
Online Fault Detection in Reversible Logic

N. M. Nayeem
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, Canada

noor.nayeem@uleth.ca

J. E. Rice
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, Canada

j.rice@uleth.ca

Abstract

A new approach for online fault detection in Boolean reversible circuits is described. Previous work had described this
approach for circuits generated by the basic ESOP-based logic synthesis, and in this work we extend the approach for any type
of Toffoli networks. An online testable circuit is created by modifying an existing cascade of Toffoli gates in a simple process
that involves changing the existing Toffoli gates as well as the addition of one line and 2p gates, where p is the number of
lines in the original circuit.

Keywords

reversible logic; online testability; Toffoli gates

I. INTRODUCTION

Reversible computation has been shown by Bennett [1] and Landauer [2] to be a necessary component in designing
lower power circuits. Reversible computing recovers energy by conserving information when performing logic, storage,
and communication operations using reversible transformations [3], and industry groups are acknowledging the necessity
of moving to such a paradigm if we wish to continue advancements in this field [4]. Research on reversible computing
is useful for various technologies such as quantum computing [5], low power CMOS design [6], optical computing [7],
nanotechnology [8], and bioinformatics.

A key component in circuit design is that of testing. Testing can be performed offline, with the circuit no longer in
operation, or online while normal operations take place. In this work we concentrate on the latter approach. We also focus
on a particular type of reversible circuit, one that is built from Toffoli gates. Toffoli networks can be generated by a number
of algorithms as described in Section II, following which our simple approach as described in Section IV can be followed
to create an online testable reversible circuit. We note that at this point our approach is restricted to cascades of Boolean
Toffoli gates; while multiple-valued versions of reversible gates exist, we are not currently considering them in our work.

II. BACKGROUND

A. Reversible Circuits

In general, a function is reversible if there is a one-to-one and on-to mapping from the inputs to the outputs (and vice
versa) of the function. For example, the function f(X) = x1x2 is not reversible, as there are two inputs and only one
output. In any reversible function it should be possible to reconstruct the input values from the given output values. The
traditional inverter, or NOT gate, is reversible. In [9], Shende et al. provides the following definitions: a gate is reversible if
the (Boolean) function it computes is bijective, and a well-formed reversible logic circuit is an acylic combinational logic
circuit in which all gates are reversible, and are interconnected without fanout.

Some popular reversible gates are the CNOT (sometimes referred to as Controlled-NOT) gate, which has the behaviour
(x, y) → (x, x ⊕ y); the Fredkin gate, which has the behaviour (x, y, z) → (x, z, y) iff x = 1; and the Toffoli gate, which
has the behaviour (x, y, z) → (x, y, xy ⊕ z). We focus further on Toffoli gates in the next section, as they are integral to
this work.

B. Toffoli Gates

An n-bit generalized Toffoli gate is a reversible logic gate that has n inputs and n outputs and is described as (x1, x2,
. . . , xn) → (x1, x2, . . . , (x1x2 · · ·xn−1)⊕ xn). A NOT gate is a special case of a Toffoli gate where n = 1 and the CNOT
gate is a special case in which n = 2. In general the first n−1 bits are known as controls, and the final (nth) bit is the target.
The CNOT gate and an n-bit Toffoli gate are shown in Figure 1(a) and Figure 1(b). A negative-control Toffoli gate has one
or more negative controls; in that case, the target bit is toggled if all positive controls have the value 1 and the negative
controls have the value 0. A 3-bit Toffoli gate with a single negative control in its first input is shown in Figure 1(c).



In this work we also make use of an ETG, or extended Toffoli gate. An ETG is a multi-target Toffoli gate proposed
in [10]. For our proposed design, we need an (n+1)-bit ETG with two target outputs (on and on+1) as shown in Figure 1(d).
This gate has the input vector [k1, k2, ..., kn, kn+1] and the output vector [o1, o2, ..., on, on+1], where oj = kj (for j = 1,
2, ..., n-1), on = k1k2· · ·kn−1⊕kn, and on+1 = k1k2· · ·kn−1⊕kn+1. The first n − 1 bits are controls and the last two bits
are targets.

k1
k2

o1=k1
o2=k1 k2

(a)

k1
k2
k3

kn-1
kn

o1=k1

on=k1k2k3...kn-1 kn

o2=k2
o3=k3

on-1=kn-1

(b)

k1
k2
k3

o1=k1
o2=k2
o3=k1k2 k3

(c)

k1

k2

k3

kn-1

kn

kn+1

o1=k1

on=k1k2k3...kn-1 kn

o2=k2

o3=k3

on-1=kn-1

on+1=k1k2k3...kn-1 kn+1

(d)

Figure 1. (a) A CNOT gate, (b) an n-bit Toffoli gate, (c) a 3-bit negative-control Toffoli gate, and (d) an (n+1)-bit ETG.

C. Reversible Logic Synthesis

There are a number of different techniques for synthesis of reversible logic circuits, including a transformation tech-
nique [11], the use of positive polarity Reed-Muller expressions (PPRM) [12], the use of exclusive-or sum-of-products
(ESOP) [13], [14], and some decision diagram-based techniques [15]. For this work we require that the reversible circuit
be modeled as a cascade of Toffoli gates, so we restrict ourselves in this section to describing two of the most popular
techniques which result in this type of circuit.

One approach is to begin with an ESOP representation of the benchmark to be implemented. An ESOP is a sum-of-
products format in which the traditional OR operator combining the products is replaced with an EXCLUSIVE-OR (EXOR)
operator. Tools such as EXORCISM [16] can be used to generate an ESOP list for most benchmark formats. After a list of
ESOP cubes is generated it is a simple process to replace each cube with a Toffoli gate. This approach was introduced in
[13] and has been since improved upon in a number of works including [14], [17], [18].

Another approach was introduced in [11] as the transformation-based technique. This technique involves examination of
a truth table of a reversible function, and identifying transformations that match the behaviour of reversible gates that can
be applied to the truth table to bring the input patterns into agreement with the output patterns. The application of these
transformations then can be translated into a cascade of gates; if the transformations are restricted to only those matching
Toffoli gates, then the resulting cascade will similarly consist only of Toffoli gates.

D. Measures

Gate count is the simplest way to compare different reversible circuits. According to [19], gate count cannot provide an
accurate measure if the gates used in circuits have different functionalities and/or sizes. The quantum cost is a good cost
metric in this regard since it refers to the number of elementary (quantum) gates required to implement the circuit. The
quantum cost of a reversible circuit can be calculated by adding the quantum costs of its gates. To calculate the quantum
cost, we use the costs of gates given in [20]. For more information, please see [21].

In reversible circuits, some unwanted outputs are generated to maintain the reversibility property. These outputs are called
garbage outputs. A good design has small number of garbage outputs. Since the previously reported approaches and our
proposed approach use different types of gates, we compare the designs in terms of quantum cost and garbage outputs.

III. RELATED WORK

A number of different approaches to generating online testable reversible circuits exist in the literature including designs
in [22], [23], [24], [25], [26]. We briefly describe each of these and discuss the limitations.

A design methodology for constructing online testable reversible circuits based on three reversible gates R1, R2 and R
was proposed in [22] and [23]. Each gate is a 4 × 4 gate, with the first gate R1 which is shown in Figure 2(a), used to
realize NAND, OR, EXOR, and XNOR operations by setting different values on inputs. R1 has the parity output at q. R2
which is shown in Figure 2(b), passes the inputs through to the outputs, with a parity output again being computed at s,
and in order to construct a testable block (TB), the gates R1 and R2 are cascaded by connecting the first three outputs of
R1 to the first three inputs of R2 creating a TB with two parity outputs that can be compared to determine whether a fault



has occurred or not. Figure 2(c) shows the block diagram of a TB. The TBs are then used to realize the reversible circuit.
Since each TB generates two parity outputs, a two-pair two-rail checker circuit is also required to test the parities of two
TBs. This checker circuit is built using eight R gates, and a block diagram is shown in Figure 2(d). If a circuit contains
more than two TBs, a cascade of checker circuits is required.

R1b

d
c

a
v = b c ab bc
w = a b c

u = a c

q = p c ab bc

(a)

R2
e

r
f

d
y = e
z = f

x = d

s = r d e f

(b)

TB
b

p
c

a
y
z

x

q
r s

(c)

Checker
circuit

x0
x1
y0
y1

e1

e2

(d)

Figure 2. (a) R1 gate, (b) R2 gate, (c) a testable block (TB), and (d) a two-pair two-rail checker circuit.

An online testable circuit for the function f = ab+ c is implemented in Figure 3. The first TB realizes ab which is then
fed along with input c to the second TB, producing the output f = abc = ab + c. The two parity outputs of each TB are
connected to the checker circuit. By examining the outputs of checker circuit, the circuit detects a fault.

We have found that this method cannot detect all single faults. If a fault occurs between two TBs, the circuit cannot detect
it. Note that TBs generate parities which are tested by checker circuits; thus it can only detect a fault in TBs. Occurrence of
any fault outside the TBs is left undetected. For example, in the circuit given in Figure 3, if a fault occurs at the first input
of the second TB, the circuit is unable to detect it. As a result, this approach can detect some single faults, more specifically
faults that occur in TBs.

TB
b
1

a

TB
c

ab

0
1

1
0
1

ab c = ab+c

Checker
circuit

e1

e2

Figure 3. Online testable circuit for f = ab+ c, according to the design in [22] and [23].

An extension of the previously described method was proposed in [24], [25], which constructs an online testable circuit
from a given circuit. This technique substitutes each gate in the given circuit by a testable block which generates two
parities. To test the parities, an improved checker circuit was also proposed. However, the design flaw that we described in
the previous approach also exists in this design. Thus it also fails to detect a fault between the connections of two blocks.

Another approach proposed in [26] uses a set of 4×4 dual rail reversible gates for online fault detection. Each dual rail
gate has two pairs of inputs, and two inputs of each pair are given in dual rail form, i.e. two inputs that are the complement
of each other (either 01 or 10). If the outputs appear in dual rail form, then there is no error. However, a non-dual rail form
(either 11 or 00) represents a single fault. These dual rail gates are cascaded to generate the testable circuit. A fault in the
circuit propagates to the end of the circuit. Thus the fault is detected by checking the outputs of the circuit. As a result, no
checker circuit is required to test the intermediate gates.

IV. OUR APPROACH

Our approach builds on the idea initially presented in [27]. We consider a reversible circuit consisting only of Toffoli
gates; in order to make such a circuit online testable, we add some CNOT gates and a parity line L which is initialized
with a 0. The procedure is given below.

Assume that the given circuit has p inputs and p outputs; thus the circuit has p lines. The procedure inserts CNOT
gates from all lines to L at the beginning of the circuit. It then replaces every n-bit Toffoli gate by an (n+1)-bit ETG. The
connections of the first n bits of the ETG are kept the same as that of n-bit Toffoli gate. The last bit of the ETG is connected
to L. The NOT gates found on the lines are retained. If the number of NOT gates in the circuit is an odd number, an extra
NOT gate is added at the end of line L; otherwise, no extra NOT gate is added. Finally, CNOT gates are added at the end
from all lines to L.



This approach requires a total of 2p extra CNOT gates and at most one extra NOT gate to construct an online testable
circuit. In the testable circuit, if a single fault occurs in any line (including L), the value of L changes from 0 to 1. If no
fault occurs, L remains 0. Thus by checking a single bit L at the end of the circuit, the fault is detected. Note that this
procedure also works for any circuit consisting of inverted-control Toffoli gates.

The conversion procedure is described by an example. Consider a Toffoli circuit given in Figure 4(a) which has five lines
(I1, I2, ..., I5) and four Toffoli gates (t1, t2, t3, and t4). For constructing an online testable circuit, we add a parity line L
as well as replace t1, t2, t3, and t4 by ETGs e1, e2, e3, and e4. We also insert five CNOT gates c1 − c5 at the beginning
and five CNOT gates c6 − c10 at the end of circuit. The resultant online testable circuit is shown in Figure 4(b).

I1
I2
I3
I4
I5

t1 t2 t3 t4

(a)

I1
I2
I3
I4
I5
L

c1 c2 c3 c4 c6 c7 c8 c9 c10e1 e2 e3 e4c5

(b)

Figure 4. (a) A Toffoli circuit and (b) an online testable circuit.

V. ANALYSIS

A fault in the target of an ETG certainly affects the gate as it changes the output of the target. However, a fault in control
affects an ETG, only if it causes the target to have the faulty value. In other words, faults in control bits affect the gate if
all fault-free control bits have the value 1, and all faulty control bits are either 1 or 0. A single fault in the control of an
ETG can propagate to target lines if the fault affects the gate. Thus a fault can cause multiple faults. Note that a single fault
on the parity line L cannot propagate to other lines since controls of the CNOTs and ETGs are not connected to L in the
proposed design. Our proposed approach can detect any single-bit fault even though it causes several faults. The following
example shows how a single fault on a line can propagate to several lines.

Consider a circuit consisting of two ETGs as shown in Figure 5. The lines I1, I2, I3, and L are initialized by 0, 0, 1,
and 0, respectively. Assume a fault occurs on I1 just before the first ETG; thus the value of I1 changes to 1. For the faulty
lines, values are given in the form [fault-free value/ faulty value]. The fault on I1 affects the first ETG and propagates to I2
and L by the targets of this gate. As a result, two extra lines I2 and L become faulty. The second ETG causes I3 to have
the faulty value and fixes the value of L. Therefore, after the second ETG, lines I1, I2 and I3 are faulty.

I1
I2
I3
L

0/1

0/1

0/1
1/0
0/0

0
0
1
0

0/1 0/1

1

Figure 5. Fault propagation in multiple lines.

Lemma 1 proves that both targets of an ETG calculate the same function regardless of the occurrence of the fault. Lemma 2
proves that the proposed technique detects any single fault even if it propagates to other lines, causing multiple faults.
Lemma 1: Consider an (n+1)-bit ETG which maps the input vector [k1, k2, ..., kn−1, kn, kn+1] to the output vector [o1,
o2, ..., on−1, on, on+1], where oj = kj (for j =1, 2, ..., n-1), on = f ⊕ kn, on+1 = f ⊕ kn+1, and f = k1k2· · ·kn−1.
a) If faults occur in controls of the ETG and affect the gate, then both on and on+1 compute f ; otherwise both outputs

compute f .
b) If faults occur in targets of the ETG, then both on and on+1 compute f .
c) If faults occur in targets and controls which affect the ETG, then both on and on+1 compute f ; otherwise both outputs

compute f .
�

Proof:



a) Consider faults in ki, kj , . . ., kl such that {i, j, . . ., l} ⊆ {1, 2, . . ., n-1}. These faults affect the calculation of function
f if the following two conditions hold.

i) km = 1, ∀ m ∈ {1, 2, . . ., n-1} - {i, j, . . ., l}, and
ii) ki = kj = . . . = kl = 0 or ki = kj = . . . = kl = 1.

If both conditions are true, then the fault has impact on on and on+1 since both outputs compute f . Thus on = f ⊕ kn
and on+1 = f ⊕ kn+1. If at least one of the conditions is false, then the fault does not affect the calculation of f . Thus
according to the definition, on = f ⊕ kn and on+1 = f ⊕ kn+1.
Therefore, if the faults affect, then on and on+1 compute f ; otherwise these outputs compute f .

b) We consider three cases, depending on whether one of the targets is faulty or both targets are faulty.
Case 1. Assume a fault occurs in kn. This fault does not propagate to on+1 since on+1 is independent of kn; thus on+1

= f ⊕ kn+1. However, due to the fault, on = f ⊕ kn.
Case 2. Assume a fault occurs in kn+1. The proof is similar to Case 1. We get on = f ⊕ kn and on+1 = f ⊕ kn+1.
Case 3. Consider that faults occur in both kn and kn+1. Due to these faults, on = f ⊕ kn and on+1 = f ⊕ kn+1.
Hence, for any of the cases, both on and on+1 compute f .

c) We consider two cases, depending on whether faults in controls affect the gate or not.
Case 1. First consider that faults in controls affect the gate. From (a), we can write on = f ⊕ kn and on+1 = f ⊕ kn+1.
Assume that faults also occur in both targets. According to (b), we can rewrite the outputs as follows. on = f ⊕ kn and
on+1 = f ⊕ kn+1 Thus both outputs compute f . Similarly, we can reach the same conclusion if a fault occurs in any
of the targets.
Case 2. Now consider that faults in controls have no effect on the gate. This proof is similar to (b). �

Lemma 2: If any single fault occurs on any line, the circuit is able to detect it. �
Proof: Consider an online testable circuit generated by the proposed technique which has N ETGs, p lines (I1, I2, ..., Ip),
and a parity line L. Let G = {g1, g2, ..., gN} be the set of ETGs used in the circuit. Let the initial values of lines I1, I2,
..., Ip be i1, i2, ..., ip. The line L is initialized with a 0. Given an (n+1)-bit ETG g ∈ G and the input vector [k1, k2, k3,
..., kn−1, kn, kn+1], the output vector is [k1, k2, k3, ..., kn−1, fg ⊕ kn, fg ⊕ kn+1], where fg = k1k2· · ·kn−1, and n can
be at most p. In order to prove this lemma, consider the following two cases.

Case 1. Assume that a single fault occurs on a line Id (for d = 1, 2, ..., p) and propagates to multiple lines.
Let W = {w1, w2, ..., wq} ⊆ G be the set of gates that are not affected by the faults.
Let X = {x1, x2, ..., xr} ⊆ G be the set of gates such that faults occur only on controls and affect the gates.
Let Y = {y1, y2, ..., ys} ⊆ G be the set of gates with faults only on targets.
Let Z = {z1, z2, ..., zt} ⊆ G be the set of gates such that faults occur on targets and controls which affect the gates.
We have G = W∪X∪Y ∪Z, and W , X , Y or Z can be empty. According to the definition of the ETG, two targets of a

gate g ∈ G compute the same function fg. Similarly, a gate wj ∈ W computes fwj (for j = 1, 2, ..., q). A gate xl ∈ X
computes fxl (for l = 1, 2, ..., r) according to Lemma 1(a). A gate yu ∈ Y computes fyu (for u = 1, 2, ..., s) according
to Lemma 1(b). A gate zv ∈ Z computes fzv (for v = 1, 2, ..., t) according to Lemma 1(c).

At the beginning of the circuit, all Im (for m = 1, 2, ..., p) lines are EXORed to parity line L. Thus the value of L, just
before the first gate in G, is i1 ⊕ i2 ⊕ . . . ⊕ id ⊕ . . . ⊕ ip. After the last gate in G, the value of L becomes i1 ⊕ i2 ⊕
. . . ⊕ id ⊕ . . . ⊕ ip ⊕ fw1 ⊕ fw2⊕ . . . ⊕ fwq ⊕ fx1 ⊕ fx2⊕ . . . ⊕ fxr ⊕ fy1 ⊕ fy2⊕ . . . ⊕ fys ⊕ fz1 ⊕ fz2⊕
. . . ⊕ fzt.

At the end, when all Im (for m = 1, 2, ..., p) lines are EXORed to L again, the faulty value of Id (which is id) propagates
to L and hence L becomes i1 ⊕ i2 ⊕ . . . ⊕ id ⊕ . . . ⊕ ip ⊕ fw1 ⊕ fw2⊕ . . . ⊕ fwq ⊕ fx1 ⊕ fx2⊕ . . . ⊕ fxr ⊕ fy1
⊕ fy2⊕ . . . ⊕ fys ⊕ fz1 ⊕ fz2⊕ . . . ⊕ fzt ⊕ i1 ⊕ i2 ⊕ . . . ⊕ id ⊕ . . . ⊕ ip ⊕ fw1 ⊕ fw2⊕ . . . ⊕ fwq ⊕ fx1 ⊕
fx2⊕ . . . ⊕ fxr ⊕ fy1 ⊕ fy2⊕ . . . ⊕ fys ⊕ fz1 ⊕ fz2⊕ . . . ⊕ fzt

= id ⊕ id = 1.
Since at the end, the line L contains 1, the fault is detected.
Case 2. A fault can also occur on L. This causes L to have the value 1 since it was initialized with a 0. Hence, the circuit

detects the fault. Note that a fault on Id can cause other lines faulty (Case 1). However, a fault on L does not propagate to
any Id since controls of ETGs and CNOTs are not connected to L. �

Consider an online testable circuit given in Figure 6. In the circuit, ETGs are labeled as e1, e2, e3, and e4. The initial
values of lines I1, I2, I3, I4, and I5 are i1, i2, i3, i4, and i5. The parity line L is initialized with a 0. Assume that ETGs
e1, e2, e3, and e4 compute f1, f2, f3, and f4 when the circuit is fault free. Before the first ETG e1, the value of L is i1 ⊕
i2 ⊕ i3 ⊕ i4 ⊕ i5. Let, l = i1 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ i5.

The ETG e1 computes f1 = i1i2. Thus after this gate, the values of I3 and L are i3 ⊕ f1 and l ⊕ f1. Assume a fault
occurs on I2 between e1 and e2, which changes the value of I2 from i2 to i2. This fault affects e2; thus e2 computes f2 =



i2. Note that the fault-free values of I3 and L, after the gate e2, are i3 ⊕ f1 ⊕ f2 and l ⊕ f1 ⊕ f2, respectively. However,
due to the fault, the values are i3 ⊕ f1 ⊕ f2 and l ⊕ f1 ⊕ f2. Thus two targets of e2 cause the lines I3 and L to have the
faulty values.

Now consider the ETG e3. One of the controls connected to I2 and target connected to L are faulty. Let, i4 be 0. Thus
the fault on I2 does not affect e3 since other fault-free control bit, connected to I4, has the value 0. The fault on L does
not have any impact on calculating the function f3 = i2i4 = i2.0 = 0. After this gate, the value of I5 is i5 ⊕ f3, and the
value of L is l ⊕ f1 ⊕ f2 ⊕ f3.

The ETG e4 has the control on I3 and targets on I2 and L, which are faulty. Assume that other fault-free control bit,
connected to I1, has the value 1. Thus the fault on I3 affects e4 in calculating f4. As a result, e4 computes f4 = i1(i3 ⊕
f1 ⊕ f2). After the operation of this gate, the value on I2 is i2 ⊕ f4, and the value on L is l ⊕ f1 ⊕ f2 ⊕ f3 ⊕ f4.

At the end, when I1, I2, I3, I4, and I5 are EXORed to L again, the value of L becomes
l ⊕ f1 ⊕ f2 ⊕ f3 ⊕ f4 ⊕ i1 ⊕ i2 ⊕ f4 ⊕ i3 ⊕ f1 ⊕ f2 ⊕ i4 ⊕ i5 ⊕ f3 = l ⊕ i1 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ i5
= i1 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ i5 ⊕ i1 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ i5 = 1.

Since L is 1, the circuit detects the fault.

i1
i2
i3
i4
i5
0

c1 c2 c3 c4 c6 c7 c8 c9 c10e1 e2 e3 e4c5

i3 f1

l f1

i2

i3 f1 f2

l f1 f2

i5 f3

l f1 f2 f3l

i2 f4

l f1 f2 f3 f4

I1
I2
I3
I4
I5
L 1

Figure 6. Fault detection in testable circuit.

VI. EXPERIMENTAL RESULTS

We conducted our experiments for 20 benchmark circuits collected from [28]. Toffoli networks were generated using
improved ESOP-based synthesis described in [29]. We then applied our approach to make the circuits online testable. In
Table I , we compare the testable circuits generated by our approach to that of previously reported approaches [22], [23], [26],
[24], [25] in terms of quantum cost and garbage outputs. Note that QC and GO columns in the table represent the quantum
cost and the number of garbage outputs, respectively. Our approach shows significant results in reducing the quantum cost
and garbage outputs for all circuits.

Table II summarizes the improvements achieved by our approach. Quantum costs are decreased by 74.72%, 78.68%, and
26.30% in average, compared to ([22], [23]), [26], and ([24], [25]), respectively. Reductions of garbage outputs range from
96.89% to 99.84% in average, compared to the previous approaches.

The percentages of overheads in quantum cost and garbage outputs for integrating the online testability feature are given
in Table III. The quantum cost overhead for our approach is only 4.21% in average, compared to 312.28% for the approach
in [22], [23], 388.67% for the approach in [26], and 41.40% for the approach in [24], [25]. It is interesting to note that our
approach has absolutely no overhead in terms of garbage outputs since the testability feature does not produce any extra
garbage. However, existing approaches produce extremely large number of garbage outputs; thus the average overheads are
63409.48%, 5163.03%, and 3113.74% for the approaches in ([22], [23]), [26], and ([24], [25]), respectively.

We have also noticed an average improvement of 48.80% in quantum cost results reported from the initial version [27] of
this approach. It is worth noting that our initial work was restricted only to a particular type of ESOP-based approach; thus
we generally cannot expect better results than the results that we obtained from our initial work. For our proposed approach,
although we chose an improved ESOP-based synthesis [29] for experiments, it is possible to use any type of synthesis as
long as the resulting reversible circuit contains only Toffoli gates including NOT and negative-control Toffoli gates. As a
result, this approach is more flexible, and the results that we have shown in the “Our approach” column of Table I could
possibly be even further optimized by choosing a more efficient reversible logic synthesis approach.

VII. CONCLUSION

In this paper we first discuss the limitations of previous approaches reported in [22], [23] and [24], [25]. We then present
a technique that adds online testability to any reversible circuit built as cascade of Toffoli gates. There is no restriction on
how the initial cascade is generated, just that the circuit be designed only from these gates. As indicated in Section II, there



Table I
COMPARISON OF DIFFERENT ONLINE TESTABLE TECHNIQUES

Circuit Approach in [22], [23] Approach in [26] Approach in [24], [25] Our approach
QC GO QC GO QC GO QC GO

9symml 25598 5952 32220 532 12262 139 11066 9
apex5 195061 45362 213843 3518 47847 1620 35354 117
apla 17815 4142 20574 334 2934 190 1859 10
bw 19019 4422 25140 386 4464 723 1249 5
cm82a 2163 502 2823 50 385 48 173 5
con1 1647 382 1929 38 307 30 184 7
cu 5560 1292 6234 110 1288 84 876 14
dk17 10376 2412 11478 186 1649 95 1113 10
ex2 1733 402 2241 42 267 23 171 5
ex5p 84852 19732 98898 1540 12484 1623 4918 8
f51m 128927 29982 164889 2670 37323 832 29072 14
frg2 218109 50722 247332 4048 150509 3616 115211 143
max46 15321 3562 19314 326 5585 114 4627 9
misex3 141354 32872 174732 2816 69153 2149 50826 14
rd73 16482 3832 20583 342 1617 115 959 7
sqn 11236 2612 14256 240 2053 100 1437 7
sqrt8 5689 1322 7086 122 835 63 530 8
sym9 24652 5732 31890 528 12262 139 11066 9
table3 223054 51872 265566 4294 31011 1767 20050 14
z4ml 3883 902 5070 88 1048 92 575 7
Average 57626.55 13400.5 68304.9 1110.5 19764.15 678.1 14565.8 21.1

Table II
IMPROVEMENTS ACHIEVED BY OUR APPROACH

Parameter Existing approaches
Approach in [22], [23] Approach in [26] Approach in [24], [25]

Achieved improvements QC 74.72% 78.68% 26.30%
GO 99.84% 98.10% 96.89%

are a number of approaches that can be used to generate such a circuit. Our technique consists of making small modifications
to the existing gates, and then simply adding a number of gates and a parity line to the circuit. Thus the overhead in terms
of quantum cost is very small, and in terms of garbage our overhead is 0. This is a startling result, as previous approaches
in this area require a significant increase in both of these measures. Table III shows this very clearly. Previous work in
[27] introduced an initial version of this approach which was limited to only reversible circuits generated by a particular
synthesis approach. Not only have we extended the technique to any type of Toffoli gate cascade, but we have also found a
significant improvement in the overhead. Future work will include investigations as to how this technique can be extended
to multiple-valued reversible circuits and to reversible circuits that incorporate other types of gates.

ACKNOWLEDGMENT

This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of Research and Development, vol. 17, no. 6, pp. 525–532, 1973.

[2] R. Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal of Research and Development, vol. 5, pp.
183–191, 1961.

Table III
OVERHEAD CALCULATION OF THE TESTABLE DESIGN OVER THE NON-TESTABLE DESIGN

Method Overhead for testability feature
QC GO

Approach in [22], [23] 312.28% 63409.48%
Approach in [26] 388.67% 5163.03%
Approach in [24], [25] 41.40% 3113.74%
Our approach 4.21% 0%



[3] M. P. Frank, “Introduction to reversible computing: motivation, progress, and challenges,” in Proceedings of the 2nd Conference on
Computing Frontiers, Ischia, Italy, 4-6 May 2005, pp. 385–390.

[4] “International Technology Roadmap for Semiconductors (ITRS),” http://public.itrs.net, 2009 executive summary.

[5] A. N. Al-Rabadi, Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer-Verlag, 2004.

[6] W. C. Athas and L. J. Svensson, “Reversible logic issues in adiabatic CMOS,” in Proceedings of the Workshop on Physics and
Computation (PhysComp), Dallas, TX, 1994, pp. 111–118.

[7] P. Picton, “Optoelectronic, multivalued, conservative logic,” International Journal of Optical Computing, vol. 2, pp. 19–29, 1991.

[8] R. C. Merkle, “Reversible electronic logic using switches,” Nanotechnology, vol. 4, no. 1, pp. 21–40, 1993.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of reversible logic circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 22, no. 6, pp. 710–722, 2003.

[10] J. Chen, X. Zhang, L. Wang, X. Wei, and W. Zhao, “Extended Toffoli gate implementation with photons,” in Proceedings of the
9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), China, 20-23 Oct 2008, pp. 575–578.

[11] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based algorithm for reversible logic synthesis,” in Proceedings of the
40th Annual Design Automation Conference (DAC), 2003, pp. 318–323.

[12] P. Gupta, A. Agrawal, and N. Jha, “An algorithm for synthesis of reversible logic circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 11, pp. 2317–2330, 2006.

[13] K. Fazel, M. Thornton, and J. E. Rice, “ESOP-based Toffoli gate cascade generation,” in Proceedings of the IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 22-24 Aug. 2007, pp. 206–
209.

[14] J. E. Rice and V. Suen, “Using autocorrelation coefficient-based cost functions in ESOP-based Toffoli gate cascade generation,”
in Proceedings of the 23rd Canadian Conference on Electrical and Computer Engineering (CCECE), Calgary, Canada, May 2010,
downloaded Jun. 2010 from http://www.cs.uleth.ca/˜rice/publications/CCECE2010.pdf.

[15] A. N. Al-Rabadi, “New classes of Kronecker-based reversible decision trees and their group-theoretic representations,” in Proceedings
of the International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP), 2004, pp. 233–243, Vienna, Austria,
September 11-12.

[16] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of exclusive sum-of-products,” in Proceedings of the 5th International
Reed-Muller Workshop, Starkville, Mississippi, August 2001, pp. 242–250.

[17] Z. Hamza and G. W. Dueck, “Near-optimal ordering of ESOP cubes for Toffoli networks,” in Proceedings of the 2nd Annual
Workshop on Reversible Computation (RC), 2010, July 2–3 Bremen, Germany.

[18] Y. Sanaee, “Generating Toffoli networks from ESOP expressions,” Master’s thesis, University of New Brunswick, 2010.

[19] M. Mohammadi and M. Eshghi, “On figures of merit in reversible and quantum logic designs,” Quantum Information Processing,
vol. 8, pp. 297–318, August 2009. [Online]. Available: http://portal.acm.org/citation.cfm?id=1555567.1555601

[20] D. Maslov, “Reversible logic synthesis benchmarks page,” http://www.cs.uvic.ca/˜dmaslov/.

[21] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary
gates for quantum computation,” Phys. Rev. A, vol. 52, no. 5, pp. 3457–3467, Nov 1995.

[22] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Online testable reversible logic circuit design using NAND blocks,” in Proceedings
of the IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, Los Alamitos, CA, USA, 10-13 October 2004,
pp. 324–331.

[23] D. P. Vasudevan, P. K. Lala, D. Jia, and J. P. Parkerson, “Reversible logic design with online testability,” IEEE Transactions on
Instrumentation and Measurement, vol. 55, no. 2, pp. 406–414, 2006.

[24] S. N. Mahammad, S. Hari, S. Shroff, and V. Kamakoti, “Constructing online testable circuits using reversible logic,” in Proceedings
of the 10th IEEE International VLSI Design and Test Symposium (VDAT), Goa, India, August 2006, pp. 373–383.

[25] S. N. Mahammad and K. Veezhinathan, “Constructing online testable circuits using reversible logic,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 1, pp. 101–109, 2010.



[26] N. Farazmand, M. Zamani, and M. B. Tahoori, “Online fault testing of reversible logic using dual rail coding,” in Proceedings of
the 16th IEEE International On-Line Testing Symposium (IOLTS), 5-7 July 2010, pp. 204–205.

[27] N. M. Nayeem and J. E. Rice, “A simple approach for designing online testable reversible circuits,” in Proceedings of the IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, B.C., 23-26 August 2011.

[28] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib: An online resource for reversible functions and reversible
circuits,” in Proceedings of the 38th International Symposium on Multiple Valued Logic, 2008, pp. 220–225, RevLib is available at
http://www.revlib.org.

[29] N. M. Nayeem and J. E. Rice, “Improved ESOP-based synthesis of reversible logic,” in Proceedings of the Reed Muller Workshop,
Tuusula, Finland, 25-26 May 2011.


