Line Reduction in Reversible Circuits using KFDDs

Jayati J Law
Department of Mathematics and
Computer Science
University of Lethbridge
Alberta, Canada
Email: law @uleth.ca

Abstract—Reversible computing has been theoretically shown
to be an efficient approach over conventional computing. This
is due to the property of virtually zero power dissipation in
reversible circuits. A major concern in reversible circuits is the
number of circuit lines which corresponds with qubits. Qubits are
a limited resource. There are various reversible logic synthesis
algorithms which require a significant number of additional
constant lines. In this paper we explore the line reduction problem
using a synthesis approach based on decision diagrams. We have
added a sub-circuit for a positive Davio node structure to the
existing node structures given in [1] with a shared node ordering
in OKFDDs. OKFDDs are a combination of OBDDs and OFDDs,
thus exhibiting the advantages of both. Our approach shows that
the number of circuit lines and quantum cost can be reduced
using OKFDDs wit our new sub-circuit and shared node ordering.

Keywords—Kronecker Functional Decision Diagrams (KFDDs),
reversible logic, Boolean function, logic synthesis, line reduction.

I. INTRODUCTION

Reversible computing is emerging as a promising technol-
ogy to reduce the energy consumption required to carry out
a computation. A reversible system is bijective in nature, i.e.
every input has a unique output which makes the circuit invert-
ible. Therefore, there is no information loss. Since reversible
circuits offer (theoretically) virtually zero power dissipation,
they are preferable for low-power designs.

According to Launder’s principle [2] KTIn2 amount of
energy is released every time an information bit is lost dur-
ing a logical operation in an irreversible system. K is the
Boltzmann constant and T is the room temperature (for T
= 300 Kelvin this energy is about 2.9 x 102! joules). The
released energy increases with the increase in the number of
transistors in an integrated chip. Since Moore’s law predicts
that the number of transistors in an integrated chip will
double approximately every two years [3], power dissipation
becomes a major concern for an irreversible system. Reversible
computing also has connections to quantum computing [4]. In
quantum computing, unitary matrices are the building blocks
of a quantum circuit. These unitary matrices are invertible
and hence, reversible circuits provide a suitable platform for
quantum computing. Other areas of application of reversible
circuits are cryptography [5], nano-computing technologies [6]
and digital processing [7].

Design of a minimal reversible circuit is a complex chal-
lenge. In order to make a circuit reversible additional circuit
lines are added to the circuit. These additional lines do not
contribute to the output of the circuit and are also known

Jacqueline E. Rice
Department of Mathematics and
Computer Science
University of Lethbridge
Alberta, Canada
Email: j.rice@uleth.ca

as ‘garbage lines’. Each line in a circuit represents a qubit
which is still a limited resource. Therefore, the number of
lines in a reversible circuit is an important specification to
consider. Other parameters include gate count (number of gates
in a reversible circuit) and quantum cost (cost of gates in a
reversible circuit).

There are various techniques for synthesizing reversible cir-
cuits, including ESOP-based [8], Reed-Muller expansions [9],
decision diagrams [10] and truth tables [11]. Besides syn-
thesis methods, optimization [12], [13], testing [14] and ver-
ification [15] of reversible circuits has also been studied
extensively. Every synthesis technique aims for an efficient
algorithm to produce optimized circuits. A reversible circuit
with minimal (or close to) number of lines, gates and quantum
cost is considered to be an optimized circuit.

A. Related Works

Minimizing the number of lines in a circuit is an important
issue for optimizing a reversible circuit. In order to convert
an irreversible truth table to a reversible truth table extra
qubits may be added to the table, hence adding extra lines
in the circuit. Reducing circuit lines may cause a trade-off
with the quantum cost [16] which makes this problem more
challenging. Many heuristics have been introduced to reduce
these additional lines in the circuit. Some of these reduce lines
in the long term by adding lines in the short [17] and others
reuse the input lines instead of additional lines [18]. In [19]
a set of positive Davio decomposition templates are applied
to the decision diagrams to optimize the circuit. The authors
in [20] have introduced a lower bound on the minimum number
of lines required by a reversible circuit to realize a Boolean
function.

The rest of the paper is structured as follows. We first
provide a brief background on reversible logic and decision
diagrams. Section 3 explains our approach with the algorithm
and an example. In section 4 we give the experimental results
for our algorithm, followed by the conclusion in section 5.

II. BACKGROUND

A. Reversible Logic

Definition 1. A multi-output Boolean function f(x)
B™ — B" is reversible if it is bijective.

If B is a finite set and f(x) : B™ — B"™ is a Boolean
function which maps each input vector to a unique output

vector (bijection) then f(x) is reversible. Each reversible
function is mapped on to a reversible circuit using reversible
gates.

Definition 2. A reversible gate computes a reversible
function.

Let X := {z1,...,2,} be the set of Boolean vari-
ables. Then a reversible gate has the form ¢(C,T’), where
C = {z;1,...wi;} C X is the set of control lines and
T = {zj1,...,xj;} C X with CNT = ¢ is the set of
target lines [21]. The most commonly used reversible gate is
a Toffoli gate. A Toffoli gate with no controls is a NOT gate
ie. g(0,z;1). Similarly, a Toffoli gate g(x;1,x;1) is a CNOT
gate while g({i1,..Zin }, x;1) is a n-bit Toffoli gate. Figure 1
shows the symbols and notation for several reversible gates.
Each of these reversible gates have a specific quantum cost
depending on the number of basic quantum gates they consist
of [22]. For example the quantum cost of both the NOT and
CNOT gates is 1 [23].

a —F— a
a :I: a
(a) NOT gate b b
a . a n—e— n
hb—D— a@b 2 P ab.ndz

(b) CNOT gate (c) n-bit Toffoli gate

Fig. 1. Reversible gates.

Definition 3. A reversible circuit is a network of reversible
gates realizing a reversible function.

A reversible circuit as shown in Figure 2, consists of
reversible gates with controls shown as dots ‘e’ while the target
is represented by a ‘@’.

Definition 4. Garbage outputs are additional outputs which
do not produce any desired functionality.

In [17] it is shown that at least g = [loga(p)] garbage
outputs are required for converting an irreversible function to
a reversible function, where p is the maximum number of
times a single output pattern is repeated in an irreversible truth
table. Converting an irreversible function with n inputs and m
outputs into a reversible function will require m + g qubits.
Since m + g > n, a line labeled c¢ is added to make this
function reversible. Thus, it becomes n + ¢ = m + g, where ¢
is a constant input. The process of adding extra ‘c’ qubits to
the irreversible truth table to make it reversible is also known
as embedding [17]. Thus, this causes a reversible circuit to
have more lines than simply providing the input values for
computation. In Figure 2 the garbage outputs are labeled as g;
and go.

a g1 =a
b D f=ala®ab) Db
c &b g2 = a(a ® ab)

Fig. 2. Reversible circuit with garbage outputs labeled as g1 and gs.

The number of lines in a reversible circuit also depends on
the synthesis algorithm being used. In this paper we discuss

the problem of reducing these additional circuit lines that are
added during the decision diagram based synthesis approach.

B. Decision Diagrams

Definition 5. A decision diagram (DD) is an acyclic
directed graph G(V,E) representing a Boolean function f
with V € {v1,v9,..0,} and E € {0-edge, 1-edge}.

In a DD each node v € V is labeled by a variable from
the variable set X € {x1,x2,...x,}. Nodes can be terminal
(circle) or non-terminal (square). The 0-edge and 1-edge from
the node v leads to low(v) and high(v) respectively. 0-edges
and 1-edges are usually depicted by a dashed line and a regular
line respectively.

Definition 6. Each node v in a DD uses one of the fol-
lowing decomposition types for decomposition into its factors
[24].

Shannon (S) : f(x;) =Tifo + zif1
e Positive Davio (pD) : f(x;) = fo @ x;i fa
e Negative Davio (nD) : f(x;) = f1 ® Tifo

fo is the function f for x; = 0, f; denotes f for
z; = 1 and f5 denotes fo @ f1. A Binary Decision Diagram
(BDD) only implements the Shannon decomposition type for
all the nodes while a Functional Decision Diagram (FDD) uses
Davio decompositions. An ordered DD has a specific variable
ordering such as ¢ = x; < z2 < x3...x,. An ordered BDD or
FDD is denoted by OBDD or OFDD respectively.

Another type of DD is an Ordered Kronecker Functional
Decision Diagram (OKFDD) which utilizes all three decom-
position types. It exhibits the properties of an OBDD and
OFDD. A Decomposition Type List (DTL) is defined for each
node in a OKFDD such that the DTL d : (dy, da, ...d,,) where
d; € {S,pD,nD}.

Example 1. Let the OKFDD in Figure 3 represent a
Boolean function f = Tixo ® x1x0x4%3 O T1Tox3 With the
variable order of x1 < x9 < x3 < x4. f first decomposes
into fq = xo and f5 = xox4x3 O Toxs with a Shannon
decomposition node. Then, f4 decomposes into constants 0 and
1 while f5 decomposes into f3 = x3 and fo = x4x3 With a
positive Davio decomposition node. Next, f3 decomposes into
terminal nodes 0 and 1 while fs decomposes into f1 = x4
with a negative Davio decomposition node. Finally, f, factors
into terminal nodes 0 and 1 with a Shannon decomposition
node.

III. ALGORITHM

In this section we describe the algorithm used in [1].
This is based on synthesizing reversible circuits using the
factors of a Boolean function through a decision diagram.
Our addition to this work is a new sub-circuit for positive-
Davio decompositions and an ordering in which the variables
are to be addressed when a shared node is encountered in the
OKFDD. Previously in [19] similar shared node ordering is
used with only pD decomposition type nodes. Algorithm 1
explains the process of mapping an OKFDD to a reversible
circuit. The input for the algorithm is the OKFDD or acyclic
directed graph G(V, E) generated by the algorithm in [1].

Fig. 3. OKFDD for the function f = z1z2 @ x1222423 B T1T223

The output of the algorithm is a reversible circuit termed as
rev_cascade. Initially, we take an empty circuit rev_cascade
and add lines or gates when required. We start with an empty
queue Q to store nodes in the order they have to be processed.
The nodes are pushed into the Q at the front (push_front) and
popped from the back (pop_back) when being processed. In
step 2 we start traversing the graph bottom-up for each level [;
from the non-terminal nodes to the root node. In step 3 each
node v; of level [; is scanned for the decomposition type. Step
4 defines the case for a shared node.

In Figure 4 the node labeled z; is a shared node as it
is shared by two z; nodes. In the case of a shared node, if
the function represented by x; is to be implemented using no
additional constant line then the node (vy,) with the 1-edge
leading to the x; is realized first and then the node (vy,) with
the 0-edge to x;. Figure 4 shows the circuit implementation
of a shared node using a positive Davio decomposition [19].
In this case the circuit has no additional constant circuit lines
but when synthesizing from a KFDD the shared node imple-
mentation depends on the decomposition type and the [10]
gives a shared node implementation, but only for Shannon
decomposition types, thus we are proposing our own approach
for shared nodes that use pD and nD decompositions. The cost
of the circuit depends on the decomposition type of the nodes.

-—i X

e J'rrghtf J high(f2)
xj

* hwh(f J high(f3)

high(f1) low(f3) 5 A f
low(f1) - HLT /i
lolo(fy) Righ(fy) ET B

Fig. 4. Shared node and equivalent circuit

Step 4 in the algorithm checks if there is a case of shared
node at a level /;. If so then then f; is implemented before fs,
as explained above. The nodes are stored in the Q accordingly.

Step 5 is the case where no shared node is involved, hence
the algorithm simply stores the node in the Q by the order
in which it occurs. In Step 6 the nodes are popped from the
Q and implemented by selecting a sub-circuit from Table I
depending on the node decomposition type and structure. The
most frequent sub-circuits for each decomposition type shown
in Table I are given in [1]. We have added a new sub-circuit
for Davio decomposition of node structure 3 which requires
no additional lines and only one CNOT gate. In Step 7 each
sub-circuit selected by Step 6 is added to the main circuit
rev_cascade. If the rev_cascade has the input states required
by the sub-circuit then they merge otherwise new constant
additional lines are added for the required input states.

Input: A KFDD (directed acyclic graph) G(V, E) where
V = {v1,v9,...0,} and E = {0-edge, 1-edge}.

Output: A reversible circuit rev_cascade with minimum
lines.

Algorithm 1 line_reduction(G,v)

1) Take an empty circuit rev_cascade < ¢ and an
empty queue Q.

2) Traverse the OKFDD bottom-up for every level I;
where i = (n,n — 1,...0).

3) Scan every unvisited non-terminal node v; at level ;
for j = (0,1...k).

4) If node v; represents function fo (0-edge of v; leads
to a shared node) such as given in Figure 2 then
push_front v;41 (f1) in Q then v; in Q. Similarly, if
v; represents the function f; (1-edge leads to shared
node) then push_front v; (f1) in Q and then v,
(f2) in Q.

5) Else if there is no shared node simply push_front the
v; in Q.

6) Pop_back the nodes from Q and implement the func-
tion represented by the nodes by selecting the sub-
circuit from Table I according to the decomposition
type of each node. Mark each implemented node as
visited.

7) If rev_circuit has the required input states then
merge the sub-circuit otherwise add extra constant
lines and merge sub-circuit with rev_cascade.

Example 2. Figure 5 shows an OKFDD for the function
T1(x2 ® x3) ® Taws. Firstly, f decomposes into f3 = Taxs ®
x3 and fo = x9 & x3 by nD decomposition type. Then, f3
decomposes into fy = x3 and terminal node 1 by pD type.
Next, f5 into f1 = x3 and 0 by pD type. Finally, f1 decomposes
into terminal nodes 0 and 1 by Shannon type.

To generate the circuit using Algorithm 1, we traverse the
OKFDD from node x3 to the root node z; level wise starting
from [5. The suitable sub-circuit is selected from Table I for
each node. Here node f; at [5 is a shared node and thus, f3 is
implemented before f>. For node f; at [since the function
is x3 (a single variable) we require only a single line in the
circuit. At [y for node fy the pD node structure 3 is used
from the Table I. Similarly, for the node f3, pD node structure
5 is used which is similar to S decomposition. Lastly, for
node f at ly, nD node structure 1 is used. Figures 5b and Sc
show the equivalent circuit implementations using the previous
algorithm [1] and our algorithm respectively. As illustrated
our approach produces a smaller circuit as compared to the
previous approach [1].

Nodes Shannon Positive Davio Negative Davio
T
Xi — o Xi X . X; Xji —a— Xi
0 1 low(f) f low(f) —D— f low(f) —4 -
| low(n hien® high(f) —b - high(f) ——e— high(f) high(f) f
A
() 0 - f 0=~ 7 0 ——G—p— f
/ " 1o tow(s) tow() N
K low(f low(f) ow ow(; : ,
K high%f; — highé‘) high(f) —— high(f) | V) fow(f)
s lowlf) highf) high(f) high(f)
T
l, 0 T Ty ? f 1 —4 f
/l Xi Xi X f X X;
, low(f) low(f) T P .
L | ek low(f) low(f) low(f) —a———low(f)
T
; R 1 —g— J L f
,‘l hich x)' - f. H(f) Xi —— X X; X;
\ Reh() igh(f) ——*— high(f high(f) —— high(f) high(f) high(f)
Nodes Shannon Nodes Shannon
T i
l/ 0o f ,'I 0 o f
) X —e— X K Xi Xj
. Nent) high(f) —e— high(f) . ol low(f) low(f)
7
1 f
X Xi
7. ' ‘ _ —
TABLE T. TOFFOLI GATE CIRCUITS FOR NODE STRUCTURES OF DECOMPOSITION TYPES.

IV. EXPERIMENTAL EVALUATION

The algorithm is implemented in C++ in Revkit [25]. The
reversible functions in Table II are from Revlib [26]. The
algorithm to generate an OKFDD is given in Revkit under
KFDD-based synthesis algorithms which includes the PUMA
package for decompositions and optimizing algorithms. The
sifting algorithm [27] is used by PUMA to find a variable
ordering and DTL that results in the fewest nodes in the
OKFDD. Verification of the results in Table II is done using
Revkit’s equivalence checker. The experiment was performed
on a 1.9 GB, Intel Core 2 Duo processor Linux machine.

In Table II first column shows the functions. The next
two columns consist of the number of inputs and outputs
for corresponding functions. The results of our algorithm are
compared with the results of the previous KFDD algorithm [1]
and BDD approach from [10]. The notation ‘L’ denotes the
number of lines in the circuit while ‘QC’ and ‘GC’ denote
the quantum cost and gate count respectively. The changes
in the metrics are shown by ‘A L’, ‘A QC’ and ‘A GC’.

The results show a significant decrease in the number of lines
as well as in quantum cost and gate count. In the best case
(e.g. plus127) the line reduction is 42% compared to KFDD
approach and 29% (e.g. tal) compared to BDD approach. The
average line reduction is approximately 10% in comparison
to KFDD algorithm. Comparing the quantum cost values the
average reduction is around 7% and 23% for KFDD and BDD
techniques respectively.

Since a KFDD uses all the decomposition types with
the variable ordering, the decision diagram is more likely to
generate a smaller realization compared to other DD based
algorithms. Some of the functions show great improvement
such as plusl27 and tial due to the frequent presence of
node structure #3. We can see that if a pD decomposition
type #3 is used then only one gate and no additional lines are
required. Although there are a few functions that do not show
any improvement compared to KFDD lines, they display QC
or GC minimization such as sqrt8 and ex2. We hypothesize
that when a node is shared with more than two nodes then an

=

o [@ o
3

(a) OKFDD for the function
T1(z2 @ 23) © Taxs

T3 - an f . -
- Y
Jrx r; 1 o :F .- N f
frox ; -
0 & 0 o -
- -, “—> — . »
3 1 f 3 2 f

(b) Previous approach (c) Our approach

Fig. 5. OKFDD and its reversible circuit from different algorithms.

additional line is required to preserve the function for future
use. This compensates the previous removal of lines.

V. CONCLUSION

In this paper we discuss improvements to the algorithm in
[1] addition of a new circuit realization of node structure as
well as node ordering for shared nodes. We conclude with the
following observations:

e A single output n variable Boolean function can be
represented by at most (2" — 1) nodes in a decision
diagram. Thus, a circuit may have a maximum of
3(2™ — 1) Toffoli gates if every node requires 3 gates.
This can be determined from the fact that we are using
a maximum of 3 gates for any node implementation.

e Considering k levels for k£ variable Boolean function
in a graph there are at least k lines in a circuit. Even
if there are no additional circuit lines the circuit will
consist of minimum number of lines to represent the
variables.

e In a worst case a function would require ¢ + k lines
for k levels in a graph. c is the number of additional
lines added to the circuit. For n nodes in a graph, if
each node requires an additional line then ¢ = n.

The proposed approach utilizes the advantages of all the
decomposition types to optimize the circuit from every dimen-
sion. It not only reduces lines but also quantum cost and gate
count. If at least a single additional constant line is removed
from every level then the lines can be greatly reduced. For
future work we would introduce more circuit implementations

for KFDD node structures. We are also interested in modifying
the sifting algorithm [27] to generate more favorable node
structures in OKFDDs and study the trade-offs associated with
this. If this approach is combined with negative Toffoli gate
implementations it could produce much cheaper circuits in
terms of quantum cost and gate count.

ACKNOWLEDGMENT

This research was funded by NSERC (Natural Sciences
and Engineering Research Council) of Canada.

REFERENCES

[1] M. Soeken, R. Wille, and R. Drechsler, “Hierarchical Synthesis of
Reversible Circuits using Positive and Negative Davio Decomposition,”
in Design and Test Workshop (IDT), 2010 5th International. 1EEE,
2010, pp. 143-148.

[2] R. Landauer, “Irreversibility and Heat Generation in the Computing
Process,” IBM Journal of Research and Development, vol. 5, no. 3, pp.
183-191, 1961.

[31 R. R. Schaller, “Moore’s Law: Past, Present and Future,” Spectrum,
IEEE, vol. 34, no. 6, pp. 52-59, 1997.

[4] T. Hey, “Quantum Computing: An Introduction,” Computing & Control
Engineering Journal, vol. 10, no. 3, pp. 105-112, 1999.

[5S] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Reversible
Logic Circuit Synthesis,” in Proceedings of the 2002 IEEE/ACM In-
ternational Conference on Computer-Aided Design. ACM, 2002, pp.
353-360.

[6] R.C.Merkle, “Reversible Electronic Logic Using Switches,” Nanotech-
nology, vol. 4, no. 1, p. 21, 1993.

[71 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge university press, 2010.

[8] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli Gate Cascade
Generation,” in IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing. Citeseer, 2007, pp. 206-209.

[9] P. Gupta, A. Agrawal, and N. K. Jha, “An Algorithm for Synthesis
of Reversible Logic Circuits,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 25, no. 11, pp. 2317-
2330, 2006.

[10] R. Wille and R. Drechsler, “BDD-based Synthesis of Reversible Logic
for Large Functions,” in Proceedings of the 46th Annual Design
Automation Conference. ACM, 2009, pp. 270-275.

[11] D. M. Miller, D. Maslov, and G. W. Dueck, “A Transformation Based
Algorithm for Reversible Logic Synthesis,” in Design Automation
Conference, 2003. Proceedings. 1EEE, 2003, pp. 318-323.

[12] M. Saeedi and I. L. Markov, “Synthesis and Optimization of Reversible
Circuits — A Survey,” ACM Computing Surveys (CSUR), vol. 45, no. 2,
p. 21, 2013.

[13] M. Arabzadeh, M. Saeedi, and M. S. Zamani, “Rule-based Optimization
of Reversible Circuits,” in Design Automation Conference (ASP-DAC),
2010 15th Asia and South Pacific. 1EEE, 2010, pp. 849-854.

[14] K. N. Patel, J. P. Hayes, and 1. L. Markov, “Fault Testing for Reversible
Circuits,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 23, no. 8, pp. 1220-1230, 2004.

[15] R. Wille, D. GroBie, D. M. Miller, and R. Drechsler, “Equivalence
Checking of Reversible Circuits,” in Multiple-Valued Logic, 2009.
ISMVL’09. 39th International Symposium on. 1EEE, 2009, pp. 324—
330.

[16] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler, “Trading Off
Circuit Lines and Gate Costs in the Synthesis of Reversible Logic,”
Integration, the VLSI Journal, vol. 47, no. 2, pp. 284-294, 2014.

[17] D. M. Miller, R. Wille, and R. Drechsler, “Reducing Reversible Circuit
Cost by Adding Lines.” in International Symposium on Multi-Valued
Logic, 2010, pp. 217-222.

[18] R. Wille, M. Soeken, and R. Drechsler, “Reducing the Number of Lines
in Reversible Circuits,” in Proceedings of the 47th Design Automation
Conference. ACM, 2010, pp. 647-652.

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Function Name | #in | #out | Our approach KFDD approach [1] BDD approach [10]

L QC GC L QC GC AL | AQC | AGC | L QC GC AL | AQC A GC
Rd_32 3 2 6 16 8 8 20 12) -4 -4 6 22 10 0 -6 -2
mod10 4 4 12 60 24 14 64 28 -2 -4 -4 13 80 28 -1 -20 -4
one_two_three 3 3 9 35 15 10 37 17 -1 -2 -2 9 44 16 0 -9 -1
plus127 13 13 26 85 41 37 97 53 -11 -12 -12 25 98 54 1 -13 -13
plus63 12 12 24 78 38 34 89 49 -10 -12 -11 23 89 49 1 -11 -11
radd 8 5 17 59 27 21 68 36 -4 -9 -9 28 217 73 -11 -158 -46
rd53 5 3 14 64 32 15 69 37 -1 -5 -5 - - - - - -
rd73 7 3 23 107 51 25 115 59) -8 -8 25 217 73 -2 -110 -22
rd84 8 4 30 153 69 33 161 77 -3 -8 -8 34 304 104 -4 -151 -35
root 8 5 51 413 153 52 415 159 -1 -2 -6 45 444 140 6 -31 13
sqr6 6 12 48 304 112 50 315 123 -2 -11 -11 49 486 154 -1 -182 -42
sqrt8 8 4 28 166 62 28 170 66 0 -4 -4 - - - - - -
74 7 4 14 46 22 20 56 32 -6 -10 -10 14 66 30 0 -20 -8
z4ml 7 4 14 46 22 20 56 32 -6 -10 -10 14 66 30 0 -20 -8
add6 12 7 40 183 79 39 184 80 1 -1 -1 54 499 159 -14 -316 -80
adr4 8 5 16 54 26 23 65 37 -7 -11 -11 16 74 34 0 -20 -8
bw 5 28 78 581 237 81 593 249 -3 -12 -12 87 943 307 -9 -362 -70
cm82a 5 3 10 31 15 12 36 20 -2 -5 -5 13 82 30 -3 -51 -15
conl 7 2 15 94 30 17 100 36 -2 -6 -6 - - - - - -
cycle 12 12 28 97 49 34 104 56 -6 -7 -7 39 202 78 -11 -105 -29
dcl 4 7 21 141 45 22 146 50 -1 -5 -5 20 160 56 1 -19 -11
inc 7 9 56 442 158 58 447 171) -5 -13 53 579 187 3 -137 -29
xorl195 5 1 6 6 6 10 10 10 -4 -4 -4 6 8 8 0 -2 -2
sym9 9 1 30 150 70 28 154 74 2 -4 -4 27 206 62 3 -56 8
exl 5 1 6 6 6 10 10 10 -4 -4 -4 6 8 8 0 -2 -2
ex2 5 1 11 50 18 11 48 20 0 2 -2 11 73 25 0 -23 -7
max46 9 1 62 664 216 67 684 228 -5 -20 -12 54 598 190 8 66 26
sym10 10 1 38 259 103 40 266 110 -2 -7 -7 32 253 77 6 6 26
lifel75 9 1 26 159 67 31 168 76 -5 -9 -9 27 204 64 -1 -45 3
9syml 9 1 30 150 70 28 154 74 2 -4 -4 27 206 62 3 -56 8
sao 10 4 74 562 186 73 568 192 1 -6 -6 74 667 211 0 -105 -25
tial 14 8 410 | 4185 1681 419 | 4179 1703 | -9 6 222 578 | 7609 | 2253 | -168 -3424 -572
urfl 9 9 384 | 4320 1628 | 390 | 4372 1672 | -6 -52 -44 374 | 6080 1848 10 -1760 -220
urf2 8 8 206 | 2276 | 920 209 | 2304 | 948 -3 -28 -28 209 | 3187 | 983 -3 911 -63
wim 4 7 18 93 37 19 95 39 -1 -2 -2 18 107 39 0 -14 -2
mjority 5 1 10 37 17 10 38 18 0 -1 -1 10 41 13 0 -4 4
symo6 6 1 16 76 28 16 77 29 0 -1 -1 14 93 29 2 -17 -1
cordic 23 2 52 264 104 53 264 108 -1 0 -4 - - - - - -
cm85a 11 3 35 161 61 35 164 64 0 -3 -3 36 275 87 -1 -114 -26
clip 9 5 66 546 214 69 566 226 -3 -20 -12 66 704 228 0 -158 -14
e64 64 64 195 | 897 385 195 899 387 0 -2 2 - - - - - -
cps 24 109 619 | 5677 | 2305 | 625 | 5668 | 2332 | -6 -9 =27 - - - - - -

TABLE II. XPERIMENTAL RESULTS FOR THE ALGORITHM

Y. Pang, S. Wang, Z. He, J. Lin, S. Sultana, and K. Radecka, “Positive
Davio-based Synthesis Algorithm for Reversible Logic,” in Computer
Design (ICCD), 2011 IEEE 29th International Conference on. IEEE,
2011, pp. 212-218.

D. Maslov and G. W. Dueck, “Reversible Cascades with Minimal
Garbage,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 23, no. 11, pp. 1497-1509, 2004.

T. Toffoli, Reversible Computing. Springer, 1980.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary Gates
for Quantum Computation,” Physical Review A, vol. 52, no. 5, p. 3457,
1995.

“Table with Quantum Cost Calculation,”
http://webhome.cs.uvic.ca/ dmaslov/definitions.html, accessed: 2015-
05-03.

C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design: OBDD-Foundations and Applications. ~ Springer Science &
Business Media, 1998.

M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An open
source toolkit for the design of reversible circuits,” in Reversible
Computation 2011, ser. Lecture Notes in Computer Science, vol. 7165,
2012, pp. 64-76, RevKit is available at www.revkit.org.

R. Wille, D. Gro83e, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,”
in Int’l Symp. on Multi-Valued Logic, 2008, pp. 220-225, RevLib is
available at http://www.revlib.org.

R. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision
Diagrams,” in Proceedings of the 1993 IEEE/ACM International Con-

ference on Computer-Aided Design.

1993, pp. 42-47.

IEEE Computer Society Press,

