
Improved ESOP-based Synthesis of Reversible
Logic

N. M. Nayeem
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

noor.nayeem@uleth.ca

J. E. Rice
Dept. of Math & Computer Science

University of Lethbridge
Lethbridge, AB, Canada

j.rice@uleth.ca

Abstract—This paper presents an improved ESOP-based re-
versible logic synthesis which utilizes cubes shared by multiple
outputs and ensures that the implementation of each cube
requires just one Toffoli gate. Thus it has the potential of
minimizing the gate count and quantum cost. Experimental
results show that this technique can reduce the quantum cost
up to 75%, compared to the existing algorithm.

I. INTRODUCTION

Landauer [1] showed that traditional logic computation
generates a certain amount of heat for every bit of information
that is lost or discarded regardless of underlying technology.
This dissipated heat will cause problems in the near future if
Moore’s law holds true. Reversible logic, on the other hand,
dissipates no energy theoretically as it does not erase any
information during computation. According to Bennett [2], it
would be possible for a circuit to dissipate zero energy if it
is implemented using reversible gates. Frank [3] states that
the amount of dissipated heat in reversible logic will become
very close to zero with the development of the technology. It is
interesting to note that reversible logic has a direct relationship
with quantum computing as all quantum gates are reversible
[4]. Moreover, reversible computing has applications in diverse
technologies such as ultra-low power CMOS design, optical
computing, nanotechnology, and bioinformatics.

Synthesis of reversible logic is far different from synthesis
of irreversible logic since fan out and loops are not permitted.
As a result, design approaches used for traditional Boolean
logic cannot be directly applied to reversible logic. There
are a number of reversible logic synthesis techniques such as
transformation [5], positive polarity Reed-Muller expressions
(PPRM) [6], exclusive-or sum-of-products (ESOP) [7], [8],
and shared PPRM [9] techniques. Synthesis based on ESOP
representations of functions is of interest because of the
easy transformation of ESOP terms into a cascade of Toffoli
gates, as well as the ability to handle functions with large
numbers of inputs. In this paper, we present an optimized
shared cube synthesis approach which also works with the
ESOP representation of a function. Comparisons with work
in the literature [10], [11] seem to indicate that our approach
performs better than the existing methods when ESOP terms
are shared by more than two outputs.

II. BACKGROUND

A. Reversible Logic

A function is reversible if it is bijective (i.e., one-to-one and
onto) [12]. In other words, a reversible function has a one-to-
one correspondence between its input and output vectors. A
reversible gate realizes a reversible function and has the same
number of inputs and outputs. A reversible circuit consists of
only reversible gates which are interconnected without fanout
and feedback [4].

Traditional logic gates such as AND, OR, NAND, NOR and
EXOR are not reversible. However, the NOT gate is reversible.
The most popular reversible gates are the Toffoli gate and
the Fredkin gate. An n-bit Toffoli gate maps the input vector
[x1, x2, ..., xn−1, xn] to the output vector [x1, x2, ..., xn−1,
x1x2...xn−1⊕xn] as shown in Figure 1(a). The first (n-1)
bits are known as controls and the last bit is the target. 2-bit
Toffoli gate is also known as the CNOT gate. In general, the
target is affected only if all of the control lines have the value
1; however negative-control Toffoli gates have recently been
proposed. The use of negative-control Toffoli gates simplifies
a circuit by reducing the number of NOT gates [13], [14]. A
3-bit Toffoli gate with a single negative control in its first input
is shown in Figure 1(b).

x1
x2
x3

xn-1
xn x1x2x3...xn-1 xn

x1
x2
x3

xn-1

(a)

x1
x2
x3

x1
x2
x1x2 x3

(b)

Fig. 1. (a) An n-bit Toffoli gate and (b) a 3-bit negative-control Toffoli gate.

Gate count is a popular cost metric used to evaluate re-
versible circuits. Another common metric is quantum cost. The
quantum cost refers to the number of elementary (quantum)
gates required to implement the circuit. A common way to
calculate the quantum cost of a reversible circuit is to add the
quantum costs of its gates. For evaluation, we use the costs of



Toffoli gates given in [15]. The negative-control Toffoli gate
with at least one positive control has the same quantum cost
as a Toffoli gate. However, if all controls are negative, the
negative-control Toffoli gate has an extra cost of 2. For more
information, please see [13], [14].

B. Exclusive-or Sum-of-products (ESOP)

In a sum-of-products (SOP) representation of a switching
function terms, also referred to as products or cubes, are
created by ANDing one or more literal (variable in either its
complemented or non-complemeted form). To create a SOP
expression one or more of these terms are then combined
using OR gates. The exclusive-or sum-of-products (ESOP)
representation is slightly different from a SOP as the OR (+)
operators are replaced with exclusive-or (⊕) operators. For
example, a function f = xy + yz in the SOP form can be
rewritten as f = xy ⊕ xyz which is in an ESOP form. We
note that ESOP forms can represent any Boolean functions,
and both + and ⊕ are associative operators.

III. PREVIOUS WORK

A brief overview of different ESOP-based methods is given
in this section. The basic ESOP-based synthesis proposed in
[7] works with the ESOP cube-list and generates a circuit by
transforming the ESOP cubes into a cascade of Toffoli gates,
where a gate is generated for each cube of each output. The
resultant circuit requires 2n+m lines, where n is the number of
inputs and m is number of outputs. 2n lines are required for
the input variables and their negated forms. By observing that
all the negated lines are not utilized in all cases, and since it
is easy to get a negated line by inserting a NOT gate when
necessary, the authors in [7] proposed a heuristic algorithm
using the alpha/beta cost metric, which considerably reduces
the number of lines to n+m. Rice and Suen [8] proposed
another heuristic based on autocorrelation coefficients.

A newer technique, the shared-cube synthesis algorithm
[10], [11] generates one Toffoli gate for each cube irrespective
of the number of outputs and adds CNOT gates to transfer
the shared functionality to other outputs containing the cube.
However, this algorithm may generate multiple Toffoli gates
for a single cube if it is shared by more than two outputs.
The next section addresses this issue and presents an efficient
shared cube synthesis algorithm.

IV. IMPROVED SHARED CUBE SYNTHESIS

Shared cube synthesis works with multi-output functions
if the ESOP terms (cubes) are shared by more than one
output. For instance, given a multi-output function, f1 = ab
⊕ cd and f2 = abc, shared cube synthesis cannot improve
the circuit as there is no shared term between f1 and f2. The
algorithm presented in [10], [11] takes the best advantage of
shared functionality if the ESOP terms are shared by only
two outputs. However, if the shared terms exist in more than
two outputs, transformation of each term may require more
than one Toffoli gate, which is inefficient. The following two
examples show that the existing algorithm can be further

optimized. The optimized shared cube synthesis presented in
this paper produces one Toffoli gate for a cube and hence has
the potentiality to reduce the gate count as well as quantum
cost.

Example 1: Given a cube-list of 3-input 3-output function
shown in Figure 2(a), a Toffoli cascade generated by the
algorithm from [10], [11] is shown in Figure 2(b). This cascade
requires two Toffoli gates for each of the cubes. An equivalent
network depicted in Figure 2(c) generates one Toffoli gate for
each cube, and hence minimizes the gate count by 4. Moreover,
the quantum cost is reduced from 66 to 34.

1 1 1 1 1 1
1 0 1 1 1 1
- 0 1 1 1 1

x1x2x3 f1f2f3

x1

0 f1

x2
x3

0
0

f2
f3

x1
x2
x3
0 f1

f2
f3

0
0

Fig. 2. (a) An example cube-list, (b) the Toffoli cascade generated by the
algorithm in [10], [11], and (c) an improved Toffoli cascade.

Example 2: Consider the cube-list given in Figure 3(a). The
algorithm described in [10], [11] generates a Toffoli network
containing three Toffoli gates for the first cube and two Toffoli
gates for the second cube, a total of 8 gates as shown in
Figure 3(b). However, an efficient synthesis optimizes the
network as shown in Figure 3(c). The quantum cost of this
network is 27, in contrast to the former approach which costs
56. This example also shows an efficient way to make use of
the shared functionality even if the cubes are not shared by
all the outputs.

A. Our Approach

Some cubes are not shared by multiple outputs. If the
number of 1s in the output part of a cube is one, then only
one output contains this cube and no other output shares
it. This cube, called an ungrouped cube, will be dealt with
individually. The optimized synthesis technique proposed in
this paper consists of the following two phases:

Phase 1: Generation of sub-lists
Phase 2: Transformation of sub-lists into gate-lists

Generation of sub-lists: This phase takes the original cube-
list as its input and generates sub-lists as follows:



1 1 - 1 1 1 1 1 1
1 – 1 - 1 0 1 1 1
- 1 - 1 1 0 1 0 0

x1x2x3x4 f1f2f3f4f5

(a)

x1
x2
x3

0

f1
f2
f3

0
0

x4
0
0

f4
f5

(b)

x1
x2
x3

0

f1
f2
f3

0

0

x4
0
0

f4
f5

(c)

Fig. 3. (a) An initial cube-list, (b) the Toffoli cascade generated by the
algorithm in [10], [11], and (c) an improved Toffoli cascade.

Step 1: Move ungrouped cubes from the cube-list into the
ungrouped-list.

Step 2: Repeat Step 3 and Step 4 until cube-list is empty.
Initialize the value of k with a 1 and increase its value by 1
after each iteration.

Step 3: Select a cube from the modified cube-list which
is shared by the largest number of functions, i.e. has the
maximum number of 1s in its output part. This cube and every
other cube with an identical output part are moved to the sub-
listk.

Step 4: Select a cube from the cube-list which has the
maximum number of 1s and which must have 0 at the output
position at which the cubes in sub-listk have 0. In other words,
the outputs that share this cube must also share all the cubes
in sub-listk. Afterwards this cube along with the cubes having
identical output parts is moved from the cube-list to sub-listk.
This step continues until no such cube exists in the cube-list.
Transformation of sub-lists into gate-lists: In this phase, the
sub-lists generated by phase 1 are transformed into a cascade
of Toffoli gates. The total-gate-list, which is initially empty,
will contain the final circuit at the end of this phase.

Step 1: For each sub-listk, do Step 2 - Step 6.
Step 2: An output line p is selected as the Toffoli target line

if the corresponding output contains all cubes in sub-listk. If
multiple such lines are found, choose one line arbitrarily that
has not yet been used as a control or target of any Toffoli gate.
If all such lines are occupied by other gates, choose the same

line targeted in the last iteration, or any line arbitrarily.
Step 3: The gate-listk is initially empty. For each of the

cubes in sub-listk perform steps 4-5 which add gates to the
gate-listk.

Step 4: Add a Toffoli gate that has a target on line p. The
controls of this Toffoli are the input lines for which the input
part of the corresponding cube contains zeros and ones. If the
input part contains at least one zero, use a negative-control
Toffoli gate. After that add a CNOT gate to transfer the gates
to other output line(s) only if this cube is the last cube in the
list that the output contains.

Step 5: If the line p has already hosted gates before the
beginning of Step 2, adding CNOTs in Step 4 transfers those
gates to other outputs as well. To remove this unwanted effect,
also add CNOTs at the beginning of the gate-listk. Note that
insertion of this gate may cancel out another CNOT in the
total-gate-list. If so, remove both of these gates.

Step 6: Append the gate-listk at the end of total-gate-list.
Step 7: Generate one Toffoli for each cube in ungrouped-list

and append the gates to total-gate-list.
Example 3: An ESOP cube-list of six cubes with four input

variables (x1, x2, x3, and x4) and five output variables (f1,
f2, f3, f4, and f5) is shown in Figure 4(a). The cubes are
labeled C1 to C6. Among all the cubes only C1 is ungrouped
since the number of 1s in its output portion is 1 and so it is
therefore separated from the cube-list. The resultant lists are
shown in Figure 4(b). Now in the modified cube-list, C3 has
the highest number of 1s in its output part. Thus it is moved
to the sub-list1. Note that C3 is not shared by f5. Now from
the remaining cubes (C2, C4, C5, and C6), a cube is selected
whose output portion contains the highest number of 1s and
which is not shared by output f5 since f5 does not contain C3.
Although C2, C5, and C6 have the same number of 1s in their
output parts, C6 is not allowed to move in this iteration since
it is shared by f5. Between the cubes C2 and C5, suppose that
C2 has been selected. C2 along with C5 is moved to the end
of sub-list1 since the output patterns of these two cubes are
identical. There are no other cubes which can be moved to
sub-list1. Figure 4(c) shows the cubes in sub-list1 and cube-
list.

Now the current cube-list consists of C4 and C6. Both cubes
have the same number of output ones. Consider that C4 is
chosen and moved to sub-list2. We see that f1 shares C6 but
not C4. As a result, C6 is not allowed to make a group with
C4. Figure 4(d) shows the sub-list2. Now only one cube C6 is
remaining in the cube-list; thus in the next iteration moving
this cube to sub-list3 shown in Figure 4(e) completes the phase
1.

In phase 2, we transform three sub-lists and ungrouped-
list into a cascade of Toffoli gates. For sub-list1 shown in
Figure 4(c), outputs f1, f2, and f3 have all the cubes in this
list. Moreover, there are no gates on any of these output lines.
Consequently, any of these lines can be used as a target line.
Let f1 be chosen as the target line. A Toffoli gate for C3

targeting at f1 is generated. Since f4 does not share any cube
other than C3 in sub-list1, one CNOT is required to transfer



C1:1 0 – 0 0 0 0 1 0
C2:1 1 - - 1 1 1 0 0
C3:1 1 1 - 1 1 1 1 0
C4:1 0 0 1 0 1 0 0 1
C5:1 - 1 1 1 1 1 0 0
C6:1 - 0 - 1 0 1 0 1

Cube-list

x1x2x3x4 f1f2f3f4f5

(a) An initial cube-list.

C2:1 1 - - 1 1 1 0 0
C3:1 1 1 - 1 1 1 1 0
C4:1 0 0 1 0 1 0 0 1
C5:1 - 1 1 1 1 1 0 0
C6:1 - 0 - 1 0 1 0 1

Current Cube-list

x1x2x3x4 f1f2f3f4f5

C1:1 0 - 0 0 0 0 1 0
Ungrouped-list

x1x2x3x4 f1f2f3f4f5

(b) Separation of ungrouped cubes
from the cube-list.

C4:1 0 0 1 0 1 0 0 1
C6:1 - 0 - 1 0 1 0 1

Current Cube-list

x1x2x3x4 f1f2f3f4f5

C3:1 1 1 - 1 1 1 1 0
C2:1 1 - - 1 1 1 0 0
C5:1 - 1 1 1 1 1 0 0

Sub-list1

x1x2x3x4 f1f2f3f4f5

(c) Generation of sub-list1.

C6:1 - 0 - 1 0 1 0 1
Current Cube-list

x1x2x3x4 f1f2f3f4f5

C4:1 0 0 1 0 1 0 0 1
Sub-list2

x1x2x3x4 f1f2f3f4f5

(d) Generation of sub-list2.

C6:1 - 0 - 1 0 1 0 1
Sub-list3

x1x2x3x4 f1f2f3f4f5

(e) Generation of sub-list3.

Fig. 4. Cube-list and its sub-lists

C3 from f1 to f4. Next two Toffoli gates are generated for
C2 and C5. Again, to transfer all the gates from f1 to f2 and
f3, two CNOTs are added. The Toffoli cascade for sub-list1
is shown in Figure 5(a).

The sub-list2, shown in Figure 4(d), has just one cube C4

which is shared by f2 and f5. From Figure 5(a) we see that f2
is already occupied by another gate. Since the line f5 is empty,
this is chosen as the target line for sub-list2. One negative-
control Toffoli gate is added for C4, which is transferred to
f2 via a CNOT. Gates generated for this list are appended at
the end of the cascade in Figure 5(a), which results in the
circuit shown in Figure 5(b).

Next we consider the sub-list3 in Figure 4(e), which con-
tains one cube C6. Outputs f1, f3, and f5 share C6, and the
corresponding output lines are not empty (see Figure 5(b)).
Let the target line be f1. Since f1 has gates on it, in order
to eliminate the effect of these unexpected gates while trans-
ferring C6 to f3 and f5, two more CNOTs are needed before
generating the Toffoli gate for C6. However, adding a new
CNOT from f1 to f3 will cancel out previously the inserted
CNOT (from f1 to f3) in the circuit shown in Figure 5(b).
Therefore, this CNOT is removed rather than adding a new

one (from f1 to f3). However a CNOT from f1 to f5 is
required. Afterwards one negative-control Toffoli gate for C6

and two CNOTs for sharing with f3 and f5 are added as
shown in Figure 5(c). Finally, the ungrouped cube C1 shown
in Figure 4(b) is transformed directly into a negative-control
Toffoli gate. The final cascade is shown in Figure 5(d).

V. EXPERIMENTAL RESULTS

The proposed algorithm has been developed in C++. As
is done in the original shared cube synthesis approach from
[10], [11], the tool EXORCISM-4 [16] is used to generate the
ESOP cube-lists for the benchmark circuits. The implemented
program has been run on a 2.4GHz Intel core 2 duo based
system with 4GB RAM using the same set of benchmark
circuits (except dalu as it is not available) reported in [10],
[11]. The execution time of the program is negligible, and
the results of this experiment are compared to the existing
algorithm [10], [11] in Table I.

In Table I GC and QC stand for gate count and quantum
cost, respectively. In the first column, the name of the function
is given. Columns two to five and columns six to nine show the
number of NOT gates, number of Toffoli gates (excluding the
NOT gates), total number of gates and the quantum cost of the
circuit generated by the existing algorithm and the proposed
algorithm, respectively. The last two columns indicate the
improvement in percentage of the proposed algorithm over
the existing one. Negative values indicate that the existing
algorithm is better than the proposed one for that function.
We note that for fair comparison, Toffoli gate count (not total
gate count) and their quantum costs (excluding the extra cost
of negative-control Toffoli gate if applicable) are considered
during the calculation of improvement.

We also note that it appears that the calculation of quan-
tum cost in [10], [11] may be incorrect for cordic.esop and
chkn.esop (indicated by ∗ in Table I). Shared cube synthesis
requires at least one Toffoli gate for each cube. If we just
consider one Toffoli for a cube and do not count the necessary
CNOT gates, then quantum costs required for cordic.esop and
chkn.esop are at least 187,563 and 33,620 respectively, which
are greater than the values reported in [10], [11].

It can be seen from the improvement column of Table I
that our approach reduces the quantum cost of Toffoli gates
for all functions except the last one (z4ml). Circuits bw and
apex3 are improved by more than 75% in terms of quantum
cost. Moreover, a significant improvement is noticed for the
functions risc, bc0, and in2. The table also shows that the
average reduction of quantum cost is 25%.

However, the opposite trend is found in the improvement
column of the Toffoli gate count. We have investigated to find
the reason. The algorithm in [11] is somewhat different from
[10] since the former utilizes the shared functionality until one
of the output lines is empty, while the latter algorithm inserts
CNOT gates to remove the impact of other gates when the
output lines are not empty. It is expected that the insertion of
necessary CNOT gates will increase the Toffoli gate count as
well as the total gate count, but the values (e.g., the number



x1

x2

x3

x4

0

f10

0

0

0

f2

f3

f4

f5

(a) A circuit equivalent to sub-list1.

x1

x2

x3

x4

0

f10

0

0

0

f2

f3

f4

f5

(b) Appending the circuit for sub-list2 to the circuit
of Figure 5(a).

x1

x2

x3

x4

0

f10

0

0

0

f2

f3

f4

f5

(c) Appending the circuit for sub-list3 to the circuit of Figure 5(b).

x1

x2

x3

x4

0

f10

0

0

0

f2

f3

f4

f5

(d) A circuit equivalent to the cube-list in Figure 4(a).

Fig. 5. Improved shared cube synthesis process.

of Toffoli gates and total gate count) reported in [11] and [10]
are identical. In addition, the problem found in comparing
quantum costs also exists in gate counts. For example, the
cube-list of the function term1 contains 540 cubes. Thus the
Toffoli circuit must generate at least 539 Toffoli gates (not
540 because one cube contains all don’t care values, which
will be transformed into NOT gates) even if the CNOT gates,
which are required to transfer the gates to other outputs and
remove the effect of other gates, are not taken into account.
However, the number of Toffoli gates reported in [10] and [11]
is 506. Because of these problems, we have difficulties with
an accurate comparison of the gate count metric between our
approach and the results as reported in [10], [11].

VI. CONCLUSION

In this paper we have proposed an improved shared cube
synthesis algorithm. Our experimental results for the quantum
cost of the resulting circuits are compared to those reported
in [10], [11]. Our new algorithm results in improvement in

quantum costs for nearly all circuits, although we note that
we did not have similar improvements when considering the
gate counts. As indicated in Section V we are still investigating
why this is. We have thus focused our analysis on the quantum
costs of the circuits generated by our approach, although future
work will include further investigation and discussion with a
view to more accurate comparisons.

ACKNOWLEDGMENT

This research was funded by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, pp. 183–
191, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, 1973.

[3] M. P. Frank, “Introduction to reversible computing: motivation, progress,
and challenges,” in Proceedings of the 2nd Conference on Computing
Frontiers, (Ischia, Italy), pp. 385–390, 4-6 May 2005.



[4] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[5] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proceedings of the 40th
annual Design Automation Conference (DAC), pp. 318–323, 2003.

[6] P. Gupta, A. Agrawal, and N. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 11, pp. 2317–2330, 2006.

[7] K. Fazel, M. Thornton, and J. E. Rice, “ESOP-based Toffoli gate cascade
generation,” in Proceedings of the IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing (PACRIM), (Victoria,
BC, Canada), pp. 206–209, 22-24 Aug. 2007.

[8] J. E. Rice and V. Suen, “Using autocorrelation coefficient-based cost
functions in ESOP-based Toffoli gate cascade generation,” in Pro-
ceedings of 23rd Canadian Conference on Electrical and Computer
Engineering (CCECE), (Calgary, Canada), May 2010.

[9] Y. Sanaee, M. Saeedi, and M. S. Zamani, “Shared-PPRM: A memory-
efficient representation for Boolean reversible functions,” in Proceedings
of IEEE Computer Society Annual Symposium on VLSI (ISVLSI), (Wash-
ington, DC, USA), pp. 471–474, 2008.

[10] Y. Sanaee, “Generating Toffoli networks from ESOP expressions,”
Master’s thesis, University of New Brunswick, 2010.

[11] Y. Sanaee and G. W. Dueck, “Generating Toffoli networks from ESOP
expressions,” in Proceedings of IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing (PACRIM), (Victoria,
BC, Canada), pp. 715–719, 13-18 June 2009.

[12] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of
reversible logic circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 22, no. 6, pp. 710–722, 2003.

[13] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, “Quantum
circuit simplification and level compaction,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 3, pp. 436–444, 2008.

[14] M. Arabzadeh, M. Saeedi, and M. Zamani, “Rule-based optimization
of reversible circuits,” in Proceedings of Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 849–854, 2010.

[15] D. Maslov, “Reversible logic synthesis benchmarks page.”
http://www.cs.uvic.ca/˜dmaslov/.

[16] A. Mishchenko and M. Perkowski, “Fast heuristic mini-
mization of exclusive sum-of-products,” in Proceedings of
the 5th International Reed-Muller Workshop, (Starkville,
Mississippi), pp. 242–250, August 2001.



TABLE I
EXPERIMENTAL RESULTS

Function
Previous algorithm [10], [11] Proposed algorithm Improvement (%)

NOT Toffoli Total Total NOT Toffoli Total Total Toffoli Toffoli
GC GC GC QC GC GC GC QC GC QC

bw 118 175 293 2942 0 322 322 676 -84 76.42
xor5 2 5 7 7 0 5 5 9 0 0
5xp1 48 52 100 1053 0 54 54 782 -3.85 22.59
risc 64 95 159 1564 6 141 147 758 -48.42 50.67
cordic 2361 776 3137 176868∗ 1 776 777 187620 0 -
vg2 430 199 629 20256 0 192 192 19576 3.52 1.26
bc0 488 401 889 31874 0 444 444 14092 -10.72 55.11
in7 68 26 94 3096 4 53 57 2589 -103.85 14.76
chkn 359 146 505 3351∗ 1 149 150 33628 -2.05 -
term1 109 506 615 61827 2 549 551 57355 -8.5 7.08
in2 359 202 561 17174 0 182 182 9530 9.9 43.32
apex3 1819 1433 3252 80878 0 2969 2969 18718 -107.19 76.33
e64 96 129 225 29655 0 144 144 24402 -11.63 17.45
example2 183 255 438 12045 4 273 277 10169 -7.06 14.36
x4 210 404 614 18502 6 439 445 14999 -8.66 18.27
apex5 422 513 935 40119 13 552 565 33766 -7.6 14.99
apex6 (x3) 355 524 879 23140 4 575 579 21776 -9.73 4.86
sqr6 39 55 94 797 0 59 59 611 -7.27 19.92
misex2 61 46 107 1986 1 48 49 1470 -4.35 24.21
z4ml 26 32 58 592 0 33 33 567 -3.13 -0.18
Average 380.85 298.7 679.55 19305.94∗ 2.1 397.95 400.05 22654.65 -20.73 25.63
∗Incorrect?


