A Shared-cube Approach to ESOP-based Synthesis of Reversible Logic

N. M. Nayeem and J. E. Rice

Abstract: Reversible logic is being suggested as a possibility for overcoming potential power loss and heat dissipation problems that the computing industry may soon be at a loss to overcome. However, for reversible logic to be a solution we must have techniques for synthesizing function descriptions to reversible circuits. This paper presents an improved ESOP-based reversible logic synthesis approach which leverages situations where cubes are shared by multiple outputs and ensures that the implementation of each cube requires just one Toffoli gate. It has the potential to minimize both gate count and quantum cost, and in fact our experimental results show that this technique can reduce the quantum cost up to 75% compared to results from the existing work.

Keywords: reversible logic, logic synthesis, ESOP, Toffoli gate cascade

1 Introduction

Landauer [1] showed that as information is lost during traditional logic computation heat is generated; this is true regardless of underlying technology. This dissipated heat will cause problems in the near future if Moore’s law [2] holds true, and industry publications such as the International Technology Roadmap for Semiconductors (ITRS) are beginning to publically recognize this fact [3]. Reversible logic, on the other hand, has the theoretical potential to dissipate no energy, as no information is lost during computations. According to Bennett [4], it would be theoretically possible for a circuit to dissipate zero energy if it is implemented using reversible gates. Although technologies for the use of reversible logic in everyday computing have yet to be developed, reversible computing has shown itself to be of use in quantum computing [5], low power CMOS design [6], optical computing [7],
nanotechnology [8], and bioinformatics. In fact, since all quantum computations are reversible there is a clear and direct relationship between reversible computing and quantum computing [9].

In reversible logic fan-out and feedback are not permitted, unlike in traditional logic, thus synthesis of reversible logic must follow different approaches than those that have been developed for traditional logic. There are a number of reversible logic synthesis techniques such as the transformation approach [10], the use of positive polarity Reed-Muller expressions (PPRM) [11], exclusive-or sum-of-products approaches (ESOP) [12, 13], and shared PPRM [14] techniques. Synthesis based on ESOP representations of functions is of interest because of the easy transformation of ESOP terms into a cascade of Toffoli gates, as well as the ability to handle functions with large numbers of inputs.

In this paper, we describe an optimized shared cube synthesis approach which works with the ESOP representation of a function. This approach was first presented in [15]. This approach completes very quickly and is able to handle large sizes of functions, and can work with either reversible or irreversible initial function specifications. The paper begins with some brief background topics in Section 2 and describes previous work in the area in Section 3. Section 4 describes our new approach with a number of examples, followed by which Section 5 provides experimental results and comparisons with the previous work. We conclude in Section 6 with conclusions and a discussion of future work.

2 Background

2.1 Reversible Logic

A function is reversible if it is bijective (i.e., one-to-one and onto) [16]. In other words, a reversible function must have a one-to-one correspondence between its input and output vectors. A reversible gate realizes a reversible function and has the same number of inputs and outputs. A reversible circuit consists of only reversible gates which are interconnected without fanout and feedback [9].

Traditional logic gates such as AND, OR, NAND, NOR and EXOR are not reversible; the exception, however is the NOT gate, which is reversible. The most popular reversible gates are the Toffoli gate and the Fredkin gate. This work uses Toffoli gates exclusively, thus we concentrate on these in our descriptions. An n-bit Toffoli gate maps the input vector $[x_1, x_2, \ldots, x_{n-1}, x_n]$ to the output vector $[x_1, x_2, \ldots, x_{n-1}, x_1x_2\ldots x_{n-1}\oplus x_n]$ as shown in Figure 1(a). The first $(n-1)$ bits are known as controls and the last bit is the target. The 2-bit Toffoli gate is also known as the controlled-not, or CNOT gate, while a 1-bit Toffoli gate (with no controls) is a NOT gate. In general, the target is affected only if all of the control lines have
the value 1; however negative-control Toffoli gates have recently been proposed. A negative-control Toffoli gate can be defined as mapping the input vector \([x_1, x_2, \ldots, x_{n-1}, x_n]\) to the output vector \([x_1, x_2, \ldots, x_{n-1}, \bar{x}_1 \bar{x}_2 \ldots \bar{x}_{n-1} \oplus x_n]\) where \(x_1\) is a negative control. All or none of the control lines may be negative controls, and an example of a 3-bit Toffoli gate with a single negative control in its first input is shown in Figure 1(b). The use of negative-control Toffoli gates simplifies a circuit by reducing the number of NOT gates [17, 18].

![Fig. 1. (a) n-bit Toffoli gate and (b) 3-bit negative-control Toffoli gate.](image)

Gate count is a popular cost metric used to evaluate reversible circuits. Another common metric is quantum cost. The quantum cost refers to the number of elementary (quantum) gates required to implement the circuit, as described in [17] and [18]. As described in [19], a set of basic quantum gates including all one-bit quantum gates and the two-bit exclusive-OR gate can be used to implement any reversible function. Given this fact, they describe implementations for all other (known) reversible gates in terms of these basic gates. Thus a synthesis approach may result in fewer gates, but in some cases these gates may have a higher cost if their implementation requires a higher number of these basic gates. For instance, a Toffoli gate with a large number of controls will have a more complex implementation and thus a higher quantum cost than a Toffoli gate with relatively fewer controls. A common way to calculate the quantum cost of a reversible circuit is to add the quantum costs of each of the individual gates in the circuit. In this work we use the costs given in [20] to compute the quantum cost. According to [17] the negative-control Toffoli gate with at least one positive control has the same quantum cost as a Toffoli gate; however, if all controls are negative, the negative-control Toffoli gate has an extra cost of up to 4. This means that in most instances a negative-control Toffoli gate can replace a NOT gate plus a Toffoli gate with no additional cost.
2.2 Exclusive-or Sum-of-products (ESOP)

In a sum-of-products (SOP) representation of a switching function the terms, also referred to as products or cubes, are created by ANDing one or more literal (a variable in either its complemented or non-complemented form). To create a SOP expression one or more of these terms are then combined using OR gates. The exclusive-or sum-of-products (ESOP) representation is slightly different from a SOP as the OR (+) operators are replaced with exclusive-or (⊕) operators. For example, the function \(f = xy + yz \) is expressed as a SOP, while the function \(f = xy \oplus yz \) is expressed as an ESOP. We note that ESOP forms can represent any Boolean functions, and both + and ⊕ are associative operators.

2.3 ESOP-based Reversible Logic Synthesis

Fazel et al. [12] proposed a basic ESOP-based reversible logic synthesis approach which uses only Toffoli gates to implement the circuit. A function in the ESOP form is commonly written as a list of cubes, known as a cube-list. A cube represents a term in the ESOP and has the form \(x_1x_2 \ldots x_p f_1f_2 \ldots f_q \), where \(x_k \) for \(k \in \{1,2,\ldots,p\} \) is an input variable, \(f_j \) for \(j \in \{1,2,\ldots,q\} \) is an output variable and \(p \) and \(q \) are the number of input and output variables of the function. An example of this format is shown in Figure 2(a).

This approach requires two input lines corresponding to positive and negative polarities of each input variable \(x_k \) and one output line (initialized by 0) for each output variable \(f_j \). Thus the circuit initially has an empty cascade with \(2p + q \) lines where \(p \) is the number of input variables and \(q \) is the number of outputs for the function to be implemented. To generate the reversible cascade implementing the function a Toffoli gate is cascaded for each cube of each output. In other words, for each output variable where \(f_j = 1 \), each cube is mapped to a Toffoli gate where the controls of the gate are the input lines and the target is the output line \(f_j \). If variable \(x_k \) has the positive polarity in the cube, then the control is connected to the input line \(x_k \). If variable \(x_k \) has the negative polarity, then the control is connected to the input line \(\overline{x_k} \). Thus this approach transforms the cube-list into a cascade of Toffoli gates very quickly. Figure 2 shows an example cube-list and the cascade of gates that is generated by this approach.

Further modifications to this work [12, 13, 21] have suggested methods for reducing the required \(2p \) lines to \(p \) through the use of inverters and judicious ordering of the cubes to minimize the number of inverters required.

Unlike other methods for reversible logic synthesis such as the sorting technique introduced in [22], this approach does not require that the function to be implemented be reversible. In addition, because of the simplicity of the approach
A Shared-cube Approach to ESOP-based Synthesis of Reversible Logic

3 Related Work

While there are a variety of approaches to reversible logic synthesis, including [22, 16, 23, 11] and [24], here we address only techniques based on the ESOP representation.

As detailed in Section 2.3, the basic ESOP-based synthesis proposed in [12] works with the ESOP cube-list and generates a circuit by transforming the ESOP cubes into a cascade of Toffoli gates; also as mentioned above a number of improvements to this approach are suggested in [12, 13] and [21].

Gupta et al. [11] present a reversible logic synthesis technique based on a related representation, the positive-polarity Reed-Muller (PPRM) expansion. A tree structure is generated while examining all the possible factors of a term, allowing the construction of a circuit that shares factors. The PPRM representation, while canonical, is a special type of ESOP, with a more rigorous definition, and thus will almost always have more terms than the ESOP representation used in our work. Heuristics are utilized in order to find solutions in a reasonable amount of time. Of interest to a reader new to this area, [11] also provides an overview of other synthesis approaches presented up to the date of publication.

Maslov and Dueck presented an analytical comparison between cascades of Toffoli gates and EXOR PLAs, a structure that can implement ESOP representa-
N. M. Nayeem and J. E. Rice:

tions [25]. Their work shows that a model with minimal garbage, referred to as a “reversible cascade with minimal garbage” (RCMG) will in the worst case require a number of gates that is only a constant times larger than the number of gates needed to build a conventional EXOR PLA. Interestingly enough, they also find that there exists functions for which a linear-sized reversible cascade can be constructed, but which have exponential complexity for an EXOR PLA. Their analysis is based entirely on theoretical circuit complexity and thus there are no experimental results here for comparison.

Perkowski et al. [24] and [26] have also proposed ESOP-based synthesis approaches. These works use a factorization of each of the ESOPs representing the multiple outputs. In addition a new class of reversible gates is introduced, allowing modification of two qubits but requiring a significantly higher level of complexity. They report achieving good results in terms of gate numbers; for instance, in many cases they required only one gate per product term in the ESOP representation. However the technique still requires the use of some garbage lines, and as the authors themselves state, “[our] cascaded realization of multi-output ESOP generates a large number of garbage outputs and requires a large number of input constants...”, both characteristics which we also are attempting to reduce in our work.

Also quite recently a newer technique referred to as the shared-cube synthesis algorithm [27, 28] was proposed. This approach generates one Toffoli gate for each cube irrespective of the number of outputs and adds CNOT gates to transfer the shared functionality to other outputs containing the cube. However, this algorithm may generate multiple Toffoli gates for a single cube if it is shared by more than two outputs. It is to this work that we provide a comparison with our own, as our work is most similar to this approach.

A brief mention of the work in [29] is also relevant; this work introduces additional lines so that even further “sharing” can be taken advantage of. In our work, however, we attempt to maximize sharing of cubes without additional lines, and as well with the least complex gates.

4 Improved Shared Cube Synthesis

Shared cube synthesis works with multi-output functions if the ESOP terms (cubes) are shared by more than one output. For instance, given a multi-output function, $f_1 = ab \oplus cd$ and $f_2 = abc$, shared cube synthesis cannot improve the circuit as there is no shared term between f_1 and f_2. The algorithm presented in [27, 28] takes the best advantage of shared functionality if the ESOP terms are shared by only two outputs. However, if the shared terms exist in more than two outputs as shown in
Figure 2(a), transformation of each term may require more than one Toffoli gate, which is inefficient. The following two examples show that the existing algorithm can be further optimized. The optimized shared cube synthesis described in this paper produces only one Toffoli gate for a cube and hence has the potential to reduce the gate count as well as quantum cost.

Example 1: Given a cube-list of a 3-input 3-output function as shown in Figure 2(a), a Toffoli cascade generated by the algorithm from [27, 28] is shown in Figure 3(a). This cascade requires two Toffoli gates for each of the cubes. An equivalent network depicted in Figure 3(b) generates one Toffoli gate for each cube, and hence minimizes the gate count by 4. Moreover, the quantum cost is reduced from 66 to 34.

Example 2: Consider the cube-list given in Figure 4(a). The algorithm described in [27, 28] generates a Toffoli network containing three Toffoli gates for the first cube and two Toffoli gates for the second cube, a total of 8 gates as shown in Figure 4(b). However, an efficient synthesis optimizes the network as shown in Figure 4(c). The quantum cost of this network is 27, in contrast to the former approach which costs 56. This example also shows an efficient way to make use of the shared functionality even if the cubes are not shared by all the outputs.

4.1 Our Approach

Like other ESOP-based approaches, our proposed approach also works with the ESOP cube-list of a function. This approach optimizes the synthesis by generating exactly one Toffoli gate for one cube and by minimizing the CNOT gates required to transform the Toffoli gates to other output lines in the circuit. Minimization of CNOTs is performed by grouping together the Toffoli gates before passing these to other outputs via CNOTs. If the output line is not empty and a CNOT is required to remove the effect of other gates on that line before doing the transformation, we apply a technique to find a redundant CNOT gate before inserting a new one. A more detailed explanation of this approach with an example is given below.
In a cube-list, there may exist some cubes which are not shared by multiple outputs. If the number of 1s in the output part of a cube is one, then only one output contains this cube and no other output shares it. This cube, called an ungrouped cube, will be dealt with individually. Our proposed approach consists of the following two phases:

Phase 1: Generation of sub-lists
Phase 2: Transformation of sub-lists into gate-lists

Generation of sub-lists: This phase takes the original cube-list as its input and generates sub-lists as follows:

Step 1: Move ungrouped cubes from the cube-list into the ungrouped-list.

Step 2: Repeat Step 3 and Step 4 until cube-list is empty. Initialize the value of \(k \) with a 1 and increase its value by 1 after each iteration.

Step 3: Select a cube from the modified cube-list which is shared by the largest number of functions, i.e. has the maximum number of 1s in its output part. This cube and every other cube with an identical output part are moved to the sub-list \(k \).

Step 4: Select a cube from the cube-list which has the maximum number of 1s and which must have 0 at the output position at which the cubes in sub-list \(k \) have 0. In other words, the outputs that share this cube must also share all the cubes in sub-list \(k \). Afterwards this cube along with the cubes having identical output parts is moved from the cube-list to sub-list \(k \). This step continues until no such cube exists in the cube-list.
Transformation of sub-lists into gate-lists: In this phase, the sub-lists generated by phase 1 are transformed into a cascade of Toffoli gates. The total-gate-list, which is initially empty, will contain the final circuit at the end of this phase.

Step 1: For each sub-list \(k \), do Step 2 - Step 6.

Step 2: An output line \(p \) is selected as the Toffoli target line if the corresponding output contains all cubes in sub-list \(k \). If multiple such lines are found, choose one line arbitrarily that has not yet been used as a control or target of any Toffoli gate. If all such lines are occupied by other gates, choose the same line targeted in the last iteration, or any line arbitrarily.

Step 3: The gate-list \(k \) is initially empty. For each of the cubes in sub-list \(k \) perform steps 4-5 which add gates to the gate-list.

Step 4: Add a Toffoli gate that has a target on line \(p \). The controls of this Toffoli gate are the input lines for which the input part of the corresponding cube contains zeros and ones. If the input part contains at least one zero, use a negative-control Toffoli gate. After that add a CNOT gate to transfer the gates to other output line(s) only if this cube is the last cube in the list that the output contains.

Step 5: If the line \(p \) has already hosted gates before the beginning of Step 2, adding CNOTs in Step 4 transfers those gates to other outputs as well. To remove this unwanted effect, also add CNOTs at the beginning of the gate-list. Note that insertion of this gate may cancel out another CNOT in the total-gate-list. If so, remove both of these gates.

Step 6: Append the gate-list \(k \) at the end of total-gate-list.

Step 7: Generate one Toffoli for each cube in ungrouped-list and append the gates to total-gate-list.

Example 3: An ESOP cube-list of six cubes with four input variables (\(x_1, x_2, x_3, \) and \(x_4 \)) and five output variables (\(f_1, f_2, f_3, f_4, \) and \(f_5 \)) is shown in Figure 5(a). The cubes are labeled \(C_1 \) to \(C_6 \). Among all the cubes only \(C_1 \) is ungrouped since the number of 1s in its output portion is 1 and so it is therefore separated from the cube-list. The resulting lists are shown in Figure 5(b). In the modified cube-list, \(C_3 \) now has the highest number of 1s in its output part. It is thus moved to the sub-list \(1 \). Note that \(C_3 \) is not shared by \(f_5 \). Next, from the remaining cubes (\(C_2, C_4, C_5, \) and \(C_6 \)), a cube is selected whose output portion contains the highest number of 1s and which is not shared by output \(f_5 \) since \(f_5 \) does not contain \(C_3 \). Although \(C_2, C_4, C_5, \) and \(C_6 \) have the same number of 1s in their output parts, \(C_4 \) and \(C_6 \) are not allowed to move in this iteration since they are shared by \(f_5 \). Between the cubes \(C_2 \) and \(C_5 \), suppose that \(C_2 \) has been selected. \(C_2 \) along with \(C_5 \) is moved to the end of sub-list \(1 \) since the output patterns of these two cubes are identical. There are no other cubes which can be moved to sub-list \(1 \). Figure 5(c) shows the cubes in sub-list \(1 \) and cube-list.

The current cube-list now consists of \(C_4 \) and \(C_6 \). Both cubes have the same
\[
x_1 x_2 x_3 x_4 \quad f_1 f_2 f_3 f_4 f_5
\]
\[
\begin{array}{cccccc}
C_1: & 1 & 0 & - & 0 & 0 & 0 & 1 & 0 \\
C_2: & 1 & 1 & - & - & 1 & 1 & 1 & 0 & 0 \\
C_3: & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 & 0 \\
C_4: & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
C_5: & 1 & - & 1 & 1 & 1 & 1 & 0 & 0 \\
C_6: & 1 & - & 0 & - & 1 & 0 & 1 & 0 & 1
\end{array}
\]

(a) An initial cube-list.

\[
x_1 x_2 x_3 x_4 \quad f_1 f_2 f_3 f_4 f_5
\]
\[
\begin{array}{cccccc}
C_2: & 1 & 1 & - & - & 1 & 1 & 1 & 0 & 0 \\
C_3: & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 & 0 \\
C_4: & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
C_5: & 1 & - & 1 & 1 & 1 & 1 & 0 & 0 \\
C_6: & 1 & - & 0 & - & 1 & 0 & 1 & 0 & 1
\end{array}
\]

(b) Separation of ungrouped cubes from the cube-list.

\[
x_1 x_2 x_3 x_4 \quad f_1 f_2 f_3 f_4 f_5
\]
\[
\begin{array}{cccccc}
C_4: & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
C_6: & 1 & - & 0 & - & 1 & 0 & 1 & 0 & 1
\end{array}
\]

(c) Generation of sub-list_1.

\[
x_1 x_2 x_3 x_4 \quad f_1 f_2 f_3 f_4 f_5
\]
\[
\begin{array}{cccccc}
C_3: & 1 & 1 & 1 & - & 1 & 1 & 1 & 0 & 0 \\
C_4: & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
C_5: & 1 & - & 1 & 1 & 1 & 1 & 0 & 0 \\
C_6: & 1 & - & 0 & - & 1 & 0 & 1 & 0 & 1
\end{array}
\]

(d) Generation of sub-list_2.

\[
x_1 x_2 x_3 x_4 \quad f_1 f_2 f_3 f_4 f_5
\]
\[
\begin{array}{cccccc}
C_4: & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
C_6: & 1 & - & 0 & - & 1 & 0 & 1 & 0 & 1
\end{array}
\]

(e) Generation of sub-list_3.

Fig. 5. Cube-list and its sub-lists.

number of output ones. Consider that \(C_4 \) is chosen and moved to sub-list_2. We see that \(f_1 \) contains \(C_6 \) but not \(C_4 \). As a result, \(C_6 \) is not allowed to make a group with \(C_4 \). Figure 5(d) shows the sub-list_2. Now only one cube \(C_6 \) is remaining in the cube-list; thus in the next iteration moving this cube to sub-list_3 shown in Figure 5(e) completes the phase 1.

In phase 2, we transform three sub-lists and ungrouped list into a cascade of Toffoli gates. For sub-list_1 shown in Figure 5(c), outputs \(f_1, f_2, \) and \(f_3 \) have all the cubes in this list. Moreover, there are no gates on any of these output lines.
Consequently, any of these lines can be used as a target line. Let f_1 be chosen as the target line. A Toffoli gate for C_3 targeting at f_1 is generated. Since f_4 does not share any cube other than C_3 in sub-list1, one CNOT is required to transfer C_3 from f_1 to f_4. Next two Toffoli gates are generated for C_2 and C_5. Again, to transfer all the gates from f_1 to f_2 and f_3, two CNOTs are added. The Toffoli cascade for sub-list1 is shown in Figure 6(a).

The sub-list2, shown in Figure 5(d), has just one cube C_4 which is shared by f_2, f_4, and f_5. From Figure 6(a) we see that f_2 and f_4 are already occupied by other gates. Since the line f_5 is empty, this is chosen as the target line for sub-list2. One negative-control Toffoli gate is added for C_4, which is transferred to f_2 and f_4 via CNOTs. Gates generated for this list are appended at the end of the cascade in Figure 6(a), which results in the circuit shown in Figure 6(b).

Next we consider the sub-list3 in Figure 5(e), which contains one cube C_6. Outputs f_1, f_3, and f_5 share C_6, and the corresponding output lines are not empty (see Figure 6(b)). Let the target line be f_1. Since f_1 has gates on it, in order to eliminate the effect of these unexpected gates while transferring C_6 to f_3 and f_5, two more CNOTs are needed before generating the Toffoli gate for C_6. However, adding a new CNOT from f_1 to f_3 will cancel out previously the inserted CNOT (from f_1 to f_3) in the circuit shown in Figure 6(b). Therefore, this CNOT is removed rather than adding a new one (from f_1 to f_3). However a CNOT from f_1 to f_5 is required. Afterwards one negative-control Toffoli gate for C_6 and two CNOTs for sharing with f_3 and f_5 are added as shown in Figure 6(c). Finally, the ungrouped cube C_1 shown in Figure 5(b) is transformed directly into a negative-control Toffoli gate. The final cascade is shown in Figure 6(d).

5 Experimental Results

Our proposed approach and the existing approach on shared cube synthesis discussed in [28, 27] have been developed in Java. The existing approach first reported in [28] does not use negative-control Toffoli gates; however, the usage of this type of gates was later suggested in [27] and [30]. Since our approach uses Toffoli gates including negative-control Toffoli gates, for fair comparison, negative-control Toffoli gates have also been incorporated to the circuits generated by the existing approach. The tool EXORCISM-4 [31] is used to generate the ESOP cube-lists for the benchmark circuits. The implemented programs have been run on a 2.4GHz Intel core 2 duo based system with 4GB RAM for 38 benchmark circuits collected from [32]. The execution time is negligible for both programs, and the results of this experiment are compared in Table 1.

In Table 1 GC and QC stand for gate count and quantum cost, respectively. In
the first column, the name of the function is given. Columns two-three and four-five show the gate count and quantum cost of the circuits generated by the existing approach and the proposed approach, respectively. The last two columns indicate the improvements in percentage of the proposed algorithm over the previous one. Negative values indicate that the previous algorithm is better than the proposed one for that function.

It can be seen from the Table 1 that the proposed algorithm reduces the quantum cost for all functions except two functions 9symml and cordic. Circuits apex4, bw, ex5p, and seq are improved by more than 70% in terms of quantum cost. Moreover, a significant improvement is noticed for the functions cm42a, de1, ham7, hwb8,
in0, inc, misex1, pdc, and urf3. It is noted that improvements for 9symml and cordic are 0%. This is due to fact that the function 9symml contains only one output; thus there is no shared functionality. For the function cordic, both approaches synthesize similar circuits due to only two outputs in the function, resultings in 0% improvement.

While our method is far better in terms of quantum cost, the opposite trend is found in the improvement column of gate count in Table 1. In our approach, 23 out of 38 circuits require more gates, and an increase of nearly 88% is noticed for apex4, which is the worst case. Since sizes of Toffoli gates used in two approaches are different, we cannot expect an accurate measurement from the gate count comparisons. This is because, while gate count is the simplest way to compare and evaluate different reversible circuits, it simply counts gates but does not take into account the complexity of the gates. As a result, it can compare different circuits only if the functionality (type) of the gates and the number of bits in the gates used in circuits are similar [33]. For example, consider two circuits where the first circuit consists of three 2-bit Toffoli gates and the second circuit consists of two 10-bit Toffoli gates. According to this measure, the second circuit is better. However, a 10-bit Toffoli gate is more complex than a 2-bit Toffoli gate. Since gates have different numbers of bits, this simple measure fails to provide an accurate comparison. This is the underlying cause of the higher gate count numbers for our approach. Since our approach utilizes the shared functionality much better than the previous approach, many large Toffoli gates are replaced by CNOT gates. However, this replacement requires some extra CNOT gates to transfer the gates to other lines and to remove the impact of other gates when the output lines are not empty. This is explained with the following example: given a cube-list in Figure 7(a), circuits generated by the existing shared cube synthesis approach and our proposed approach are shown in Figure 7(b) and Figure 7(c), respectively. The former approach requires five Toffoli gates and two CNOT gates, whereas the latter approach reduces one Toffoli gate but adds three extra CNOT gates which are labeled as c1, c2, and c3. CNOT gates c1 and c2 are added to transfer the first Toffoli gate in Figure 7(c) to lines f2 and f4. Again, c3 is added since line f2 is not empty when the last Toffoli gate is required to transfer from f2 to f4. The latter approach reduces the quantum cost from 51 to 41.

The number of garbage outputs is another cost metric often used for evaluation of reversible circuits; however we note that both approaches perform exactly the same in this regard.
6 Conclusion

In this paper we describe an improved shared cube synthesis approach which incorporates an efficient way to group the cubes even when some cubes are not shared by all outputs, resulting in better transformation of cubes into gates. A technique to eliminate redundant CNOT gates has also been added to the synthesis approach to reduce the number of CNOT gates. Experimental results show that our approach can reduce the quantum cost more than 70% for some circuits, as compared to the approach in [27, 28]. We note, however, that we do not have similar improvements when considering the gate count; further examination of this phenomenon suggests that this is due to the reduced complexity of gates that our method trends toward, as compared to the more complex gates used by the previous method.

Previous work on the ESOP-based synthesis approaches has shown that application of template matching [34, 35] can significantly reduce the size of a previously synthesized reversible circuit [21]. Future work includes comparison of previous ESOP-based techniques with this work, as well as the development and incorporation of templates for negative-control Toffoli gates.

Acknowledgment

This research was funded by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Table 1. Experimental results.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Previous Approach</th>
<th>Our Approach</th>
<th>Improvement %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GC QC</td>
<td>GC QC</td>
<td>GC QC</td>
</tr>
<tr>
<td>5xp1</td>
<td>57 901</td>
<td>58 786</td>
<td>-1.75</td>
</tr>
<tr>
<td>9symml</td>
<td>52 10943</td>
<td>52 10943</td>
<td>0</td>
</tr>
<tr>
<td>alu4</td>
<td>474 43265</td>
<td>454 41127</td>
<td>4.22</td>
</tr>
<tr>
<td>apex4</td>
<td>2988 134330</td>
<td>5622 35840</td>
<td>-88.15</td>
</tr>
<tr>
<td>apex5</td>
<td>593 39245</td>
<td>601 33830</td>
<td>-1.35</td>
</tr>
<tr>
<td>apla</td>
<td>60 2345</td>
<td>72 1683</td>
<td>-20</td>
</tr>
<tr>
<td>bw</td>
<td>194 2379</td>
<td>287 637</td>
<td>-47.94</td>
</tr>
<tr>
<td>cordic</td>
<td>777 187620</td>
<td>777 187620</td>
<td>0</td>
</tr>
<tr>
<td>C7552</td>
<td>64 1023</td>
<td>89 399</td>
<td>-39.06</td>
</tr>
<tr>
<td>clip</td>
<td>87 4908</td>
<td>78 3824</td>
<td>10.34</td>
</tr>
<tr>
<td>cm42a</td>
<td>32 266</td>
<td>42 161</td>
<td>-31.25</td>
</tr>
<tr>
<td>cu</td>
<td>25 864</td>
<td>28 781</td>
<td>-12</td>
</tr>
<tr>
<td>dc1</td>
<td>30 213</td>
<td>31 127</td>
<td>-3.33</td>
</tr>
<tr>
<td>dc2</td>
<td>51 1341</td>
<td>51 1084</td>
<td>0</td>
</tr>
<tr>
<td>decod</td>
<td>64 1023</td>
<td>89 399</td>
<td>-39.06</td>
</tr>
<tr>
<td>dist</td>
<td>110 5079</td>
<td>94 3700</td>
<td>14.55</td>
</tr>
<tr>
<td>dk17</td>
<td>34 1075</td>
<td>34 1014</td>
<td>0</td>
</tr>
<tr>
<td>ex1010</td>
<td>1487 105579</td>
<td>1675 52788</td>
<td>-12.64</td>
</tr>
<tr>
<td>ex5p</td>
<td>428 13875</td>
<td>646 3547</td>
<td>-50.93</td>
</tr>
<tr>
<td>f2</td>
<td>15 175</td>
<td>14 112</td>
<td>6.67</td>
</tr>
<tr>
<td>f51m</td>
<td>332 28835</td>
<td>327 28382</td>
<td>1.51</td>
</tr>
<tr>
<td>frg2</td>
<td>1435 127447</td>
<td>1389 112008</td>
<td>3.21</td>
</tr>
<tr>
<td>ham7</td>
<td>28 108</td>
<td>37 67</td>
<td>-32.14</td>
</tr>
<tr>
<td>hwb8</td>
<td>462 14431</td>
<td>480 8195</td>
<td>-3.9</td>
</tr>
<tr>
<td>in0</td>
<td>207 13156</td>
<td>245 7949</td>
<td>-18.36</td>
</tr>
<tr>
<td>inc</td>
<td>62 1425</td>
<td>75 892</td>
<td>-20.97</td>
</tr>
<tr>
<td>misex1</td>
<td>31 586</td>
<td>42 332</td>
<td>-35.48</td>
</tr>
<tr>
<td>misex3c</td>
<td>849 72735</td>
<td>822 49720</td>
<td>3.18</td>
</tr>
<tr>
<td>misex3</td>
<td>848 73867</td>
<td>854 49076</td>
<td>-0.71</td>
</tr>
<tr>
<td>mlp4</td>
<td>82 2744</td>
<td>80 2496</td>
<td>2.44</td>
</tr>
<tr>
<td>pdc</td>
<td>542 55887</td>
<td>649 30962</td>
<td>-19.74</td>
</tr>
<tr>
<td>root</td>
<td>52 2436</td>
<td>48 1811</td>
<td>7.69</td>
</tr>
<tr>
<td>sao2</td>
<td>42 5116</td>
<td>41 3767</td>
<td>2.38</td>
</tr>
<tr>
<td>seq</td>
<td>1189 139826</td>
<td>1287 33991</td>
<td>-8.24</td>
</tr>
<tr>
<td>sqr6</td>
<td>56 708</td>
<td>54 583</td>
<td>3.57</td>
</tr>
<tr>
<td>urf3</td>
<td>1464 89053</td>
<td>1501 53157</td>
<td>-2.53</td>
</tr>
<tr>
<td>wim</td>
<td>21 177</td>
<td>23 139</td>
<td>-9.52</td>
</tr>
<tr>
<td>z4ml</td>
<td>33 492</td>
<td>34 489</td>
<td>-3.03</td>
</tr>
</tbody>
</table>
References

A Shared-cube Approach to ESOP-based Synthesis of Reversible Logic

