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Abstract. This paper presents a new approach for converting a ternary
reversible circuit implemented from a truth table into an online testable
circuit. Our approach adds three extra lines to the given circuit, inserts
Feynman gates and M-S gates, and replaces the ternary Toffoli gates
(KP-m gates) with TKP-(m+1) gates. Our approach works with only
2×2 gates and 1×1 gates and covers a higher number of detectable faults.
Preliminary work shows fault coverage of 84.89% when the approach is
applied to a testable ternary half adder.
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1 Introduction

Circuits built using traditional logic lose information during computation, which
is dissipated as heat [1]. One solution to this loss of information is reversible
logic. In particular, Bennett showed that a circuit consisting of only reversible
gates dissipates zero energy [2]. There has, however, been little work on testa-
bility of reversible circuits, and even less in the area of multiple-valued testable
reversible circuits. There is motivation to develop research in multiple-valued
reversible logic, as this can provide a stepping stone to up-and-coming quantum
technologies since quantum computing is inherently multiple-valued [3]. Previ-
ous work in online testing for reversible circuits includes our own in [4] as well
as work in the Boolean domain such as [5] and [6].

In this work we introduce a new approach for converting a ternary reversible
circuit into an online testable circuit, with fault coverage improvements over
previous work reported in [4]. We emphasize that this work is ongoing, and
preliminary results are reported here.

2 Background

2.1 Online Testing

Those of us in the field of computing are aware that testing is required to en-
sure quality and reliability. This applies to reversible logic circuits as well as
to traditional logic circuits. According to [7], testing can be performed in the
following ways: online; that is, while the circuit is operating normally; offline;



or during a period while the circuit is not in use; or using some combination of
both online and offline testing. The work proposed here is for an online testing
approach, thus we would not require the circuit to be taken out of operation for
the fault-detection to take place.

2.2 Fault Models

There are several fault models in reversible logic some of which include the miss-
ing, repeated and reduced gate fault models [8]. An additional and technology-
independent fault model referred to as the bit fault model is used in various
works including [5] and [6]. In this model a fault, possibly in a gate, would
change the behavior of the gate’s outputs. A single-bit fault is reflected on ex-
actly one output of a gate, changing the correct value of the output to a faulty
value. This model is somewhat reminiscent of the stuck-at fault model. We use
this single-bit model in this work, although we note that the use of the term “bit”
is not entirely accurate for ternary logic. The original concept of this model is
still valid, however, as we are identifying the situation when a fault is reflected
on exactly one output of a gate.

2.3 Ternary Galois Field Logic

The Ternary Galois Field (TGF) consists of {0, 1, 2} and two operations, ad-
dition modulo 3 and multiplication modulo 3. We denote addition modulo 3 by
⊕ and multiplication modulo 3 by the absence of any operator. For a ternary
variable a, we have a = a ⊕ 3 and aaa = a. According to [9], a ternary variable
a has six basic literals: a, a+1 = a⊕ 1, a+2 = a⊕ 2, a12 = 2a, a01 = 2a⊕ 1, and
a02 = 2a⊕ 2.

2.4 Reversible Ternary Gates

We define here the ternary reversible gates which are required for this paper.
A 1-qutrit permutative gate [10] is defined as {a} → {b = aZ} where Z ∈
{+1,+2, 12, 01, 02} as shown in Fig. 1(a). For example, if Z = +1, then b =
a+1 = a⊕ 1.

The Feynman gate has the input vector [a1, a2] and output vector [b1 =
a1, b2 = a1 ⊕ a2]. The modified Feynman gate discussed in [11] is very similar
to the Feynman gate with the exception that b2 = 2a1 ⊕ a2. The Feynman gate
and its modified version are shown in Fig. 1(b) and Fig. 1(c).

A 2-qutrit Muthukrishnan-Stroud (M-S) gate [10] is defined as mapping the
input vector [a1, a2] to the output vector [b1 = a1, b2 = r] where r = aZ2 if a1 = 2;
otherwise r = a2. Here a1 is the controlling input and a2 is the controlled input.
An M-S gate is shown in Fig. 1(d).

Khan and Perkowski proposed a ternary Toffoli gate [10]; however its be-
haviour is somewhat different from the commonly accepted behaviour for a
Toffoli gate and so to avoid confusion we refer to this gate as a KP gate. A
(p + 1)-qutrit KP gate is shown in Fig. 1(e). This gate maps the input vector
[a1, a2, . . . , ap+1] to the output vector [b1 = a1, b2 = a2, . . . , bp = ap, bp+1 = r]
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Fig. 1: (a) A permutative gate, (b) Feynman gate, (c) modified Feynman gate,
(d) M-S gate, (e) (p+ 1)-qutrit KP gate, (f) (p+ 1)-qutrit generalized KP gate,
(g) equivalent representation of a generalized KP gate, and (h) KP-m gate.

where r = aZp+1 if a1 = a2 = . . . = ap = 2; otherwise r = ap+1. Here a1, a2, . . . , ap
are controlling inputs and ap+1 is the controlled input.

Khan and Perkowski also proposed a generalized KP gate [10] as shown
in Fig. 1(f), which is very similar to the KP gate. In this gate r = aZp+1 if
a1 = y1, a2 = y2, . . . , ap = yp; otherwise r = ap+1. An equivalent representation
of this gate is shown in Fig. 1(g). This version is built using the KP gate and
1-qutrit permutative gates where dj = 2− yj and dj + d′j = 0 for j = 1, 2, . . . , p.
The permutative gate +dj is used to change the controlling input of KP gate to
2, and the permutative gate +d′j restores the controlling value.

We can extend the KP gate and the generalized KP gate for multiple con-
trolled inputs. For example, a (p + 1)-qutrit generalized KP gate with m + 1
controlled inputs, denoted as a KP-m gate, is shown in Fig. 1(h). The KP-m
gate has the input vector [a1, a2, . . . , ap, ap+1, . . . , kp+m+1] and the output vec-
tor [b1 = a1, b2 = a2, . . . , bp = ap, bp+1 = r1, bp+2 = r2, . . . , bp+m+1 = rm+1]

where rk = aZk

p+k if a1 = y1, a2 = y2, . . ., ap=yp and Zk ∈ {+1,+2, 12, 01, 02}
for k = 1, 2, . . . ,m + 1; otherwise rk = ap+k. Here, a1, a2, . . . , ap are controlling
inputs and ap+1, ap+2, . . . , ap+m+1 are controlled inputs. Like the (p + 1)-qutrit
KP gate and generalized KP gate, a (p+ 1)-qutrit KP-m gate also requires p−1
constant lines.

In order to design the testable ternary circuit we add the following constraints
to the KP-m gate: Zk ∈ {+1,+2} (k = 1, 2, . . . ,m) and Zm+1 = Z1⊕Z2⊕ . . .⊕
Zm. To distinguish this gate from the KP-m gate we call this gate a TKP-m
gate (testable KP-m). The symbol of a (p + 1)-qutrit TKP-m gate is shown in
Fig. 2 (on the following page).



2.5 Synthesis of Ternary Reversible Circuits

Several approaches such as [12], [13] and [14] have been proposed for synthesis
of ternary reversible circuits. In this section we briefly describe an approach [10]
to realize a ternary circuit from the truth table.

Consider a ternary function with p input variables x1, x2, . . . , xp and q output
variables f1, f2, . . . , fq. An empty cascade with p input lines (I1, I2, . . . , Ip), p−1
constant lines (Ip+1, Ip+2, . . . , I2p−1) and q output lines (I2p, I2p+1, . . . , I2p+q−1)
is generated. For each input combination x1x2 . . . xp (xi ∈ {0, 1, 2}, for i =
1, 2, . . . , p) with m + 1 outputs (0 ≤ m < q) having values 1 or 2 in the truth
table, a (p+ 1)-qutrit generalized KP-m gate with x1 = y1, x1 = y1, . . . , xp = yp
is added to the circuit. Each controlling input ai of the gate is connected to
the input line Ii. For each fj = 1 (or 2) j = 1, 2, . . . , q, a controlled input is
connected to the output line I2p+j−1 with Z = +1 (or +2). Although we have
described this approach using generalized KP-m gates the circuit can also be
generated using KP-m gates and permutative gates.

As an example, given the truth table of a ternary function with two input
variables (x1 and x2) and two output variables (f1 and f2) as shown in Table 1, a
ternary circuit is implemented as shown in Fig. 3. For the first input combination,
a 3-qutrit KP-1 gate is added. The controlling inputs of this gate are connected
to lines I1 and I2 and the controlled inputs are connected to lines I4 and I5.
Two 3-qutrit KP gates are added for the second and third input combinations.
No more gates are added since both f1 and f2 have values 0 for all other input
combinations.
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Fig. 2: (p+ 1)-qutrit
TKP-m gate.

x1 x2 f1 f2
0 0 1 1
0 1 1 0
0 2 0 2
1 0 0 0
1 1 0 0
1 2 0 0
2 0 0 0
2 1 0 0
2 2 0 0

Table 1: Truth table
of a ternary function.
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Fig. 3: A ternary circuit.

3 Our Approach

3.1 Design

Consider a reversible ternary circuit generated from the truth table as discussed
in Section 2.5. A circuit generated in this way consists of only permutative gates,
KP-m gates, and generalized KP-m gates. If the circuit has p input lines and q



output lines, then the circuit also has p− 1 constant lines. We refer to the input
lines as I1, I2, . . . , Ip, the constant lines as Ip+1, Ip+2, . . . , I2p−1, and the output
lines as I2p, I2p+1, . . . , I2p+q−1. If the initial values and final values of any input
line (or constant line) are not the same, then the permutative gates and M-S
gates are added to restore the initial value at the end of the corresponding line.
The following approach converts such circuit into an online testable circuit.

Our proposed approach requires three extra lines, L1, L2, and L3, each of
which is initialized with a zero. All permutative gates found in the given circuit
are retained. Each KP-m gate is replaced by a TKP-(m+1) gate. The connections
of the TKP-(m + 1) gate remain the same as that of KP-m gate with the last
controlled input connected to L1.

For each input line in the given circuit, this approach adds a Feynman gate
and a modified Feynman gate at the beginning and at the end of the circuit,
respectively. For each such gate, the controlling input is connected to Iu (for
u = 1, 2, . . . , p) and controlled input is connected to L2. At the end of each
constant line we first add a permutative (Z = +2) gate, then an M-S gate
(Z = +1) with controlling input connected to Iv (for v = p+ 1, p+ 2, . . . , 2p−1)
and controlled input connected to L3. Another permutative gate (Z = +1) is
also added on the constant line to restore the value. Finally, at the end of each
output line a modified Feynman gate is added with controlling input connected
to Iw (for w = 2p, 2p + 1, . . . , 2p + q − 1) and controlled input connected to L1.
This approach requires the addition of p Feynman gates, p+q modified Feynman
gates, p− 1 M-S gates and 2p− 2 permutative gates.

If a single fault occurs in any gate other than the Feynman gate and the
modified Feynman gate, then L1 or L2 will be non-zero, or L3 will not be equal
to 1⊕2⊕ . . .⊕p−1. If no fault occurs in the circuit, then L1 and L2 will remain
0, and L3 will be equal to 1 ⊕ 2 ⊕ . . . ⊕ p − 1. Thus existence of a fault can be
detected by examining the values of L1, L2 and L3.
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Fig. 4: An online testable ternary circuit.

The following example describes this approach. For a ternary circuit as shown
in Fig. 3, our proposed approach generates an online testable circuit as shown in
Fig. 4. In the testable circuit three extra lines are added and the KP-m gates are
replaced by TKP-(m + 1) gates. In addition, two Feynman gates, four modified
Feynman gates, one M-S gate and two permutative gates are added.



3.2 Fault Detection

Our proposed approach makes use of the TKP-(m + 1) gates and generalized
TKP-(m + 1) gates, which can be decomposed into M-S gates and permuta-
tive gates. In this section, we consider a low level design of our testable circuit
consisting of 1×1 gates and 2×2 gates which are permutative gates, M-S gates,
Feynman gates, and the modified Feynman gates.

A single fault on a line can propagate to several lines via M-S gates. This
causes multiple faults in the circuit. Consider an M-S gate as shown in Fig. 1(d).
A fault in the controlling input a1 (or controlled input a2) of an M-S gate affects
this gate since it causes b1 (or b2) to have the faulty value. It is noted that a
fault in a2 cannot propagate to b1 since b1 is independent of a2. However, if a
fault changes the value of a1 to 2 (or changes the value from 2 to either 0 or 1),
then the fault also propagates to b2 since the value of b2 depends not only on a2
but also on a1.

Our approach ensures detection of a single fault in any M-S gate and per-
mutative gate even though the fault may propagate to multiple lines. Proofs
are omitted due to page limitations. However, this testable circuit is unable to
detect a fault in Feynman gates and modified Feynman gates, which are added
to make the circuit testable. Ongoing work is addressing this.

4 Discussion

We have implemented a non-testable ternary half adder from the truth table
using the method described in Section 2.5. The cost of the circuit when built
in this way is 50 (based on the cost metrics given in [10]). We have applied
our approach to convert this into a testable adder with a final cost of 85. The
overhead of adding the testability is in this case 70%. We calculate the fault
coverage of our circuit to be 84.89% based on the single-bit fault model from [5].

We point out that our approach adds exactly p Feynman gates, p+q modified
Feynman gates, p− 1 M-S gates, and 2p− 2 permutative gates regardless of the
number of gates in the given circuit. This results in a higher overhead cost for
a small circuit such as ternary half adder. For circuits with higher numbers
of gates the overhead costs will be reduced. In addition a larger circuit will
cover a higher number of detectable faults since the number of Feynman gates
and modified Feynman gates becomes smaller compared to other gates in a
large circuit. Future work includes computation of the overhead cost and fault
coverage for large benchmark circuits.

5 Conclusion

We have introduced a technique that takes a ternary reversible circuit generated
as described in [10] and transforms the circuit into an online testable circuit.
This is achieved through the addition of three additional lines and p Feynman
gates, p + q modified Feynman gates, p − 1 M-S gates, and 2p − 2 permutative
gates where p is the number of input lines and q is the number of output lines.



Our preliminary work is showing similar overhead to that in [4]; that is, for
small circuits the overhead percentage is high, but as gate counts increase this is
reduced. The resulting fault coverage seems quite good, although further work on
larger benchmarks is continuing. Future work will also include further analysis
and comparisons to related work such as [6] and [5].
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