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Abstract

We survey someof the methodsusedfor manipulating
representing and optimizing multi-valuedlogic with the
view of both building a better undestandingof the more
specializedbinary-valuedlogic, as well as motivatingre-
seach towardsa true multi-valuedmulti-level optimization
padckage.

1. Intr oduction

Logic designis normally thoughtof in termsof binary sig-
nals;howeverfor higherlevel designit is naturalto think of
variableswith symbolicvalues.For example,it is easierto
conceve of atraffic light processowith a signallight tak-
ing on threevaluesred,yellow, andgreenratherthandeal-
ing with lightg = 1, light; = 0 to standfor the light being
red. The procesf convertingthesemulti-valuedvariables
to binary signalsis calledencoding.In mary casegheen-
codingis doneinitially, mostly arbitrarily, andthenbinary
valuedlogic synthesiss appliedto theresultingcircuit. An
alternatve is to first manipulateand optimize the logic di-
rectly asmulti-valuedlogic. Thentheresultingform of the
network canbeused(possibly)intelligentlyto selectagood
encoding.Oncetheencodings done furtheroptimizations,
notpossiblein the purelymulti-valuedform, canbeapplied
to the resultingbinary network. The intelligent encoding
shouldtake into accounthis additionaloptimizationwhich
will dependbnthefinal binarycodesselected.

However, this alternatve approachis not usedoften be-
cause:

e Thereis no good multi-valued multi-level logic op-
timization packagefor a multi-valuedlogic network
(suchasSISfor binarynetworks).

e Although mary of the algorithmsin logic synthesis
have beengeneralizedo multi-valuedlogic, a com-
pletesuiteof algorithmshasnot beendeveloped

e Theencodingproblemis hardfor largecircuitssinceit
is difficult to seehow anencodingdecisionultimately
affectsthelogic that resultsafter powerful logic opti-
mizationsareapplied.

Multi-v aluedlogic is a generalizationOneadwantagen
dealingwith generalizationss thatit canleadto increased
insightinto the specializegproblem.A generalizatiorelps
differentiatethe specialpropertiesfrom the generalones.
Oftena propertythatis known for the specialcasecanbe
ageneralpropertyin disguiseor a specializatiorof amore
generalproperty Whenthis is understoodfrequentlythere
is a senseof "oh, is thatwhat | wasreally doing”. Thus
the attemptto generalizenelpsunderstandhe specialcase
better

In this paper we surnwey several of the conceptsalgo-
rithms, and optimizationsthat have found extensionsfrom
binary to multi-valuedlogic. We first dealwith two-level
logic wheremostof the conceptglirectly generalize Then
we look at several methodsfor representingnulti-valued
logic; sum-of products(SOPs),multi-valued decisiondi-
agrams(MDDs), and multi-level multi-valued networks
(MV-networks). We look at algorithmsfor manipulating
Booleannetworks (decompositionfactorizationusingker-
nels,andextensionsof don’t cares(SPFDs))and seetheir
generalizationso MV-networks. We discussextensionsto
apopularRTL languaggVerilog)to MV-variablesanduse
this to build a front-endto VIS, an MV-logic optimization
andverificationpackageFinally, thestateassignmenprob-
lemis revisitedandwe concludethe paperwith adiscussion
of someopenproblemsandwork for the future.

2. Notation

Definition 1 A multi-valued variable X; cantake on val-
uesfromP = {0p,01,"*-,0p -1}

Since each symbolic value a; can be associatedwith
a unique integer i, we henceforthonly consider multi-
valued variableswith integer values, for uniformity, and
R={01,-,|R|-1}.
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Figure 1. A Multi-v alued Function of 2 vari-
ables

Definition 2 A vertex is a point in the spaceP; x P, x
e X Pn

Definition 3 A multi-valued function ¥ is a function
which mapsverticesin Py x P2 x --- x P, to Py, formally,
f:Plszx---XPnl—)P:r.

An exampleof a multi-valuedfunctionis shovn in Fig-
urel. AssumethatP; = {0,1,2}, P, = {0,1}, andPs =
{0,1,2}.

If Py ={0,1,%}, ¥ is a multi-valuedfunction with a
binary-valuedoutput. If avertex (minterm)is mappedo the
1 value,it is saidto bein the on-setof F, mappedo 0, in
the off-set andto x, in thedon't-care set The binaryideas
of implicants, prime implicants, covers, and prime covers
canbe extendedto multi-valuedfunctionsfor functions ¥
with binaryvaluedoutputs.

Definition 4 A multi-valued literal X is a logic function
of theform

X = (X =y1)+---+ (X =), wheey; € 6 C P

Definition 5 A cube ¢ = ¢; x ¢ X --- X Cy can be written
asa productof MV-literals in theform:
C: C;
X11X22 ... xf(;n

Notethatif ¢; = B, we canomit Xip' from the expression
of the cube,sinceXiP' = 1. If variableX; is binaryvalued,
the literal X; canbe written in the newv notationas Xi{l}.
Similarly, theliteral X; canbewritten ain{O}. If thevariable
X; takes on both its values(also written asa “-”), this is
written as)(i{o’l}.

Thenext four definitionsapply specificallyto binaryval-
uedfunctionsof multi-valuedinputs.

Definition 6 Animplicant is a cubec sud thatfor all ver
ticesvec, F(v) #0.

Definition 7 A prime implicant is animplicantc sud that
thereis noimplicantd sudh thatd D c.

Definition 8 A cover of ¥ is a setof implicantswhose
unioncontainsevery pointin the onsetof # andno points
in the offset.

Definition 9 A prime cover of ¥ is a cover, eat of whose
elementss prime

The multi-valuedfunctionin Figure 1 canbe written in
the form of a sumof cubesfor eachof its values.Onesuch
coverfor ¥ is,

L0} = x {2 o

F{l} — Xfo’l}Xé{O} + Xfl}xéozl}
F{Z} — Xfo72}xé{1}
A corvenientrepresentationf literalsandcubesutilizes
positionalnotatior

Definition 10 Positional Notation: A literal X% is as-
signedpositions(or columns)vo, V1, - - - Vjp -1, Sud that

v = 1 ifjegCR
71 0 otherwise
For example,the multi-valuedfunctionin Figurel can
bewrittenin positionalnotationas:
X1 X ¥
001 10
110 10
010 11
101 01

N B B O

3. Generalizations

3.1 BooleanAlgebra

A Booleanalgebrais a set of objectson which thereare
two operationsdefined. The operationsobey a certainset
of rules. A Booleanalgebrais oftenassociatedavith binary
functionsof binary variables. The Booleanalgebrain this
caseis thealgebraof the manipulatiorof binarylogic func-
tions. Eachsuchfunctioncanbethoughtasa setof points,
its onset.lt is justthecharacteristiéunctionof its onset,.e.
it is 1 whenappliedto a pointin its onsetandO otherwise.
Two functionsANDedtogethelis the sameastakingthein-
tersectionof their onsets. Similarly ORing correspondso
taking the union. It is known thatarny Booleanalgebrais
isomorphicto the Booleanalgebraof setswhereunionand
intersectionare the two operations.Note that nothing has
beensaid aboutthe size of the domainspace.In factone
canusemulti-valuedvariablesto describea pointin some
space For example,supposeave usetwo variablesx with 5
values,andy with 3 values.Thenthereare 15 pointsin the



domainspace.A point (or minterm)in the spaceis given
by assigningeachof the variablesa value from their do-
mains,e.g. (x= 3,y =1). A functionis just an arbitrary
subsebf suchminterms.Thusthe mathematic®f Boolean
algebraglirectly appliesto binaryfunctionsof multi-valued
variables.Consideringeachoutputvalueasaseparatéunc-
tion, onecantreatthe casewherethe rangeof the function
is also multi-valued. Thusfor example,the setof points
wherethesignallight is redis the onsetof onefunction,the
pointswherelight is yellowanotheifunction, etc.

3.2 One-Hot Encoding and Multi-v alued Sig-
nals.

Oneof thefirst methodwusedto treatmulti-valuedvariables
in logic wasthe useof a one-hotencodingfor the signals,
with anassociatedetof don't cares.For example,consider
the traffic light processorndsignallight. A one-hoten-
codingwould createthreethreesignalslight,, lighty, lightg
with the setof don’t caresgivenby thelogic expression,

light, - lighty + light; - lightg + lighty - lightg

which saysthatwe don't carefor examplethatboth light,
andlighty are 1, sinceit will never occur This formula-
tionis fully equivalentto manipulatingmulti-valuedsignals
andits advantages thatit mapstheproblembackto the bi-
nary caseandhencethe fully developedbinary algorithms
applydirectly. Further futuredevelopmentsn binarymeth-
odscanbe usedwhenthey develop. Thedisadwantagesare
that mary more signalsare introducedand the associated
don't carescanbecomevery large. In the areaof two-level
logic optimization,thesdatterreasonsvereenoughto spur
thedevelopmentof ESPRESSO-Ila packagedor two-level
multi-valuedlogic optimization. (However, in the multi-
level casethismotivationhasnotbeensuficientsofar). An
interestingfootnoteis that when ESPRESSO-Ilwas com-
pletedandcomparedo theoriginal ESPRESS@hereboth
wereappliedto purelybinaryfunctions ESPRESSO-IWwas
faster Theexplanationwasthatthe generalizatiorio multi-
valuedlogic led to a superiormethodof representatiomf
thefunctionsfor computemanipulations.

3.3 Multi-v alued Logic Minimization in
ESPRESSO-II

For a multi-valued function with a binary-valued output,
mostof the binary logic minimizationtheory canbe gen-
eralized.As alreadydiscussedthe conceptof implicants,
prime implicants, covers and prime covers are easily ex-
tendedo suchfunctions.As in thebinarycasetheprocess
of logic minimizationinvolvesgeneratingprimes,generat-
ing a covering table, and solving this covering table. The

notions of cofactorsand the Shannonexpansiontheorem
have alsobeengeneralizedo the multi-valuedcase.

Definition 11 Thecofactor of a function f with respecto
a MV literal X3, denotedfys, is obtainedby eliminatingall

cubesof f thatare disjointto s, and expandingthe remain-
ing cubesby unioninginto the X positionall valuesnotin

S.

The cofactorwith respectto a MV-cubeis obtainedby
taking the sucessie cofactorswith respectto each MV-
literal in thecube.

Theorem 3.1 Multi-valued Shannon Expansion Theo-
rem: Let f beany functionand {c?,c?,---,c'} any setof
MV-cubessud that

Then,

f= i;ci fq

It follows from the above that

f=1iff fy=1 for eadh i.

An algorithmfor multi-valuedtautologycanbe devised
basedn this, muchlike in the binary casewheretypically
thecubesx, X areused.

Definition 12 A function f is saidto be weakly unate in
X; if there existssomevalue= j sud thatchangingX; from
value= j to anyothervaluedoesnot causef to decease
i.e. fisnotchangedfrom1to 0.

Weakunatenesis onemulti-valuedanalogof unateness.
(Thereis anotheranlog,strongunatenessyhich for binary
valuedfunctionsis thesameasweakunateness.Jheunate
reductiontheorentor tautologyappliesin the multi-valued
caseaswell. Generatiorof primesandthe binary routines
of essentialprime genemtion, reduceandirredundantre-
mainessentiallyunchanged.

Basedon the above, ESPRESSO-Ihandlesbinary val-
uedfunctionsof multi-valuedfunctions.Positionalnotation
is usedto specifythe multi-valuedportion of the function.
Symbolicvariablesaresupportecaswell. MV-applications
of ESPRESSO-linclude stateassignmen{1] and PLAs
whereinputsarepairedanddecodedo form MV-inputs.

3.4. Funtional Representation

We will review sereralmethoddor representindgpgic func-
tionsin the MV domain.



3.4.1 Sum-of-products

Oneof the earliestmethodsusedfor binary functionswas
atwo-level sum-of-productepresentationEarly logic syn-
thesiswork was doneon this type of representation.Al-
thoughit is inherentlysimple, there are certainfunctions
(like the odd or even parity function) which have exponen-
tial sizedrepresentationsAs we have alreadyseenmulti-
valued functions can be representedn a two-level sum-
of-productscheme.Logic minimizationon suchfunctions
canbe performedin ESPRESSO-IlIFor certainfunctions,
this scheméhasthe dravbackof giving riseto exponential-
sizedSOPs.

3.4.2 MV-networks

Another powerful representatiortechniqueis the multi-
level booleannetwork, eachof whosenodesare two-level
sum-of-products.This schemehasthe ability to represent
implementablébooleanfunctionsvery compactly A good
dealof researcton thistype of representatiohasbeenper
formed,fuelledby theintroductionof SIS, a sequentiabp-
timization and synthesistool. The multi-level network of
multi-valuednodeg(calledan MV-network) is a directgen-
eralizationof this. It is similarto a multi-level booleamet-
work exceptthat eachnodeis, in general,a multi-valued
function. VIS (VerificationInteractingwith Synthesis)s a
researchiool whoseinputis suchanetwork. Theinputfor-
mat format of VIS is calledblif-mv. (VIS is discussedn
moredetailin Sectiord). It is hopedthattoolslike VIS will
resultin increasedresearchin synthesisfor multi-valued
networks. The drawbackof thesenetwork representations
(aswell assum-of-productsis thattherearemultiple ways
to represena givenfunctionundertheseschemes.

3.4.3 MDDs

This drawbackis eliminatedin a booleanfunction repre-
sentatiorschemecalledReducedOrderedBinary Decision
Diagrams(henceforthabbreviated as BDD). BDDs have
the appealingpropertythat they are canonical,and hence
the problemof checkingfor functionalequialenceis triv-

ial. Yet, they alsohave the drawbackthatfor someimple-

mentablecircuits,the BDD is exponentialin the numberof

inputvariables.

BDDs have beengeneralizedo the multi-valuedcase,
resulting in a Multi-valued Decision Diagram (MDDs).
MDDs apply to multi-valuedfunctionswith binary-valued
outputs. However, if a multi-valued function has an n-
valuedoutput,wheren > 2, multi-valuedfunctions(MVFs)
arecreatedfirst. Essentiallywe constructMDDs for each
value of the multi-valuedoutput variable. So, for exam-
ple, if the multi-valuedfunction f has3 values,thenthe
MVF(f) has3 MDDs, fj, fy andfc.

Figure 2. An MDD Node and its Correspond-
ing BDD Nodes.

MDDs are a simple extensionof BDDs. Eachnodein
an MDD hask childreninsteadof justtwo, wherek is the
numberof valuesthe variableassociatedvith the nodecan
take. Theresultis a DAG with the root noderepresenting
the function, and the leaf nodesrepresentind and1. A
pureMDD packagevashbuilt andexperimentedvith several
yearsagoin Berkeley [2].

Anotheroptionis to encodeesachmulti-valuednodewith
k childrenusinglogz(k) binaryvariables.Thusfor example
anMDD nodewith 6 childrenwould be split into 3 binary
variables.In Figure2, the MDD nodeon the left is trans-
formedto thegroupof nodesontheright. Notethatin both
casesthe numberof childrenis 6. Althoughwith 3 binary
variablesijt is possibleo represen8 children,theextratwo
leavesareusedasdon’t caresin the processn a somavhat
arbitrarybut specificway.

An MDD packagevasalsodevelopedat Berkeley based
on this corversionto binary variables. The MDD package
wasconstructedsahighlevel interfaceto aBDD package.
In factany BDD packagecaneasilybe used. For the user
only multi-valuedvariablesare obsenable; the corversion
to binary variablesis internalandtransparent.The advan-
tagesof this approactare:

e Thecontinuingdevelopmentof BDD packagesanbe
leveragedn the MDD package.

e Any newly developedBDD packagehatprovesto be
superiorcanbe easilyslippedunderthe covers.

e The binary variablesassociatedvith a multi-valued
variabledo not have to be keptadjacentin the binary
variableordering,whereaswith a purely multi-valued
version,the effectis asif the associatedinary vari-
ablesareconstrainedo betogetherin the ordering.In
someexamples this leadsto a significantincreasein
MDD size. Thusin this casethe initial and arbitrary
binaryencodinguseddoesnot seemto have ary nega-
tive consequence.



3.5. Multi-v alued RedundancyRemoval

Recentmethods([3] [4] for binary redundang removal
avoid the useof statetraversal.Additionally, [4] findsmul-
tiple compatibleredundanciesimultaneously Thesepow-
erful advancesin the field of binary redundang removal
were extendedin [5] to perform redundang removal for
multi-valuednetworks. This methodworksin thefollowing
manner

Firstaone-hotencodingof all the multi-valuedvariables
of thedesignis performed.Multi-valuedvariablesarewrit-
tenoutasbinaryvariablesusingthisone-hotencoding.The
binary network is equivalentto the multi-valued network
moduloencoding.

Next, binary redundang removal is invoked on the re-
sultingnetwork. We only checkfor signalsstud-at-0in the
binary network. In casea binary signals feedingbinary
gatet; is determinedo be studk-at-Oredundantthis means
thatthe multi-valuedsignals in its fanoutto multi-valued
signalt is adon't carefor value j. Hencewe canchooseo
removetheit” valueof variables occuringin ary MV-cubes
of t with outputj. Sinceeachtablehasa defaultvalue,this
hastheeffectof makingthe outputof sucha cuberestricted
to s = 1 equalto the default value. This simplifiesthe ta-
ble for t by reducingor removing cubes. We do not need
to worry aboutstudk-at-1 redundancien the binary net-
work, sincebecausehe signalsareone-hota stuk-at-1on
avalueof s, hasto beassociateavith studk-at-Osonall the
othervaluesof s.

All redundanbinary signalsare recordedin a file dur
ing the binary redundang processingof the binary net-
work. Thenthe original multi-valuednetwork is modified
asabove,basednthebinaryredundanciethuscomputed.

Initial experimentsusingthis techniqueshav a 10-20%
reductionin the sizeof the multi-valueddescription.

3.6. Multi-V alued Factorization

Oneof the more effective methodsfor treatingmulti-level
Booleannetworks hasbeenthe useof kernelsfor finding
commonfactorsamongseveralbinarylogic functions.The
commonfactorcanthenberemovedasa separatéunction
andusedto simplify someof the functions.To seehow this
conceptis extendedtio multi-valuedfunctions,considerthe
following two functions

f, = X{OU.a.k+x.p.-k+c
f, = xB%.a.j+xBp.j+d

We will show thatthefunction

X{0717374} . a+ X{275} . b

is acommonfactorof both f; and f,, andthusthe network
canberewrittenas

fl — X{07172} . k.y3_|_ Cc
f, = x4 j.y3+d
y3 — X{07lv374} . a+ X{275} . b

The first stepis to find all the kernelsand co-kernelshy
successie co-factoringby single binary literals. For this
example,we obtainthefollowing table

Exp | co-kernel kernel
f1 1 a-k- X0 4 p-k-X¥? 4 ¢
f1 k a-X{0 4 p. x1?}
f, 1 a-j-XB4 4p-j-xBHd
fo j a- X34 4 p. x5}

We putthisin aco-kernelcubematrix M asfollows

a b a-k  b-k a-j c
1 0 o x{on x{z 0 0 1
k x{01  x{z 0 0 0 0 0
1 0 0 0 0 x4 xB o

j x4 x5 0 0 0 0 0

b-j

Note that the binary partsof the cubesof the kernelsare
extractedoutatthetop of eachcolumn. A rectangleof such
amatrix is a setof rows anda setof columns.For example
{(2,4),(1,2)} is arectangle Associatedvith arectangles
amatrix of MV entriese.g.

x{01} x{2}
x {34+ x{5}

Sucharectanglecangive riseto acommonfactorprovided
that the matrix is satisfiable which meansfor every vari-

able,e.g. X, if avalueoccurssomeavherein row i andthe
samevalueoccurssomeavherein column j, thenthatvalue
mustalsooccurin entry Mjj. The abore matrix is satisfi-
able.For asatisfiablaectanglewe canextractthecommon
factorasfollows. For eachrow of the rectanglethe union
of row entriesis ANDedwith the co-kernelassociatedvith

thatrow. Similarly, for eachcolumn of the rectangle the
unionof all columnentriesis ANDedwith the binary cube
attachedo the column. The kernelis thenthe OR of the
resultsfor all the columnsof the rectangle. In the above
example this yieldsfor column1, a- X{®134} andfor col-

umn2, b- X125 andthekernela- X{9134} 4 b. X {25} For
row 2 we get, k- X {012} andfor row 4, j - X{345} yielding
afactorization

OrroOoOoQa



It hasbeenprovedthatif k is a kernelfound by the usual
Booleankernelingprocessor someencoding,thenit will
be found by the abore MV factoringprocess.In addition,
theMV processanfind some“Booleanfactors”for anen-
coding.

Matricesthatarenot satisfiablecanbe "reduced”to sat-
isfiablematricesby consideringor eachM;j asubsebf val-
uesin orderto remove ary offendingvaluein anentry. In
addition,don't carescanbe expressecas X1%1:216.7] jf the
valuesof X = 6 or 7 aredon't carefor the function. Then
for a given entry M;j one hasthe option of including the
values6,7in orderthe make the matrix satisfiable.

See[6] for anextendeddiscussiorof theseideas.

3.7. SPFDs

A new methodfor specifyingimplementationaflexibility
in booleannetworkswasintroducedin [7]. Thiswork was
generalizedo MV-networksin [8]. SPFDsarelike don't
careshut are more powerful. Unlike don't cares,which
computetheflexibility of asinglenodein anetwork, SPFDs
expresgheflexibility of anodein anetwork alongwith the
nodesn its fanin.

In general SPFDsarea setof inter-relatedincompletely
Specifiedrunctiong(ISFs). An ISF canberepresentedsa
completebipartitegraphon the mintermsin the offsetsand
onsetsAn edgebetweermmintermsindicateghatafunction
thatdistinguishesheonsetandoffsetmintermsonthatedge
is required. This kind of graphhasexactly two minimum
coloringscorrespondingo implementingthe onsetor the
offset.

In the SPFDmethodwefirst build thecompletebipartite
graphof anISF F. This givespairsof mintermsthat need
to be distinguished. Figure 3(a) shavs an examplebipar
tite graphwith mintermsy?,y?,---y® in the input y space.
Assumethat the inputsto F arey = (g1(x),92(X),93(X)),
asshawn in Figure 3(b). Then,if minterms{ y*,y?,y* }
are encodeddifferently from { y*,y° } by g(x), we have
enoughinformationin y to build a valid implementatiorof
F. Thetaskof distinguishingdifferentpairs of minterms
canbedistributedto differentinputwires,asshavn in Fig-
ure 4. Note that even thoughF startedout asan ISF (a
completebipartite graph),the graphsfor g; are not bipar
tite, hencenot ISFs. They are SPFDs.Any coloring of the
SPFDsof the 3 wiresin Figure4 is a valid implementation
of the functionsgi (X),g2(x) andgs(x). For example,input
1 has4 possibletwo-colorings,correspondingo 4 possible
implementation®f g;. In general SPFDsprovide the flex-
ibility to changeboththe functionsg which implementthe
SPFDgerivedfor theseinputs,andalsoto re-implement
to reflectthe new encodingof theinputs.

The above discussioron binary valuedSPFDsis easily
generalized8], asfollows.

F

<
N

Y1 Y3 Y

kel

(b) Structureof F.

< S

(a) Bipartitegraphfor F.
Figure 3. SPFDs - an example

Input 1 Input 2 Input 3
A

y* y'e y
yfi‘j“ g yz><f
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Figure 4. An implementation of F.

Definition 13 ASPFD ¥ (y) ondomainY is an undirected
graph (V, E) whee ead v € V is encodedas a minterm

V=(Yy1,Y2,--Yk) €Y.

Definition 14 A functionf(y) implements an SPFD 7 (y)
= (V,E)if f(y),y € Visavalid coloringof 7, i.e.
fyh) # f(y?), (v',y%) € E.

Analogousto the binary case gachvalid coloring of the
SPFDgivesanimplementatiorof #. The chromatichum-
ber of the graphis the minimum numberof valuesthatthe
resultingfunctionis requiredto have in its range. Thusif
this is greaterthan 2, multi-valuedfunctionsare required.
Eachvalid coloringof thegraphgivesriseto aMV-function.

3.8 Decompositionof Multi-v alued Functions

In [9], theauthorsextendthe extensive work onthedecom-
positionof binary functionsto MV-functions. Considerset
functionsof theform f : E" — D™, with ninputsxg, xg, - - Xn
and m outputsyi, Vo, --Ym Which are partially specified.
HereE is afinite, nonemptysetandD = 2F — {0}; in gen-
eral, f assigndo ary outputy; a nonemptysetof elements
of E. The problem of decompositionof f(x1,X2,-«,Xn)
in the form h(uz,uz,---,ur,g(v1,V2,---,Vs)) is addressed.
Here X = {x1,X2,---,Xn} is the setof input variables,and
U ={ug,Uz,---,u } andV = {v1,= vy, - - - ,vs} aretwo sub-
setsof X whoseunionis X. Figure6 shavs sucha decom-
position.

The function f is representedas a set matrix
M, where each row consists of a n+ mtuple t =
t1,-- - thythe1, - -them.  The input projection of t is tj, =
t1,- - -tn, andthe outputprojectionof t istoy =ths1, - - them.
ThematrixM is requiredto beconsistentwhich meanghat
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Figure 6. Multi-v alued decomposition

if theinput projectionsof a setof rows cover aninput ver
tex, thenthe correspondingutputprojectionsshouldhave
acommonvalue.Thefunction f is evaluatedat vectore by
taking the intersectionof the y valuesof all the rows that
covere. Thedecompositiorproceeddy first finding setsU

andV, thenfinding a blanket B4 from M. From 34, g andh
canbe constructed.

Definition 15 Givena setS, ablanket = {By, By, -- Bk}
is a setof setsof nonemptydistinctbut not necessarilydis-
joint subset®f Scalledblocks whoseunionis S.

For example,if S={1,2,3}, thenablanketof Sis p* =
{{1,2},{2,3},{1}}.

Definition 16 Theblanket product of two blankets3 and
[* is a blanket givenby

B*B* = undup(ne{BiNBj|B; € B,=Bj € B*}),
whee ne{B;} = {B;j} — {0}. undup(p) remaresthe dupli-
cateentriesin f.

Consider B? = {{1},{1,3},{2}}.
{{1},{2},{3}}.

Definition 17 B < B’ if for each B; € B, thereis a Bj € B
sucdthatB; C B;.

Then B« B? =

In theabove examples 3t x B2 < BL.
In the remainderof this section,we refer to blanketsof
rows of setmatrices.

1 {1} {012} {0}
2 {1 {1 {02}
3 {0124 {01} {0}
4 {1 {01} {0}
5 {00 {01} {12}

Table 1. Set matrix to illustrate row blanket

Definition 18 Therow blanket 37 of a setmatrix M for f
havingh rowsandk columnsis givenby

Bt = ne{Toe} whee

Toe={teT|tDe}
wheee T is the setof rowsof M, ande € EX.

Considerthe set matrix M given in Table 1. Note
that T>o00 = {3} and Ts100 = {1,3,4}. Listing all
the unique blocks correspondingo the mintermsof the
table, we get the row blanket for this matrix B; =

{{3},{5},{1,3,4},{1,2,3,4},{2},{1}}.

In thefollowing, X = U UV andthe variablesV corre-
spondto the supportof thefunctiong in thedecomposition.
, refersto the projectionof tuples, ontheZ space.

Definition 19 For all tuplest and u, if there exist multi-
valuedmintermsd ande sudh thatty, O d, andu), D e, then
t and u appearin the sameblock of 3¢. In this case s is
saidto correspond to g with respect to V.

Theorem 3.2 Letsetfunctionf(X) bespecifiecby a consis-
tentsetmatrix T of tuples,andlet U, V of X be sud that U
U V = X. For everyblanket 3 satisfying

BY < By andpy =By < Bs (1)

there existsa decompositior{g, h) of f sud that B4 corre-
spondso g with respecto V.

Consideithesetmatrixin Table2. ThesetU = {x; } and
V = {x2,X3}. Hence

?Z{{l}a{2a4}a{3a4}}a
BY = {{1,3,4},{1,4},{2,3},{2},{2,3,4},{2,4}},
Bt ={{1},{2,4},{4},{3,4},{2},{3}}-

NotethatPq = {{1,2,4},{2,3,4},{1,3,4}} satisfiesequa-
tion 1. Now encodehesethreeblocksusinga multi-valued
variablewith values0, 1, 2 respectiely.

The constructionof g from By proceedsasfollows. For
eachmulti-valuedmintermin V, we enumeratéhe rows of
T covering this minterm. Now all the blocksB; of 3y are



Row X1 X2 X3 fl f2
1 {0} {0} {02} {01} {0}
2 {1 {12} {02} {02} {1}
3 {2 {012y {0} {12} {2}
4 {12y {02 {02y {01} {1,2}

Table 2. Example set matrix to illustrate de-
composition

X2 X3 Pv< By codes ¢
0 0 {134} {1,3,4} 2 2
0 2 {14 {1,2,4},{1,34 0,2 2
1 0 {23 {2,3,4} 1 1
1 2 {2} {1,24,{2,34 01 1
2 0 {234} {2,3,4} 1 1
2 2 {24 {1,24},{234 0,1 0

Table 3. Construction of gfrom 4

listed suchthat theseblocks containthe rows of T cover
ing the minterm. Fromthe feasibleB; for this minterm,we
chooseone B; asthe implementationof g for that multi-
valuedminterm.Finally theseB; areencoded.

An exampleof the constructionof g given g is shavn
Table3.

Similarly, in the constructiorof h from Bg, we first list,
for eachmulti-valuedmintermof U, rows of T thatcoverit
(seefirst two columnsbelow in Table4. For eachminterm
of U, welist the possiblemulti-valuedmintermsof g, along
with their implementedcode from the stepabove. Inter-
sectingthe two setsgivesus anelementBy. For eachsuch
element,we list all elementsB; € B¢ suchthat By < B;.
ChooseneelementastheimplementationTheoutputsare
chosenby intersectinghe outputsof the rows correspond-
ing to thechoserimplementatiorelement.

An exampleof the constructiorof h = (hy, hy) given gy
is shavnin Table4. Notethath is keptasa setfunctionfor
maintainingflexibility for furtherdecompositions.

Finding By is not simple,but analgorithmfor this starts

Table 4. Construction of hfrom By

X Pu g Bg Bu * By < B¢ hy  h
0 {l} 2 {l7 3 4} {1} {1} 0,1 0
1 {24 0 {124 {24 {2,4} 0 1
1 {24 1 {234} {24 {2,4} 0 1
2 {34} 2 {134 {34} {3,4} 1 2
2 {34 1 {234 {34} {3,4} 1 2

with By, andmermgesblocksto getp’ suchthatpy < . Now
checkif By =B < Bs.

4.The VIS System

VIS (VerificationInteractingwith Synthesis)s a software
tool distributed by the University of California, Berkeley,
andthe University of Colorado,Boulder VIS is atool inte-
gratingverification,simulationand synthesif finite-state
hardwaresystems.t hasa Verilog front end,which gener
atesa blif-mv descriptionof the network. blif-mv is a for-
mat for representingMV-networks. VIS supportsformal
verification(fair CTL modelcheckinglanguageemptiness
checkingandequialencechecking) hierarchicalynthesis
from a multi-valueddescription,and cycle basedsimula-
tion of the multi-valuedinput. In this way, VIS provides
a strongplatformfor researchn formal verificationandin
thefuture, hierarchicamulti-valuedsynthesis.

4.1 Multi-v alued extensionsto Verilog

Partof the VIS systemis a Verilog translator(vi2my) which
which supportsa multi-valuedextensionto Verilog (aswell
asnondeterminism)Theusercandeclarethata variableis
of a particulartype with its rangeof valuesgivenby refer
ring to atypedefstatementFor example,

typedef color { red,yellow green }
declaresolor asatype. Later,

signal |ight color
declareghe variablelight to have type color. The Verilog
translator translateshe input into an MV-network repre-
sentedn afile usingblif-mv.

4.2 Blif-mv

blif-mv is anintermediatformatthatis outputby the Ver
ilog translator It represent&n MV-network usingtables
to representmulti-valuedfunctions. Eachtableis a cover
of MV-cubesof the correspondingnulti-valuedfunction.
Thesetablesare fully specified(all multi-valued vertices
are assignedsome output value) and deterministic(each
multi-valued vertex is assigneda unique output value).
blif-mvis asimpleextensionof blif, theintermediatdormat
usedin SIS.blif-mv includesfor corveniencesomehigher
level constructsnot in blif. One suchthatis particularly
useful for multi-valuedvariablesis the "equal” construct.
Consideramultiplexor with asinglebinary controlandtwo
multi-valuedinputsa andb. In the puretable format, we
would have to say



X | a| b | output
0|0] - 0
0o|1]- 1
0|2 - 2
03] - 3
-0
1(-]1 1

With the equal construct,the table is compactednto
two lines, no matterhow mary valuesarein therangeof a
andb

X | a| b | output
0| -1 - =a
1 - - =

4.3 VIS internals

The MV-network in the blif-mv format is translatednside
VIS into a setof MVFs beforeary formal verificationor
simulationis performed.A simplemulti-valuedsimulation
in providedin VIS. It is performedby usingthe MDDs of
the MVFs of the functionsto be simulated. Assumethat
afunction hasan MVF with n MDDs, eachcorresponding
to the n valuesof the function. For theit" MDD, simula-
tion proceeddy cofactoringthis with respecto the vector
correspondingdo the systeminputs. If the resultis a “1”,
thenthe simulationoutputis i, andthe remainingMDDs
arenot evaluated (sincethe multi-valuedfunctionsin VIS
aredeterministic).If theresultis a“0”, thei+ 1" MDD is
checled. If n—1 MDDs returna “0”, thenthe simulation
outputis n. (This is becausahe multi-valuedfunction is
fully specified.)

Sincean MV-network is fully representednh VIS, and
the VIS systemallows the useof a popularRTL to specify
suchnetworks, we have an excellentopportunityin VIS to
createa multi-valuedoptimizationpackage. Further VIS
allows andkeepshierarchy so synthesisusinghierarchyis
enabled However, atthis point, directsynthesisnsideVIS
hasnot beendevelopedsinceour first efforts wereto take
adwantageof the SIS system. The ideais that by corvert-
ing all signalsinto their one-hot(or even logarithmic en-
codedbinaryversions)we canexperimentandmake useof
theextensive developmentsn SISfor binaryoptimizations.
However, this hasprovedmoredifficult thatwe hadfirst es-
timatedandperhapst is time to bite the bullet anddo the
full developmeninsideVIS.

5. State Assignment

As mentionedearlier an alternatve way of optimizing a
multi-valuedlogic functionis to first do the manipulations
in the multi-valueddomain,independenbf arny encoding,
andthento usethe resultingstructureto intelligently find
a goodencoding. Perhapghe mostsuccessfubxampleof
thisis the KISS approactior stateassignmenof finite state
machinegl]. Herethestatevariableis multi-valued.

Considerall next state functions, one for each state
value,asmary separatdinaryvaluedfunctionsof oneMV-
variableand perhapssereral binary valuedvariables. The
approachakenin KISSis to minimizethis setof functions
with ESPRESSO-Itesultingin a minimizedcover of MV-
cubes.Consideionesuchcube.In its statevariableposition
is a MV-literal, which is a setof values.Eachsuchcubein
the cover givessucha set. Themainideain KISS is thatif
it is possibleto encodethe statevariablein suchaway that
eachsetof valuesassociatedvith any cubein theresulting
minimizedSOPcovercanbealsodescribedisa cubein the
spaceof binaryencodingvariablestheneachMV-cubecan
be replacedby the binary counterpartandthe size of the
coveris notincreased.

This embeddingof setsinto facesof the cube of the
encodingvariablesis called the face embeddingproblem
given a setof setsof points, encodeeachsetwith binary
variablesso that eachis preciselycontainedin a cubein
the binary space.This is alwayspossibleif enoughbinary
variablesare used,so a side constraintis to usea small or
minimum numberof binary variables. The above proce-
dureis known astheinputencodingproblem.Notethatwe
treatedthe next statefunction asseparatéinary functions.
Thusthe fact that the next statevariableswill alsobe en-
codedwasignored.Oncethenext stateoutputfunctionsare
replacedby the derived codesusedfor the statevariables,
thenmoreoptimizationis possiblebecausenorecubescan
be combineddueto sharingof the outputs.

This procedurehasbeenextendedin a programcalled
NOVA [10] to considerboththeinput andoutputencoding
of the statevariables. The procedureworks well for small
statemachinessaylessthan30 stateshut is ineffective for
large machinessay morethan50 states. Thereare exam-
pleswherean encodinggivenby the designerpossiblyde-
rivedfrom someknowledgeaboutthe structureof the prob-
lem, leadsto a much smallerimplementationof the logic
thanan implementationderived using NOVA. One specu-
lation is that a betterencodingcould be obtainedby de-
composinghe machineinto a productof smallermachines
andapplying NOVA to the smallmachines.The encoding
obtainedby concatenatinghe codesof the smallmachines
is an encodingof the large machine. Thusa first stepin
themulti-valueddomainwould bethedecompositiorof the
machine. Unfortunately we do not know of ary really ef-



fectivewayto dothisandthisis anareafor potentiallyfruit-
ful (but probablydifficult) research.

6. Conclusionsand Open Problems

We have surnweyed two-level and multi-level logic opti-

mizationsfor MV-variables. We discussedhree methods
for representingV-functions (SOPs,MV-networks, and
MDDs). One-hotencodingrepresentsa way to keepthe

multi-valuedstructure but to usebinary operationgor the

manipulationshoweverthis is not alwayssuccessfulCon-

ceptually the bestway to dealwith MV-logic is directma-

nipulationand optimizationfollowed by intelligentencod-
ing, followedby binaryoptimizations An effectivepackage
for this remainsa challengedor the future. Although,aswe

have seenin this paper mary of the conceptsecessaryor

suvcha packagehave beendeveloped,efficient algorithms
for their effective usein sucha packageare still missing.
The VIS systemrepresents framework for future devel-

opmentsn this direction,but a significantamountof effort

andresearchiemaingto bedone.
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