = 25 partitions. The length of each partition along x
axis is 2, and along the y axis is 1.

Next, the coordinates (lx′, ly′, hx′, hy′) for each partition
is calculated. The process proceeds through the partitions
in row-major order, starting from the lower left-hand cor-
ner (Lx, Ly) to the top right-hand corner (Hx, Hy) of the
GEMBR. After each partition is calculated, it is stored in an
array, which is called partition coordinates holder array (or
holder array for short). The index values for the holder array
will serve as the partition identifiers later on. Referring back to
Figure 1, the lower left partition is calculated first (i.e lx′ = 0,
ly′ = 0, hx′ = 1, hy′ = 2), followed by the next partition (i.e.
lx′ = 2,ly′ = 0,hx′ = 4,hy′ = 1), and proceeding towards the
upper right-hand partition, in row-major order.

Next, for each object MBR, the GEMBR partition (or
subset of partitions, which we will call the GEMBR subregion)
that encompasses the object is calculated. Because an MBR
can overlap more than one partition, this step determines the
region covered by the subset of partitions that contain an MBR.

For each object MBR, its lower left coordinate (lx, ly) and
upper right coordinate (hx, hy), is tested against the lower left-
hand and upper right-hand coordinates of each of the partitions,
starting from the lower left-hand partition 0 and proceeding
in row-major order to up the upper right-hand parition. If the
lower coordinate (lx, ly) is inside any partition, or on either of
the partition coordinates (lx′,ly′) or (hx′,hy′), the lower left
coordinates of a partition (lx′, ly′) is recorded as the lower
left-hand coordinate of the GEMBR subregion that encloses
the object MBR. Similarly, the upper right coordinates (hx′,
hy′) of a partition are recorded as the upper right-hand co-
ordinate of the GEMBR subregion if it contains the upper
right (hx, hy) coordinate of an object MBR.

Referring back to Figure 1, suppose we test the lower left
coordinates (lx, ly) of MBR 0 and find they are inside the
lower left (lx′ = 0, ly′ = 0) and upper right (hx′ = 1, hy′ =
2) coordinates of partition 0 (i.e. its (lx′, ly′) ≤ (lx, ly) ≤
(hx′, hy′)). We record (lx′ = 0,ly′ = 0) from partition 0 as the
lower left-hand co-ordinate of the GEMBR region containing
MBR 0. Then we check the upper right coordinate (hx, hy)
of MBR 0 and find that it falls inside partition 1. We record
as the upper right-hand coordinate of the GEMBR subregion
the (hx′ = 4,hy′ = 1) coordinate from partition 1. Therefore,
these lower left-hand and upper right-hand coordinates define
the subregion of partitions that encompass MBR 0.

Finally, for each object MBR and its corresponding subre-
gion found in step 3, all the partition indices of the partition (or
partitions that fall within the GEMBR subregion) are identified
by comparing each subregion with the partitions in the holder
array. The set of unique partition indices from all object MBRs
are returned for the final mapping result.

Referring back to Figure 1, we identify the partitions that
contain MBR 0, using the region defined by (lx′ = 0,
ly′ = 0) and (hx′ = 4, hy′ = 1) and the holder array
of partitions. This results in partitions 0 and 1 for MBR 0.
Therefore, partition indices 0 and 1 are returned for MBR 0.
Similarly, MBR 1 is mapped to partition indices 2 and 7,
MBR 2 to partition index 8, MBR 3 to partition index 11,
MBR 4 to partition indices 7,8,12,13,17 and 18, MBR 5
to partition indices 13,14,18 and 19 and MBR 6 to partition
indices 18,19,23 and 24, MBR 7 to partition index 21 and
MBR 8 to partition indices 22 and 23.

V. QUERY PROCESSING STRATEGIES

In the following section we propose three distributed spatial
query processing algorithms, two of which utilize our compact
representations of the distributed spatial semijoin: Geometric
Space Partition and Mapping Based Spatial Semijoin (PMSJ),
Bloom Filter Based Spatial Semijoin (BFSJ), and Distributed
Naı̈ve Spatial Semijoin (NSPJ).

Our algorithms are designed to work for any number of
sites. Among the sites, one is designated as the query site
where the user issues a query. All other sites are client sites
which process a portion of the user query. All the processes
initiate at each site at the same time when the user issues query
from query site. In the user query the user states the number of
partitions n along any one axis of GEMBR for both algorithms.
For the BFSJ algorithm bloom filter factor and number of hash
functions are also stated.

A. Geometric Space Partition and Mapping Based Spatial
Semijoin (PMSJ)

Our PMSJ algorithm performs optimization of distributed
spatial queries by utilizing the partition indices representation
of the GEMBR from all participating sites for distributed
semijoin processing. First, on each client site, the partition
indices are obtained from the GEMBR Calculation, Partition
and Mapping algorithms, and duplicates are removed before
transmission to the query site. This is shown in Figure 2.

Then, at the query site, the set of common partition indices
is calculated. A partition index is added to this set only if it
was sent from every client site (i.e. at every client site, the
partition contained one or more objects). Then, the final set
of common indices are sent back to each client site. This is
shown in Figure 3.

On each client site, all the tuple ids of the corresponding
object MBRs that reside in the partitions contained in the set
of common partition indices are retrieved. Finally, on each
client site, for each qualifying tuple id, the corresponding exact
spatial object are retrieved and sent to the query site for the
refinement step. This is depicted in Figure 4. Note that in
Figure 4 each spatial object is represented with its tuple id
due to limited space in the diagram - however, it is the objects
that are being transmitted to the query site.

1092

Fig. 2. Sending Partition Indices to Query Site

Fig. 3. Calculation and Transmission of Common Partition Indices

Fig. 4. Object Transmission to Query Site

Fig. 5. Mapping Partition Indices to Bloom Filter

Fig. 6. Calculation and Transmission of Common Bloom filter

Fig. 7. Bloom Bit to Partition Index Mapping and Object Transmission to
Query Site

1093

B. Bloom Filter Based Spatial Semijoin (BFSJ)

Our BFSJ algorithm creates and uses Bloom filter-based
representations of the GEMBRs from all participating sites
for semijoin processing. Given the query information, which
consist of the number of the partitions along each axis n, the
number of hash functions k and the Bloom filter factor Bf ,
the size of the Bloom filter is calculated based on following
formula: Bs = Bf × (n× n) at each of the client sites. Then
all the Bloom filters are initialized to all 0s.

Then, the Bloom filter representations of the partition
indices from each site are constructed and sent to the query
site. Bloom filter creation is done by a module called the Bloom
Filter Processor. For this, the Bloom Filter Processor takes
the set of partition indices that are returned from the GEMBR
Calculation, Partitioning and Mapping functions, and sends it
to the hash functions. The hash functions calculate and return
the corresponding Bloom filter indices, which are then set to
1. This is shown in Figure 5.

At the query site, the Intersected Bloom Filter Processor
module finds the common Bloom filter by performing a bit-
wise intersection of all Bloom filters in order to find out the
common bloom bits from all the bloom bits representations
and send the common or intersected bloom bits to each of the
client sites. This is depicted in Figure 6.

At each client site, the common Bloom filter bits are sent to
the Bloom Bits to Index Mapper module, which maps the bits
to the corresponding partition indices. This is done by taking
each partition index and if it is found to be 1 in the Bloom
filter (after being hashed by all the hash functions), it is kept.
These partition indices are eventually the common partition or
intersected partition indices.This is shown in Figure 7.

At each client site, all the tuple ids of the corresponding
object MBRs that reside in the partitions contained in the set
of common partition indices are retrieved. Finally, on each
client site, for each qualifying tuple id, the corresponding exact
spatial object are retrieved and sent to the query site for the
refinement step. This is also depicted in Figure 7. Note that
in Figure 7 each spatial object is represented with its tuple id
due to limited space in the diagram - however, it is the objects
that are being transmitted to the query site.

C. Distributed Naı̈ve Spatial Semijoin (NSPJ)

The Distributed Naı̈ve Spatial Semijoin(NSPJ) algorithm is
an extension of [12] for more than two sites. We use this as a
benchmark strategy for comparison purposes.

All the object MBRs at each client site are sent to the query
site. If the spatial relation at a client site is indexed by an R-
tree, then the object MBRs can be obtained by scanning the
leaf nodes of the R-tree. At the query site, all object MBRs
from all sites are checked for overlap. All qualifying object
MBRs are sent back to their respective client sites and their
corresponding tuple ids are extracted. Then, all the qualifying
exact spatial objects for those tuple ids are sent to the query
site for the refinement step.

VI. PERFORMANCE EVALUATION

In this section we present our performance evaluation of the
BFSJ, PMSJ and NSPJ strategies. Our first goal is to compare

the BFSJ and PMSJ strategies against the NSPJ strategy with
respect to processing and data transmission costs. Our second
goal is to compare the BFSJ and PMSJ strategies with respect
to false positives.

We have implemented our algorithms in a four node peer-
to-peer distributed system1. The nodes are situated in four
geographically scattered locations. Our query site is located
at the University of British Columbia (node name: Orcinus)
and the client sites are located at the University of Victoria
(node name: Hermes/Nestor), Simon Fraser University (node
name: Bugaboo) and the University of Alberta (node name:
Jasper)2. We have also used a parallel distributed shell (PDSH)
utility3 for co-ordinating the overall spatial semijoin process in
parallel at each client site, as soon as the user issues the query
from the query site. We have implemented all our algorithms in
C++ and organize the total process to be done in the distributed
environment with the help of Bash shell scripting.

For our evaluation, we used randomly-generated synthetic
data. We chose to use synthetic data so that results and trends
could be determined for specified numbers of tuples and a
random data distribution. Each client site contains five spatial
relations that contain 2000, 4000, 6000, 8000 and 10,000
tuples respectively. Every spatial relation contains one spatial
attribute, which contains a 10-unit by 10-unit square. For each
relation, a space size of

√
#tuples∗10 units is used to contain

all randomly generated objects. Each relation is indexed on its
spatial attribute with an R-tree4.

We compare the BFSJ, PMSJ and NSPJ algorithms with
respect to the processing (CPU+I/O) time and data trans-
mission cost. The CPU+IO time was measured in seconds,
while the data transmission cost was measured in the number
of kilobytes that were transmitted over the network. We
also compare the BFSJ and PMSJ algorithm based on the
percentage of false positives. As the NSPJ uses the object
MBRs directly for overlap checking, it does not produce any
false positive result in the filter stage. Therefore, we have
only calculated the percentage of false positives for BFSJ and
PMSJ. The percentage of false positives is calculated based on
the following formula:

f =
#TuplesBFSJorPMSJ −#TuplesNSPJ

#TuplesBFSJorPMSJ

× 100 (4)

A. Results

We show comparison of processing time (PT items in
each legend) and average transmission cost (TC items in each
legend) for 30x30, 60x60 and 90x90 partitions in Figures 8, 9,
and 10 respectively. We also show the false positive percentage
comparison in Figures 11, 12 and 13 for the same. From the
figures, we observe a common trend of increasing transmission
cost and increasing processing time while decreasing false pos-
itive percentages with the increase in the number of partitions.

1) Transmission Cost: We calculate the average transmis-
sion cost in kilobytes (our “inefficiency index” measure for

1Westgrid, www.westgrid.ca
2https://www.westgrid.ca/support/systems
3PDSH utility obtained from code.google.com/p/pdsh
4R-tree code obtained from www.rtreeportal.org.

1094

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

30x30 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Fig. 8. Processing Time and Transmission Cost for 30 × 30 Partitions

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

60x60 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Fig. 9. Processing Time and Transmission Cost for 60 × 60 Partitions

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

In
e

ff
ic

ie
n

c
y

 I
n

d
e

x

Tuples

90x90 Partitions

PMSJ TC

BFSJ TC

NSPJ TC

PMSJ PT

BFSJ PT

NSPJ PT

Fig. 10. Processing Time and Transmission Cost for 90 × 90 Partitions

transmission cost, as displayed in the Figures) of data trans-
mitted from client sites to query site and vice-versa in parallel.
We plot this data against the number of tuples. By comparing
the algorithms we find that the PMSJ and BFSJ algorithms
outperform the NSPJ algorithm by a factor of approximately
6 on average with respect to transmission cost. For example,
in Figure 10, we see a significant difference in transmission
costs between both the BFSJ and PMSJ algorithms and the

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a

ls
e

 P
o

s
it

iv
e

 %

Tuples

30x30 partitions

PMSJ

BFSJ

Fig. 11. False Positives Comparison for 30 × 30 Partitions

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a
ls

e
 P

o
s
it

iv
e
 %

Tuples

60x60 Partitions

PMSJ

BFSJ

Fig. 12. False Positives Comparison for 60 × 60 Partitions

0

1

2

3

4

5

6

2000 4000 6000 8000 10000

F
a
ls

e
 P

o
s
it

iv
e
 %

Tuples

90x90 partitions

PMSJ

BFSJ

Fig. 13. False Positive Comparison for 90 × 90 Partitions

NSPJ algorithm. This cost for NSPJ is very high with respect
to number of tuples. This observation is true as well for
Figures 8 and 9. The reason is that we send more compact
approximations of MBRs (i.e. Bloom filters and partition
indices) to and from the query site in our algorithms, than
in NSPJ where we send the actual MBR approximations of
the spatial objects. We further reduce the transmission cost by
sending unique partition indices which are covered by object
MBRs on a client site to the query site for semijoin processing

1095

or to the Bloom filter processor for Bloom filter creation.

We also compare both the BFSJ and PMSJ algorithms
and observe that these algorithms perform very closely, with
BFSJ having a transmission time gain of approximately 1.12
over PMSJ. This is due to sending Bloom filters, which
only contain boolean values and are more compact than the
partition indices. This is seen in Figure 8 for 30×30 partitions
where both the strategies almost tied and in Figures 9 and
10 respectively where we can see a little performance gain
of BFSJ over PMSJ for 60 × 60 and 90 × 90 partitions. We
see that overall transmission cost increases linearly with the
increase of partitions (transmission cost increases roughly 1.9
times when partition number increases three times) and number
of tuples(transmission cost increases 3.3 times when number of
tuples increases five times) in BFSJ and PMSJ. This happens
because more partitions results in more data transmission. This
observation is evident in Figures 8, 9 and 10.

2) Processing Time: For processing time we calculate the
amount of time the algorithms take in seconds (our “ineffi-
ciency index” measure for processing cost, as displayed in the
Figures) which includes both CPU and I/O times. We plot
this against the number of tuples in Figures 8, 9 and 10. We
find both BFSJ and PMSJ are on average 18 times faster than
NSPJ for 30×30, 60×60 and 90×90 partitions. For example
Figure 8 shows that there is a significant difference between
BFSJ, PMSJ and NSPJ. This is because in the BFSJ and PMSJ
algorithms, we use more compact representations for semijoin
processing, which are just integers or boolean values, but in
NSPJ we are using the actual object MBRs for the same, which
incurs extra CPU time.

We see very little performance gain of PMSJ over BFSJ,
which is roughly on average 1.38. This is because there is extra
processing for creating and setting bits in the Bloom filters,
and remapping partition indices using the Bloom filters. This
observation is consistent for 60×60 partitions shown in Figure
9 and 90× 90 partitions shown in Figure 10. The increase of
the processing time is linear with respect to the increase in
number of partitions, as the semijoin operates on more data.
For example, if we increase the number of partition three times,
the increase of processing time is 2.9 times. This is also clearly
observed in the Figures 8, 9 and 10.

3) False Positive Comparison: With respect to the false
positive percentages, we find that the difference between BFSJ
and PMSJ is more prominent with the increase in number
of partitions. For example, there is a tie between PMSJ and
BFSJ for 30 × 30 partitions, which is depicted in Figure 11.
However, the superiority of PMSJ becomes significant when
the number of partitions increases as depicted in Figure 12
and Figure 13. PMSJ is always ahead of BFSJ by a factor of
1.02 on average, which we observe from the little performance
gain of PMSJ over BFSJ we see in Figures 11,12 and 13.
With the increased number of partitions, the false positive
percentage is linear with a gain of 1.02 (which means the
false positive percentage decreases) on average for both of
the PMSJ and BFSJ algorithms which is also observed in
all the three Figures. With more partitions we obtain more
accurate mapping of object MBRs in GEMBR and thus the
false positive percentage decreases. PMSJ predominates in this
case over BFSJ because, BFSJ takes the partition indices as

its input so it should have at least the false positive percentage
as the PMSJ with the false positive hits of its own.

VII. CONCLUSIONS

In this paper, we propose two representations of the spatial
semijoin and their use in multiple-site distributed spatial query
processing strategies. To further reduce the data transmission
and processing costs, we converted the geometric represen-
tation of object MBRs to simple integers or binary bits. We
evaluated our algorithms in a real life peer-to-peer distributed
system with synthetic data sets. We found that our optimized
algorithms perform significantly better than the naı̈ve strategy.

In the future, we are looking towards testing our system
against a larger number of distributed nodes. We are also
looking for improved strategies for partitioning the GEMBR
space to gain improvements in processing speed. In addition,
we will explore more compact representations of the object
MBRs for efficient semijoin processing. Finally, we will test
our BFSJ algorithm by using different types of hash functions
and number of bloom filters and analyze the performance.

VIII. ACKNOWLEDGMENTS

We are grateful to WestGrid and Compute Canada-Calcul
Canada (www.westgrid.ca) for the use of their resources.

REFERENCES

[1] R. Abdalla and V. Tao. Integrated distributed GIS approach for
earthquake disaster modeling and visualization. In Geo-Information

for Disaster Management, pages 1183–1192. 2005.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, July 1970.

[3] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. In Internet Mathematics, pages 636–646, 2002.

[4] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, pages 47–57, 1984.

[5] T. Hunter. A distributed spatial data library for emergency management.
In Geo-Information for Disaster Management, pages 733–750. 2005.

[6] M.-S. Kang, S.-K. Ko, K. Koh, and Y.-C. Choy. A parallel spatial join
processing for distributed spatial databases. In Proceedings of the 5th

International Conference on Flexible Query Answering Systems, pages
212–225, 2002.

[7] O. Karam and F. Petry. Optimizing distributed spatial joins using R-
trees. In Proceedings of the 43rd ACM Southeast Conference, 2006.

[8] W. Osborn and S. Zaamout. Multiple-site distributed spatial query
optimization using spatial semijoins. In Proceedings of the 10th

International Baltic Conference on Databases and Information Systems,
pages 11–19, 2012.

[9] M. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Springer, 2011.

[10] J. Patel and D. DeWitt. Partition based spatial-merge join. In
Proceedings of the 1996 ACM SIGMOD international conference on

Management of data, pages 259–270, 1996.

[11] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall,
New Jersey, 2003.

[12] K.-L. Tan, B. Ooi, and D. Abel. Exploiting spatial indexes for
semijoin-based join processing in distributed spatial databases. IEEE

Transactions on Knowledge and Data Engineering, 12(6), 2000.

[13] H. Y, B. Xiao, and J. Wang. Br-tree: A scalable prototype for supporting
multiple queries of multidimensional data. IEEE Transactions on

Computers, 58(12):1585–1598, 2009.

[14] X. Zhou, D. Abel, and D. Truffet. Data partitioning for parallel spatial
join processing. Geoinformatica, 2:175–204, June 1998.

1096

