
What is Middleware Made Of?

Exploring abstractions, concepts, and class names in modern middleware

François Taiani1, Jackie Rice2, Paul Rayson1

1Lancaster University (UK), 2University of Lethbridge (Canada)
{f.taiani,p.rayson}@lancaster.ac.uk, j.rice@uleth.ca

ABSTRACT
Developing appropriate abstractions for distributed pro-
gramming is one of the core aim of middleware research.
Yet, analysing the impact, diffusion, and success of these ab-
stractions in concrete middleware code is difficult and time
consuming. In this paper we propose to use the constituting
words found in program identifiers to explore the concepts
used in popular middleware platforms. We study and com-
pare four middleware products (JBoss, Hadoop, Axi2, and
ActiveMQ), and show the existence of a substantial core of
shared concepts that we think capture some of the key tenets
of modern middleware engineering.

1. INTRODUCTION & MOTIVATION
One of the aims of middleware research is to find pro-

gramming abstractions that make it easier to construct rich
and complex distributed systems. Evaluating the success of
these abstractions is however a complex and multi-faceted
task. What are good middleware abstractions? Have ab-
stractions proposed in the past worked? What has been
their concrete impact on middleware products used in the
field? Many researchers can provide intuitive answers to
these questions, but we generally lack clear approaches to
answer these questions in principled, systematic and repro-
ducible ways.

Although questions on the impact of middleware abstrac-
tions are difficult to answer, they are critical to the field of
middleware research: We need to know whether and how
middleware abstractions are successful to inform and moti-
vate future research, identify potential research gaps, and
train future generations of researchers and practitioners.
The need for principled approaches to evaluate the impact of
middleware abstractions has led to early experimental works
in that directions based on historical analysis [6], corpus lin-
guistics [11], and cognitive analysis [9].

Although these methods have each been able to provide
unique insights on middleware design and research, they are
typically time-consuming and costly. They thus make it dif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ficult to rapidly compare and contrast a broad range of dif-
ferent middleware systems. In this paper, we therefore pro-
pose a different strategy to investigate abstraction impact
that is based on an analysis of program identifiers. Our hy-
pothesis is that the concerns, mechanisms, and technologies
used in a piece of middleware are (in part) reflected in the
names given to its constituing elements (packages, classes,
methods). Identifiers are however often highly specific (e.g.
CMPClusteredInMemoryPersistenceManager) and difficult to
generalise from. We therefore follow a growing trend in ex-
perimental software engineering [5, 3, 7, 8] and focus instead
of the constituting words of identifiers. These words usually
denote concepts that are central to the design or organisa-
tion of a piece middleware, and are generic enough to allow
comparison across multiple middleware products.

We consider four popular open-source middleware prod-
ucts (JBoss, Hadoop, Axis2 and ActiveMQ) and conduct an
explorative study of the concepts contained in their class
and interface names. We investigate in particular to which
extent this projects tend to share concepts, and what rela-
tionships can be found between these concepts. Finally we
propose a rapid analysis of the Hadoop projects based on
our findings.

2. METHODOLOGY
In this preliminary work we focus solely on the names of

public Java classes and interfaces, but the same approach
would be applicable to other languages and program ele-
ments. For brevity’s sake, we will often use ‘class’ in the
rest of the paper to mean both public Java classes and in-
terfaces.

2.1 Concept extraction
The first step consists in extracting the elements of a com-

pound name. We rely here on a set of simple regular ex-
pressions capturing the Camel case commonly used in Java
projects. To handle specific terms such as J2EE—which
would be wrongly parsed as J, 2, EE—we also use a greedy
dictionary approach [4] based on a small ad hoc dictionary
of problematic terms (e.g. JBoss because it does not follow
camel case convention, or J2EE because it combines capitals
and numbers). For each class name c we obtain a sequence of
words which we note concepts(c), e.g. concepts(c) = [CMP,
Clustered, In, Memory, Persistence, Manager]. We consider
each word refers to a concept, and use the two terms (word
and concept) interchangeably in the rest of the paper.

2.2 Metrics

In order to rank and compare the concepts extracted from
a corpus of class names C we use two metrics. The first one
simply counts how many class names contain a concept w:

class count(w) = |{c ∈ C : w ∈ concepts(c)}|

Our second metrics refines the first by taking into account
the size of each class’ code, but giving more weight to con-
cepts appearing in larger classes:

locs count(w) =
∑

c∈C∧w∈concepts(c)

locs size(c)

2.3 Inter-concept analysis
To analyse how concepts tend to appear together, we use

two tools: n-grams, a common tool taken from linguistics,
and conceptual graphs, which we describe just below. n-
grams [2] capture collocations, i.e. words repeatedly ap-
pearing together. An n-gram model essentially counts how
often particular tuples of words (pairs, triplets, etc.) appear
together. Frequent tuples often represent a specific meaning,
beyond the meaning of the individual words. For instance
the 3-gram blue sky research appears much more often in
English texts than brown sky research because it denotes a
well delineated meaning, which the other does not.

To visualise inter-concepts relationships, we use a simple
graph representation that builds on the sequences of con-
cepts formed by each class names. A sequence s, e.g. s =
[Socket, Impl], is a simple graph G(s) with two nodes and
one directed edge:

Socket Impl

G(s) =
(
V (s) = {Socket, Impl}, E(s) =

{
(Socket, Impl)

})
The conceptual graph of a corpus of class names C is simply
defined of the union of the graphs representing its concept
sequences:

G(C) =
(⋃

c∈C

E
(
concepts(c)

)
,
⋃
c∈C

V
(
concepts(c)

))

3. RESULTS
In this study we consider four open-source middleware

projects that are representative of the wide-range of avail-
able Java-based middleware. These are the J2EE applica-
tion server JBoss from RedHat, the distributed map-reduce
engine Hadoop, the Web Service engine Axis2/Java, and
the message-oriented middleware ActiveMQ, with all last
three projects hosted by the Apache Foundation. The four
projects all aim to support the development of distributed
systems, but differ in the services and technologies they pro-
vide. They are used in production, and generally follow
good and clearly documented software development prac-
tices. They remain diverse, however, and although three
(Hadoop, Axis2, and ActiveMQ) belong to the Apache Foun-
dation, they are managed and developed by distinct teams,
in independent projects, under their own architecture and
coding conventions.

Each project is substantial, containing between 247k and
345k lines of Java code (LoCs), and between 1514 and 2990
public Java classes and interfaces (ignoring comments, test
and sample code, Table 1).

Table 1: The four middleware projects considered
middleware LoCs # classes
JBoss AS (6.0.0) 345,063 2,290
Hadoop (1.0.3) 255,563 1,327
Axis2 (1.6.2) 302,315 1,514
ActiveMQ (5.6.0) 247,801 1,873
Total 1,150,742 7,004

3.1 Vocabulary size and distribution
Table 2 shows the number of class concepts, concepts for

short, found in each project. These numbers make clear the
benefit of concepts over class names to analyse projects: The
projects use between 1.71 (Hadoop) and 3.21 (ActiveMQ)
fewer concepts than they do class names, with the ratio get-
ting close to 4 (1,861 concepts for 7,004 public classes) when
considering all projects together.

Table 2: Size of concept vocabulary per project
per class

middleware # concepts (avg) min max
JBoss 949 3.31 1 8
Hadoop 776 2.65 1 8
Axis2 646 2.79 1 7
ActiveMQ 583 2.96 1 7
All projects 1861 2.98 1 8

Sheet1

Page 1

distribution of concept length in middleware projects

middleware 1 2 3 4 5 6

70 497 829 548 256 73

135 531 425 173 36 21

axis2 150 492 531 233 80 25

57 495 867 390 46 13

jboss

hadoop

activemq

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

jboss

hadoop

axis2

activemq

nb of concept per class

n
b
 o

f
c
la

s
s
e
s

Jboss Hadoop Axis2 ActiveMQ
0

200

400

600

800

1000

unique

shared by 2

shared by 3

shared by 4

n
b
 o

f
co

n
c
e

p
ts

Figure 1: Number of concepts per class name

Concepts are rarely used alone. They are instead the
basic building blocks from which class names are formed
(Figure 1). In all projects, the vast majority of classes
(94.12%) use more than two concepts in their names, with
more than half (65.35%) containing three concepts or more.
This is again reflected in an averaged number of concepts
per class of 2.98 (Table 2). This general trend hides how-
ever important differences between projects: Hadoop for in-
stance stands out as a project with the lowest number of
classes (1,327), but the second highest number of concepts
(776). Although it has comparatively more concepts and
fewer classes, Hadoop also has counter-intuitively the lowest
average number of concepts per class (2.65, Table 2), and a
minority of classes (49.81%) with three concepts or more.

In terms of relative frequencies, Figure 2 shows the fre-
quency distribution of concepts in each individual projects,
and globally. I.e. Figure 2 shows how many concepts (y-
axis) appear in a particular number of classes (x-axis), on a

●

●

●
●

●
●

●●

●
●

●

●

●
●●

●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●● ●●●

●

●●●● ●● ●●●

1 2 5 10 20 50 100 500

1
2

5
10

50
20

0

Number of classes containing a concept

co

nc
ep

ts
 c

on
ta

in
ed

 in
 x

 c
la

ss
es ● JBoss

Hadoop
Axis2
ActiveMQ
All projects

Figure 2: Concept frequencies among class names

Sheet1

Page 1

distribution of concept length in middleware projects

middleware 1 2 3 4 5 6

58 457 817 546 255 73

119 497 400 162 33 17

axis2 97 449 510 224 77 25

48 444 544 218 44 13

jboss

hadoop

activemq

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

jboss

hadoop

axis2

activemq

nb of concept per class

n
b

 o
f
c
la

s
s
e
s

Jboss Hadoop Axis2 ActiveMQ
0

200

400

600

800

1000

unique

shared by 2

shared by 3

shared by 4

n
b

 o
f
c
o
n
c
e
p
ts

Figure 3: Concept corpus size and sharing

log-log scale. For instance, the top-left black circle indicates
that JBoss contains 336 concepts (35.4%) which appear in
exactly one JBoss class. Similarly, the top-left dark pink
triangle means that across all projects 621 concepts (33.4%)
appear in exactly one class. Figure 2 clearly shows how all
distributions tend to follow power-laws, a typical features of
both natural languages, and human created networks such
as folksonomies, and social networks.

These observations suggest that the concepts that make
up class names in middleware projects play a similar role to
that of words in natural English sentences. As such, they
represent a promising entry point to study the abstractions
used in modern middleware products. In the following we fo-
cus more particularly on concepts shared between projects
and ask the following questions: Do different middleware
projects tend to share concepts? If yes, which ones? To
which extent? What does can shared concepts tell us about
individual projects and the state of current middleware prac-
tices?

3.2 Concept sharing between projects
Sharing comes in different degrees. At one extreme, con-

cepts that are highly specific to one project (such as ‘HA’
for High-Availability in JBoss) are unique to this project
and not shared. At the other extreme, highly generic con-
cepts (e.g. ‘Data’) will tend to appear in all projects, with
common but less generic concepts falling in-between. To in-
vestigate these different degrees of sharing, Figure 3 shows
how many concepts are shared in each projects, depending
on how many other projects share a particular concept. The

first observation is that all projects share a high proportion
of their concepts (between 53.5% for Hadoop and 66.9% for
ActiveMQ) with at least one other project. Size plays a role
in the amount of common concepts: The smallest project
(ActiveMQ, 186kloc) shares more with other projects (66.9%
of its concepts) than the largest project (JBoss, 332kloc,
57.4% of shared concepts). Size is not, however, the only
factor, as the numbers for Hadoop illustrate. Although
Hadoop has a similar number of lines as Axis, and fewer
classes, it also shows lower levels of concept sharing (53.5%
for Hadoop, against 62.1% for Axis2).

What is the relative importance of these shared concepts?
Although they represent a large proportion of the overall
concept vocabulary, shared concepts might only appear in
a minority of class names, with most classes using concepts
unique to the project at hand. To answer this question,
Table 3 looks at the number of classes that contain at least
one shared concept in their name.

Table 3: Classes with shared concepts in their name

middleware # shared concepts # classes % classes
JBoss 545 2,245 98.0%
Hadoop 415 1,211 91.3%
Axis2 401 1,431 94.5%
ActiveMQ 390 1,860 99.3%

Table 3 shows that shared concepts appear in almost all
classes in all projects. As a corollary, very few classes only
contain project-specific concepts: less than 1% in ActiveMQ,
less than 2% in JBoss, less than 5% in Axis2. Although
showing the same trend, Hadoop stands out again with 10%
of classes containing no shared concept.

In we now turn to the percentage of classes that only con-
tain shared concepts, the numbers are similarly high, with a
majority of classes only containing shared concepts in JBoss
(52.4%), Axis2 (56.2%) and ActiveMQ (58.4%), and almost
half of classes doing the same in Hadoop (47%).

3.3 Sharing and semantic
The numbers we have just discussed demonstrate the ex-

istence of a substantial shared vocabulary between the four
middleware projects we have selected. This shared vocab-
ulary must be understood by anyone wishing to use and
contribute to these projects. More generally it also exposes
in a tangible way the existence of a shared foundation to
distributed programming platforms.

What is this shared foundation made of? To shed light on
this question, we now focus on those concepts shared by all
four projects, meant to represent the most generic part of
our concept corpus. Table 4 lists the first 15 most common
concepts shared by all four projects, sorted according to the
total number of lines of code (locs) they cover (first and sec-
ond columns). For completeness, we also show the number of
classes each concept appears in (third and fourth columns),
and the percentages of locs they cover in each project (sec-
ond half of the table). The ‘rank’ column in the middle
indicates the overall rank of each concept (sorted by locs)
among all other concepts, whether shared or not. Finally
the last column (‘CV’) reports the coefficient of variation
of the locs percentages across the projects. This coefficient
measures the dispersion of each concept: low numbers indi-

Table 4: The top 15 concepts (in locs) shared by all projects
Concept locs % classes % rank JBoss Hadoop Axis2 ActiveMQ CV
Impl 52,205 4.54% 241 3.44% 2 4.29% 0.63% 10.25% 1.93% 0.86
Service 50,948 4.43% 212 3.03% 3 5.30% 0.26% 9.30% 1.57% 0.86
Data 50,667 4.40% 317 4.53% 4 7.70% 2.51% 1.60% 5.19% 0.56
Message 50,013 4.35% 356 5.08% 5 1.09% 0.02% 4.25% 13.45% 1.12
Factory 42,788 3.72% 394 5.63% 6 7.34% 0.85% 2.22% 3.48% 0.70
File 41,795 3.63% 179 2.56% 7 0.64% 11.86% 1.33% 2.14% 1.15
Manager 37,238 3.24% 153 2.18% 8 7.46% 2.65% 0.91% 0.80% 0.92
Connection 36,856 3.20% 216 3.08% 9 5.52% 0.05% 0.43% 6.62% 0.93
Context 29,051 2.52% 148 2.11% 12 2.58% 0.85% 4.74% 1.48% 0.61
Stream 28,165 2.45% 123 1.76% 13 0.63% 3.35% 2.39% 4.11% 0.50
Abstract 24,690 2.15% 129 1.84% 16 4.45% 0.71% 1.34% 1.40% 0.74
Meta 23,226 2.02% 159 2.27% 18 6.30% 0.05% 0.40% 0.05% 1.56
Info 23,111 2.01% 193 2.76% 19 0.87% 0.63% 0.57% 6.76% 1.19
Command 21,640 1.88% 212 3.03% 20 2.76% 0.18% 0.48% 4.12% 0.87
Utils 21,003 1.83% 77 1.10% 23 0.16% 1.61% 5.34% 0.06% 1.19

cate concepts evenly distributed across projects, while high
numbers highlight concepts mainly concentrated in a few
projects.

Ranking and dispersion. The first observation is that
the top concepts in terms of overall locs are shared concepts:
The concepts shared by all projects make up 8 of the top-10
concepts (6th column, ‘rank’). The two top-10 concepts not
appearing in the table are Marshaller (#1) and Job (#10)
which are only present in 3 projects, and so remain heavily
shared as well.

In spite of this observation, top shared concepts are not
equally distributed among projects (last column, CV), but
instead tend to appear heavily in one or two projects, while
only sporadically in others. Even the two concepts most
evently distributed in the table (Data, #4, and Stream, #13)
have high CV values (0.56 and 0.50) when compared to the
concepts with the lowest CV overall: Thread (0.15, #378),
Exception (0.16, #115), and Xml (0.22, #292). This means
that in spite of an important foundation of shared concepts,
each project retains a strong identity that clearly differen-
tiates it from other projects. This also opens interesting
avenues of comparative studies: Why are for instance Fac-
tories much less common in Hadoop than in other projects?
Does this represent an obvious different design? Or simply
different naming conventions? Could this suggest opportu-
nities for evolution or refactorisation?

Semantic. Although the concepts captured in the table
seem to cover a large range of concerns, they can roughly
be classified in three categories (indicated in italics, normal
font, and bold, respectively). Some concepts denote generic
computer science and system-level abstractions (Data, File,
Context, Stream, Meta, Info). Other concepts are more
domain-specific (Service, Message, Connection), and cover
abstractions typically associated with distributed systems.
A longer table would show more of these, with Client and
Server appearing for instance in all projects at rank #30
and #35. Finally, the remaing concepts capture design pat-
terns (even if some might describe utility classes as an anti-
pattern), i.e. particular ways to organise code and behaviour
in object oriented software. Here again, differences are ap-
parent between projects, with JBoss a clear heavy user of
templates, and Hadoop much less so.

Comparing the shared concepts of Table 4 with concepts
that are unique to specific projects (Table 5 for JBoss and
Hadoop) highlights the transveral nature of pattern con-

cepts. Although some generic abstractions can still be found
(Verifier, Domain, FS for File System) in the top-10 con-
cepts unique to JBoss and Hadoop, most of them refer to
specific technologies (e.g. CMP and CMR are both taken
from the EBJ standard, Thrift is a cross-platform RPC
product), with no mention of any design template.

Table 5: Unique Concepts in JBoss and Hadoop

(a) JBoss

Concept rank %locs
JBoss 24 5.83%
HA 95 2.25%
Verifier 99 2.21%
Clustered 129 1.78%
Statement 137 1.64%
CMP 157 1.39%
QL 170 1.26%
Domain 179 1.20%
CMR 180 1.19%
JDK 206 1.05%

(b) Hadoop

Concept rank %locs
FS 46 5.21%
Hadoop 57 4.69%
Thrift 111 2.68%
DFS 118 2.55%
Namesystem 141 2.14%
History 171 1.68%
Reduce 176 1.65%
Writable 214 1.36%
Zip 263 1.07%
CB 262 1.07%

3.4 Inter-concept relationships
Although we have so far analysed the weight, rank, and

semantics of individual concepts, most concepts are used in
combination with others. Only 3.71% of all concepts (69
out of 1861) are used in complete isolation, never appearing
with any other concept in class names. Many of these iso-
lated concepts are concentrated in Hadoop (5.8%) and Axis2
(5.11%), with JBoss and ActiveMQ showing much lowever
levels (1.79% and 1.54% respectively).

Table 6: n-grams shared by all projects

ngram g
lo

b
a
l

#

J
B

o
ss

H
a
d

o
o
p

A
x
is

2

A
ct

iv
eM

Q

Meta Data 152 149 1 1 1
Input Stream 35 4 16 6 9
Output Stream 25 3 12 3 7
Context Factory 15 7 1 5 2

We therefore now focus on the relationships between con-
cepts, using n-grams (Section 2) to capture their tendency

Table 7: n-grams shared by 3 projects

ngram g
lo

b
a
l

#

J
B

o
ss

H
a
d

o
o
p

A
x
is

2

A
ct

iv
eM

Q

Connection Factory 55 37 – 1 17
Data Source 44 24 – 19 1
Factory Impl 38 11 – 26 1
Proxy Factory 26 23 – 2 1
File System 25 – 23 1 1
Class Loader 20 11 – 8 1
Socket Factory 16 13 2 1 –
Byte Array 14 1 5 – 8
Connection Manager 14 11 – 2 1
Reference Factory 6 1 – 4 1
Object Input 6 2 – 3 1
Manager Impl 5 2 – 2 1
Application Context 5 1 – 3 1
Object Input Stream 5 2 – 2 1
Callback Handler 5 2 – 1 2
Http Server 5 2 2 1 –
Exception Handler 4 1 1 – 2
Xml File 4 2 – 1 1
Round Robin 4 2 1 – 1
Bounded Range 4 2 1 – 1
Handler Factory 3 1 1 1 –
MBean Info 3 1 1 – 1
Java Generator 3 – 1 1 1
File Reader 3 – 1 1 1

to appear together. When applied to our corpus of class
names, we found a total of 3757 n-grams appearing more
than once, with a majority (61.54%) of bi-grams. In terms of
sharing, n-grams show a different behaviour than individual
concepts. First, only a small minority (8.25%) of n-grams
are shared. Second, the most frequent n-grams tend to be
specific to one or two projects. For instance, out of the 20
most common n-grams in terms of frequencies, a majority
(12) are not shared, while only 2 (Meta Data, #1, and Input
Stream, #14) can be found in all projects.

These differences between individual concepts (whose
most frequent represenatives tend to be shared) and n-grams
(showing the opposite trend) highlights the building block
nature of concepts. Although the most common concepts
tend to appear in most projects, the ways in which they
are combined are specific to each project. Our conjecture is
that these combinations capture the identity of each project
along with its main design philosophy.

For space reason, we focus in the following on shared n-
grams, with the n-grams shared by all projects listed in Ta-
ble 6, and those shared by all but one in Table 7. Most
of these generic n-grams fall in two main categories: 13 n-
grams (shown in italic) simply capture generic multi-words
notions, such as Input Stream, or File System. Another set
of 10 n-grams (shown with some of their words in bold)
represent application of design templates (Factory, Man-
ager, Handler), some of which were identified in Table 4.
This shows for instance that factories, although primarily
used in JBoss, are used in other projects to handle con-
nections, sockets, and context (the latter being essentially
used for JNDI naming operation, and invocation handling).
These “template” n-grams also highlights how design tem-
plates are applied to elements of the domain (sockets, con-
nections, naming contexts) to provide desirable properties

(in the case of factories, configurability through dependency
injection).

3.5 Visualisation: Hadoop
Finally, we briefly illustrate how concepts can help analyse

a particular piece of middleware, Hadoop in our case. An
extract of Hadoop’s conceptual graph (cf. Section 2) show-
ing Hadoop’s most important concepts is shown in Figure 4.
The graph provides a good intuitions of the key elements
of Hadoop: Hadoop is about a file system (HFS), map and
reduce tasks, and jobs. These three different areas have lit-
tle overlap: FS concepts, task concepts, and job concepts
are only connected through concepts denoting cross-cutting
concerns (logging, auditing).

Strikingly, most of Hadoop’s top concepts in terms of locs
are shared (red and orange colours), but none of them are
design templates. This second point probably explains some
of the anomalies we have noted about Hadoop in terms of
class name lengths and sharing: Hadoop class names are
mainly focused on domain concepts, with issues of code or-
ganisation and configurability left to other means (reflection,
annotations, Spring and Guice for instance).

4. RELATED WORK
The importance of identifiers and concepts in software has

long been noted [10]. This key role has motivated a growing
body of experimental work on identifiers in the software en-
gineering community, in particular in terms of program com-
prehension, software maintenance and reverse-engineering.
None of these works explicitly target middleware, however.
Instead they tend to seek general rules and methods , rather
than gain domain-specific insights as we have tried in this
paper. We review some of these works below.

Some works have focused on the concepts and topics
underlying a particular piece of software. For instance,
in [1], Alan Blackwell investigated the metaphors used in
the javadoc documentation of the standard Java libraries.
Blackwell observed that Java objects tend to be presented as
members of a society with rights and obligations (contracts).
In another work, Kuhn, Ducasse and Tudor [8] applied La-
tent Semantic Indexing (LSI) to the vocabulary found in
software (both in comments and in identifier names) to ex-
tract and represent the key topics present in a source code.

Other works have more systematically analysed the na-
ture of the parts making up identifier names. Working
across 29 Java projects (including JBoss and Axis), Høst
and Østvold [7] investigated how the initial part of method
names (usually a verb such a ‘get’, or ‘load’) is linked to se-
mantic features of the code (i.e. “the method body contains
a loop”). Using this approach, they showed they could dis-
tinguish between well-defined concepts, whose meaning vary
little across projects, from more variable ones.

In [3], Butler et al found a positive relationship between
the quality of identifiers in Java code (as captured by best
pratices for naming) and the quality of the code the identi-
fiers refer to (as captured by existing metrics for code quality
and complexity). In an other work, Butler et al [5], per-
formed a cross-comparison of the part of speech structure
of class names (e.g. “adjective-noun”) and types of inher-
itance in Java (interfaces vs. classes), and found that the
structure of 90% of Java class names could be captured us-
ing four grammatical rules, while some types of inheritance
were more strongly correlated to some rules than others.

Task
(21888)

Scheduler
(4809)

1575

Tracker
(11974)

5227

Attempt
(1517)

1213

In
(5449)

1125

Log
(3651)

1093

Queue
(3383)

1234

Distributed
(2488)

1032

Progress
(4551)

4452

Job
(31305)

5429

3327

History
(4284)3007

Conf
(2616)

1889

Client
(7859)

1927

Capacity
(2964)

1087

1877

Map
(6432)

1794

Reduce
(4226)

989

File
(30297)

923

2915

Output
(8349)

1387

System
(16036)

15267

Input
(11494)

2868

Format
(6929)2395

Stream
(8568)

2953

945
DFS
(6517)

3668

Admin
(1305)

949

Edit
(1451)

1398

4479

2492

Hadoop
(11991)

6033

Location
(1650)

928

Logs
(2229)1770

Fair
(1357)

1357

Combine
(1824)

1824

Hdfs
(2191)

991

Thrift
(6855)

6033

FS
(13308)

1279

Dataset
(2590)

2590

Directory
(2452)

1307

Image
(2133)

1621

Namesystem
(5464)

5464

Har
(947)

947

2
(3341)

1857

Zip
(2738)

2738

BC
(926)

926

Sequence
(4745) 4745

DB
(2461) 1045

Zombie
(1073) 949

Figure 4: Main concepts in Hadoop 1.0.3. Node labels show the locs count of each concept. Edge labels show
the number of locs involved in a connection. Black concepts are unique to Hadoop; blue concepts are shared
with one other project; orange ones with two others; and red ones with all others.

5. CONCLUSION AND OUTLOOK
In this paper we have explored how the words contained

in class name identifiers of middleware products could help
capture the key concepts used in these projects. By looking
at four popular Java-based middleware products we have
found an important vocabulary of shared concepts, which
should prove useful to inform training on middleware tech-
nologies. Interestingly, a large proportion of concepts are
not about distribution, but about code organisation through
patterns (e.g. dependency injection). In spite of this shar-
ing, we have also found that different projects use concepts
differently. This reflects the different aims of each project.
(JBoss being a component container, it is understandable
that it uses the concept of Manager more heavily.) These
different uses probably also reflect different design philoso-
phies and architectural choices, which opens up the prospect
of interesting comparative studies (Is Hadoop less adaptable
than JBoss?) and potential paths for cross-pollination be-
tween projects.

6. REFERENCES
[1] A. F. Blackwell. Metaphors we Program By: Space, Action

and Society in Java. In Proceedings of the 18th Psychology
of Programming Interest Group 2006, 2006.

[2] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra,
and J. C. Lai. Class-based n-gram models of natural
language. Comput. Linguist., 18(4):467–479, Dec. 1992.

[3] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Exploring
the influence of identifier names on code quality: An
empirical study. In 14th European Conf. on Soft.

Maintenance and Reengineering, CSMR’10, pages 156–165,
Washington, DC, USA, 2010. IEEE Computer Society.

[4] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving
the tokenisation of identifier names. In Proceedings of the
25th European conference on Object-oriented programming,
ECOOP’11, pages 130–154, Berlin, Heidelberg, 2011.
Springer-Verlag.

[5] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Mining
java class naming conventions. In IEEE 27th Int. Conf. on
Soft. Maintenance, ICSM 2011, pages 93–102, 2011.

[6] W. Emmerich, M. Aoyama, and J. Sventek. The impact of
research on middleware technology. SIGSOFT Softw. Eng.
Notes, 32(1):21–46, 2007.

[7] E. W. Host and B. M. Ostvold. The programmer’s lexicon,
volume i: The verbs. In Proceedings of the Seventh IEEE
International Working Conference on Source Code
Analysis and Manipulation, SCAM ’07, pages 193–202,
Washington, DC, USA, 2007. IEEE Computer Society.

[8] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering:
Identifying topics in source code. Inf. Softw. Technol.,
49(3):230–243, Mar. 2007.

[9] R. Maia, R. Cerqueira, C. de Souza, and
T. Guisasola-Gorham. A qualitative human-centric
evaluation of flexibility in middleware implementations.
Empirical Software Engineering, 17:166–199, 2012.
10.1007/s10664-011-9167-7.

[10] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In 10th Int. Workshop on Program
Comprehension, pages 271–278, 2002.

[11] F. Täıani, P. Grace, G. Coulson, and G. Blair. Past and
future of reflective middleware: towards a corpus-based
impact analysis. In Proceedings of the 7th workshop on
Reflective and adaptive middleware, ARM ’08, pages 41–46,
New York, NY, USA, 2008. ACM.

	Introduction & Motivation
	Methodology
	Concept extraction
	Metrics
	Inter-concept analysis

	Results
	Vocabulary size and distribution
	Concept sharing between projects
	Sharing and semantic
	Inter-concept relationships
	Visualisation: Hadoop

	Related work
	Conclusion and outlook
	References

