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When considering Boolean switching functions with  n  input variables, there are   2
2

n

 

possible functions that can be realized by enumerating all possible combinations of input 

values and arrangements of output values. As is expected with double exponential 

growth, the number of functions becomes unmanageable very quickly as  n  increases. 

This thesis develops a new approach for computing the spectral classes where the 

spectral operations are performed by manipulating the truth tables rather than first 

moving to the spectral domain to manipulate the spectral coefficients. Additionally, a 

generic approach is developed for modeling these spectral operations within the 

functional domain. The results of this research match previous for   n ! 4  but differ when 

  n = 5  is considered. This research indicates with a high level of confidence that there are 

in fact 15 previously unidentified classes, for a total of 206 spectral classes needed to 

represent all   2
2

n

 Boolean functions. 
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Science, my lad, is made up of mistakes, but they are mistakes which it is useful to 
make, because they lead little by little to the truth. 

- Jules Verne 

 

 



 

 

 
 

Chapter 
1 - Introduction 

1.0 Digital Logic And Boolean Switching Functions 
In the field of digital logic, there are many techniques for representing circuits. One 

representation is shown in Figure 1. 

x

x

x
0

1

2

 

Figure 1 – Digital Circuit 

Another representation is a truth table, which is used to tabulate the output for each 

possible combination of input values. For  n  inputs, a truth table lists   2
n  possible results. 

For example, the circuit in Figure 1 can be represented by the truth table in Table 1. 

x2 x1 x0  
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Table 1 – Truth table for Figure 1  

Circuits with even a moderate number of input variables generate truth tables that are 

very large. A more compact representation of the circuit can be achieved using a 



 

 

2 

mathematical expression called a Boolean switching function. The circuit in Figure 1 can 

be represented by the Boolean switching function in Equation (1.1). 

 
  
f (X ) = x

2
x

2
+ x

1
x

0
+ x

2
x

0
 (1.1) 

Often the output vector of the truth table may be encoded as an integer for an even more 

compact representation. In this case, the individual bits of the integer correspond to truth 

table values. For example, the truth table output vector for (1.1) is: 

  10111101 

There are several ways of encoding this vector as an integer. In [2] the output vector of a 

function is encoded as an octal number. In octal, this function would be referred to as 

Function Number 275. It is possible to use any encoding scheme to represent a function, 

including hexadecimal and decimal. In this thesis, we have chosen to use a decimal 

representation. The decimal encoding for this example would be Function Number 189. 

As these encodings are simply different interpretations of the same underlying bit strings, 

the function numbers can be converted between representations for direct comparison. 

As indicated by Hurst, et al. in [2], although encoding provides a compact 

representation of the functions, it does not “give any direct indication of functions of 

similar structure or complexity.” A classification system could be used to group functions 

together based on other properties such as these, and also provide an even more compact 

representation of these functions. 

1.1 Motivation 

When considering Boolean switching functions with  n  variables, there are   2
2

n

 possible 

functions, each of which can be realized by enumerating all possible combinations of 

input values and arrangements of output values. As is expected with double exponential 
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growth, the number of functions becomes unmanageable very quickly as  n  increases. To 

put this growth into perspective,   n = 4  produces a manageable 65,536 functions, while 

  n = 6  produces in excess of  1.8 !10
19  functions. 

If one was to examine all possibilities for equivalent circuits when designing a processor, 

for example, it becomes impossible to consider all possible scenarios as the number of 

inputs for the circuit increases. Not all circuit realizations are considered equal, as some 

will provide superior qualities for power consumptions, physical space, latency, etc. 

Classification could assist this kind of application by making the navigation and selection 

of functions more manageable. 

Using classification, all   2
2

n

 functions can be considered through a small number of 

representative functions. Hurst, et al. [2] list two advantages of classification: 

1. Increased understanding of functions that have essentially identical 

circuit realisations, leading to the classification of all      functions of ≤n 

variables in some compact manner. 

2. Possibility of establishing a small set of “standard functions” or 

“prototype functions,” from which any particular function may be 

realised by implementation of appropriate operations corresponding to the 

classification procedure. 

The spectral classes for functions with   n ! 5  input variables were calculated in [2] and 

[4]. Considering 30 years have passed since the previous work was computed, it seemed 

reasonable that advances in computer hardware might allow for computing functions 

where   n > 5 . With this possibility in mind, this research aims to reproduce the results 

from [2] and [4], albeit with a different approach, and attempts to harness current 

  2
2

n
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technology to calculate spectral classes for   n > 5 . The goals for this research are as 

follows: 

1) Develop a new approach for computing spectral classes, and implement this 

approach. 

2) Independently reproduce and verify the results published in [2], the spectral 

classes for   n = 5 , ensuring they are a valid basis for future work. This goal is to be 

carried out using the results of goal 1. 

3) Use the knowledge gained in goal 2 to investigate the possibility of computing the 

spectral classes for functions with values of  n  greater than 5. If it is feasible to 

compute the spectral classes for   n > 5 , then provide the classes for as many values 

of  n  as possible. 

1.2 Overview 
In Chapter 2, this thesis provides an overview of various established Boolean function 

classification techniques. Chapter 2 also provides a more in-depth look at the established 

details of a particular classification technique within the spectral domain, as this is the 

focus of this thesis. Problems similar to spectral classification, and the approach used for 

previous work, are discussed in Chapter 3. In Chapter 4 various approaches for 

computing spectral classes are considered and discussed, including their advantages and 

disadvantages, with a focus on the approach used in this thesis. The new results from this 

research and the analysis of the approach used are presented in Chapter 5. Chapter 6 

covers potential future work and improvements to the approach. 

The implementation of the techniques discussed in this thesis are discussed in detail in 

Appendix A, including specific techniques used to optimize for execution time and 

resource usage. Included in Appendix B is the classification lists created by this 



 

 

5 

implementation in Appendix A, and the transcription and reconstruction of the results 

from previous work. Finally, Appendix C contains the C++ source code that produced 

the results discussed in this thesis. 

1.3 Summary 
This research attempts to reproduce the spectral classes produced in [2] and [4] for 

  n ! 5  by performing all operations within the functional domain, rather than the spectral 

domain. Although the goal is spectral classification, the operations can be accomplished 

by manipulating the truth tables rather than first moving to the spectral domain to 

manipulate the spectral coefficients. The results of this research match [2] and [4] for 

  n ! 4  but differ when   n = 5  is considered. This research indicates with a high level of 

confidence that there are in fact 15 additional classes, for a total of 206 spectral classes 

needed to represent all  2
2

5

 Boolean functions. 

Computer hardware has not advanced enough for spectral classification of functions 

with   n > 5  input variables to be calculated with existing approaches to classification, even 

with heavy optimization. 
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Chapter 
2 - Background 

 

2.0 Introduction 
This chapter presents the concepts and definitions required for the topics covered in 

this thesis. Concepts introduced in this chapter include Boolean switching functions, 

classification, and the spectral domain. Additionally, we introduce a concept that we have 

termed "rules," which is essential to the classification approach introduced in this thesis. 

2.1 Boolean Switching Functions 
According to Hurst, et al. [2] and Rice [1], a Boolean switching function (referred to 

simply as a function for the remainder of this thesis) is a mathematical equation that 

describes a logic system based on Boolean logic operations. The basic logic operations 

are: AND, OR, NOT and XOR (exclusive-OR). There are also the operations NAND 

(not-AND), NOR (not-OR), and XNOR (not-exclusive-OR) which can be derived by 

combining the basic logic operations. 

x1 x0  
0 0 0 
0 1 0 
1 0 0 
1 1 1  

x1 x0  
0 0 0 
0 1 1 
1 0 1 
1 1 1  

x1 x0  
0 0 0 
0 1 1 
1 0 1 
1 1 0  

 x   
0 1 
1 0  

(a) (b) (c) (d) 
Figure 2 – a) AND b) OR c) XOR d) NOT 

Traditionally in Boolean logic, AND and OR are represented by the intersection (! ), 

and union (! ) symbols, but may also be represented by sum (+ ) and product (! , or 
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simply adjacent terms) symbols. For example, expression (2.1) represents an AND 

operation between variables 
  
x

0
 and 

  
x

1
, while expression (2.2) represents the OR 

operation. For the purposes of this thesis, the sum and product operators will be used. 

 
  
x

0
x

1
 (2.1) 

 
  
x

0
+ x

1
 (2.2) 

The exclusive-OR operator is represented by ! , while the NOT operator, also known as 

invert, negate, or bar, is traditionally represented by the symbol ¬  preceding the 

variable, or a solid bar above the variable as seen in equation (2.3). 

  x  (2.3) 

The output for the AND operation, as seen in Figure 2a, is true when the values of all 

input variables are true, and false in all other cases. For the OR operation, as seen in 

Figure 2b, the output is true when the value of at least one input variable is set to true. 

The output for the NOT operation, as seen in Figure 2d, is the opposite value of the 

input variable. Exclusive-OR, as seen in Figure 2c, has the output of true when there are 

an odd number of input variables with the value set to true, but false for all other cases, 

including when both input bits are set to true. The operations NAND, NOR and XNOR 

are simply the NOT operation applied to the output of AND, OR and XOR respectively. 

2.2 Binary Representation 
The decimal representation of a Boolean function relies on the assumption of a certain 

order of the output vector bits in the truth table. For this thesis, it is assumed that the 

most significant bit of the integer is the first row of an ordered truth table (the “zero” 

row). For example, as seen in Figure 3, the order of the bits to be encoded as an integer 
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would be  abcdefgh . If the output vector happens to be shorter than the data type used to 

represent it, the number is padded with zeros on the left hand side (most significant bits). 

x2 x1 x0  
0 0 0 a 
0 0 1 b 
0 1 0 c 
0 1 1 d 
1 0 0 e 
1 0 1 f 
1 1 0 g 
1 1 1 h 

Figure 3 – Truth table format 

The convention used in this thesis is as follows: the input variables of a truth table are 

read from right to left. In the example in Figure 3, the first column on the right is the 

output vector, followed by the column for variable  z  and followed by variables  y  and  x . 

This thesis also labels variables with a single letter and an incrementing subscript; the first 

variable on the right-most variable column can also be called input variable 1, or 
 
x

i
 and 

the left most column of the truth table is the  n th input variable, or 
 
x

n
. In general, when 

subscripts are not used, the term “variable  y ” would be used rather than “input variable 

2” in that example. 

Latin letters are used for output vector and truth table results when referring to generic 

cases rather than specific cases with defined truth values. In general, the letters chosen for 

these generic examples begin with lowercase  a  and increase incrementally. 

2.3 Classification 

Given that   2
2

n

 unique functions can be realized for  n  input variables, it is evident that 

even for relatively small values of  n  it is impossible to evaluate all possible functions. 

Once a classification technique is determined, if one considers a representative function of 

a given class as a generic black box circuit, it could be used as a building block for all 
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functions within that class. To build a different circuit within this class, one would start 

with the black box circuit, and modify the inputs and/or outputs using simple operations 

equivalent to the established classification criteria. For example, a function may only 

differ from the representative function by an inverter on the output. With a generic 

circuit for each class, a potential application for classification is automatic circuit 

optimization (for power efficiency, physical space, speed, etc.) for an arbitrary value of n. 

2.3.1 Definition Of Classification 
The classification of a set of functions  F  into classes 

   
Q

1
,Q

2
,…,Q

p
 based on 

transformations 
   
T

1
,T

2
,…,T

m
 is such that: 

 

   

F = Q
1
!Q

2
!…!Q

p
and

Q
i
"Q

j
= # where i $ j

 

Two functions 
  
f

i
, f

j
,  i ! j , are in the same class 

 
Q

k
 if and only if 

 
f

i
 can be obtained 

from 
 
f

j
 by the application of some appropriate set of transformations from 

   
T

1
,…,T

m
. No 

set of transformations applied to a function in 
 
Q

i
 can lead to a function in 

 
Q

j
, for any 

   i, j !{1,…, p} where i " j . 

2.3.2 Algebraic Classification 
The most common classification scheme is based on NPN: Negation of input variables 

(N), Permutation of input variables (P), and Negation of output (N). This technique is 

referred to as algebraic classification as described by [4]. These transformations are 

described in detail in sections 2.3.2.2, 2.3.2.1, and 2.3.2.3. 
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2.3.2.1 Permutation Of Input Variables 

As discussed previously, in the functional domain, a function can be represented as a 

truth table with columns for input variables on the left and a column for the output of the 

function on the right, as in Figure 4.  

x2 x1 x0  
0 0 0 a 
0 0 1 b 
0 1 0 c 
0 1 1 d 
1 0 0 e 
1 0 1 f 
1 1 0 g 
1 1 1 h  

→  

x1 x2 x0  
0 0 0 a 
0 0 1 b 
1 0 0 c 
1 0 1 d 
0 1 0 e 
0 1 1 f 
1 1 0 g 
1 1 1 h  

→  

x1 x2 x0  
0 0 0 a 
0 0 1 b 
0 1 0 e 
0 1 1 f 
1 0 0 c 
1 0 1 d 
1 1 0 g 
1 1 1 h  

Original  Permute 
  
x

2
 and 

  
x

1
  Sort 

Figure 4 – Type 1: Permute input variables x2 and x1 

To permute the input variables, the entire column of each variable to be affected is 

moved to its new location, while leaving the output vector untouched. The resulting table 

is no longer an ordered truth table (with input values incrementing from 0 through  n ). 

We then sort the rows to restore the ordered truth table by swapping entire rows. Sorting 

the truth table results in a new output vector, which represents the output vector of the 

new function. Using a bit string to represent the function, output vector abcdefgh is 

transformed into abefcdgh when permuting input variables x and y. 

2.3.2.2 Negation Of Input Variables 
To negate the input variables, the values in the entire column of each variable to be 

affected are inverted, while leaving the output vector untouched, as illustrated in Figure 5. 
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x

2
 

  
x

1
 

  
x

0
  

0 0 0 a 
0 0 1 b 
0 1 0 c 
0 1 1 d 
1 0 0 e 
1 0 1 f 
1 1 0 g 
1 1 1 h  

→  

  
x

2
 

  
x

1
 

  
x

0
  

1 0 0 a 
1 0 1 b 
1 1 0 c 
1 1 1 d 
0 0 0 e 
0 0 1 f 
0 1 0 g 
0 1 1 h  

→  

  
x

2
 

  
x

1
 

  
x

0
  

0 0 0 e 
0 0 1 f 
0 1 0 g 
0 1 1 h 
1 0 0 a 
1 0 1 b 
1 1 0 c 
1 1 1 d  

15 
Original 

 Negate 
  
x

2
  Sort 

Figure 5 – Type 2: Negate input variable x2 

 

The resulting table is no longer an ordered truth table (values incrementing from  0  to  n ). 

We then sort the rows to restore the ordered truth table layout by swapping entire rows. 

Sorting the truth table results in a new output vector, which represents the output vector 

of the new function. Using a bit string to represent the function, output vector abcdefgh is 

transformed into efghabcd when negating input variable x2. 

2.3.2.3 Negation Of Output 
In the functional domain, the negation of the output is accomplished in a single step, as 

in Figure 6. 
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0 0 0 ¬ a 
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1 1 0 ¬ c 
1 1 1 ¬ d 
1 0 0 ¬ e 
1 0 1 ¬ f 
0 1 0 ¬ g 
0 1 1 ¬ h  

Original  Negate Output 

Figure 6 – Type 3: Negate output vector values 

 

To negate the output vector, the every value in the output vector is inverted. 
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2.3.3 Spectral Classification 

In contrast to the output vector in the functional domain, which consists of the truth 

table output, a function is defined in the spectral domain by a vector of spectral 

coefficients. 

The spectral domain has the distinct advantage of allowing one to see the “global 

picture of the network,” rather than simply the “discrete nature of the data format.” [2] 

As input variables are changed, one can see how it affects the entire function, making the 

spectral domain particularly useful. 

The output vector in the spectral domain,  S , consists of individual coefficients which 

use the notation 
 
s
!

 where subscript !  is a subset of 
   1,…,n . Table 2 lists the "meaning" 

of the spectral coefficients, or how they correlate with the input variables of the function, 

for   n = 3 . This can be generalized for any value of n. 
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 similarity to input variable 

  
x

2
! x
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s
123

 similarity to input variable 
  
x

1
! x

2
! x

3
 

Table 2 - Correlation between spectral coefficients and input variables for n = 3 

 
The generalized spectral coefficient output vector  S  for   n = 4 , as achieved by the 

Hadamard transformation matrix (further discussed in Section 2.3.3.1) can be observed in 

Figure 7. 
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Figure 7 – Spectral coefficients for n = 4 

 

The coefficients are often reordered into groups according to their order, as seen in 

Figure 8, but the actual output order depends on the transformation matrix used in their 

calculation. 
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Figure 8 – Reordered spectral coefficients for n = 4 

 

The significance of the values are summed up by Hurst, Miller and Muzio [2] as follows: 

i. The sum of all spectral coefficients s of S for any fully defined function f(X) is ±2n 

ii. The maximum value of any individual s is ±2n; this occurs when f(X) is identically equal 
to any row in [the spectral transform matrix] or its compliment. The range of each s is    
{-2n,-2n+2,...,0,...,2n-2,2n} 

iii. When any individual s is maximum-valued, all remaining 2n-1 coefficients of S will be 
zero-valued 

iv. When any input variable xi is redundant in a given function f(X), the 2n-1 spectral 
coefficients that contain i in their subscript identification will all be zero-valued. 

Spectral classification encompasses the previously defined NPN classes and adds two 

additional operations involving the XOR Boolean operator. The NPN operation types 1 

through 3 will be briefly defined in terms of the spectral domain while additional spectral 

operations (referred to as Type 4 and Type 5) will be described in terms of both 

functional domain and the spectral domain, as their functional domain properties have 

not previously been defined. All definitions are based on those by Hurst, Miller, and 

Muzio in [2]. 

In order to fully explain this technique, we must first provide some background on the 

spectral representation of a function, and how we calculate the spectral coefficients. 
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2.3.3.1 Computing Spectral Coefficients 
Calculating the vector of spectral coefficients,  S , is achieved with equation (2.4). 

  S =T
n
Y  (2.4) 

The  T  term is the Hadamard transformation matrix, which is defined in equation (2.5). 

The matrix is a complete   2
n
! 2

n  matrix where  n  is the number of input variables. It is 

possible to use other transformation matrices, but the order of the spectral coefficients will 

be different. The Hadamard transformation matrix was chosen due to its recursive 

nature, and to allow direct comparison to previous work by other authors. The 

Hadamard transformation matrix’s recursive definition makes it particularly attractive for 

programmatic implementation. 

 
   

T
n
!

T
n!1

T
n!1

T
n!1 !T

n!1

"

#
$

%

&
'    where   T

0
! +1  (2.5) 

The Y is the output vector of the function in the functional domain, but  +1/!1  encoding 

is used rather than the more common  0 /1  encoding. Equation (2.6) can be used to 

convert the output vector  Z  (the  0 /1  encoded output vector of the truth table for the 

function) to the  +1/!1  encoded  Y  vector. 

 
  
y

j
=1! 2z

j
  for all   j  (2.6) 

In equation (2.6), lower case  y  and  z  are considered to be elements of  Y  and  Z  

respectively. An example of a Hadamard transformation matrix where   n = 3  can be seen 

in the example in Figure 9. 
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Figure 9 – Hadamard transformation matrix for n = 3 

 

In Chapter 1, Function 189 that represents the circuit in Figure 1 is presented. Using the 

Hadamard transform, this function can be moved from the functional domain to the 

spectral domain. 
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x

0
  

0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 0 
1 1 1 1 

Table 3 – Truth table for Function 189 

 
The first step to transform Function 189 into the spectral domain is to take the output 

vector,  Z , from Table 3 and convert it to the +1/-1 encoding using (2.6). The conversion 

of vector  Z  to  Y  is demonstrated in Figure 10. 
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Figure 10 – Example converting the output vector of Function 189 from Z to Y encoding 

 

Using (2.4), the output vector  Y  can be transformed into the spectral domain as seen in 

Figure 11. 
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Figure 11 – Calculate the spectral coefficients for Function 189 

 

The final output in the output vector,  S , using the reordered format in Figure 8 is: 

 !4;   0 0 0;   ! 4 ! 4 4;   0  

Note that the coefficients are "numerically equal to {! agreements between output 

  f (X )  and the appropriate input function [minus] ! disagreements between   f (X )  and 

the input function}” [2]. 
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2.3.3.2 Type 1: Permutation Of Input Variables 

The spectral Type 1 operation, permutation of input variables, is the same operation as 

described in Section 2.3.1.2. We now discuss Type 1 in terms of the spectral domain 

rather than the functional domain. 

In the spectral domain, if input variables 
 
x

i
 and 

 
x

j
 are swapped, all spectral 

coefficients which include subscripts  i  and  j  must also be swapped, as seen in (2.7). 

 

 

si ! s j

sik ! s jk

sikl ! s jkl

!

 (2.7) 

All other coefficients remain unchanged. 

2.3.3.3 Type 2: Negation Of Input Variables 
The spectral Type 2 operation, negation of input variables, is the same operation as 

described in Section 2.3.1.2. We now discuss Type 2 in terms of the spectral domain 

rather than the functional domain. 

In the spectral domain, if an input variable 
 
x

i
 is negated, all spectral coefficients that 

include subscript  i  must be negated, as seen in (2.8). 

 

 

si ! "si

sij ! "sij

sikl ! "sikl

!

 (2.8) 

All other coefficients remain unchanged. 



 

 

18 
2.3.3.4 Type 3: Negation Of Output 

The spectral Type 3 operation, negation of output, is the same operation as described 

in section 2.3.1.3. We now discuss Type 3 in terms of the spectral domain rather than the 

functional domain. 

In the spectral domain, if the output is negated, all spectral coefficients are negated, as 

seen in (2.9). 

 

 

s
0
! "s

0

s
1
! "s

1

s
2
! "s

2

!

s
12...n

! "s
12...n

 (2.9) 

2.3.3.5 Type 4: Variable Replacement With XOR 
In the functional domain, the input variables are represented in a truth table with the 

resulting output vector on the right hand side, as in Figure 12. 
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 for x  Sort 

Figure 12 – Type 4: Substitute x2 ⊕ x1 for input variable x2 

 

To replace the input variables with an XOR expression, the entire column of each 

variable to be affected has its values replaced based on the result of the expression, while 

leaving the output vector untouched. The resulting table is no longer an ordered truth 

table (values incrementing from  0  to  n ). We sort the rows to restore the ordered truth 
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table layout by swapping entire rows. Sorting the truth table results in a new output 

vector, which represents the output vector of the new functions. 

In the spectral domain, if variable 
 
x

i
 is replaced with 

 
x

i
! x

j
, all spectral coefficients 

which include subscripts  i  and  ij  must be swapped, as seen in (2.10).  

 

 

si ! sij

sik ! sijk

sikl ! sijkl

!

 (2.10) 

All other coefficients remain unchanged. 

2.3.3.6 Type 5: Output Replacement With XOR 
In the functional domain, the input variables are represented in a truth table with the 

resulting output vector on the right hand side, as in Figure 13. To replace the output 

vector item with Type 5 modified values, the selected variable must be applied to each 

item in the output vector using the XOR operator. The resulting output vector is the new 

function created by the Type 5 classification transform. 
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0 0 0 a ⊕ x2 
0 0 1 b ⊕ x2 
1 1 0 c ⊕ x2 
1 1 1 d ⊕ x2 
1 0 0 e ⊕ x2 
1 0 1 f ⊕ x2 
0 1 0 g ⊕ x2 
0 1 1 h ⊕ x2  

Original  Output XORed by x2 
Figure 13 – Type 5: Perform XOR between the output vector and x2 

 

In the spectral domain the output of the function is replaced with the XOR of the 

function and a variable: 
  
f (X ) ! f (X )" x

i
. As seen in (2.11), spectral coefficients with 

subscript  i  are swapped with its equivalent coefficient lacking an  i  subscript. 
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si ! s
0

sij ! s j

sijk ! s jk

!

 (2.11) 

All pairs of spectral coefficients are swapped and therefore all   2
n  coefficients are affected. 

2.4 Spectral Signature 
In [2] and [4], an abbreviated form is used to represent the properties of a spectral 

class. This thesis refers to this form as the function's spectral signature, or simply its 

signature. The signature's form is the made up of the spectral coefficient 
 
s

o
, followed by 

the first order coefficients, and the "summary of the complete spectrum." [2] The 

summary of the complete spectrum is simply a list of the absolute values of the spectral 

coefficients and the number of occurrences of each. For example, using the function in 

Figure 11, the signature for Function 189 would be: 

  !4  0  0  0         4 " 0   4 " 4  

2.5 Other Function Groups 
There have been numerous other approaches to grouping functions according to some 

specific property. Although the focus of this research is on spectral classification, it is 

worthwhile to consider these other approaches, as they have been the focus of 

classification attempts in the past. 

2.5.1 Threshold 
A threshold function, which may also be referred to as a linearly separable function, is a 

function where the   2
n  minterms are represented as nodes in a  n -dimensional space 

hyper-cube where a plane can “unambiguously divide all true (  f (X ) =1 ) nodes from all 
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false (  f (X ) = 0 ) nodes” [2]. The   2
n  nodes are equally spaced. An example for   n = 2  can 

be seen in Figure 14. 

 

Figure 14 – Threshold function for n = 2 

Although linear separation can be used to classify functions, the effectiveness of 

classification decreases as  n  increases. The equation of the plane can be calculated by 

equation (2.12), as given in [2]. 

 
  

a
1
x

1
+ a

2
x

2
+ ...+ a

n
x

n
= d

where all the a
i
 are constants

 (2.12) 

The axes of the  n -dimensional hyper-cube are the input variables 
  
x

1
,x

2
,...,x

n
, while 

 
a

i
 

and  d  are constants.  

Given the equation of the plane, any node on the origin side of the partition will have 

equation (2.13). 

 
  
a

1
x

1
+ a

2
x

2
+ ...+ a

n
x

n
< d  (2.13) 

The remaining nodes (on the plane and to the opposite side of the origin) have equation 

(2.14). 
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x
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+ a
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x

2
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n
x
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Therefore, one can say if a node has the equation (2.13) then   f (X ) = 0 , otherwise if the 

node has equation (2.14) then   f (X ) =1 . Each constant 
 
a

i
 represents the “weight” or 

importance of an input variable to the output of the function in a threshold logic gate. [2] 

2.5.2 Unate 
A unate function is defined as a function where both a variable and its complement do 

not exist within a minimized sum of products representation of   f (X ) , according to [2]. 

For example, the function 
  
f (X ) = x

1
x

2
+ x

1
x

3
 is unate, while the function 

  
g (X ) = x

1
x

2
+ x

1
x

3
 is not (both 

  
x

1
 and 

  
x

1
 exist within a minimized sum of products 

expression for   g (X ) ). Although this is a fairly simple criterion for classification, there 

exists a caveat that makes determining whether or not is unate very complex. A function 

must be minimized before it can be determined whether or not it is unate. 

2.6 Rules 
For the purposes of this thesis, a very specific definition for the term “rule” is used. A 

rule is the representation for the permutation of the output vector for a given 

transformation of the function. For example, in Rule (2.15), letters of the alphabet 

represent the original output vector of the function. 

 
  

a,b,c,d ,e, f , g ,h{ }  (2.15) 

 
  

b,a,c,d , f ,e, g ,h{ }  (2.16) 

Rule (2.16) represents how the binary values of the original vector are interchanged. If the 

original output vector is 
 
0,1,1,0,1,0,1,0( ) , then the rule stated in (2.16) states that the new 

output vector is 
 
1,0,1,0,0,1,1,0( ) . 
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2.7 Double Exponential 
For the purpose of this thesis, the term "double exponential," is used to describe a 

constant to the power of an exponential function, as seen in equations (2.17). 

   f (x) = abn

 (2.17) 

Complexity analysis for double exponential algorithms results in   O(2c
n

)  where a, b, and c 

are constants. 

2.8 Linear Independence 
Let  K  be a commutative field. An ordered set of  n  elements (

   
x

1
,x

2
,…,x

n
), all 

 
x

i
!K  is 

an  n -vector over  K . The  r   n -vectors 
   
y

1
, y

2
,…, y

r
 are linearly dependent over  K  if 

there exist scalars 
   
a

1
,a

2
,…,a

r
 not all 0 such that: 

 
   
a

1
y

1
+ a

2
y

2
+…+ a

r
y

r
= 0  

otherwise they are linearly independent. In our case,   K = GF(2) = {0,1} . 

As an example, given the three vectors of  (1,0,0) ,  (0,1,0) , and  (0,0,1) , it can be seen 

that they are linearly independent because no one vector can be created by combinations 

of the remaining vectors. In contrast, the vectors  (2,!1,1) ,  (1,0,1) , and  (3,!1,2) , are not 

linearly independent since the first two vectors can be added to create the third vector. 

In this research, only the functional domain is considered for the constants 
 
a

i
; in our 

case the constants 
  
a

i
!{0,1} . Note, the implementation of XOR is addition mod2. For 

each function the   2
n
!1  equations in equation (2.18) must be calculated. 
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 (2.18) 

2.9 The Problem 
The number of functions for a given number of input variables increases double 

exponentially. This growth causes consideral problems when trying to process the 

functions. When considering all possible functions for a given number of input variables, 

 n , as tabulated in Table 4, it becomes apparent how quickly the number of functions 

becomes unmanageable. For situations where   n < 5 , all functions can be considered and 

processed relatively easily. Even for   n = 4 , the total number of functions to consider is 

only 65,536, which would consume only 128KB of memory assuming the Boolean output 

vectors are stored as short integers (16 bits or 2 Bytes). Simply increasing  n  by 1 to   n = 5  

causes the number of functions to increase to over 4 million. To store all possible 

functions for   n = 5 , a full integer (32 bits or 4 Bytes) is needed, consuming over 16GB of 

memory. Increasing  n  again to   n = 6 , the number of functions pushes the memory usage 

to over 137,438,953,476GB of memory when storing the functions as long long integers 

(64 bits or 8 Bytes). Although today it is possible to load 16GB worth of data into primary 

storage, albeit not particularly feasible, it is currently not possible to load 

137,438,953,476GB of data on any one storage device. Even without considering 

processing the data, the simple storage of all these functions quickly becomes impractical. 

Compromises could be made to not store all functions in memory at once, but at the cost 

of overall computing time as there is an increase in overhead due to memory 

management. The problem is already very computationally intensive, and adding the 
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extra burden of memory swapping makes the approaches used in this implementation 

unfeasible. 

 n  Number of Functions Times larger than   n = 5  

1 4 - 
2 16 - 
3 256 - 
4 65,536 - 
5 4,294,967,296 1 
6 1.8447744074 x 1019 ~4,294,967,296 
7 3.4028236692 x 1038 ~7.9 x 1028 

8 1.1579208924 x 1077 ~2.7 x 1067 

9 1.3407807930 x 10154 ~3.1 x 10144 

10 1.7976931349 x 10308 ~4.2 x 10298 

Table 4 – The number of functions for n = 1 through 10 

 
Even applying a small operation to all possible functions that would only take a single 

clock cycle in a processor would quickly become too slow to be useful. 

As an example, consider a computer system where there is no overhead for loading 

data from memory, possesses a 2.5GHz processor, and which can perform 2,500,000,000 

single clock cycle operations per second. If one were to use this system to process all 

possible functions for   n = 5  with a single clock cycle operation, it would take 

approximately 1.7 seconds. Increasing  n  to   n = 6 , this same operation would now take 

7,378,697,629 seconds, or nearly 234 years. This example is not realistic, as most useful 

operations would take many more than a single clock cycle to accomplish, and system 

overhead would be a fairly significant factor.  

2.10 Summary 
It is apparent that some form of classification is needed to abbreviate the list of 

functions that are processed, yet still be able to be assured that all possible functions are 

considered.  Rather than iteratively trying every possible function looking for the most 

suitable function for a given purpose, the ability to process a certain subset of functions 
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could make such a task feasible by reducing the number of functions significantly. 

Classification based on certain properties of the functions should accomplish this goal. 

The concepts needed for this thesis, such as Boolean switching functions, classification, 

the spectral domain, and the newly introduced concept of rules are defined. These 

concepts are used and expanded upon in the subsequent chapters. 
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Chapter 

3 - Related Work 
3.0 Introduction 

There are many problems that use the same techniques as spectral classification. Some 

problems are simply equivalent forms of spectral classification, while others are used for 

other types of classification. 

The previous work of spectral classification in [2], which is the basis for this research, 

published only the list of spectral signatures, but lacks the required details needed for 

further analysis of the data. This thesis focuses on spectral coefficients that have been 

produced by the Hadamard transform, but it is by no means the only spectral transform 

available. Of the transforms available, some are canonical specializations of the 

Hadamard transform, while others expose entirely different properties of the function. 

3.1 Alternate Representations Of The Hadamard Transform 
In addition to spectral classification using the Hadamard transform, other transforms 

such as the Walsh, Rademacher-Walsh, and Walsh-Paley can be used, albeit with a 

different resulting spectral ordering. [2] 
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Figure 15 – Spectral output order for Hadamard (SH), Walsh (SW), Rademacher-Walsh 

(SRW), and Walsh-Paley (SWP) transforms 

 

Although these transforms retain the same information as a Hadamard transform, they 

do not have a recursive definition that is particularly suitable for programmatic 

implementation. Additionally, the Hadamard spectral output maintains an ordering that 

compares to a standard truth table, as seen in Figure 15. In the logic design environment, 

it is common to use the term "Rademacher-Walsh transform," even if the implementation 

is based on another equivalent transform such as Hadamard. 

3.2 Other Transforms 
Transforms that are not equivalent to the Hadamard transform, such as the 

autocorrelation transform, can be used to examine other properties of classes of functions. 

The autocorrelation transform essentially compares the function to itself when shifted by 

a certain amount using an XOR. [1] 

Transforms used for Reed-Muller and arithmetic expansion can also be useful, but 

these transforms are not further examined in this work, as they are not relevant to this 

thesis. Details on Reed-Muller and arithmetic expansion can be found in [8]. 
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Not all transforms are discrete transforms. Other transforms such as the Haar [2][8] 

transform or the Fourier series of transforms can be used on non-Boolean and continuous 

data sets. The Fourier transform has both a continuous and discrete version. The discrete 

Fourier transform (DFT) is an approximation of the continuous Fourier transform. The 

DFT has a fast implementation, typically referred to as a fast Fourier transform (FFT), 

which is commonly used in spectral analysis, data compression, partial differential 

equations, and the multiplication of large integers or polynomials, to name a few. 

The DFT and the Walsh transform are directly related, although the “kernel” for a 

DFT is more complex as it must support  n  possible values compared to the 2 possible 

values for a Walsh transform. However, the same FFT approach can be used for the 

rapid evaluation of the Walsh transform. These transforms are mentioned strictly for 

comparison purposes and will not be further discussed in this thesis; details of these 

transforms can be found in [6]. 

3.3 History Of The Problem 

In the mid-1970s, Edwards classified all   2
2

n

 possible functions using the five spectral 

operations for   n ! 5  [7]. It was thought that the signature, as defined in Section 2.4, was 

sufficient to define the classes. In [7], it was reported that 47 spectral classes were 

required to completely classify all   2
2

n

 functions. 

Further investigation in [4] discovered that one of the 47 classes published in [7] did 

not meet the definition of the classification. This offending class was therefore split into 

separate classes with the same signature in order fit the classification definition. This 

discovery also proved that the spectral signature on its own is not enough to classify all 
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  2
2

n

 functions. The number of classes published in [4] increased to 48 classes over the 

original results published in [7] due to this split. 

A complementary approach was taken in [2] using only the first 4 operation types to 

classify the   2
2

n

 functions. The approach used in [2] produced 191 classes, which were 

mapped to the equivalent classes in [4] using the signature of each class. As the classes in 

[2] have fewer criteria than the classes in [4], there are multiple classes defined in [2] for 

each class defined in [4]. 

The general process used in [7], [4], and [2] was to transform a starting function,  f , 

into the spectral domain, 
 
S

f
, and attempt to construct all other functions in the same 

spectral class using the five spectral transformations. In order for this to be computed in a 

reasonable amount of time for   n = 5 , the problem was extensively pruned and optimized. 

Unfortunately, the details of these optimizations are unavailable. 

The goal of this research is to independently verify the results published in [2] using the 

first four spectral operations. As there is a history of errors with this problem, it seems 

necessary to check these results before building on them and attempting to compute the 

classes for larger values of  n . To further contrast the original work, the processing in our 

approach takes place entirely in the functional domain, with the exception of the direct 

comparison to the previous work. 

3.4 Summary 
The techniques used in this research for spectral classification of Boolean functions 

relate to other problems such as the Fourier series and Reed-Muller codes. Additionally, 

there are transforms that can be used in place of the Hadamard transform used in this 

work. 
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These techniques are not new, and spectral classification for   n = 5  has been previously 

been published. The published work, which serves as the basis for this research, 

unfortunately doesn't contain the necessary details needed to expand future work upon, 

and therefore is reproduced in this work. 
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Chapter 

4 - Approaches 
4.0 Introduction 

There are two major approaches that can be used to perform spectral classification of 

Boolean functions. The most obvious approach for spectral classification is function 

manipulation within the spectral domain, as accomplished in [2] and [4]. The more 

counter-intuitive approach is to perform all of the equivalent transformations within the 

functional domain. Both approaches have their advantages and disadvantages, as 

discussed later in this chapter. This research chose the functional domain based on 

several of the advantages of this domain, as well as its uniqueness compared to the work 

in [2] and [4]. As the techniques used for function transformation within the functional 

domain are counter-intuitive, it is worthwhile discussing how to systematically generate all 

possible rules, and ensure that these transforms are applied to all possible functions. 

4.1 The Spectral Domain 
As seen in Chapter 3, previous classification was accomplished within the spectral 

domain. The functions are converted from the functional domain into the spectral 

domain, resulting in a spectrum of   2
n  coefficients. The spectra are transformed using the 

four types of operations. These operations simply interchange or negate the   2
n  spectral 

coefficients resulting in other functions that reside within the same spectral class. 
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One of the biggest advantages of the spectral domain is the global nature of the 

representation. Because of this global nature, it is possible to make observations about 

groups of functions and optimize accordingly. 

The biggest disadvantage of this approach is the potential overhead of converting the 

functions into the spectral domain in the first place. This overhead can be reduced 

depending on the approach used to generate the functions. Additionally, there has been 

work on methods of moving between the functional and spectral domain quickly using a 

fast Hadamard transform [1][2][4]. Unlike the fast Hadamard transform, which is related 

to the fast Fourier transform, alternative methods of quickly transforming functions into 

the spectral domain have been proposed in [9] and [10] using decision diagrams. 

4.2 The Functional Domain 
We chose in this research to focus on the functional domain rather than first moving to 

the spectral domain to apply the transformation operations. In the functional domain, the 

operations are applied directly to the function’s truth table representation. The operations 

change the order of the truth table, and therefore change the order of the bits in the 

output vector (with the exception of Type 3, which simply inverts the output values). All 

of the operations for a given value of  n  can be predetermined and represented as rules. 

These rules are simply templates that represent how the values of one function’s output 

vector are interchanged to become another function. Any functions resulting from the 

transformations applied to the original reside within the same spectral class. 

One of the biggest advantages of working within the functional domain is the 

elimination of conversion overhead when moving to the spectral domain. Although this 

overhead can be greatly reduced, as previously mentioned, it can quickly become 

impractical as the value of  n  increases. 
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Another advantage of working in the functional domain is that current computers are 

very good at low-level Boolean operations. Awareness of the details of the low-level 

execution of the high-level language code allows for improved overall speeds due to 

shorter, more efficient, machine code produced by the compiler. An example code that 

can assist the compiler in producing more efficient machine code can be found in A.3.2.2.  

As only Boolean values need to be stored, they can be stored very compactly within data 

structures such as Integers, and can be operated on with Boolean operations such as 

AND, OR, XOR, and SHIFT. All of these operations can be handled very quickly. [11] 

The biggest disadvantage compared to the spectral domain is the local nature of the 

function. Since a single function cannot indicate anything about other functions, it is 

difficult to optimize. The only optimization that has been made in this work is to pre-filter 

the functions; to group the functions based on the number of true bits in the output vector 

of the function’s truth table. This optimization can be made due to the nature of the Type 

1, 2, and 4 operations where the number of true bits is not changed. As explained in 

Section 4.2.1, this optimization can also cover the Type 3 operations. Note that this 

optimization does not hold for Type 5 operations. 

4.2.1 Pre-Filter 
The functions are categorized according to the number of true minterms of the output 

vector, resulting in   2
n
+1  categories. The trivial cases, 0 and   2

n  only have 1 function 

each, leaving   2
n
!1  non-trivial cases to consider. 

Let function  f  have  k  true minterms so that  f  is in category 
 
C

k
. Under a Type 3 

transformation, a function 
 
f !C

k
 is translated into 

 
!f "C

!k
 where   !k = 2

n
" k . 
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Theorem 

If 
  
f
1
!C

k
1

 and 
  
f

2
!C

k
2

, 
  
k

1
! k

2
, 

  
k

1
,k

2
! 2

n"1 , then 
  
f
1
 and 

  
f

2
 are in different spectral 

classes. 

Proof 

In order to establish the result, it is necessary to prove that if 
  
f
1
!C

k
1

, then 
  
f
1
 cannot 

be transformed into some function 
  
f

2
, 

  
f

2
!C

k
2

, 
  
k

1
! k

2
, 

  
k

1
,k

2
! 2

n"1  by any of the four 

spectral transformations. 

Consider each of the four possible transformations: 

• Type 1: Clearly a permutation of the input variables cannot change the number 

of true minterms in the output vector. 

• Type 2: Clearly a negation of an input variable cannot change the number of 

true minterms in the output vector. 

• Type 3: The inverse of a function takes the number of true minterms outside the 

range considered. 

• Type 4: The XOR of input variables is a more complex rearrangement of the 

input set; however, any rearrangement of the input set does not change the 

cardinality of the output vector. 

 !  

The number of functions in each of these   2
n  categories, 

 
C

k
, for an  n  variable function 

can also be calculated using the binomial coefficient, 
 

m

r

!

"#
$

%&
, where  m  is   2

n  and  r  is the 

number of true minterms in that category. 
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The number of categories is reduced to 
  

1

2
(2n )  because functions with  k  and   2

n
! k  true 

minterms are combined into the same category as they are in the same spectral class 

because of the Type 3 transformation. Since the functions with  k  and   2
n
! k  true bits are 

combined into the same category, then: 

 

  

C
k
=

2
n

k

!

"#
$

%&
+

2
n

2
n ' k

!

"#
$

%&
 where k ( 2

n'1

C
k
=

2
n

k

!

"#
$

%&
 where k = 2

n'1

 (4.1) 

The example in Table 5, for   n = 3  includes the trivial case where   k = 0 . 

 k   Functions 

0, 8 
 

8

0

!

"#
$

%&
+

8

8

!

"#
$

%&
 2 

1, 7 
 

8

1

!

"#
$

%&
+

8

7

!

"#
$

%&
 16 

2, 6 
 

8

2

!

"#
$

%&
+

8

6

!

"#
$

%&
 56 

3, 5 
 

8

3

!

"#
$

%&
+

8

5

!

"#
$

%&
 112 

4 
 

8

4

!

"#
$

%&
 70 

 
  2

2
n

 256 
Table 5 – Number of Functions for n = 3 

If one considers only the first   2
2

n
!1  functions, such as the implementation in Appendix 

A.3.1, the number of functions is also reduced to half for each category. 

4.2.2 Operations 
As previously defined, all of the functions within a spectral class can be realized from 

any one function and a combination of the specified four types of operations. The 
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approach developed for this thesis is to create a list of rules (as defined in Section 2.6) for 

each type of the spectral operation. For each type of operation, a list of every possible 

outcome is created. The rules simply describe how the output bits from the current 

function are remapped to create a new function within the same spectral class. 

4.2.2.1 Type 1: Permutation Of Input Variables 
The Type 1 operation involves permuting the input variables of the function. It is 

possible to permute  n  input variables in   n!  possible ways resulting in   n!  rules, including 

the original function. 

 Rules  Input Variables 
          x2 x1 x0 
0 a b c d e f g h  x2 x1 x0 
1 a c b d e g f h  x2 x0 x1 
2 a b e f c d g h  x1 x2 x0 
3 a c e g b d f h  x0 x2 x1 
4 a e b f c g d h  x1 x0 x2 
5 a e c g b f d h  x0 x1 x2 

Table 6 – Type 1 Rules for n = 3 

For   n = 3 , there are 6 Type 1 rules, as seen in Table 6. Recall that the Latin characters 

represent values of the individual bits in the output vector.  

4.2.2.2 Type 2: Negation Of Input Variables 
The Type 2 operation involves negating the input variables of the function. It is 

possible to negate  n  input variables in   2
n  possible ways resulting in   2

n  rules, including 

the original function. 

 Rules  Input Variables 
          x2 x1 x0 
0 a b c d e f g h  x2 x1 x0 
1 b a d c f e h g  x2 x1 ¬x0 
2 c d a b g h e f  x2 ¬x1 x0 
3 d c b a h g f e  x2 ¬x1 ¬x0 
4 e f g h a b c d  ¬x2 x1 x0 
5 f e h g b a d c  ¬x2 x1 ¬x0 
6 g h e f c d a b  ¬x2 ¬x1 x0 
7 h g f e d c b a  ¬x2 ¬x1 ¬x0 

Table 7 – Type 2 Rules for n = 3 
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Only the negation of the input variables is considered on the original ordering of the 

variables. For   n = 3 , there are 8 Type 2 rules, as seen in Table 7. 

4.2.2.3 Type 3: Negation Of Output 
The Type 3 operation involves negating the output vector of the function. There are 2 

possible functions that can be realized based on this type of operation. The first function 

is the original unaltered function, while the second possible function is where the output 

bits of the original function are inverted. Based on the narrow definition of “rule” used in 

this research, a rule for Type 3 operation does not exist since there is no interchange of 

output bits. 

0 a b c d e f g h 

1 a ⊕ 1 b ⊕ 1 c ⊕ 1 d ⊕ 1 e ⊕ 1 f ⊕ 1 g ⊕ 1 h ⊕ 1 
Table 8 – Type 3 transformations for n = 3 

The two Type 3 operations for   n = 3  are listed in Table 8. 

4.2.2.4 Type 4: Variable Replacement With XOR 
The Type 4 operation involves replacing an input variable of a circuit with an XOR 

pre-filter such as the example in Figure 16. In the example, variable 
  
x

2
 in Figure 16a is 

replaced with the resulting value of 
  
x

2
! x

0
, as seen in Figure 16b. 

  

x
0

x
1

x
2

 
x
0

x
1

x
2

 

a)     b) 

Figure 16 – a) Original function b) Function a with x2 replaced with x2 ⊕ x0 
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The variable replacement in this operation is limited, requiring that the original input 

variable, that is to be replaced, still be present in the final circuit. In other words, 
  
x

2
 in 

Figure 16a may be replaced with 
  
x

2
! x

0
, but not with 

  
x

1
! x

0
, as 

  
x

2
 is no longer part of 

the replacement. If the circuit is considered in the form of a matrix, where each row 

represents a variable, and the column indicates if the variable is included in the pre-filter 

replacement, circuits in Figure 16 would be represented by the matrices in Figure 17. In 

matrix form, each combination must have true bits on the diagonal. 
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1

x
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1
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#
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%
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 a)    b) 
Figure 17 – True bits on the diagonal 

 

A complete list of Type 4 operations must include all valid combinations of input 

variables with all valid pre-filter combinations. To produce this list, a list of all possible 

combinations of input variables, including both valid and invalid replacements, must be 

created. Within this list of all combinations the invalid combinations must be identified 

and removed leaving us with a list of all valid replacement input combinations. The 

technique used to removed invalid combinations is discussed later in this chapter. 

To create the initial list of possible input replacements, a table of all possible 

replacements for a given variable is generated, as seen in Table 9. Each row of Table 9 

contains a list of possible replacements for that particular input variable. Choosing one 

item from each row in Table 10 creates one possible Type 4 operation. This is repeated 

until all possible combinations have been realized. The list will contain   (2
n!1)n  items. 
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Table 9 – Type 4 input variable lookup table for n = 4 

 
Recall this is only a list of potential Type 4 operations, as some of these combinations are 

in fact invalid. To separate the valid operations from the invalid combinations, a linear 

independence check is done on the vectors of each input combinations (the rows of the 

matrix in Figure 17). If a combination is found to be linearly independent, it is added to 

the list of valid Type 4 operations. 
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Table 10 – All possible combinations of input variables from lookup table in Table 9 

 
With a complete list of valid input variable replacements for Type 4 operations, each row 

can be used to generate the Type 4 rules using the method in Section 2.3.3.5. For   n = 3 , 

there are 34 Type 4 rules, as seen in Table 11. Only the XOR replacement of the input 

variables is considered on the original ordering of the variables. 

4.2.2.5 Applying The Rules 
Simply applying each of the rules for each rule type to a starting function will not 

achieve the desired result of producing all possible functions in a spectral class. The lists of 

rule only indicate the possible outcomes for that specific rule type, not combinations of all 
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possible operations. In other words, applying all of the Type 1 rules to a function will only 

produce the functions resulting from combinations of permutations rather than 

combinations of any type of operation. 

To create all possible functions, all of the rules must be considered in combination. In 

other words, one must combine all rules in all of the possible combinations. This concept 

can be best visualized by placing the rules in a tree, where each level of the tree represents 

a type of operation, as seen in Figure 18, where the dotted line represents the 

continuation of the pattern. The details of Figure 18 can be examined in Figure 19. 

 

Type 2

Type 4

Type 3

Type 1

 

Figure 18 – Transformation rule combinations (Details in Figure 19) 

 

Each result of the Type 1 rules must be operated on by each of the Type 2 rules. For each 

result of the Type 2 rules, the Type 3 operations must be applied. Finally, for each Type 

3 result, each Type 4 operation must be applied. The leaf nodes of the tree will represent 

all possible functions that can be realized from the original starting function. The first leaf 

node, when considering a post-order traversal, represents the starting function: in other 

words, unmodified. 
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 Rules  Input Variables 
          x2 x1 x0 
0 a b c d e f g h  x2 x1 x0 
1 a b c d f e h g  x2 x1 x2 ⊕ x0 
2 a b d c e h h g  x2 x1 x1 ⊕ x0 
3 a b d c f e g h  x2 x1 x2 ⊕ x1 ⊕ x0 
4 a b c d g h e f  x2 x2 ⊕ x1 x0 
5 a b c d h g f e  x2 x2 ⊕ x1 x2 ⊕ x0 
6 a b d c h g e f  x2 x2 ⊕ x1 x1 ⊕ x0 
7 a b d c g h f e  x2 x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 
8 a d c b e h g f  x2 x1 ⊕ x0 x0 
9 a d c b h e f g  x2 x1 ⊕ x0 x2 ⊕ x0 
10 a d c b g f e h  x2 x2 ⊕ x1 ⊕ x0 x0 
11 a d c b f g h e  x2 x2 ⊕ x1 ⊕ x0 x2 ⊕ x0 
12 a b g h e f c d  x2 ⊕ x1 x1 x0 
13 a b h g f e c d  x2 ⊕ x1 x1 x2 ⊕ x0 
14 a b h g e f d c  x2 ⊕ x1 x1 x1 ⊕ x0 
15 a b g h f e d c  x2 ⊕ x1 x1 x2 ⊕ x1 ⊕ x0 
16 a h g b e d c f  x2 ⊕ x1 x1 ⊕ x0 x0 
17 a h g b d e f c  x2 ⊕ x1 x1 ⊕ x0 x2 ⊕ x1 ⊕ x0 
18 a g h b f d c e  x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 x2 ⊕ x0 
19 a g h b d f e c  x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 
20 a f c h e b g d  x2 ⊕ x0 x1 x0 
21 a f h c e b d g  x2 ⊕ x0 x1 x1 ⊕ x0 
22 a h c f g b e d  x2 ⊕ x0 x2 ⊕ x1 x0 
23 a h f c g b d e  x2 ⊕ x0 x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 
24 a h c f e d g b  x2 ⊕ x0 x1 ⊕ x0 x0 
25 a h f c d e g b  x2 ⊕ x0 x1 ⊕ x0 x2 ⊕ x1 ⊕ x0 
26 a f c h g d e b  x2 ⊕ x0 x2 ⊕ x1 ⊕ x0 x0 
27 a f h c d g e b  x2 ⊕ x0 x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 
28 a f g d e b c h  x2 ⊕ x1 ⊕ x0 x1 x0 
29 a f d g e b h c  x2 ⊕ x1 ⊕ x0 x1 x1 ⊕ x0 
30 a g f d h b c e  x2 ⊕ x1 ⊕ x0 x2 ⊕ x1 x2 ⊕ x0 
31 a g f d h b c e  x2 ⊕ x1 ⊕ x0 x2 ⊕ x1 x1 ⊕ x0 
32 a d g f e h c b  x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 x0 
33 a d g f h e c b  x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 x2 ⊕ x0 

Table 11 – Type 4 Rules for n = 3 
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Figure 19 - Details of Figure 18 
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4.2.3 The Canonical Function 
The function that we have chosen as the canonical function for each class is the first 

occurrence of that particular class number. The canonical function is defined to be the 

function whose representation is the smallest decimal integer in the class. This choice was 

made because the implementation used for the results published in this thesis encounters 

the functions in ascending order from Function 0 to   2
2

n

. 

In section 2.2, we noted that the decimal integer represents the output vector of the 

function’s truth table where the bit of the zero row is the most significant bit, and the bit 

of the   2
n th row is the least significant. Due to this representation, the canonical function 

is the function that has its true bits concentrated towards the right hand side of the 

integer, or the   2
n th row of the truth table. 

There do not appear to be any observations that can be made about the class based on 

the canonical function as it is in the functional domain.  As previously stated, the 

functional domain can only give a “local view” of the function [1]. 

This representation is chosen because it is the simplest way to retrieve results based on 

the implementation. This may not be the best representation for the entire class, but 

because of the local view of the functional domain, it is not clear whether there is enough 

information to determine if any one function can best represent an entire class. 

4.3 Summary 
In order to spectrally classify Boolean functions, the functions must be either 

transformed and manipulated in the spectral domain, or in the less conventional 

functional domain. Previous work focused on the spectral domain, which is the most 

obvious approach for classifying functions spectrally. 
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This research focuses on working in the functional domain, which seems counter-

intuitive if the functions are to be classified based on properties of the spectral domain. A 

systematic approach is proposed for generating all possible transforms and how to apply 

them to all possible functions, ensuring that all realizations are considered. 
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Chapter 
5 - Results And Analysis 

5.0 Introduction 
In [2] it was stated that there are 191 spectral classes to represent all functions for 

  n = 5 . The work resulting in this thesis, however, indicates that several classes may 

inadvertently have been combined and that there are in fact 206 spectral classes needed 

to represent all  2
2

5

functions. As classifying all functions for   n = 5  is a problem that grows 

double-exponentially as the value of  n  increases, this problem must be optimized in order 

to compute a solution, and a computational solution is not easily checked. There is strong 

evidence indicating the results reported in this thesis are correct. 

Careful analysis of the optimizations in this implementation indicates that  5.84 !10
11  

transformations are required to classify all  2
2

5

 functions. Although this is still a lot of 

computation, it is significantly less than the  1.22 !10
19  transformations that must be 

performed when no optimization is added to the problem. 

5.1 The New Results 
The spectral classification of functions for   n ! 5  has been previously computed on 

several occasions. For both   n = 3  and   n = 4 , this research agrees with the previous 

research that the number of classes is 6 and 18 respectively. For   n = 5 , the number of 

classes we generate differs from previous work. The classification of [2] list spectral 

coefficients for 191 classes, while this research finds 206 classes are necessary to represent 
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all  2
2

5

 functions. The functions in Table 12 are the canonical functions for the extra 15 

classes not present within the previous lists. Although the new research identifies 15 

previously unidentified classes, the remaining 191 classes have a 1-to-1 pairing with the 

spectral classes listed in [2]. 

Class 
Number 

Group 
Number 

Function 
Number 

 s0 s1 s2 s3 s4 s5  Summary Of Complete Spectrum 

57 11 202079  10 10 6 10 10 14  1 x14 5 x10 7 x6 19 x2   
76 12 218479  8 8 4 8 8 16  1 x16 8 x8 16 x4 7 x0   
82 12 471895  8 8 12 8 8 12  2 x12 8 x8 14 x4 8 x0   
111 13 1514327  6 10 10 10 10 10  6 x10 10 x6 16 x2     
124 14 472951  4 8 12 8 8 16  1 x16 1 x12 6 x8 15 x4 9 x0 
137 14 1514365  4 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0   
138 14 1515325  4 8 8 12 8 12  2 x12 8 x8 14 x4 8 x0   
160 15 1515327  2 6 10 14 10 14  2 x14 2 x10 10 x6 18 x2   
163 15 1523007  2 6 10 10 10 14  1 x14 5 x10 7 x6 19 x2   
165 15 1523070  2 6 6 6 10 14  1 x14 3 x10 13 x6 15 x2   
170 15 18291671  2 10 10 10 10 10  6 x10 10 x6 16 x2     
190 16 1523581  0 8 8 8 8 16  1 x16 12 x8 19 x0     
191 16 1523582  0 4 8 8 8 16  1 x16 8 x8 16 x4 7 x0   
199 16 18291679  0 8 8 12 12 12  3 x12 6 x8 13 x4 10 x0   
200 16 18291709  0 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0   

Table 12 – Previously unidentified classes for n = 5 

All of the functions in Table 12 have a spectral signature that match classes contained 

within the other 191 classes. Much like the findings in [4], it is likely that the 

optimizations used in the implementation lead to the inadvertent combination of multiple 

classes. 

All previous work [2][4] has taken place in the spectral domain, while this research 

demonstrates that spectral classification is viable in the functional domain. This new 

approach is conceptually similar to how these operations are carried out on hardware 

circuits. If one considers a generic black-box circuit, the operations manipulate the input 

and output of the circuit, and record the changes in the truth table. The implementation 

of this approach manipulates the truth tables of a circuit rather than moving the 

functional representation into the spectral domain, then perform the operations. This 

approach is unique because it proposes generic rules to describe the operations. The rules 

approach models these input and output manipulations at the truth table level as a 

generic description of the operation that is valid for all functions for a specified value of 
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 n . A method is also proposed for combining the rule sets for all operations considered so 

that ensures that all   2
2

n

 functions are considered. These rules must be recalculated for 

each unique value of  n , but the algorithm is the same for all values. 

This thesis also proposes that algorithm for applying all combinations of all operations 

should not be optimized to ensure that all   2
2

n

 functions are considered. The alternative 

optimization that proposed is to prune the data set to reduce the overall work needed to 

compute the spectral classes. As is discussed later in this chapter, pruning the data set 

provides the most substantial reduction in overall work needed for this problem. 

5.2 The Difficulties Of n ≥ 5 
When comparing this work to previous work [2][4], there is no discrepancy for the 

number of classes for   n < 5 . So what makes calculating and analysing for   n > 4  so 

difficult? 

The number of total functions grows double exponentially while the number of 

transformations that must be applied to these functions also grows very quickly. This 

means that while calculating for   n ! 4  can be accomplished quite easily,   n = 5  is still a 

very large problem and prohibitively time consuming to compute in an unoptimized 

brute force approach. 

One of the problems with optimizing to calculate the number of classes for  2
2

5

 

functions is that since there are too many functions for a brute force approach, it is 

possible for one of the optimizations to lead to an error in the number of classes. The 

large number of functions also means it is impossible to check each of the results for 

correctness. 



 

 

49 

Using the same optimizations to calculate the classes for   n ! 4  can help indicate if there 

are errors in the optimizations, but it is not absolute proof. As seen when comparing this 

research to [2] and [4], the number of classes only disagree when   n > 4 . There are a few 

factors that may indicate why this might be. 

It seems as though the coefficients “behave” differently for   n > 4 . As the value of  n  

increases, there are more ways to combine the truth values of each function. It is possible 

that that not all combinations of the four operation types are needed to compute all of the 

classes for   n ! 4 . At one time, it was thought that the “signature”, which consists of the 

zero and first order coefficients plus a count of the coefficient magnitudes, was unique to 

a class and that classification could be done in this way. For   n ! 4 , these signatures are 

unique, but once   n = 5  is considered, the signature for each class is no longer unique. 

It is possible that the spectral classes for   n < 5  are in fact special cases and it is not 

possible to observe any patterns without knowing the classes for   n > 5 . Once spectral 

classes for   n > 5  are calculated, it may be possible that there are different patterns for 

even and odd values of  n . Unfortunately, until the spectral class structure for higher 

values of  n  are computed, the answers to these questions will remain unknown. 

The list of spectral classes listed in [2] and [4] notes that previous work has determined 

that Hurst class 45 should in fact be split into two different classes, and that the defined 

signature is not enough to differentiate the functions. All of the new functions in Table 12 

share signatures with previously defined spectral classes. 

The biggest difficulty in comparing current work to past work is the lack of a complete 

set of previous test results. Although a summary of each canonical function has been listed 

in [2], it is impossible to determine the exact canonical function based on this 

information. Due to the age of the original research, much of the raw data has also been 
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lost. Much of the comparison between current work and previous work is accomplished 

by comparing the results in [2] with some intermediate raw data listed in section B.2. 

Additionally, some assumptions have to be made when comparing current results to the 

list in [2] as there are times when it is impossible to differentiate between classes that 

contain the same signature. 

Source code, or a list of optimizations to the original work is also not available. Without 

knowing what approach was used, or how the problem set was reduced, it is difficult to 

determine exactly why there is a discrepancy between results. 

5.3 Evidence 
Although we were unable to check each individual function to confirm they are in the 

appropriate spectral class, a number of approaches were used to instil confidence in these 

results. This seems necessary given the discrepancies with the previous research, and the 

inability to directly verify the results of the previous work. 

Any of the individual tests, described in the following sections, are not enough in 

themselves to indicate likely correctness. Collectively these tests show that it is less likely 

that the results are incorrect, as it would take many compounded errors and coincidences 

to have incorrect data, yet pass all of these tests. If this work is to be used as the basis for 

future work, it is important that the confidence in these results is as high as possible. In 

addition to increasing the confidence in these results, these tests provide insight into the 

optimizations, and the avenues for future work. 

5.3.1 Compared Functions 
Each canonical function was converted to the spectral domain and the signatures were 

compared to the signatures in [2]. As there is no complete spectral listing for the classes in 

[2], it was not possible to know the exact function we were comparing against. It is, 
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however, possible to compare the magnitude counts between the lists. It turns out that 

there is a 1-to-1 match between the 191 classes in the list in [2] and 191 of the classes of 

this research. In this research, there are an additional 15 classes that share magnitude 

counts, possibly indicating classes that have previously been inadvertently combined. 

5.3.2 Number Of Coefficients Per Class And Group 
The approach used in this work to generate the spectral classes uses a pre-filter step that 

separates the functions into groups based on the number of true bits in the output vector, 

as described in Section 4.2.1. As stated in that section, it is also possible to calculate the 

number of functions in each such group. 

A count for the number of functions within each class has been generated, and the 

numbers for the functions that reside in each pre-filter group are added up. The sum of 

the function within each group is equal to the calculated (and expected) number. The 

implementation only considers the first   2
2

n
!1  functions; therefore the number of functions 

per group, and in total, is exactly half. 

 
Pre-filter Group Class Number Number of Functions Group Sum 

1 0 1 1 
2 1 8 8 
3 2 28 28 
4 3 56 56 
5 4 7  
 5 28 35 

=  128 128 

Table 13 – Number of functions per class and group for n = 3 

 
For   n = 3 , there are a total of 128 total functions in 5 pre-filter groups, as seen in Table 

13. 
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Pre-filter Group Class Number Number of Functions Group Sum 
1 0 1 1 
2 1 16 16 
3 2 120 120 
4 3 560 560 
5 4 140  
 5 1,680 1,820 

6 6 1,680  
 7 2,688 4,368 

7 8 840  
 9 6,720  
 10 448 8,008 

8 11 240  
 12 6,720  
 13 4,480 11,440 

9 14 15  
 15 960  
 16 420  
 17 5,040 6,435 

=  32,768 32,768 

Table 14 – Number of functions per class and group for n = 4 

 
Much like   n = 3 , the total number of functions for   n = 4  is as calculated. There are 

32,768 functions in 9 pre-filter groups for   n = 4  as seen in Table 14. 

 
Pre-filter 
Groups 

Class 
Number 

Number of 
Functions Group Sum  Pre-filter 

Groups 
Class 

Number 
Number of 
Functions Group Sum 

1 0 1 1    103 19,998,720  
2 1 32 32    104 6,666,240  
3 2 496 496    105 79,994,880  
4 3 4,960 4,960    106 277,760  
5 4 1,240     107 9,999,360  

  5 34,720 35,960    108 6,666,240  
6 6 34,720     109 6,666,240  

  7 166,656 201,376    110 19,998,720  
7 8 17,360     111 53,329,920 143,775,520 

  9 416,640   15 112 7,440  
  10 27,776     113 555,520  
  11 444,416 906,192    114 208,320  

8 12 4,960     115 4,999,680  
  13 416,640     116 833,280  
  14 277,760     117 833,280  
  15 2,222,080     118 6,666,240  
  16 444,416 3,365,856    119 833,280  

9 17 620     120 4,999,680  
  18 119,040     121 26,664,960  
  19 52,080     122 19,998,720  
  20 624,960     123 39,997,440  
  21 3,333,120     124 26,664,960  
  22 4,444,160     125 26,664,960  
  23 277,760     126 6,666,240  
  24 1,666,560 10,518,300    127 2,222,080  

10 25 14,880     128 138,880  
  26 416,640     129 4,999,680  
  27 277,760     130 2,499,840  
  28 952,320     131 1,666,560  
  29 833,280     132 19,998,720  
  30 9,999,360     133 9,999,360  
  31 6,666,240     134 3,333,120  
  32 6,666,240     135 9,999,360  
  33 2,222,080 28,048,800    136 79,994,880  

11 34 52,080     137 39,997,440  
  35 416,640     138 79,994,880  
  36 27,776     139 6,666,240  
  37 119,040     140 39,997,440  
  38 6,666,240     141 3,333,120 471,435,600 
  39 4,444,160   16 142 992  
  40 83,328     143 119,040  
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Pre-filter 
Groups 

Class 
Number 

Number of 
Functions Group Sum  Pre-filter 

Groups 
Class 

Number 
Number of 
Functions Group Sum 

  41 4,999,680     144 833,280  
  42 1,666,560     145 3,333,120  
  43 19,998,720     146 138,880  
  44 2,222,080     147 6,666,240  
  45 19,998,720     148 2,499,840  
  46 317,440     149 4,999,680  
  47 833,280     150 39,997,440  
  48 2,666,496 64,512,240    151 2,222,080  

12 49 104,160     152 6,666,240  
  50 166,656     153 6,666,240  
  51 833,280     154 2,499,840  
  52 6,666,240     155 9,999,360  
  53 444,416     156 6,666,240  
  54 1,666,560     157 6,666,240  
  55 9,999,360     158 6,666,240  
  56 13,332,480     159 39,997,440  
  57 19,998,720     160 39,997,440  
  58 19,998,720     161 79,994,880  
  59 317,440     162 26,664,960  
  60 6,666,240     163 39,997,440  
  61 9,999,360     164 79,994,880  
  62 31,997,952     165 19,998,720  
  63 166,656     166 6,666,240  
  64 6,666,240 129,024,480    167 53,329,920  

13 65 8,680     168 444,416  
  66 104,160     169 19,998,720  
  67 1,666,560     170 31,997,952  
  68 2,666,496     171 19,998,720 565,722,720 
  69 208,320   17 172 31  
  70 1,249,920     173 7,936  
  71 9,999,360     174 29,760  
  72 26,664,960     175 416,640  
  73 3,333,120     176 277,760  
  74 3,333,120     177 4,999,680  
  75 3,333,120     178 4,444,160  
  76 9,999,360     179 4,340  
  77 2,222,080     180 833,280  
  78 4,999,680     181 156,240  
  79 39,997,440     182 624,960  
  80 39,997,440     183 9,999,360  
  81 3,333,120     184 277,760  
  82 39,997,440     185 1,666,560  
  83 26,664,960     186 416,640  
  84 13,888     187 2,499,840  
  85 833,280     188 26,664,960  
  86 2,499,840     189 39,997,440  
  87 2,666,496 225,792,840    190 4,999,680  

14 88 34,720     191 9,999,360  
  89 138,880     192 6,666,240  
  90 1,666,560     193 4,999,680  
  91 2,499,840     194 39,997,440  
  92 3,333,120     195 39,997,440  
  93 13,332,480     196 222,208  
  94 6,666,240     197 9,999,360  
  95 6,666,240     198 3,333,120  
  96 2,222,080     199 26,664,960  
  97 39,997,440     200 39,997,440  
  98 26,664,960     201 15,998,976  
  99 8,888,320     202 833,280  
  100 1,666,560     203 833,280  
  101 19,998,720     204 2,666,496  
  102 9,999,360     205 13,888 300,540,195 
     =   2,147,438,648 2,147,438,648 

Table 15 – Number of functions per class and group for n = 5 

 
The statistics for   n = 5  continues the trend with 2,147,438,648 functions in 17 pre-filter 

groups. The new spectral classes have been bolded in Table 15. 

Examining Table 15, it is evident that all classes contain at least 1 function. The 

previously unidentified classes are classes that encapsulate a large number of functions, 
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and therefore are not classes that are special cases, such as Class 0. Additionally, all of the 

previously unidentified classes have function counts that occur elsewhere in the list, 

indicating that these classes are not mistakes. For example, both Class 195 and Class 200 

have the same number of functions. 

5.3.3 Calculations Of The Number Of Rules 
It is possible to calculate the number of rules required to transform a starting function 

into all other possible functions within that class. The number of rules for   n ! 6  can be 

seen in Table 16. These numbers are valuable for comparing to the number of rules 

generated by this implementation. 

 
  n    n =1    n = 2    n = 3    n = 4    n = 5    n = 6  

Type 1   n!  1 2 6 24 120 720 

Type 2 
  2

n  2 4 8 16 32 64 

Type 4 n/a* 1 3 34 1688 370,752 347,638,784† 
Table 16 – Number of rules for n ≤ 6‡ 

 
For Type 1 transformations,   n!  rules are needed to produce all possible permutation of 

the input variables while Type 2 transformations require   2
n  rules. Type 3 

transformations do not have rules, as defined in Section 2.6, but rather the output of the 

function is simply inverted. Therefore, for all values of  n , the number of transformations 

for Type 3 is simply the constant 2. Type 4 transformations are a bit more complicated as 

there is no known general case to calculate the required number of rules. In general, only 

an upper bound can be specified, as in section 4.2.2.4, which includes invalid 

transformations. 

                                                
* The generalized equation is currently unknown 

† This value has not been confirmed with Maple 

‡ Generally spectral classification is only considered for n ≥ 3 
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Although the number of rules generated by this implementation for Types 1 and 2 are 

confirmed, Type 4 cannot be compared if no general case can be provided. To confirm 

the number of Type 4 rules, an alternate method of generating the rules was created and 

its results compared to the implementation described in Appendix A. Note that all rules 

for the spectral operations include the original non-permuted ordering. 

The alternative method was created using Maple, and all possible combinations of 

input variables for each value of  n , in the same method used for Table 10, were checked 

for linear independence. Each set of input variables was checked using the determinant 

function that is built into Maple. 

 

   

V
0

V
1

!

V
n mod 2

! 0  (5.1) 

If the result of the determinant modulo 2 does not equal 0, then it is considered to be 

linearly independent, and therefore a valid combination of input variables. 

For   n ! 5 , the number of linearly independent sets returned from Maple equalled the 

number of Type 4 rules generated by the implementation in Appendix A. 

In this research, and attempt was made to identify a general case for calculating the 

number of Type 4 rules. This attempt at a generalized closed formula failed, and a search 

for a known sequence of integers was undertaken. The On-Line Encyclopedia Of Integer 

Sequences [6] was searched for an existing sequence which includes 34, 1688, 370752. 

Currently, there are no sequences that include 34, 1688, 370752 in [6]. 
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5.4 Other Analysis 

5.4.1 Complexity 
Spectral classification of Boolean functions is a very large problem and the number of 

transformations that must take place can be described by Expression (5.2): 

  A ! B !C ! D ! E  (5.2) 

where: 

A: The total number of functions to be considered 

B: The number of Type 1 transformations 

C: The number of Type 2 transformations 

D: The number of Type 3 transformations 

E: The upper bounds§ for Type 4 transformations 

In the worst case, this is an upper bound. The implementation of this approach is highly 

dependant on the order of (5.2). Although (5.2) uses the product symbol, this expression is 

not commutative as expected with. In this implementation, for each item saved in A, the 

work associated with parts B, C, D, and E can be completely avoided. This is true for 

every term going from right to left in the expression. In other words, for each item saved 

in B, work in C, D, and E are avoided. For each item saved in C, work in D, and E are 

avoided, and so on. 

Alternatively, consider this expression as a tree where Figure 18 represents the terms B, 

C, D, and E. In this tree, Figure 18 is the child node for each item in A. If there are   2
2

n

 

starting functions with A, it means that Figure 18 must be traversed   2
2

n

 times; once for 

each item of A. The optimization approaches in this section are simply methods to prune 

                                                
§ See section 5.3.3 
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this tree. The further up the tree these optimizations occur, the larger the overall benefit 

to the problem. 

The analysis of (5.2) is first considered in its worst case, and then progressively refined 

as optimizations are introduced in the following sections. Optimizations are most effective 

when earlier components of (5.2) are avoided as subsequent terms are also avoided. 

Therefore, the focus of this research is to reduce the number of earlier terms that need to 

be considered. 

5.4.1.1 Brute Force 
In the worst case, the total number of function transformations that must be performed 

is: 

A:   2
2

n

 

B:   n!  

C:   2
n  

D: 2 

E:   (2
n!1)n  

Therefore, there are   2
2n

! n!! 2n
! 2 ! (2n"1)n  transformations that must be performed to 

spectrally classify all functions of  n  input variables. 

5.4.1.2 Optimization 
The number of starting functions can be reduced by half by observing that the second 

half of all   2
2

n

 is simply a Type 3 operation applied to the first   2
2

n
!1  functions. 
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Recall that the order in which the rules are applied according to expression (5.2) is 

important, and cannot be changed. The optimized implementation of this thesis begin 

with: 

A:   2
2

n
!1  

B:   n!  

C:   2
n  

D: 2 

E:   (2
n!1)n  

Therefore there are   2
2n

!1
" n!" 2n

" 2 " (2n!1)n  transformations in the optimized general 

case for functions with  n  input variables. Since all possible combinations of all four 

spectral transformations are applied to a starting function, all functions that exist within 

the same class as the starting function are also discovered. This observation further 

reduces the number of starting functions from   2
2

n
!1  to the number of spectral classes, 

 
S

n
 

where  n  is the number of input variables. As a result of the second optimization to  A , the 

number of transformations in the optimized general case is now 
  
S

n
! n!! 2n

! 2 ! (2n"1)n . 

For   n = 5 , the total number of transformations is: 

A: 205 

B:  5!  

C:  2
5  

D: 2 

E: 370,752** 

                                                
** As calculated in section 5.3.3 
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Therefore the number of spectral transformations required to classify all functions for 

  n = 5  is  5.84 !10
11  which is significantly smaller than the brute force case that would 

require  1.22 !10
19  spectral transformations. 

5.4.3 Prediction 

It has already been shown that classification of all   2
2

n

 functions is an incredibly difficult 

problem, especially as  n  increases to values above 4. For values of  n  where   n > 5 , it is 

impractical to use current methods of classification; therefore some other method is 

needed to calculate these classes. 

One approach is to use existing data from smaller values of  n  and extrapolating the 

data for the desired value of  n . Using prediction of this nature, it may be possible to 

derive all, or a large portion, of the classes for   n +1  variables based on the data from 

lesser values of  n . This could greatly decrease the amount of processing needed and could 

make classification for   n > 5  feasible. 

When considering the first 128 functions for   n = 3,4,5 , as seen in Table 17, many of 

the classes remain the same as the value of  n  increases. In Table 17, class numbers that 

do not match for a given function, for all of   n = 3,4,5 , have been highlighted. So far, it is 

unclear whether any conclusions can be drawn from this data. 

Another trend is evident when the list is split into sections containing 4 functions. For 

the majority of these groups, the second and third functions from these groups share 

values. There are a couple of exceptions near the middle of the table, which also makes 

the outcome of this approach unclear. 
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Class   Class  Function 

Number n=3 n=4 n=5   
Function 
Number n=3 n=4 n=5  

0 0 0 0   64 1 1 1  
1 1 1 1   65 2 2 2  
2 1 1 1   66 2 2 2  
3 2 2 2   67 3 3 3  
4 1 1 1   68 2 2 2  
5 2 2 2   69 3 3 3  
6 2 2 2   70 3 3 3  
7 3 3 3   71 5 5 5  
8 1 1 1   72 2 2 2  
9 2 2 2   73 3 3 3  
10 2 2 2   74 3 3 3  
11 3 3 3   75 5 5 5  
12 2 2 2   76 3 3 3  
13 3 3 3   77 5 5 5  
14 3 3 3   78 5 5 5  
15 4 4 4   79 3 6 6 X 
16 1 1 1   80 2 2 2  
17 2 2 2   81 3 3 3  
18 2 2 2   82 3 3 3  
19 3 3 3   83 5 5 5  
20 2 2 2   84 3 3 3  
21 3 3 3   85 4 4 4  
22 3 3 3   86 5 5 5  
23 5 5 5   87 3 6 6 X 
24 2 2 2   88 3 3 3  
25 3 3 3   89 5 5 5  
26 3 3 3   90 4 4 4  
27 5 5 5   91 3 6 6 X 
28 3 3 3   92 5 5 5  
29 5 5 5   93 3 6 6 X 
30 5 5 5   94 3 6 6 X 
31 3 6 6 X  95 2 8 8 X 
32 1 1 1   96 2 2 2  
33 2 2 2   97 3 3 3  
34 2 2 2   98 3 3 3  
35 3 3 3   99 5 5 5  
36 2 2 2   100 3 3 3  
37 3 3 3   101 5 5 5  
38 3 3 3   102 4 4 4  
39 5 5 5   103 3 6 6 X 
40 2 2 2   104 3 3 3  
41 3 3 3   105 4 4 4  
42 3 3 3   106 5 5 5  
43 5 5 5   107 3 6 6 X 
44 3 3 3   108 5 5 5  
45 5 5 5   109 3 6 6 X 
46 5 5 5   110 3 6 6 X 
47 3 6 6 X  111 2 8 8 X 
48 2 2 2   112 3 3 3  
49 3 3 3   113 5 5 5  
50 3 3 3   114 5 5 5  
51 4 4 4   115 3 6 6 X 
52 3 3 3   116 5 5 5  
53 5 5 5   117 3 6 6 X 
54 5 5 5   118 3 6 6 X 
55 3 6 6 X  119 2 8 8 X 
56 3 3 3   120 5 5 5  
57 5 5 5   121 3 6 6 X 
58 5 5 5   122 3 6 6 X 
59 3 6 6 X  123 2 8 8 X 
60 4 4 4   124 3 6 6 X 
61 3 6 6 X  125 2 8 8 X 
62 3 6 6 X  126 2 8 8 X 
63 2 8 8 X  127 1 11 12 X 

Table 17 – Comparison between classes for n = 3,4,5 
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5.5 Results Confidence 
The data resulting from the work in this research differs from previously published data 

in [2] and [4]. The obvious question is whether this data can be considered more or less 

reliable than the data it is being compared to. It is still infeasible to verify each class for 

correctness, but there is very strong evidence that the new class structure is correct. 

The approach used in this research considers nearly all of the   2
2

n

 possible functions 

rather than extensively pruning the problem. The pruning applied to the problem, as 

described in Section 5.4.1.2, is fairly straightforward and it is easily provable that the 

optimizations do not allow for unrealized functions. 

Although it is unclear whether or not previous works used the same implementation 

and optimizations for   n < 5 , this implementation is the same, and uses the same 

optimizations for all values of  n . 

The number of classes for   n = 3,4 , as calculated by this implementation, equals the 

known number of classes calculated previously for the same values of  n , but only differs 

once   n = 5 . This weighs favourably towards the method in which the functions are 

realized, as errors in the algorithm might  also be apparent in the lower values of  n . 

In section 5.3.2, statistics on the number of functions per pre-filter group and class are 

examined, and the distribution of functions among the classes and groups appears to be 

reasonable. Section 5.3.1 indicates a 1-to-1 relationship between 191 of the 206 of the 

classes discovered in this research, and 191 of 191 classes indicated in [2]. A reasonable 

explanation is that the implementation in [2] over pruned the problem and combined a 

few classes that should have been separate. 

The number of transformations, or rules, generated by this implementation has also 

been independently checked using a separate implementation, as seen in Section 5.3.3. 
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Although the number of operations, and not the operations themselves, have been 

checked, it is necessary for at least two operations to be incorrect for the list to be 

incorrect, yet poses the same number of operations. For the generated list to be incorrect 

for   n = 5 , it is likely that errors would also occur for   n < 5 . 

Individually, these points do not prove the correctness of the data, but combined they 

make a very strong case for the results achieved in this research. 

5.6 Summary 
This research indicates that there are 15 new spectral classes, not previously identified 

in any work. There is strong evidence that these 15 previously unidentified classes had 

been inadvertently combined with other classes in previous work, but as the number of 

functions for values of  n  increases double-exponentially, the results cannot be checked 

with brute force. 

The optimizations employed in this research significantly reduce the number of 

operations needed to classify all   2
2

n

 functions compared to the unoptimized problem. 
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Chapter 
6 - Conclusion And Future Work 

6.0 Introduction 
As with all research, this work has introduced many questions that are beyond the 

scope of this thesis. Further research will be needed to prove these results, and to classify 

functions with   n > 5  input variables. It is likely that this work will require new 

approaches, as current approaches tend not to scale well. Additional use of technology, 

such as specialized co-processors, or distributed computing, may also be required to 

perform all of the needed calculations. 

6.1 Future Work 
Although the analysis in Chapter 5 instils a high level of confidence in the results 

produced in this research, further work could be done to further improve the confidence 

in these results. Several approaches, which are beyond the scope of this research, could be 

used to further increase confidence, if necessary. The following section describes some of 

these approaches. 

6.1.1 Implementation Analysis 
An independent code review of the implementation in Appendix A could increase the 

confidence in the algorithm. Additionally, a code review could identify logic errors, if they 

exist. 
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Re-implementation of spectral classification in the spectral domain could also increase 

the confidence in the results. A separate implementation would be best served if it was 

independent of this implementation and did not share a code base. 

6.1.2 Theoretical 
As stated in section 5.3.3, the general equation for the number of Type 4 

transformations is currently unknown. To formulate this, the number of linearly 

independent vector sets for all vector sets where the diagonal contain true bits (Figure 17) 

must be determined. This would likely be a large enough problem to constitute its own 

research thesis. 

With current technology it is likely that the algorithm used in this research will not scale 

to classification for   n > 5 , and therefore a new approach is needed. Prediction based on 

lower values of  n  could provide a lower and/or upper bound for the number of classes 

for a given number of input variables. In the best case, prediction could provide an exact 

number of classes. 

Current work to partition the problem for parallelization, pre-filtering, is described in 

section 4.2.1. The pre-filter approach does split the functions into groups, but these 

groups are not small enough to greatly reduce the running time when   n > 5 . Some 

method for increasing the granularity of the pre-filter could make a highly parallel 

implementation feasible. 

6.1.3 Improvements To The Approach 
The biggest enemy to this approach is primary memory usage. To reduce CPU and 

I/O overhead due to swapping, or other class storage schemes, values for all starting 

functions are placed in main memory. In other words, values for   2
2

n
!1  functions must be 
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stored in main memory. For   n ! 5 , this is manageable, but for   n > 5  this will simply not 

be practical for the foreseeable future.  To calculate   n > 5 , some other class storage 

scheme will be needed; likely one that increases processing time. 

Allowing the classification and transformation to be run in parallel could reduce the 

overall running time of extra processing at the classification stage, but at the risk of 

duplicating processing on certain classes. In other words, if a starting function is realized 

in the previous pass, but not yet classified, realization of all functions from that starting 

function will occur, even though its class is already known. 

Implementation of this approach for parallel processing to be run on distributed 

systems could increase the overall throughput of the application. Parallel processing is 

vary favourable for this kind of work because the realization of all functions for a given 

class and starting function does not depend on any external data until the end of the 

processing where it must be merged into the class list. Failing an improvement in 

granularity, a merging scheme is needed that allows multiple sets of realized functions, 

that potentially reside within the same class, to be classified. The problem with a merging 

scheme is that there is wasted work when there is a class collision (in both merging, and 

calculating it all in the first place since one pass is enough to realize all functions in that 

class). 

Finally, implementation of an FPGA accelerated solution would likely yield improved 

real-life results over an entirely software solution assuming I/O bottlenecks can be 

minimized. 
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6.2 Conclusion 
The research for this thesis continues where [2] left off with calculating the spectral 

classes for   n = 5 . The goals for this research comprises of: 

4) Develop a new approach for computing spectral classes, and implement this 

approach. 

5) Independently reproduce and verify the results published in [2], the spectral 

classes for   n = 5 , ensuring that it is a valid basis for future work. This goal is to be 

carried out using the results of goal 1. 

6) Use the knowledge gained in goal 2 to investigate the possibility of computing the 

spectral classes for functions with values of  n  greater than 5. If it is feasible to 

compute the spectral classes for   n > 5 , then provide the classes for as many values 

of  n  as possible. 

This research successfully achieves these goals, which are presented in detail in this thesis. 

A summary of the findings for each of these goals is as follows: 

1) A new approach to computing spectral classes is proposed where the spectral 

operations and classification are performed entirely in the functional domain. 

a. This is significant as the classification with this approach completely avoids 

spectral transformations, except for the analysis and direct comparison 

between the results and previous work. 

b. The concept of Rules is introduced. A model created to represent the 

spectral operations in the functional domain 

c. An optimization approach is proposed where the data set (the starting 

functions) is reduced rather than pruning the algorithm, allowing for 

feasible running times for   n = 5 . 
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2) A discrepancy between the results produced in this thesis, and the list of classes 

published in [2] was found. 

a. A list of 15 new spectral classes with the same signatures as classes found in 

[2] is been tabulated. It appears that this is due to class splitting, much like 

the findings in [4].  

3) With current technology, it is not possible to compute the spectral classes for 

  n > 5  using currently known techniques. Future work on algorithms and 

approaches, and advances in technology are needed before  this will become 

feasible. 
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Appendix 

A - Implementation 
 

A.0 Introduction 
This chapter is intended to provide an introduction to the implementation of the 

application used to produce the classification results for   n = 3,4,5 . Pseudocode is 

provided for the more significant sections of the implementation, along with explanations 

of why the decisions were made and why it works. This section should also help explain 

the full source code provided in Appendix C. 

A.1 Language 
The implementation for this application was accomplished in stages using a prototype 

approach, which was crucial to the choice of the programming language. Originally, the 

goal was to develop an approach to classify all   2
2

n

 functions for   n = 3 . As   n = 3  only 

produces 256 functions, and implementation was not considered for   n > 3 , Java was 

chosen because of its ease of use and vast array of libraries. In this early stage, all of the 

processing was directed at the transformation and classification of the function, and the 

rules were computed by hand. In addition to hand-computed rules, the code was simple 

and many assumptions were hard coded. 

Once successfully accomplishing spectral classification for   n = 3 , the application was 

modified to calculate the classes for   n = 4 . At first, this seemed like a trivial change, but it 

quickly became evident that creating the Type 4 rules for   n = 4  by hand is not practical. 
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Code was written to generate all three rule types. Although some assumptions were made 

in order to save development time initially, scalability was a consideration in the design of 

this class. 

The new rule generation code allowed all   2
2

n

 functions for   n = 4  to be classified 

correctly. In order to calculate   n > 4  it was determined that the code must be re-written 

using an object oriented approach and to be scalable rather than being re-written for 

each value of  n . Using Java’s dynamic structures such as ArrayLists (equivalent to the 

Vector data type in C++) and Maps, the entire application was re-written in a format 

structure similar to final structure described in section A.2, including removing the 

assumptions made by the existing Rule generation. 

At this point, it was determined that Java was simply too slow and had too much 

overhead to finish the calculations in any reasonable amount of time and with the 

resources available. It was decided that the size of the problem for   n = 5  was simply too 

large to be implemented in Java. As an alternative to Java, C++ was determined to be an 

appropriate replacement as it offered similar libraries and capabilities, but also offered 

decreased overhead, increased performance for certain types of calculations, and the 

ability to write at a lower level if needed. 

The entire application was ported over to C++ using similar data types and structures 

as the original Java version. As a result, the C++ version of the code experienced similar 

performance issues as the Java version. Although the C++ version was able to complete 

more of the problem than the Java version in the same amount of time, the amount of 

time it would need to completely classify all  2
2

5

 functions was still not good enough. In 
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fact, the application needed to be highly optimized, as described in section A.3, in order 

to achieve usable running times. 

In the end, the C++ low overhead and ability to program at a low level allowed for a 

more efficient implementation of the algorithms. Additionally, C++’s vast libraries 

allowed for the use of built-in functions that decreased the amount of needed code, and 

therefore reduced the likelihood of errors. 

A.2 Program Structure 
The structure of this application is split into four major classes: Pre-filtering, Rule 

generation, Classification, and Transformation. In addition to the four class types, there is 

a main application file and a library of common tools used by all of the classes. 

The implementation uses a modular approach and the flow of work can be visualized 

by the diagram in Figure 20. 

Prefilter.cpp main.cpp

Rules.cpp Classify.cpp

Start/Stop

1

2

3

4

5

6

9

10

Transform.cpp

7

8  

Figure 20 – Implementation flow 

The first step in the classification process is for main.cpp to setup the environment with 

some simple calculations based on the number of input variables. Next, in step 2 of Figure 

20, main.cpp calls Prefilter.cpp that is designed to separate all of the   2
2

n

 possible 

functions into groups based on the number of true bits within its binary representation. 
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Prefilter.cpp creates   2
n!1  files on the secondary storage device and sends the list of files 

back to main.cpp in step 3. The main.cpp section then sends this list of files to 

Classify.cpp, as seen in step 4. The purpose of Classify.cpp is to do spectral classification 

for all of the functions in the pre-filtered function files. The first step that Classify.cpp 

must do is create a list of rules, or transformations, that must be applied to each function 

in the list, which is accomplished by a call to Rules.cpp in step 5. Rules.cpp compiles a list 

of transformations for Types 1, 2, and 4 (the Type 3 transformation simply inverts all of 

the values and therefore does not need a set of rules) that are returned to Classify.cpp. For 

each function in the pre-filter groups, Classify.cpp sends the function number and set of 

rules to Transform.cpp, as seen in step 7. Transform.cpp applies the rules to function and 

keeps a list of all functions that are generated throughout the transformation process. In 

step 8, this list of generated functions is returned to Classify.cpp to be incorporated into 

the list of classes. Steps 7 and 8 are done once for every single function in the current pre-

filter group. After Classify.cpp has processed a pre-filter group, the functions are written 

to secondary storage with the corresponding class number that was assigned during the 

process. Once all of the pre-filter groups have been processed, control is passed back to 

main.cpp, the classes for 0 true bits are printed to secondary storage (this is a special case 

and no calculations are needed). At this point, main.cpp can clean up any temporary files, 

such as the pre-filter group files, and quit. 

A.2.1 main.cpp 
Main.cpp is the main module of the application and is responsible for setting up the 

environment, such as global variables, and pre-filter temporary file names. First, this 

module calculates the number of functions needed based on  n . Second, the file names for 
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the temporary files are defined, based on the number of functions in each pre-filter group. 

The prefilter module is then called, and this information is passed to the classification 

module. Finally, the main module does housekeeping and prints out Function 0. 

A.2.2 Prefilter Class 
Based on the theorem described in section 4.3.1, Type 1, Type 2 and Type 4 

transformations cannot change the number of true bits (“ones”) in a function. Therefore, 

one can say that if all functions are separated into groups based on the number of true 

bits, a class cannot have functions that exist in more than one of these groups. The only 

other transformation is Type 3, and although it does change the number of true bits, the 

output is a simple inversion. The number of pre-filter groups can be reduced by half by 

grouping the inverted output with the main functions. For example, Functions  a  and  b  

where   a =1110000  and   b =11100011 can be grouped together because  a  has 3 true bits, 

and the inversion of  b  has 3 true bits. 

SET n to the number of input variables 
CREATE prefilter_group_list with 2n-1 items 
 
FOR each prefilter_group_list item 
   CREATE group file with index number as file name 
 
   FOR each function 
      SET number_of_ones to 0 
 
      FOR each bit of the function number 
         IF the bit is true THEN 
            INCREMENT number_of_ones 
         ENDIF 
      ENDFOR 
 
      FOR each prefilter_group_list item index number 
         IF number_of_ones equals the index number THEN 
            WRITE function number to prefilter_group_file 
         ELSEIF number_of_ones equals 2n-index number THEN 
            WRITE function number to prefilter_group_file 
         ENDIF 
      ENDFOR 
 
   ENDFOR 
 
ENDFOR 

Figure 21 – Pseudocode for pre-filter logic 
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In Figure 21, this calculation can be seen as the condition statement in the final FOR 

loop. As the number of true bits is a simple count, the inverse of the count is simply the 

number of true bits subtracted from   2
n . 

A.2.3 Classify Class 

The Classify class is responsible for reading each of the   2
2

n

 function numbers from the 

pre-filtered group files, assigning class numbers, and writing the classes to output files. 

SET class_number_tracker to 0 
SET increment_flag to false 

CREATE classes_array with  2
2
n

 elements 
CREATE final_class_number 
 
FOR each pre-filter file 
   CREATE temp_working array 
 
   FOR each function in the pre-filter file 
      INCREMENT class_number_tracker 
      SET increment_flag to false 
 
      IF this function has not already been found THEN 
         CALL transformation class for this function 
         SET temp_working array to results from transformation call 
         SET increment_flag to true 
         SET final_class_number to class_number_tracker 
 
         FOR each item in temp_working array 
            IF no value THEN 
               CONTINUE 
            ENDIF 
 
            IF classes_array item has existing value THEN 
               SET class_number to existing value 
               SET increment_flag to false 
               ENDFOR 
            ENDIF 
 
         ENDFOR 
 
         FOR each item in temp_working array 
            IF temp_working array item has value THEN 
               SET classes_array item to final_class_number 
            ENDIF 
         ENDFOR 
 
      ENDIF 
       
      IF increment_flag is false THEN 
         DECREMENT class_number_tracker 
      ENDIF 
 
   ENDFOR 
 
   WRITE all found classes to output file 
 
ENDFOR 

Figure 22 – Pseudocode for classification logic 
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An array of   2
2

n

 elements is created to store the list of classes and initialized to an invalid 

class number. For each function number, the number is sent to the transformation class. 

The return value from the transformation class is a list of functions that can be achieved 

from this number by applying all of the Type 1-4 transformations. For each item in this 

list, we check the classes array to see if it has previously been assigned a class number. If 

any of the found functions exist in the classes array with a valid class number, all of new 

functions are marked in the classes array with the found class number. If none of the 

functions find a match in the classes array, the next sequential class number is assigned to 

all of the new functions. 

A.2.4 Rules Class 
The Rules class creates a list rules, or transformations, that are used by the 

transformation class. These rules describe to the transformation class how bits the output 

vectors (the function numbers) must be interchanged in order to create a new function 

number in the same class as the original. Rules for Types 1, 2, and 4 are created and 

passed back to the Classify class. There is no need to create a set of rules for Type 3 

transformations as the output is simply inverted once. 

A.2.4.1 Type 1: Permutation Of Input Variables 
The permutation class makes use of the next_permutation() method built in to the C++ 

STL. This method returns every possible permutation of a supplied array. Based on these 

values, the new output array can be determined by a working copy of the function, the 

original starting function and the iteration of the loop. 
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CREATE original array with n elements 
CREATE t1_rules stack 
 
SET num to 0 
FOR each element in original array 
   SET original array element to num 
   INCREMENT num 
ENDFOR 
 
REPEAT 
   CREATE working_temp_rule stack 
 
   SET outer_loop_value to 0 

   FOR 0 through  2
n
 

      CREATE orig_temp array of size n 
      CREATE new_temp array of size n 
      CALL itobv to convert outer_loop_value to array 
      SET orig_term to value returned by itobv 
 
      SET inner_loop_value to 0 
      FOR 0 through n 
         SET new_term with index of inner_loop_value to orig_temp_ 
                with index of original with index of inner_loop 
         INCREMENT inner_loop_value 
      ENDFOR 
 
      CALL bvtoi to convert new_term back to a binary value 
      SET val to value returned by bvtoi 
      PUSH val to working_temp_rule 
      INCREMENT outer_loop_value 
 
   ENDFOR 
 
   PUSH working_temp_rule to t1_rules 
 
   CALL next_permutation function 
UNTIL no next_permutation value 

Figure 23 – Pseudocode for Type 1 rule generation 

A.2.4.2 Type 2: Negation Of Input Variables 

To create a list of   2
n  Type 2 transformations, the value resulting from an XOR 

between the list index number and each of the truth table entries for the given number of 

variables, as seen in the example for   n = 3  in Figure 24. 

 

  

011!000 = 011" d

011!001 = 010" c

011!010 = 001" b

011!011 = 000" a

011!100 =111" h

011!101 =110" g

011!110 =101" f

011!111 =100" e

 

Figure 24 – Example of array item 4 (011) 
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This XOR calculation is done for each of the   2
n  rules, with the indices  0  through  n  (in 

its binary representation). 

CREATE type_2_rules stack 
SET outer_loop_value to 0 

FOR 0 through  2
n
 

   CREATE working_temp_rule stack 
   SET inner_loop_value to 0 

   FOR 0 through  2
n
 

      SET val to inner_loop_value XOR outer_loop_value 
      PUSH val to working_temp_rule 
      INCREMENT inner_loop_value 
   ENDFOR 
 
   PUSH working_temp_rule to type_2_rules 
 
   INCREMENT outer_loop_value 
ENDFOR 

Figure 25 – Pseudocode for Type 2 rule generation 

A.2.4.3 Type 4: Variable Replacement With XOR 
Conceptually, the Type 4 rule generation method creates a list of all possible functions 

that can be created with the given number of input variables. The method then traverses 

through the list, checking whether the combination is linearly independent. If a function 

is found to be linearly independent, and therefore a valid function, it is added to the list of 

known valid functions. Based on this list of valid functions, the resulting output vectors of 

these functions are added to the Type 4 rule list. 

The implementation of the Type 4 rule generation is split into two main methods. First, 

a list of all possible input variable combinations must be created. Secondly, based on 

these input combinations, the validity of the function must be determined, and an output 

vector for the function must be created and added to Type 4 rule list. 

A.2.4.3.1 Variable Input Combination List 

The Type 4 transformation involves replacing an individual variable with itself XORed 

with one or more of the other input variables, as outlined in Section 2.3.2.2. To 

implement this so that all possible combinations are considered, it is easiest to create a 
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table of all possible substitutions for a given input variable. Each row in Table 18 

represents all possible substitutions for the variable listed in the first column. To consider 

all possible combinations of all possible input variables, a list must be compiled of all 

combinations from the table that contains one selection from each row. 
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Table 18 – Logical representation of lookup table for n = 4 

The logical representation, as shown in Table 18, can be converted into a binary 

representation by creating a binary number of length  n , and using each bit to represent a 

different input variable. In our representation, the least significant bit represents the first 

variable. For example, 
  
x

3
! x

2
! x

1
 would be equivalent to 0111. 

   2
n!1   

  
x

3
 1 3 5 7 9 11 13 15 

  
x

2
 2 3 6 7 10 11 14 15 

  
x

1
 4 5 6 7 12 13 14 15 

  
x

0
 8 9 10 11 12 13 14 15 

 n  

Table 19 – Decimal representation of lookup table for n = 4 

The binary representation shown in the parentheses in Table 18 can instead be 

represented by the decimal integer which is beneficial in implementation. This table can 

be easily generated programmatically. 
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x

0
  

  
x

1
  

  
x

2
  

  
x

3
  

  
x

4
 

1 00001 +20 2 00010 +21 4 00100 +22 8 01000 +23 16 10000 
3 00011 → 3 00011 +21 5 00101 +22 9 01001 +23 17 10001 
5 00101 +20 6 00110 → 6 00110 +22 10 01010 +23 18 10010 
7 00111 → 7 00111 → 7 00111 +22 11 01011 +23 19 10011 
9 01001 +20 10 01010 +21 12 01100 → 12 01100 +23 20 10100 

11 01011 → 11 01011 +21 13 01101 → 13 01101 +23 21 10101 
13 01101 +20 14 01110 → 14 01110 → 14 01110 +23 22 10110 
15 01111 → 15 01111 → 15 01111 → 15 01111 +23 23 10111 
17 10001 +20 18 10010 +21 20 10100 +22 24 11000 → 24 11000 
19 10011 → 19 10011 +21 21 10101 +22 25 11001 → 25 11001 
21 10101 +20 22 10110 → 22 10110 +22 26 11010 → 26 11010 
23 10111 → 23 10111 → 23 10111 +22 27 11011 → 27 11011 
25 11001 +20 26 11010 +21 28 11100 → 28 11100 → 28 11100 
27 11011 → 27 11011 +21 29 11101 → 29 11101 → 29 11101 
29 11101 +20 30 11110 → 30 11110 → 30 11110 → 30 11110 
31 11111 → 31 11111 → 31 11111 → 31 11111 → 31 11111 

Table 20 – Lookup table generation for n = 5 

As seen in Table 20, the lookup table, like the one in Table 19, can be generated by 

first filling the first row with the odd integers from 0 to   2
n . The remaining   n !1  rows are 

filled in one at a time, using the previous rows as a reference. Using a “skip” value of   2
k  

where  k  goes from 0 to   n ! 2 , the table can be programmatically generated by adding 

the skip value to the value of the item in the same column, but the row above. This occurs 

the same number of times as the value of the skip value, and then the same number of 

columns are skipped. This process continues until all column elements are filled. For each 

successive row,  k  of the skip value is increased. Table 20 illustrates this pattern 

graphically. The pseudocode in Figure 26 demonstrates how this lookup table can be 

created at runtime for any value of  n , rather than hard coding it for each value 

considered. 
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CREATE arr 2D array of width  2
n-1

 and height n 
 
INITIALIZE arr values to 0 
 
SET skip_value to 0 
 
SET loop_value to 0 
FOR 0 through width of arr 
   SET arr value of index width of 0 and index height of loop_value to_ 
          loop_value + 1 + skip_value 
   INCREMENT skip_value 
   INCREMENT loop_value 
ENDFOR 
 
SET loop_value to 1 
FOR 1 through height of arr 

   SET skip to  2
loop value-1

 
   SET inner_loop_value to 0 
   FOR for 0 through width of arr 
      FOR 0 through skip_value 
         SET arr value of index width loop_value and height of_ 
                inner_loop_value to value of arr with index width_ 
                   of (loop_value - 1) and height of inner_loop_ 
                      + skip_value 
         INCREMENT inner_loop_value 
      ENDFOR 
       
      FOR 0 through skip_value 
         SET arr value of index width loop_value and height of_ 
                inner_loop_value to value of arr with index width_ 
                   of (loop_value - 1) and height of inner_loop_ 
         INCREMENT inner_loop_value 
      ENDFOR 
   ENDFOR 
   INCREMENT loop_value 
ENDFOR 

Figure 26 – Pseudocode for lookup table creation 

 

Once the lookup table has been generated, a list of all possible combinations, using one 

item from each row, must be compiled. 
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CREATE type4_rules stack 
CREATE temp array with 3 elements 

CREATE check array with  2
3
- 1  elements 

 
SET check element 1 to the result of: 
       (0 * temp index 1) OR (0 * temp index 2) OR (1 * temp index 3) 
 
SET check element 2 to the result of: 
       (0 * temp index 1) OR (1 * temp index 2) OR (0 * temp index 3) 
 
SET check element 3 to the result of: 
       (0 * temp index 1) OR (1 * temp index 2) OR (1 * temp index 3) 
 
SET check element 4 to the result of: 
       (1 * temp index 1) OR (0 * temp index 2) OR (0 * temp index 3) 
 
SET check element 5 to the result of: 
       (1 * temp index 1) OR (0 * temp index 2) OR (1 * temp index 3) 
 
SET check element 6 to the result of: 
       (1 * temp index 1) OR (1 * temp index 2) OR (0 * temp index 3) 
 
SET check element 7 to the result of: 
       (1 * temp index 1) OR (1 * temp index 2) OR (1 * temp index 3) 
 
IF any element in check is not equal to 0 THEN 
   PUSH temp to type4_rules 
ENDIF 

Figure 27 – Pseudocode for linear independence check for n = 3 

 

The basic logic for the linear independence check of an input variable combination is 

the literal implementation of equation (2.18), as seen in Figure 27. 

// First run 
for (int m = 1; m < vecLen; m++) { 
    a[m] = tmp[0] * ((m >> (numRow-1)) & 1); 
} 
 
// For all the consecutive calculations 
for (int m = 1; m < vecLen; m++) { 
    for (int k = 1; k < numRow; k++) { 
        a[m] ^= tmp[k] * ((m >> (numRow-k-1)) & 1); 
    } 
} 

Figure 28 – C++ code to check linear independence for any value of n 

 

This specific example can be implemented to encompass any value of  n , as seen in 

Figure 28. Although the nested loops and extensive use of bitwise operators obscure the 

intention of this code, it is still essentially a literal implementation of equation (2.18). 
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A.2.3.4.2 Type 4 Rule Generation 

This method converts the valid XORed variable combinations provided by the 

type4List() method from a binary representation into rule format as expected by the 

transformation class. The core of this method is the line of code displayed in Figure 29, 

which is taken from the source code in section Appendix C.3.2. 

               tmp[m] = tmp[m] ^ (((t4List[i][m] >> j) & 1) * ((k >> j) & 1)); 
Figure 29 – Innermost for loop logic 

Although the bitwise operations and nested loops obscure this code, it simply isolates 

the individual bits of each column item in the t4List array for a given row, and 

multiplying that bit by the isolated bit for that iteration of the loop. 

tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((0 >> 0) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((1 >> 0) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((2 >> 0) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((3 >> 0) & 1)); 

 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((0 >> 1) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((1 >> 1) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((2 >> 1) & 1)); 
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((3 >> 1) & 1)); 

 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((0 >> 0) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((1 >> 0) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((2 >> 0) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((3 >> 0) & 1)); 

 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((0 >> 1) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((1 >> 1) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((2 >> 1) & 1)); 
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((3 >> 1) & 1)); 

Figure 30 – Innermost loop logic for n = 2 (unfolded loops) 

By undoing some of the nested loops for an example of   n = 2 , as in Figure 30, the code 

becomes clearer. For each row in the t4List array, 16 assignment operations take place on 

tmp (8 to each element of the array). Each line simply takes the current value of tmp, does 

a bitwise OR with the result of the isolated variable multiplied by the equivalent bit 

within the integers 0 through   2
n . 
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CREATE t4_rules stack 
CREATE initial_order stack 
 
SET loop_count to 0 

FOR 0 through  2
n
 

   PUSH loop_count to initial_order 
   INCREMENT loop_count 
ENDFOR 
 
PUSH initial_order to t4_rules 
 
CALL genTypeFourList 
SET t4_list to returned 2D (width of n) array from genTypeFourList 
 
SET loop_i to 0 
FOR each item in t4_list 
   CREATE temp_working_rule stack 
   SET loop_k to 0 

   FOR 0 through  2
n
 

      CREATE temp stack 
      SET loop_m to 0 
      FOR 0 through n 
         PUSH 0 to temp 
         SET loop_j to 0 
         FOR 0 through n 
            SET shift_item to t4_list with index loop_i and loop_m SHIFT_ 
                   right by loop_j all AND by 1 
            SET or_item to shift_item multiplied by loop_k SHIFT right_ 
                   by loop_j all AND by 1 
            SET temp with index of loop_m to the value in temp with index_ 
                   of loop_m OR by or_item 
            INCREMENT loop_j 
         ENDFOR 
         INCREMENT loop_m 
      ENDFOR 
      CALL bvtoi to convert temp to binary format 
      SET t_result to bvtoi returned value 
      PUSH to temp_working_rule 
      INCREMENT loop_k 
   ENDFOR 
   PUSH temp_working_rule to t4_rules 
   INCREMENT loop_i 
ENDFOR 

Figure 31 – Pseudocode for rule generation 

The pseudocode provided in Figure 31 places the code in Figure 29 in context of the 

nested for loops. 

A.2.5 Transform Class 
The Transform class is responsible for producing a list of all possible functions that can 

be generated when all four transformation types are applied to a single starting function. 

The main transformation method may be called up to   2
2

n

 times by the classification class: 

once for each of the   2
2

n

 starting functions. 
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METHOD transform 

   CREATE classes_array with  2
2
n

 elements 
   CALL type_1 method with function_number 
   RETURN classes_array to caller 
 
ENDMETHOD 
 
METHOD type_1 
   FOR each item in type1_rules 
      CALL swapBits method with function_number and rule 
      SET num to value returned by swapBits 
      CALL type_2 method with num 
   ENDFOR 
ENDMETHOD 
 
METHOD type_2 
   FOR each item in type2_rules 
      CALL swapBits method with function_number and rule 
      SET num to value returned by swapBits 
      CALL type_3 method with num 
   ENDFOR 
ENDMETHOD 
 
METHOD type_3 

      SET mask to  2
n
 true bits 

      CALL type_3 method with function_number 
      SET num to function_number XOR mask 
      CALL type_3 method with num 
ENDMETHOD 
 
METHOD type_4 
   FOR each item in type4_rules 
      CALL swapBits method with function_number and rule 

      IF value returned by swapBits is smaller than  2
2
n

 THEN 
         SET class_array element with index of function_number to true 
      ENDIF 
ENDMETHOD 
 
METHOD swapBits 

   CREATE original array with  2
n
 bits 

   FOR all bits of function_number 
      SET original element to value of that bit 
   ENDFOR 
    
   SET new_function_number to 0; 
    
   FOR all elements of order array 
      SET new_function_number to new_function_number shifted left by 1_ 
             place and OR with value of original with the index of the_ 
                rule order with the index of the current element 
   ENDFOR 
ENDMETHOD 

Figure 32 – Pseudocode for transformation logic 

For each function, the transformation begins by calling the Type 1 classification 

method. The Type 1 method traverses this list of rules, applying them to the function and 

storing the new functions in a working list. This working list is globally available to all of 

the transformation methods the transformation class. For each item in a rule list, the 
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current transformation method calls the method below it. In other words, if the rules of 

all types were to be stored in a tree, where each level represented a transformation type, 

as in Figure 18, the order in which the rule would be processed would be the same as if 

one were to perform a pre-order traversal. Once the final rule is processed, the list of 

functions accumulated throughout the traversal is passed back to the classification class. 

A.3 Optimizations 

A.3.1 Reducing The Problem 
As previously discussed, Type 3 transformations simply invert the values in the output 

vector, as seen in Figure 33. On every iteration of the classification process, all four 

transformation types are applied to each function. Since Type 3 is applied to every 

function, by the time half of the functions have been processed, all possible functions have 

been discovered and classified. 

 

 

00!11

01!10

10!01

11!00

 

Figure 33 – All possible functions for n = 1 

If all functions have been discovered by the time   2
2

n
!1  functions have been processed, 

processing the remaining   2
2

n
!1  is redundant. Based on this observation, the 

implementation only considers the first   2
2

n
!1  functions. Without considering any other 

optimizations, this could reduce the running time to half of the original. 

Using this same observation, it becomes obvious that storing values above   2
2

n
!1  is also 

redundant. Reducing memory requirements to half at   n = 5  is significant as it allowed us 

to fit the application into the primary storage; something that had not been possible with 
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the available equipment. The ability to store all working data in primary storage 

significantly reduces the overhead that would be needed for a system that relies on 

caching to a secondary storage device. 

The optimization, used to reduce the amount of calculations, is to check if the current 

starting function has previously been discovered. If this function has previously been 

discovered, applying the transformations will simply return other functions that have 

already been discovered. As this is redundant processing, the expensive transformation 

processing can be eliminated. 

A.3.2 Programming Techniques 
This application needed to be highly optimized in order to run on the available 

resources, and also complete in a reasonable amount of time. The following sections 

describe techniques used to optimized portions of code identified to be bottlenecks when 

using runtime profilers. 

A.3.2.1 Dynamic Vs. Fixed Data Structures 
As discussed in Appendix A.1, a significant portion of the implementation was focused 

around reducing the overhead associated with programming language. The original C++ 

version of this application made extensive use of the C++ STL’s dynamic data structures. 

The advantage of these structures is that they provide the developer easy to use tools, 

while also reducing the likelihood of errors. On the other hand, the disadvantages of these 

structures are based on their ease of use. For example, a STL Vector data structure can 

be used with any data type, and contains bounds checking to avoid errors due to incorrect 

access. These extra checks and layers of abstraction add a small amount of overhead to 

every call to that structure. For an average application, the number of calls to these 

structures are not that great, and the overhead does adversely affect the application. The 
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benefits to the developer greatly outweigh the small change in performance. 

Unfortunately for certain applications, such as this implementation, the number of calls to 

these structures are in the billions or trillions rather than hundreds of thousands. In the 

case of this application for   n = 5 , the temporary working array in the Transform class is 

modified approximately 2.8 Billion times for each starting function. If no optimizations 

are applied to reduce the dataset, the application could modify this array  1.2 !10
19  times 

when considering all  2
2

5

 functions, and this only considers one data structure in one class. 

The overhead of a STL Vector, no matter how slight, adds up to be very significant over 

the entire running time. 

As the dynamic data structures were not suitable for this application, fixed size data 

structures, such as the traditional array, had to be examined. The advantage of an array 

is that there is no level of abstraction that causes overhead for accessing or modifying the 

data contents. The biggest disadvantage of using an array is that the sizes must be pre-

determined, or hard coded, which eliminates the scalability of the code. Additionally, the 

program stack is not large enough to contain an array large enough to store  2
2

5

, or even 

 2
2

5
!1  functions. Fortunately, unlike Java, C++ allows direct allocation and manipulation 

of heap memory using the new operator (or the C-style malloc operator). Additionally, the 

new operator can allocate memory at runtime, so the scalability of the code is not lost. 

This memory can still be thought of, and accessed, like a regular array using the square 

brackets (Example: a[4]). Since all reads and writes to this dynamically created array are 

directly to memory, and not through accessor methods, there is no additional overhead. 

The dynamically allocated arrays were used any time it would be accessed many times, 

size needed to be determined at run time, or items were simply too large to fit in the 
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stack. There are cases where Vectors and regular arrays are used, but only scalability and 

performance were not adversely affected. 

A.3.2.2 Bitwise Operators 
Modern microprocessors rely on a certain small set of primitive operations to 

accomplish all of the calculations. Typically, a high level language is used and a compiler 

reduces these commands to combinations of the primitive operations. If an application is 

written considering "low-level execution of [the] high-level program," it is possible to 

create code that will run faster, or more memory efficient than what the compiler can 

derive from generic high-level code [11]. Modern compilers are well written and highly 

optimized, so it’s not likely that for a random command, a person could write better code, 

but if an approach is taken to take advantage of these low level structures, it is possible to 

come up with a faster, or more memory efficient solution. For example, the output vector 

of a function’s truth table consists of   2
n  true or false values. One approach would be to 

create an array of   2
n  Boolean values, and store each of the results in one of the elements. 

In C++, the Boolean data type is an 8-bit value. For   n = 4 , this array would take 128 bits 

of memory to store a single function. If one considers bitwise operators, this same 

function can be represented using a short integer, which takes only 16 bits. The result is 

that to simply store these functions, 8 times less memory is needed, which become 

significant when considering the size of the problem. 

The previous example illustrated how being conscious of the low level operation of the 

processor allowed for more efficient memory usage, a second example can illustrate how 

bitwise operators can result in faster calculations. The individual bits can be easily 

accessed and using combinations of shift (>> or <<), AND (&), OR (|), and XOR (^) 
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operations. Consider the case where we want to check if any of the bits in the output 

vector are set to true. In Figure 34, a traditional approach using an array to store the 

output vector is used. In order to do this, each bit of the output vector would have to be 

checked. 

int fn[4] = {0, 0, 1, 1} 
int result = 0; 
for (int i = 0; i < 4; i++) { 
   if (fn[i] = 1) { 
      result = 1; 
   } 
} 
 
if (result) { 
   // There are bits set to true 
} else { 
   // There are no bits set to true 
} 

Figure 34 – Check if any bits are set to true 

If a bit was found to be true, we would set a flag, and then after checking each bit, we 

would test to see if the flag had been set. If we consider the same problem using bitwise 

operators, like in Figure 35, we can do an XOR between a mask of all true bits, and the 

binary representation of the function. If the integer happens to be anything other than 0, 

we know that one of the bits is true. 

int fn = 3;   // Binary: 0011 
int mask = 15; // Binary: 1111 
if (fn ^ mask) { 
   // There are bits set to true 
} else { 
   // There are no bits set to true 
} 

Figure 35 – Check if any bits are true using bitwise operators 

Neither of these examples would have been achieved through compiler optimization 

since the problem is conceptually different. If one thinks in terms of a lower level of 

operation, bitwise operators can be a powerful tool in code optimization. 

A.3.2.3 Picking Data Types That Fit 
In order to calculate for   n = 5 , it was important to use the smallest data types possible 

to be able to squeeze the application into the available memory. One way to accomplish 
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this is by the method mentioned in A.3.2.2, which represents functions as ints and 

longs rather than storing the values in an array or similar structure. Another example is 

the temporary list of classes maintained by the Transform class. Rather than storing an 

array of   2
2

n
!1  ints, which are 32-bits in length, an array of   2

2
n
!1  bool were used 

instead, which only take 8 bits of memory each. 

A.3.2.4 Memory Vs. Clock Cycles 
In software development, we must often balance how we use resources. On one hand, 

we can have a very fast algorithm, but it uses a lot of memory. On the other hand, we can 

have an algorithm that computes the same thing, but is very memory efficient. This 

memory efficiency usually comes at the cost of running speed. 

This application at   n > 4  is both CPU and memory intensive, which makes it very 

difficult to choose which side to sacrifice. Based on the resources available, it was 

determined that with the reduced problem set, it is possible to keep large arrays with 

values for each function in memory in the methods that are used frequently. This allows 

for the minimum amount of CPU overhead in sections of the code that are being run the 

most. 

A.3.2.5 Object-Oriented Programming 
Object-oriented programming is very good for creating scalable, modular, and reusable 

code. In the case of this implementation, if an improved algorithm for swapping the 

output vector bits is created, it is very simple to change without affecting the rest of the 

system. Unfortunately the overhead associated with this level of abstraction, much like the 

abstract data types in the STL that were previously discussed, can have a detrimental 

effect on the performance of the application. 
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To counter the effects of abstraction overhead, it was necessary to break some of the 

object-oriented conventions. Many of these choices included setting arrays and variables 

as globals rather than passing them as parameters. This allows the structures to be 

computed and allocated once, rather than when needed. 

It was also necessary to pay careful attention to how data is passed, when needed. If a 

structure, such as a Vector, is passed by value rather than by reference, the overhead of 

the copy on each call of the method can add up very quickly. Every method in the 

commonly called methods (especially in the Transform class) were carefully examined to 

ensure all calls were pass-by-reference, and the effects were confirmed using a profiler. 

A.3.2.6 Dividing The Problem 
The pre-filtering that takes place in the application splits starting functions into self-

contained groups. It has previously been shown that functions within these groups cannot 

be transformed into functions that are part of the other groups. This allows the groups to 

be classified separately. 

Because of this property, it is possible that the groups could be processed in parallel, 

whether it is on multiple machines, or multiple threads. Although the pre-filtering has 

been implemented, multi-threading has not since for each thread, it would require an 

additional copy of the classes and temporary working arrays to be stored in memory, 

which would not have fit in the resources available. It is also possible to run this 

application on two separate machines, but we did not have two machines with sufficient 

primary storage for this application. 
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A.4 Problems 
There are several issues that become apparent when trying to implement spectral 

classification of functions, as this is a huge problem, and one that grows double 

exponentially. 

Due to this size, many compromises must be made during implementation. Critical 

decisions were made when choosing an appropriate programming language with 

sufficient abilities yet low overall overhead. Many times implementation required that 

good coding practices be ignored in order to achieve acceptable performance results. 

Although it is possible to make some headway with programming techniques, the 

problem is still very large, and the problem size must be reduced. Some techniques 

involve making assumptions based on the overall properties of the problem, while other 

approaches involve dividing the problem into smaller portions. Unfortunately, the pre-

filtering technique, although simple and relatively low overhead, is not scalable. As  n  

increases to values over 5, these smaller portions are still far too large to be usable. 

Scalability is not realistic with this approach as it relies heavily on keeping the entire 

problem in primary memory to reduce performance hits due to system overhead. The 

size of the problem becomes so great, that future work will likely have to rely on other 

approaches such as prediction. 

A.5 Summary 
The implementation used for this research calculates the spectral classes for   n = 3,4,5  

without needing any changes in optimizations or algorithms, therefore we are assured 

that for all considered values of  n , the same approach is used. 

The approaches used for this implementation mirror the concepts described in this 

thesis. There are a few specific cases where the implementation uses a slightly different 
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approach, such as rolling two steps into a single step, in order to decrease memory usage, 

and running time; conceptually, though, the approaches are the same. 

Spectral classification of Boolean functions is a difficult problem to implement due to 

the double exponential growth of the problem. Implementations that work well for   n ! 5  

are not necessarily appropriate for   n > 5 . Optimizations that make   n = 5  feasible do not 

necessarily help for larger values of  n ; in fact, the approaches used in this implementation 

to make   n = 5  run fast enough to be feasible would make it impossible to calculate   n ! 6  

with current technology. 

The implementation was originally intended to be completely object oriented, but due 

to the size of the problem, optimizations that break standard object oriented approaches 

are needed. Although this implementation is not entirely object oriented, the modular 

intent of the implementation is maintained. This implementation could scale higher, 

given enough resources, but without some technological breakthroughs in hardware, it is 

not feasible. 

Future work on implementation will likely require new approaches storing, indexing, 

and processing the data in order to make   n > 5  possible, as well as further optimizations 

to the algorithm and approach. 
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Appendix 
B - Classes 

 

B.0 Introduction 
The results of this research have yielded different results than previous work in [2]. 

Much of the work in this research involves comparing the work in [2] to the current 

results to identify where the discrepancies occur. As the class list in [2] is not complete 

and only lists the spectral signature, rather than the entire spectrum of the canonical 

function, some reconstruction of working data from archives is needed. The result of this 

work is a complete list of spectral classes produced by this research, and a reconstructed 

list of the data produced in [2]. 

B.1 Complete Spectral Class List For n = 5 
To make this spectral class list as comparable as possible to the list in [2], the same 

presentation format of the first order spectral coefficients, and a summary of the complete 

spectrum are used. Additionally, the decimal representation of the function, which is 

listed in the “Function Number” column of Table 21, has been added in order to identify 

the exact canonical function used for this classification. This function number can also be 

used to calculate the entire spectrum of the function if desired. In addition to the function 

number, a class number, as described in section 4.2.3, and a pre-filter group number have 

been added. 
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Finally, the equivalent canonical function number from [2] has been added under the 

heading of “Book,” which uses a different approach to ordering and assigning canonical 

numbers. As there are more classes listed in this list than there are in [2], a dash ( - ) has 

been placed in the column rather than a number for certain functions. 

Class 
Number 

Group 
Number†† 

Function 
Number   s0 s1 s2 s3 s4 s5   Summary Of Complete Spectrum    Book‡‡ 

0 0 0  32 0 0 0 0 0  1 x32 31 x0        2 
                       
1 1 1  30 2 2 2 2 2  1 x30 31 x2        4 
                       
2 2 3  28 0 4 4 4 4  1 x28 15 x4 16 x0      7 
                       
3 3 7  26 2 2 6 6 6  1 x26 7 x6 24 x2      10 
                       
4 4 15  24 0 0 8 8 8  1 x24 7 x8 24 x0      17 
5 4 23  24 4 4 4 8 8  1 x24 3 x8 16 x4 12 x0    14 
                       
6 5 31  22 2 2 6 10 10  1 x22 3 x10 4 x6 24 x2    21 
7 5 279  22 6 6 6 6 10  1 x22 1 x10 10 x6 20 x2    25 
                       
8 6 63  20 0 4 4 12 12  1 x20 3 x12 12 x4 16 x0    29 
9 6 287  20 4 4 8 8 12  1 x20 1 x12 4 x8 14 x4 12 x0  35 
10 6 854  20 4 4 4 4 12  1 x20 1 x12 30 x4      87 
11 6 65815  20 8 8 8 8 8  1 x20 6 x8 15 x4 10 x0    39 
                       
12 7 127  18 2 2 2 14 14  1 x18 3 x14 28 x2      42 
13 7 319  18 2 6 6 10 14  1 x18 1 x14 2 x10 6 x6 22 x2  48 
14 7 855  18 6 6 6 6 14  1 x18 1 x14 12 x6 18 x2    91 
15 7 65823  18 6 6 10 10 10  1 x18 3 x10 9 x6 19 x2    54 
16 7 66390  18 6 6 6 6 10  1 x18 1 x10 15 x6 15 x2    95 
                       
17 8 255  16 0 0 0 16 16  4 x16 28 x0        56 
18 8 383  16 4 4 4 12 16  2 x16 2 x12 14 x4 14 x0    60 
19 8 831  16 0 8 8 8 16  2 x16 8 x8 22 x0      64 
20 8 863  16 4 4 8 8 16  2 x16 4 x8 16 x4 10 x0    100 
21 8 65855  16 4 8 8 12 12  1 x16 2 x12 4 x8 14 x4 11 x0  72 
22 8 66391  16 8 8 8 8 12  1 x16 1 x12 6 x8 15 x4 9 x0  105 
23 8 197461  16 8 8 8 8 8  1 x16 12 x8 19 x0      108 
24 8 197462  16 4 8 8 8 8  1 x16 8 x8 16 x4 7 x0    112 
                       
25 9 511  14 2 2 2 14 18  1 x18 3 x14 28 x2      41 
26 9 895  14 2 6 6 10 18  1 x18 1 x14 2 x10 6 x6 22 x2  47 
27 9 1911  14 6 6 6 6 18  1 x18 1 x14 12 x6 18 x2    90 
28 9 65919  14 6 6 6 14 14  3 x14 1 x10 7 x6 21 x2    76 
29 9 66367  14 2 10 10 10 14  2 x14 4 x10 4 x6 22 x2    81 
30 9 66399  14 6 6 10 10 14  2 x14 2 x10 10 x6 18 x2    118 
31 9 197463  14 6 10 10 10 10  1 x14 5 x10 7 x6 19 x2    124 
32 9 197991  14 6 6 10 10 10  1 x14 3 x10 13 x6 15 x2    130 
33 9 202070  14 10 6 6 6 10  1 x14 3 x10 13 x6 15 x2    134 
                       
34 10 1023  12 0 4 4 12 20  1 x20 3 x12 12 x4 16 x0    28 
35 10 1919  12 4 4 8 8 20  1 x20 1 x12 4 x8 14 x4 12 x0  34 
36 10 6014  12 4 4 4 4 20  1 x20 1 x12 30 x4      86 
37 10 66047  12 4 4 4 16 16  2 x16 2 x12 14 x4 14 x0    59 
38 10 66431  12 4 8 8 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  71 
39 10 67447  12 8 8 8 8 16  1 x16 1 x12 6 x8 15 x4 9 x0  104 
40 10 197439  12 0 12 12 12 12  6 x12 10 x4 16 x0      84 
41 10 197471  12 4 8 12 12 12  4 x12 4 x8 12 x4 12 x0    140 
42 10 197999  12 4 4 12 12 12  4 x12 28 x4        143 
43 10 198007  12 8 8 8 12 12  3 x12 6 x8 13 x4 10 x0    152 
44 10 202071  12 12 8 8 8 12  4 x12 4 x8 12 x4 12 x0    147 
45 10 202075  12 8 8 8 8 12  2 x12 8 x8 14 x4 8 x0    158 
46 10 218454  12 12 4 4 4 12  4 x12 28 x4        154 
47 10 218458  12 8 4 4 4 12  2 x12 8 x8 14 x4 8 x0    163 
48 10 463702  12 8 8 8 8 8  1 x12 10 x8 15 x4 6 x0    167 

                                                
†† Pre-filter group 

‡‡ The equivalent class number in [2] 
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49 11 2047  10 2 2 6 10 22  1 x22 3 x10 4 x6 24 x2    20 
50 11 6015  10 6 6 6 6 22  1 x22 1 x10 10 x6 20 x2    24 
51 11 66559  10 2 6 6 14 18  1 x18 1 x14 2 x10 6 x6 22 x2  46 
52 11 67455  10 6 6 10 10 18  1 x18 3 x10 9 x6 19 x2    53 
53 11 71550  10 6 6 6 6 18  1 x18 1 x10 15 x6 15 x2    94 
54 11 197503  10 2 10 10 14 14  2 x14 4 x10 4 x6 22 x2    80 
55 11 198015  10 6 6 10 14 14  2 x14 2 x10 10 x6 18 x2    117 
56 11 198519  10 6 10 10 10 14  1 x14 5 x10 7 x6 19 x2    123 
57 11 202079  10 10 6 10 10 14  1 x14 5 x10 7 x6 19 x2    - 
58 11 202095  10 6 6 10 10 14  1 x14 3 x10 13 x6 15 x2    129 
59 11 218455  10 14 6 6 6 14  3 x14 1 x10 7 x6 21 x2    75 
60 11 218459  10 10 6 6 6 14  1 x14 3 x10 13 x6 15 x2    133 
61 11 463677  10 6 10 10 10 10  6 x10 10 x6 16 x2      170 
62 11 463703  10 10 10 10 10 10  6 x10 10 x6 16 x2      175 
63 11 471868  10 2 10 6 6 10  6 x10 10 x6 16 x2      178 
64 11 471894  10 6 10 6 6 10  4 x10 16 x6 12 x2      182 
                       
65 12 4095  8 0 0 8 8 24  1 x24 7 x8 24 x0      16 
66 12 6143  8 4 4 4 8 24  1 x24 3 x8 16 x4 12 x0    13 
67 12 67583  8 4 4 8 12 20  1 x20 1 x12 4 x8 14 x4 12 x0  33 
68 12 71551  8 8 8 8 8 20  1 x20 6 x8 15 x4 10 x0    38 
69 12 197631  8 0 8 8 16 16  2 x16 8 x8 22 x0      63 
70 12 198143  8 4 4 8 16 16  2 x16 4 x8 16 x4 10 x0    99 
71 12 198527  8 4 8 12 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  69 
72 12 202111  8 8 8 8 12 16  1 x16 1 x12 6 x8 15 x4 9 x0  103 
73 12 202621  8 8 8 8 8 16  1 x16 12 x8 19 x0      107 
74 12 202622  8 4 8 8 8 16  1 x16 8 x8 16 x4 7 x0    111 
75 12 218463  8 12 4 8 8 16  1 x16 2 x12 4 x8 14 x4 11 x0  70 
76 12 218479  8 8 4 8 8 16  1 x16 8 x8 16 x4 7 x0    - 
77 12 460663  8 8 8 12 12 12  4 x12 4 x8 12 x4 12 x0    139 
78 12 463679  8 4 12 12 12 12  4 x12 4 x8 12 x4 12 x0    146 
79 12 463711  8 8 8 12 12 12  3 x12 6 x8 13 x4 10 x0    151 
80 12 463741  8 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    157 
81 12 471869  8 4 12 8 8 12  2 x12 8 x8 14 x4 8 x0    162 
82 12 471895  8 8 12 8 8 12  2 x12 8 x8 14 x4 8 x0    - 
83 12 472423  8 8 8 8 8 12  1 x12 10 x8 15 x4 6 x0    166 
84 12 996156  8 0 8 8 8 8  16 x8 16 x0        184 
85 12 996181  8 8 8 8 8 8  16 x8 16 x0        186 
86 12 996182  8 4 8 8 8 8  12 x8 16 x4 4 x0      189 
87 12 1514326  8 8 8 8 8 8  16 x8 16 x0        191 
                       
88 13 8191  6 2 2 6 6 26  1 x26 7 x6 24 x2      9 
89 13 69631  6 2 2 10 10 22  1 x22 3 x10 4 x6 24 x2    19 
90 13 71679  6 6 6 6 10 22  1 x22 1 x10 10 x6 20 x2    22 
91 13 198655  6 2 6 10 14 18  1 x18 1 x14 2 x10 6 x6 22 x2  45 
92 13 202239  6 6 6 6 14 18  1 x18 1 x14 12 x6 18 x2    89 
93 13 202623  6 6 10 10 10 18  1 x18 3 x10 9 x6 19 x2    51 
94 13 218495  6 10 6 6 10 18  1 x18 3 x10 9 x6 19 x2    52 
95 13 218751  6 6 6 6 10 18  1 x18 1 x10 15 x6 15 x2    93 
96 13 460671  6 6 6 14 14 14  3 x14 1 x10 7 x6 21 x2    74 
97 13 463743  6 6 10 10 14 14  2 x14 2 x10 10 x6 18 x2    115 
98 13 464759  6 10 10 10 10 14  1 x14 5 x10 7 x6 19 x2    121 
99 13 464766  6 6 6 10 10 14  1 x14 3 x10 13 x6 15 x2    127 
100 13 471871  6 2 14 10 10 14  2 x14 4 x10 4 x6 22 x2    79 
101 13 471903  6 6 10 10 10 14  1 x14 5 x10 7 x6 19 x2    122 
102 13 471927  6 6 14 6 10 14  2 x14 2 x10 10 x6 18 x2    116 
103 13 471933  6 6 10 6 10 14  1 x14 3 x10 13 x6 15 x2    128 
104 13 472431  6 6 6 10 10 14  1 x14 3 x10 13 x6 15 x2    132 
105 13 472439  6 10 10 6 10 14  1 x14 3 x10 13 x6 15 x2    169 
106 13 996157  6 2 10 10 10 10  6 x10 10 x6 16 x2      173 
107 13 996183  6 6 10 10 10 10  6 x10 10 x6 16 x2      174 
108 13 996711  6 6 6 10 10 10  4 x10 16 x6 12 x2      180 
109 13 1513277  6 10 10 10 10 10  6 x10 10 x6 16 x2      177 
110 13 1514301  6 6 10 10 10 10  4 x10 16 x6 12 x2      181 
111 13 1514327  6 10 10 10 10 10  6 x10 10 x6 16 x2      - 
                       
112 14 16383  4 0 4 4 4 28  1 x28 15 x4 16 x0      6 
113 14 73727  4 4 4 8 8 24  1 x24 3 x8 16 x4 12 x0    12 
114 14 200703  4 0 4 12 12 20  1 x20 3 x12 12 x4 16 x0    27 
115 14 202751  4 4 8 8 12 20  1 x20 1 x12 4 x8 14 x4 12 x0  31 
116 14 218623  4 8 4 4 12 20  1 x20 1 x12 4 x8 14 x4 12 x0  32 
117 14 218879  4 4 4 4 12 20  1 x20 1 x12 30 x4      85 
118 14 219007  4 8 8 8 8 20  1 x20 6 x8 15 x4 10 x0    37 
119 14 460799  4 4 4 12 16 16  2 x16 2 x12 14 x4 14 x0    58 
120 14 463871  4 4 8 8 16 16  2 x16 4 x8 16 x4 10 x0    98 
121 14 464767  4 8 8 12 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  67 
122 14 471935  4 4 12 8 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  68 
123 14 472447  4 8 8 8 12 16  1 x16 1 x12 6 x8 15 x4 9 x0  102 
124 14 472951  4 8 12 8 8 16  1 x16 1 x12 6 x8 15 x4 9 x0  - 
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125 14 472957  4 8 8 8 8 16  1 x16 8 x8 16 x4 7 x0    110 
126 14 989047  4 8 8 12 12 12  4 x12 4 x8 12 x4 12 x0    137 
127 14 989054  4 4 4 12 12 12  4 x12 28 x4        141 
128 14 996159  4 0 12 12 12 12  6 x12 10 x4 16 x0      83 
129 14 996191  4 4 8 12 12 12  4 x12 4 x8 12 x4 12 x0    138 
130 14 996221  4 4 8 8 12 12  2 x12 8 x8 14 x4 8 x0    156 
131 14 996719  4 4 4 12 12 12  4 x12 28 x4        142 
132 14 996727  4 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    160 
133 14 1513279  4 8 12 12 12 12  4 x12 4 x8 12 x4 12 x0    145 
134 14 1513342  4 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    161 
135 14 1514303  4 4 12 12 12 12  4 x12 28 x4        153 
136 14 1514335  4 8 8 12 12 12  3 x12 6 x8 13 x4 10 x0    149 
137 14 1514365  4 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    - 
138 14 1515325  4 8 8 12 8 12  2 x12 8 x8 14 x4 8 x0    - 
139 14 1523005  4 8 8 8 8 12  3 x12 6 x8 13 x4 10 x0    150 
140 14 1523035  4 8 8 8 8 12  1 x12 10 x8 15 x4 6 x0    165 
141 14 18290620  4 8 8 8 8 8  12 x8 16 x4 4 x0      188 
                       
142 15 32767  2 2 2 2 2 30  1 x30 31 x2        3 
143 15 81919  2 2 6 6 6 26  1 x26 7 x6 24 x2      8 
144 15 204799  2 2 6 10 10 22  1 x22 3 x10 4 x6 24 x2    18 
145 15 219135  2 6 6 6 10 22  1 x22 1 x10 10 x6 20 x2    23 
146 15 462847  2 2 2 14 14 18  1 x18 3 x14 28 x2      40 
147 15 464895  2 6 6 10 14 18  1 x18 1 x14 2 x10 6 x6 22 x2  43 
148 15 472063  2 2 10 6 14 18  1 x18 1 x14 2 x10 6 x6 22 x2  44 
149 15 472575  2 6 6 6 14 18  1 x18 1 x14 12 x6 18 x2    88 
150 15 472959  2 6 10 10 10 18  1 x18 3 x10 9 x6 19 x2    49 
151 15 489335  2 10 10 6 6 18  1 x18 3 x10 9 x6 19 x2    50 
152 15 489339  2 6 10 6 6 18  1 x18 1 x10 15 x6 15 x2    92 
153 15 989055  2 6 6 14 14 14  3 x14 1 x10 7 x6 21 x2    73 
154 15 996223  2 2 10 10 14 14  2 x14 4 x10 4 x6 22 x2    77 
155 15 996735  2 6 6 10 14 14  2 x14 2 x10 10 x6 18 x2    113 
156 15 997239  2 6 10 10 10 14  1 x14 5 x10 7 x6 19 x2    119 
157 15 997245  2 6 6 10 10 14  1 x14 3 x10 13 x6 15 x2    125 
158 15 1513343  2 10 10 10 14 14  2 x14 4 x10 4 x6 22 x2    78 
159 15 1514367  2 6 10 10 14 14  2 x14 2 x10 10 x6 18 x2    114 
160 15 1515327  2 6 10 14 10 14  2 x14 2 x10 10 x6 18 x2    - 
161 15 1515383  2 10 10 10 10 14  1 x14 5 x10 7 x6 19 x2    120 
162 15 1515390  2 6 6 10 10 14  1 x14 3 x10 13 x6 15 x2    126 
163 15 1523007  2 6 10 10 10 14  1 x14 5 x10 7 x6 19 x2    - 
164 15 1523039  2 10 6 10 10 14  1 x14 3 x10 13 x6 15 x2    131 
165 15 1523070  2 6 6 6 10 14  1 x14 3 x10 13 x6 15 x2    - 
166 15 2045757  2 6 10 10 10 10  6 x10 10 x6 16 x2      168 
167 15 2045783  2 10 10 10 10 10  6 x10 10 x6 16 x2      171 
168 15 18290558  2 10 10 10 10 10  6 x10 10 x6 16 x2      172 
169 15 18290621  2 10 10 10 10 10  6 x10 10 x6 16 x2      176 
170 15 18291671  2 10 10 10 10 10  6 x10 10 x6 16 x2      - 
171 15 18291708  2 6 6 6 10 10  4 x10 16 x6 12 x2      179 
                       
172 16 65535  0 0 0 0 0 32  1 x32 31 x0        1 
173 16 98303  0 4 4 4 4 28  1 x28 15 x4 16 x0      5 
174 16 212991  0 0 8 8 8 24  1 x24 7 x8 24 x0      15 
175 16 221183  0 4 4 8 8 24  1 x24 3 x8 16 x4 12 x0    11 
176 16 466943  0 4 4 12 12 20  1 x20 3 x12 12 x4 16 x0    26 
177 16 473087  0 4 8 8 12 20  1 x20 1 x12 4 x8 14 x4 12 x0  30 
178 16 489343  0 8 8 8 8 20  1 x20 6 x8 15 x4 10 x0    36 
179 16 987135  0 0 0 16 16 16  4 x16 28 x0        55 
180 16 989183  0 4 4 12 16 16  2 x16 2 x12 14 x4 14 x0    57 
181 16 996351  0 0 8 8 16 16  2 x16 8 x8 22 x0      61 
182 16 996863  0 4 4 8 16 16  2 x16 4 x8 16 x4 10 x0    96 
183 16 997247  0 4 8 12 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  65 
184 16 1013623  0 8 8 8 8 16  1 x16 12 x8 19 x0      106 
185 16 1013627  0 4 8 8 8 16  1 x16 8 x8 16 x4 7 x0    109 
186 16 1513471  0 8 8 8 16 16  2 x16 8 x8 22 x0      62 
187 16 1514495  0 8 4 8 16 16  2 x16 4 x8 16 x4 10 x0    97 
188 16 1515391  0 8 8 12 12 16  1 x16 2 x12 4 x8 14 x4 11 x0  66 
189 16 1523071  0 8 8 8 12 16  1 x16 1 x12 6 x8 15 x4 9 x0  101 
190 16 1523581  0 8 8 8 8 16  1 x16 12 x8 19 x0      - 
191 16 1523582  0 4 8 8 8 16  1 x16 8 x8 16 x4 7 x0    - 
192 16 2039671  0 8 8 12 12 12  4 x12 4 x8 12 x4 12 x0    135 
193 16 2045759  0 4 12 12 12 12  4 x12 4 x8 12 x4 12 x0    136 
194 16 2045791  0 8 8 12 12 12  3 x12 6 x8 13 x4 10 x0    148 
195 16 2045821  0 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    155 
196 16 18290559  0 12 12 12 12 12  6 x12 10 x4 16 x0      82 
197 16 18290623  0 8 12 12 12 12  4 x12 4 x8 12 x4 12 x0    144 
198 16 18290686  0 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    159 
199 16 18291679  0 8 8 12 12 12  3 x12 6 x8 13 x4 10 x0    - 
200 16 18291709  0 8 8 8 12 12  2 x12 8 x8 14 x4 8 x0    - 
201 16 18300397  0 8 4 8 8 12  1 x12 10 x8 15 x4 6 x0    164 
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202 16 18823036  0 8 8 8 8 8  16 x8 16 x0        183 
203 16 18823100  0 4 8 8 8 8  12 x8 16 x4 4 x0      187 
204 16 18823126  0 8 8 8 8 8  16 x8 16 x0        185 
205 16 54482538  0 0 8 8 8 0  16 x8 16 x0        190 

Table 21 – Complete spectral class list for n = 5 

B.2 Transcription Of Hurst Printouts 
This section is a transcription and organization of the most complete data available 

from the previous works at the time of the writing of this thesis. As indicated earlier, 

spectral classes listed in Appendix B of [2] are simply summaries of the spectral data, and 

not complete listings. With only the spectral summary, it is impossible to determine the 

exact function used as the canonical function. Copies of the original printouts were 

obtained which provided the complete spectrum for each canonical function. Although 

the spectral summary in [2] is in its final form, the printouts were not. The printouts 

simply state the function number listed as the “Hurst Class” in Table 22 and therefore the 

data “Class Number” column was matched by hand to the summary in [2]. 

To save space, and to allow more direct comparison between various lists, only the first 

order coefficients and spectral summary are listed, rather than the entire spectrum. In 

order to not lose data when displayed in the more compact form, the decimal 

representation of the function was calculated from the complete spectrum of each 

function, and added to Table 21. 

Class 
Number§§ 

Hurst 
Class*** 

Function 
Number††† 

 s0 s1 s2 s3 s4 s5  Summary Of Complete Spectrum 

1 1a 1771476585  0 0 0 0 0 0  1 x32 31 x0       
2 1b 0  32 0 0 0 0 0  1 x32 31 x0       
                     
3 2a 1771476584  2 -2 -2 -2 -2 -2  1 x30 31 x2       
4 2b 1  30 2 2 2 2 2  1 x30 31 x2       
                     
5 3a 1771476586  0 -4 0 0 0 0  1 x28 15 x4 16 x0     
6 3b 1019462463  -4 0 4 4 4 4  1 x28 15 x4 16 x0     
7 3c 3  28 0 4 4 4 4  1 x28 15 x4 16 x0     
                     

                                                
§§ The equivalent class number in [2] 

*** As listed on the original printouts 

††† Calculated from complete spectra listed on original printouts 
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8 4a 1771476590  -2 -2 -2 2 2 2  1 x26 7 x6 24 x2     
9 4b 267448328  6 -2 -2 -6 -6 -6  1 x26 7 x6 24 x2     
10 4c 7  26 2 2 6 6 6  1 x26 7 x6 24 x2     
                     
11 5b 1019462443  0 -4 4 4 0 0  1 x24 3 x8 16 x4 12 x0   
12 5a 1771476606  -4 0 0 0 4 4  1 x24 3 x8 16 x4 12 x0   
13 5c 16776983  -8 4 4 4 8 8  1 x24 3 x8 16 x4 12 x0   
14 5d 23  24 4 4 4 8 8  1 x24 3 x8 16 x4 12 x0   
                     
15 6a 1771476582  0 0 0 0 0 0  1 x24 7 x8 24 x0     
16 6b 267448320  8 0 0 -8 -8 -8  1 x24 7 x8 24 x0     
17 6c 15  24 0 0 8 8 8  1 x24 7 x8 24 x0     
                     
18 7a 1771476598  -2 2 2 -2 2 2  1 x22 3 x10 4 x6 24 x2   
19 7b 267448336  6 2 2 -10 -6 -6  1 x22 3 x10 4 x6 24 x2   
20 7c 16776991  -10 2 2 6 10 10  1 x22 3 x10 4 x6 24 x2   
21 7d 31  22 2 2 6 10 10  1 x22 3 x10 4 x6 24 x2   
                     
22 8a 1771476862  -6 2 2 2 2 6  1 x22 1 x10 10 x6 20 x2   
23 8b 1019462187  2 -6 2 2 2 -2  1 x22 1 x10 10 x6 20 x2   
24 8c 65256  10 -6 -6 -6 -6 22  1 x22 1 x10 10 x6 20 x2   
25 8d 279  22 6 6 6 6 10  1 x22 1 x10 10 x6 20 x2   
                     
26 9a 1771476566  0 4 0 0 0 0  1 x20 3 x12 12 x4 16 x0   
27 9b 1019462403  4 0 4 4 -4 -4  1 x20 3 x12 12 x4 16 x0   
28 9c 16777023  -12 0 4 4 12 12  1 x20 3 x12 12 x4 16 x0   
29 9d 63  20 0 4 4 12 12  1 x20 3 x12 12 x4 16 x0   
                     
30 10c 1721342073  0 0 0 -4 4 0  1 x20 1 x12 4 x8 14 x4 12 x0 
31 10b 267448592  4 4 4 -8 -8 -4  1 x20 1 x12 4 x8 14 x4 12 x0 
32 10a 1771476854  -4 4 4 0 0 4  1 x20 1 x12 4 x8 14 x4 12 x0 
33 10d 16776735  -8 0 0 4 12 8  1 x20 1 x12 4 x8 14 x4 12 x0 
34 10e 65248  12 -4 -4 -8 -8 20  1 x20 1 x12 4 x8 14 x4 12 x0 
35 10f 287  20 4 4 8 8 12  1 x20 1 x12 4 x8 14 x4 12 x0 
                     
36 11c 267514136  0 4 4 -4 -4 -4  1 x20 6 x8 15 x4 10 x0   
37 11b 1019396651  4 -8 0 0 0 0  1 x20 6 x8 15 x4 10 x0   
38 11a 1771542398  -8 4 4 4 4 4  1 x20 6 x8 15 x4 10 x0   
39 11d 65815  20 8 8 8 8 8  1 x20 6 x8 15 x4 10 x0   
                     
40 12a 1771476502  2 2 2 2 -2 -2  1 x18 3 x14 28 x2     
41 12b 16777087  -14 2 2 2 14 14  1 x18 3 x14 28 x2     
42 12c 127  18 2 2 2 14 14  1 x18 3 x14 28 x2     
                     
43 13a 1771476822  -2 6 2 2 -2 2  1 x18 1 x14 2 x10 6 x6 22 x2 
44 13c 267448624  2 2 6 -10 -6 -2  1 x18 1 x14 2 x10 6 x6 22 x2 
45 13b 1019462147  6 -2 2 2 -2 -6  1 x18 1 x14 2 x10 6 x6 22 x2 
46 13d 16776767  -10 -2 2 2 14 10  1 x18 1 x14 2 x10 6 x6 22 x2 
47 13e 65216  14 -2 -6 -6 -10 18  1 x18 1 x14 2 x10 6 x6 22 x2 
48 13f 319  18 2 6 6 10 14  1 x18 1 x14 2 x10 6 x6 22 x2 
                     
49 14c 1721276537  2 -2 -2 -6 2 2  1 x18 3 x10 9 x6 19 x2   
50 14b 267514128  2 6 6 -6 -6 -6  1 x18 3 x10 9 x6 19 x2   
51 14a 1771542390  -6 6 6 2 2 2  1 x18 3 x10 9 x6 19 x2   
52 14d 16711199  -6 -2 -2 2 10 10  1 x18 3 x10 9 x6 19 x2   
53 14e 130784  10 -2 -2 -6 -6 18  1 x18 3 x10 9 x6 19 x2   
54 14f 65823  18 6 6 10 10 10  1 x18 3 x10 9 x6 19 x2   
                     
55 15a 1771476630  0 0 0 0 0 0  4 x16 28 x0       
56 15b 16777215  -16 0 0 0 16 16  4 x16 28 x0       
                     
57 16a 1771476758  0 4 4 4 -4 0  2 x16 2 x12 14 x4 14 x0   
58 16b 1019462211  4 0 0 0 0 -4  2 x16 2 x12 14 x4 14 x0   
59 16c 16776831  -12 0 0 0 16 12  2 x16 2 x12 14 x4 14 x0   
60 16d 65152  16 -4 -4 -4 -12 16  2 x16 2 x12 14 x4 14 x0   
                     
61 17a 1771476310  0 8 0 0 0 0  2 x16 8 x8 22 x0     
62 17c 267449136  0 0 8 -8 -8 0  2 x16 8 x8 22 x0     
63 17b 1019461635  8 0 0 0 0 -8  2 x16 8 x8 22 x0     
64 17d 64704  16 0 -8 -8 -8 16  2 x16 8 x8 22 x0     
                     
65 18e 1768462249  0 -4 0 0 -4 4  1 x16 2 x12 4 x8 14 x4 11 x0 
66 18c 267514160  0 4 8 -8 -4 -4  1 x16 2 x12 4 x8 14 x4 11 x0 
67 18a 1771542358  -4 8 4 4 0 0  1 x16 2 x12 4 x8 14 x4 11 x0 
68 18f 1010680572  -4 0 -4 -4 8 0  1 x16 2 x12 4 x8 14 x4 11 x0 
69 18b 1019396611  8 -4 0 0 -4 -4  1 x16 2 x12 4 x8 14 x4 11 x0 
70 18d 16711231  -8 -4 0 0 12 12  1 x16 2 x12 4 x8 14 x4 11 x0 
71 18g 130752  12 0 -4 -4 -8 16  1 x16 2 x12 4 x8 14 x4 11 x0 
72 18h 65855  16 4 8 8 12 12  1 x16 2 x12 4 x8 14 x4 11 x0 
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Hurst 
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 s0 s1 s2 s3 s4 s5  Summary Of Complete Spectrum 

73 19a 1771542294  -2 6 6 6 -2 -2  3 x14 1 x10 7 x6 21 x2   
74 19b 1019396675  6 -2 -2 -2 -2 -2  3 x14 1 x10 7 x6 21 x2   
75 19c 16711295  -10 -2 -2 -2 14 14  3 x14 1 x10 7 x6 21 x2   
76 19d 130688  14 -2 -2 -2 -10 14  3 x14 1 x10 7 x6 21 x2   
                     
77 20a 1771541846  -2 10 2 2 2 -2  2 x14 4 x10 4 x6 22 x2   
78 20c 267514672  -2 2 10 -6 -6 -2  2 x14 4 x10 4 x6 22 x2   
79 20d 16710719  -6 -2 -2 -2 14 10  2 x14 4 x10 4 x6 22 x2   
80 20b 1019396099  10 -2 -2 -2 -2 -6  2 x14 4 x10 4 x6 22 x2   
81 20e 130240  14 2 -6 -6 -6 14  2 x14 4 x10 4 x6 22 x2   
                     
82 21a 1771410774  0 12 0 0 0 0  6 x12 10 x4 16 x0     
83 21c 267645744  -4 0 12 -4 -4 -4  6 x12 10 x4 16 x0     
84 21b 1019265027  12 0 -4 -4 -4 -4  6 x12 10 x4 16 x0     
                     
85 22a 1771444094  -4 4 4 4 4 4  1 x20 1 x12 30 x4     
86 22b 32488  12 -4 -4 -4 -4 20  1 x20 1 x12 30 x4     
87 22c 33047  20 4 4 4 4 12  1 x20 1 x12 30 x4     
                     
88 23a 1771472758  -2 2 2 2 2 2  1 x18 1 x14 12 x6 18 x2   
89 23b 267444496  6 2 2 -6 -6 -6  1 x18 1 x14 12 x6 18 x2   
90 23c 61152  14 -6 -6 -6 -6 18  1 x18 1 x14 12 x6 18 x2   
91 23d 4383  18 6 6 6 6 14  1 x18 1 x14 12 x6 18 x2   
                     
92 24b 267481368  2 6 6 -2 -2 -6  1 x18 1 x10 15 x6 15 x2   
93 24a 1771509630  -6 6 6 6 6 2  1 x18 1 x10 15 x6 15 x2   
94 24c 98024  10 -2 -2 -2 -2 18  1 x18 1 x10 15 x6 15 x2   
95 24d 98583  18 6 6 6 6 10  1 x18 1 x10 15 x6 15 x2   
                     
96 25a 1771475798  0 4 4 0 0 0  2 x16 4 x8 16 x4 10 x0   
97 25c 267449648  0 4 4 -8 -8 0  2 x16 4 x8 16 x4 10 x0   
98 25b 1019463171  4 0 0 4 -4 -4  2 x16 4 x8 16 x4 10 x0   
99 25d 16775743  -8 -4 4 0 16 8  2 x16 4 x8 16 x4 10 x0   
100 25e 64192  16 -4 -4 -8 -8 16  2 x16 4 x8 16 x4 10 x0   
                     
101 26c 1771534473  0 0 0 0 0 -4  1 x16 1 x12 6 x8 15 x4 9 x0 
102 26a 1771538294  -4 4 4 4 4 0  1 x16 1 x12 6 x8 15 x4 9 x0 
103 26d 267460335  -8 0 0 8 8 4  1 x16 1 x12 6 x8 15 x4 9 x0 
104 26b 126688  12 -4 -4 -4 -4 16  1 x16 1 x12 6 x8 15 x4 9 x0 
105 26e 69919  16 8 8 8 8 12  1 x16 1 x12 6 x8 15 x4 9 x0 
                     
106 27b 535949584  0 8 8 -8 -8 -8  1 x16 12 x8 19 x0     
107 27a 2039977846  -8 8 8 0 0 0  1 x16 12 x8 19 x0     
108 27c 268501279  16 8 8 8 8 8  1 x16 12 x8 19 x0     
                     
109 28c 267612440  0 4 8 0 0 -8  1 x16 8 x8 16 x4 7 x0   
110 28a 1771378558  -4 8 4 4 4 4  1 x16 8 x8 16 x4 7 x0   
111 28b 1019232811  8 -4 0 0 0 0  1 x16 8 x8 16 x4 7 x0   
112 28d 229655  16 4 8 8 8 8  1 x16 8 x8 16 x4 7 x0   
                     
113 29a 1771541334  -2 6 6 2 2 -2  2 x14 2 x10 10 x6 18 x2   
114 29c 267515184  -2 6 6 -6 -6 -2  2 x14 2 x10 10 x6 18 x2   
115 29b 1019397635  6 -2 -2 2 -6 -2  2 x14 2 x10 10 x6 18 x2   
116 29d 16710207  -6 -6 2 -2 14 10  2 x14 2 x10 10 x6 18 x2   
117 29e 129728  14 -2 -2 -6 -6 14  2 x14 2 x10 10 x6 18 x2   
118 29f 16647616  10 2 -6 -2 14 -6  2 x14 2 x10 10 x6 18 x2   
                     
119 30a 1754765142  -2 6 2 2 2 2  1 x14 5 x10 7 x6 19 x2   
120 30c 250736944  2 2 6 -10 -2 -2  1 x14 5 x10 7 x6 19 x2   
121 30e 1751672918  6 -2 -6 -6 2 2  1 x14 5 x10 7 x6 19 x2   
122 30b 1036173827  6 -2 2 2 -6 -6  1 x14 5 x10 7 x6 19 x2   
123 30d 33488447  -10 -2 2 2 10 10  1 x14 5 x10 7 x6 19 x2   
124 30f 16843071  14 6 10 10 10 10  1 x14 5 x10 7 x6 19 x2   
                     
125 31a          1 x14 3 x10 13 x6 15 x2   
126 31b          1 x14 3 x10 13 x6 15 x2   
127 31c          1 x14 3 x10 13 x6 15 x2   
128 31d          1 x14 3 x10 13 x6 15 x2   
129 31e          1 x14 3 x10 13 x6 15 x2   
130 31f 198999  14 6 6 10 10 10  1 x14 3 x10 13 x6 15 x2   
                     
131 32a 697800534  -2 6 6 6 2 2  1 x14 3 x10 13 x6 15 x2   
132 32b 2093138435  6 -2 -2 -2 -6 -6  1 x14 3 x10 13 x6 15 x2   
133 32c 1090453055  -10 -2 -2 -2 10 10  1 x14 3 x10 13 x6 15 x2   
134 32d 1073807679  14 6 6 6 10 10  1 x14 3 x10 13 x6 15 x2   
                     
135 33a 1771279702  0 8 4 0 0 0  4 x12 4 x8 12 x4 12 x0   
136 33e 868863756  0 0 -4 8 -8 0  4 x12 4 x8 12 x4 12 x0   
137 33c 1520477797  4 -4 0 -4 -4 4  4 x12 4 x8 12 x4 12 x0   
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138 33d 267776816  -4 4 8 -4 -4 -4  4 x12 4 x8 12 x4 12 x0   
139 33b 1019658243  8 0 -4 0 0 -8  4 x12 4 x8 12 x4 12 x0   
140 33f 392384  12 4 -8 -4 -4 12  4 x12 4 x8 12 x4 12 x0   
                     
141 34a 1771410422  -4 4 4 -4 4 4  4 x12 28 x4       
142 34b 267646352  -4 4 4 -4 -4 -4  4 x12 28 x4       
143 34c 260704  12 -4 4 -4 -4 12  4 x12 28 x4       
                     
144 35a 1754765078  0 4 4 4 0 0  4 x12 4 x8 12 x4 12 x0   
145 35b 1036173891  4 0 0 0 -4 -4  4 x12 4 x8 12 x4 12 x0   
146 35d 1751672854  8 -4 -4 -4 0 0  4 x12 4 x8 12 x4 12 x0   
147 35c 33488511  -12 0 0 0 12 12  4 x12 4 x8 12 x4 12 x0   
                     
148 36a 1770493238  0 4 4 4 0 0  3 x12 6 x8 13 x4 10 x0   
149 36b 1020444771  4 0 0 -8 4 -4  3 x12 6 x8 13 x4 10 x0   
150 36d 15662175  -4 0 -8 0 12 12  3 x12 6 x8 13 x4 10 x0   
151 36c 870174572  -8 4 -4 4 0 0  3 x12 6 x8 13 x4 10 x0   
152 36e 1178784  12 0 0 -8 -4 12  3 x12 6 x8 13 x4 10 x0   
                     
153 37a 697800662  -4 4 4 4 4 4  4 x12 28 x4       
154 37b 1090453183  -12 -4 -4 -4 12 12  4 x12 28 x4       
                     
155 38b 1019662507  0 -4 -4 -4 4 0  2 x12 8 x8 14 x4 8 x0   
156 38a 1771275774  -4 0 0 0 8 4  2 x12 8 x8 14 x4 8 x0   
157 38c 1768719617  8 4 -4 4 -4 -8  2 x12 8 x8 14 x4 8 x0   
158 38d 388200  12 0 -8 0 0 12  2 x12 8 x8 14 x4 8 x0   
                     
159 39a 697800022  0 8 4 4 4 0  2 x12 8 x8 14 x4 8 x0   
160 39c 446998117  4 -4 0 0 0 4  2 x12 8 x8 14 x4 8 x0   
161 39d 1341256496  -4 4 8 -8 -8 -4  2 x12 8 x8 14 x4 8 x0   
162 39b 2093137923  8 0 -4 -4 -4 -8  2 x12 8 x8 14 x4 8 x0   
163 39e 1073872064  12 4 -8 -8 -8 12  2 x12 8 x8 14 x4 8 x0   
                     
164 40c 1010557082  0 -8 4 -4 4 -4  1 x12 10 x8 15 x4 6 x0   
165 40a 1771156784  4 4 8 -8 -8 0  1 x12 10 x8 15 x4 6 x0   
166 40b 1520600579  8 -8 4 4 -4 -4  1 x12 10 x8 15 x4 6 x0   
167 40d 467801  12 4 8 8 8 8  1 x12 10 x8 15 x4 6 x0   
                     
168 41a 1753716022  2 2 2 2 2 2  6 x10 10 x6 16 x2     
169 41b 853397356  -6 2 -6 2 2 2  6 x10 10 x6 16 x2     
170 41c 17956000  10 2 2 -6 -6 10  6 x10 10 x6 16 x2     
                     
171 42a 697997878  2 -10 6 2 2 2  6 x10 10 x6 16 x2     
172 42e 2083573660  -2 2 -6 -2 -10 6  6 x10 10 x6 16 x2     
173 42c 447326469  6 -6 2 6 -2 -2  6 x10 10 x6 16 x2     
174 42d 1341979728  -6 6 -10 -6 -6 -6  6 x10 10 x6 16 x2     
175 42b 2093993827  -10 2 -6 6 -2 -2  6 x10 10 x6 16 x2     
                     
176 43a 697668950  2 10 2 2 2 2  6 x10 10 x6 16 x2     
177 43c 1341387568  -6 2 10 -6 -6 -6  6 x10 10 x6 16 x2     
178 43b 2093006851  10 2 -6 -6 -6 -6  6 x10 10 x6 16 x2     
                     
179 44c 1989188697  2 6 -2 -6 -6 2  4 x10 16 x6 12 x2     
180 44a 2040501078  -6 6 6 2 2 -6  4 x10 16 x6 12 x2     
181 44b 536474928  -6 6 6 -6 -6 -6  4 x10 16 x6 12 x2     
182 44d 269089472  10 -2 -2 -6 -6 10  4 x10 16 x6 12 x2     
                     
183 45a 1788184500  0 0 0 0 0 0  16 x8 16 x0       
184 45a 818929134  -8 0 -8 0 8 8  16 x8 16 x0       
185 45b          16 x8 16 x0       
186 45b          16 x8 16 x0       
                     
187 46c 1674235660  0 -4 -8 8 -8 0  12 x8 16 x4 4 x0     
188 46a 965776726  4 8 4 -4 -4 4  12 x8 16 x4 4 x0     
189 46b 1824899075  8 4 -8 0 0 -8  12 x8 16 x4 4 x0     
                     
190 48b 1522983501  0 0 -8 0 0 0  16 x8 16 x0       
191 48a 1777717630  -8 8 0 -8 8 0  16 x8 16 x0       

Table 22 – Transcription of Hurst Printouts 

Hurst classes 31 and 45 have been highlighted in Table 21 as the complete data is 

unavailable. The function number for class 130 (Hurst class 31f) comes directly from the 

Hurst function number listed in Figure 36 for case 30. This function was cross-referenced 
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with the complete data from the implementation in Appendix A that was determined to 

be in spectral class 32 (from Table 21), which is equivalent to class 130 in [2]. The listed 

spectral summary is based on the data from the implementation in Appendix A. 

The Hurst class 45 should in fact be 2 separate classes, as discussed in [2], but the 

printouts did not reflect this. As there is no additional information available on which 

functions are listed for Hurst class 45, they are assumed to be class 45a and that 45b is the 

missing data. It is fairly certain that the functions listed for Hurst class 45 in Table 22 are 

in the correct Hurst class, but it is uncertain which functions correspond to sub-class. 

CLASS    HURST    PRIMARY          SUMMARY 
         CLASS    COEFFICIENTS 
 
   1     31A      13 7 5 5 5 3     1x13, 1x7, 3x5, 12x3, 15x1 
   2     31B      15 7 5 5 5 3     1x15, 1x7, 3x5, 13x3, 14x1 
   3     31C      13 7 5 5 3 3     1x13, 1x7, 3x5, 12x3, 15x1 
   4     31D      15 7 5 5 3 3     1x15, 1x7, 3x5, 13x3, 14x1 
   5     31E      11 7 5 5 3 3     1x11, 1x7, 2x5, 13x3, 15x1 
   6     31F      9 5 5 5 3 3      1x9, 3x5, 13x3, 15x1 
 
 
CASE 31 
------- 
 
FUNCTION 00030957 
 
IN BINARY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1 
 
SPECTRUM  31A       13 -1 -1 3 -3 1 -3 1 1 1 1 1 -1 -1 3 -5 -3 -3 1 1 3 3 3 
------------- 
TRANSFORMED SPECTRUM 
13 -3 -5 -3 -5 -3 -1 1 -5 1 3 1 -1 -3 3 1 -7 3 -3 -1 1 3 1 3 -3 3 1 -1 1 -1 
 
SPECTRUM  31B       15 3 3 -1 1 -3 1 -3 1 1 1 1 -1 -1 -5 3 -3 -3 1 1 3 3 -5 
------------- 
TRANSFORMED SPECTRUM 
15 3 -5 -1 -5 3 -1 -1 -5 3 3 3 3 -1 3 -1 -7 -3 1 -3 1 1 1 1 -3 -3 1 1 1 -3 
 
SPECTRUM  31C       13 -1 -1 3 1 -3 1 -3 1 1 1 1 -5 3 -1 -1 1 1 -3 -3 -5 3 3 
------------- 
TRANSFORMED SPECTRUM 
13 -3 3 1 -5 1 3 -3 -5 1 -1 1 -5 -3 -1 -3 -7 -1 1 3 1 3 1 -1 1 3 -3 3 1 -1 
 
SPECTRUM  31D       15 -3 1 -3 3 -1 -1 3 -5 3 -1 -1 1 1 1 1 -5 3 3 3 1 1 -3 
------------- 
TRANSFORMED SPECTRUM 
15 -3 -3 1 -5 -1 -1 3 -5 -1 3 -1 1 -3 1 -3 -7 1 -3 -3 3 3 -1 -1 -5 3 3 3 1 
 
SPECTRUM  31E       11 3 -1 -1 1 1 1 1 1 -3 1 -3 3 -1 -1 3 -7 -3 -3 1 -5 -1 
------------- 
TRANSFORMED SPECTRUM 
11 -3 3 1 -5 1 3 -3 -5 1 -1 1 3 -3 -1 -3 -7 -1 -3 -1 1 3 -3 3 1 3 1 -1 1 -1 
 
SPECTRUM  31F       9 -3 -3 1 -5 -1 3 -1 -5 3 3 3 1 1 -3 -3 -5 3 -1 -1 1 1 1 
------------- 

Figure 36 – Addendum printout for Hurst Class 31 in 0/1 encoding 
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The Hurst class 47 is not listed in Table 22 because the functions listed on the printouts 

were determined to be invalid functions. As expected, since these functions are invalid, 

they do not correspond with any functions listed in [2]. The data provided in an 

Addendum printout, as seen in the Figure 36 transcription, is incomplete due to wide-

format printer paper being photocopied onto letter sized paper in a portrait orientation. 

The original copy is unavailable. 

B.3 Summary 
The tables in this chapter provide a complete list of the spectral classes, and their 

canonical functions, produced in this research. Additionally, a reconstructed table of the 

data used to generate the signatures tabulated in [2] is provided. Although 100% of the 

data used for [2] could not be recovered, a large percentage of the information could be 

reconstructed using the tables in [2] and intermediate data used for the publication. 

The list of spectral classes tabulated from this research should provide adequate data 

for use for comparison in future work as the canonical functions are presented in a form 

that allows complete reconstruction of the spectral coefficients, and provides and exact 

listing of the chosen canonical function for each class. 
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Appendix 
C - Source Code 

C.1 Main 

C.1.1 main.h 
/* 
 *  main.h 
 *  Classify 
 * 
 *  Created by Neil Anderson on 2006-10-20. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include <iostream> 
#include <vector> 
#include <map> 
#include <algorithm> 
#include <cmath> 
#include <fstream> 
#include <string> 
#include <cstdlib> 
#include <sstream> 
 
using namespace std; 

C.1.2 main.cpp 
/* 
 *  main.cpp 
 *  Classify 
 * 
 *  Created by Neil Anderson on 2006-08-10. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
#include "Prefilter.h" 
#include "Classify.h" 
#include "Misc.h" 
 
int main (int argc, char * const argv[]) { 
   // -- Various values used throuout -- 
   // Rather than passing these values throughout the program they are 
   // just re-calculated in a few places 
   int numVar = 5; 
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   int vecLen = pow(2.0, (double)numVar); 
   unsigned int numFn = (pow(2.0, (double)vecLen))/2; 
   // ---------------------------------- 
    
   // -- Array that stores the number of items in each group -- 
   // also used for pre-filter temp file names 
   int *len; 
   len = new int[vecLen]; 
    
   int numGroups = vecLen/2; 
    
   for (int i = 0; i < numGroups; i++) { 
      // binomial coefficient 
      len[i] = (int)C(vecLen, i+1); 
       
      // the last group only needs to store half 
      if (i == numGroups-1) 
         len[i] /= 2; 
   } 
   // --------------------------------------------------------- 
 
   // -- Prefilter the groups -- 
   // These lines can be commented out if we want to use temp files 
   // that have previously been generated (they have to be placed in 
   // the running director). 
   Prefilter p(numVar);    
   p.pre(len); 
   // -------------------------- 
    
   // -- Classify the data contained in the temp files -- 
   // The return value of classes (the data it points to) used to be printed 
   // out at the end, but now it is printed within the generateClasses 
   // method in order to print the results after each group is processed 
   // in case the program is stopped part way through...then at last you get 
   // partial results. 
   Classify c(numVar); 
   unsigned char *classes; 
   classes = c.generateClasses(len); 
   // --------------------------------------------------- 
    
   // -- Print the 0 case ---------- 
   if (fileExists("output0")) 
      remove("output0"); 
    
   fstream fout("output0", ios::out | ios::app); 
   fout << "f(0)\tclass: 0" << endl; 
   fout.close(); 
   // ------------------------------ 
 
   return 0; 
} 

C.2 Prefilter 

C.2.1 Prefilter.h 
/* 
 *  Prefilter.h 
 *  Classify 
 * 
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 *  Created by Neil Anderson on 2006-10-20. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
 
class Prefilter { 
private: 
   unsigned int numVar, vecLen, numFn; 
    
   int *destList; 
public: 
   Prefilter(int); 
   ~Prefilter(); 
   void pre(int *); 
}; 

C.2.2 Prefilter.cpp 
/* 
 *  Prefilter.cpp 
 *  Classify 
 * 
 *  Created by Neil Anderson on 2006-10-20. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "Prefilter.h" 
#include "Misc.h" 
 
Prefilter::Prefilter(int num) { 
   numVar = num; 
   vecLen = pow(2.0, (double)numVar); 
   numFn = (pow(2.0, (double)vecLen))/2; 
} 
 
// Deconstructor cleans up the temp files so there's no crap laying around. 
Prefilter::~Prefilter() { 
   int s = vecLen/2; 
    
   for (int i = 0; i < s; i++) { 
      remove(intToString(destList[i]).c_str()); 
   } 
} 
 
void Prefilter::pre(int *len) { 
   // -- Create vector of temp files -- 
   vector<fstream*> g; 
    
   destList = len; 
    
   int numGroups = vecLen/2; 
    
   // Files are set to write-only 
   for (int i = 0; i < numGroups; i++) { 
      // Since we are appending files, we want to make sure we're 
      // starting clean - remove any file with the same name we want to use 
      // if it already exists. 
      if (fileExists(intToString(len[i]))) 
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         remove(intToString(len[i]).c_str()); 
       
      g.push_back(new fstream(intToString(len[i]).c_str(), ios::out | ios::app)); 
   } 
   // ---------------------------------- 
    
   for (unsigned int i = 0; i < numFn; i++) { 
      // -- Count the number if true bits -- 
      unsigned int res = 0; 
      for (unsigned int j = 0; j < vecLen; j++) { 
         res += (i >> j) & 1; 
      } 
      // ----------------------------------- 
       
      for (int j = 1; j <= numGroups; j++) { 
         // Assign the value to the correct file. Sort by the number 
         // of true bits in the integer. 
         // Ex. 00110001 has 3 true bits. All integers with 3 true or 3 false 
         // bits should be in the same category. 
         if (res == j || res == vecLen - j) { 
            (*g[j-1]) << i << endl; 
            break; 
         } 
      } 
   } 
    
   // -- Close all the files we created and had open -- 
   for (int i = 0; i < g.size(); i++) { 
      (*g[i]).close(); 
   } 
   // ------------------------------------------------- 
} 

C.3 Rules 

C.3.1 Rules.h 
/* 
 *  Rules.h 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
#include "Misc.h" 
 
class Rules { 
private: 
   vector<vector<int> > t1Rules; 
   vector<vector<int> > t2Rules; 
   vector<vector<int> > t4Rules; 
   vector<vector<int> > t4List; 
    
   int N; // same as vecLen 
   int len; // same as numVar 
    
   void permuteVarRules(int); 
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   void negateVarRules(int); 
   void typeFourRules(int); 
   void genTypeFourList(int); 
    
public: 
       
   Rules(int); 
    
   void generateRules(void); 
 
   void printRules(void); 
    
   vector<vector<int> > getType1(void); 
   vector<vector<int> > getType2(void); 
   vector<vector<int> > getType4(void); 
    
   void getType1Arr(int **, int, int); 
   void getType2Arr(int **, int, int); 
   void getType4Arr(int **, int, int); 
}; 

C.3.2 Rules.cpp 
/* 
 *  Rules.cpp 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "Rules.h" 
 
Rules::Rules(int numVar) { 
   len = numVar; 
   // N is the same as vecLen 
   N = pow(2.0, (double) numVar); 
} 
 
void Rules::generateRules() {  
   permuteVarRules(N); 
   negateVarRules(N); 
   typeFourRules(N); 
} 
 
// Type 1 Rules accessor method 
vector<vector<int> > Rules::getType1() { 
   return t1Rules; 
} 
 
// Type 2 Rules accessor method 
vector<vector<int> > Rules::getType2() { 
   return t2Rules; 
} 
 
// Type 3 Rules accessor method 
vector<vector<int> > Rules::getType4() { 
   return t4Rules; 
} 
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// Convert Type 1 Rules vector to 2D array 
// Arrays are faster to access than vectors. This matters because 
// they are accessed so many times in this program. 
void Rules::getType1Arr(int **tmp, int h, int w) { 
   for (int i = 0; i < h; i++) { 
      for (int j = 0; j < w; j++) { 
         tmp[i][j] = t1Rules[i][j]; 
      } 
   } 
} 
 
// Convert Type 2 Rules vector to 2D array 
// Arrays are faster to access than vectors. This matters because 
// they are accessed so many times in this program. 
void Rules::getType2Arr(int **tmp, int h, int w) { 
   for (int i = 0; i < h; i++) { 
      for (int j = 0; j < w; j++) { 
         tmp[i][j] = t2Rules[i][j]; 
      } 
   } 
} 
 
// Convert Type 2 Rules vector to 2D array 
// Arrays are faster to access than vectors. This matters because 
// they are accessed so many times in this program. 
void Rules::getType4Arr(int **tmp, int h, int w) { 
   for (int i = 0; i < h; i++) { 
      for (int j = 0; j < w; j++) { 
         tmp[i][j] = t4Rules[i][j]; 
      } 
   } 
} 
 
// Generate Type 1 Rules 
void Rules::permuteVarRules(int num_pos) { 
   vector<int> intArr; 
   vector<int>::iterator iterBegin; 
   vector<int>::iterator iterEnd; 
    
   // initialize the vector to [0][1] ... [n-1][n] 
   for (int i = 0; i < len; i++) { 
      intArr.push_back(i); 
   } 
    
   // -- Pointers to the beginning and end of the vector -- 
   iterBegin = intArr.begin(); 
   iterEnd = intArr.end(); 
   // ----------------------------------------------------- 
    
   do { 
      vector<int> a_rule; 
      for (int j = 0; j < num_pos; j++) { 
         // convert the function into a bit vector 
         vector<int> org_term = itobv(j, len); 
         vector<int> new_term(len); 
 
         int s = org_term.size(); 
         // assign the re-arranged bits to the new term 
         for (int k = 0; k < s; k++) { 
            new_term[k] = org_term[intArr[k]]; 
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         } 
         // convert the new term back to an in 
         int index = bvtoi(new_term); 
         // add the order value to the order list 
         a_rule.push_back(index); 
      } 
      // Add the rule to the list 
      t1Rules.push_back(a_rule); 
 
   // Permute the values until there are no new permutations 
   } while (next_permutation(iterBegin, iterEnd)); 
} 
 
// Generate the type 2 rules 
void Rules::negateVarRules(int num_pos) {    
   for (int j = 0; j < num_pos; j++) { 
      vector<int> a_rule; 
      for (int i = 0; i < num_pos; i++) { 
         // XOR between numbers 0 - 2^n and all the truth table 
         // entries (represented as integer...which also happens 
         // to be 0 - 2^n) 
         int index = i ^ j; 
         a_rule.push_back(index); 
      } 
      t2Rules.push_back(a_rule); 
   } 
} 
 
// Generate the type 4 rules 
void Rules::typeFourRules(int num_pos) { 
   vector<int> initOrder; 
    
   // Add the unmodified version to the list (we need an unswapped 
   // function for each step). 
   for (int i = 0; i < num_pos; i++) { 
      initOrder.push_back(i); 
   } 
    
   t4Rules.push_back(initOrder); 
    
   // Generate the list of combinations 
   genTypeFourList(num_pos); 
    
   int ts = t4List.size(); 
   for (int i = 0; i < ts; i++) { 
      vector<int> a_rule; 
      for (int k = 0; k < num_pos; k++) { 
         vector<int> tmp; 
         for (int m = 0; m < len; m++) { 
            tmp.push_back(0); // entry placeholder with 0 value 
            for (int j = 0; j < len; j++) { 
               // Take each entry from the t4 list (combinations of xored vars) 
               // and multiplies each bit in the entry by that variable's 
               // assigned value (k) 
               // Set entry to correct value: 
               tmp[m] = tmp[m] ^ (((t4List[i][m] >> j) & 1) * ((k >> j) & 1)); 
               // result: 
               // tmp[0] = (x*x's value) ^ (y*y's value) ^ ... 
               // depending on what bits are "used" in the mth variable of the 
               // ith entry of the t4 list 
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            } 
         } 
         int tres = 0; 
          
         // Turn the vector into an int (could use the newly built 
         // bvtoi method instead, but this was written before and it 
         // works, so why fix it?) 
         for (int c = 0; c < len; c++) { 
            tres = (tres << 1) | tmp[c]; 
         } 
         // add the value to the rule 
         a_rule.push_back(tres); 
      } 
      // add the rule to the list 
      t4Rules.push_back(a_rule); 
   } // end for the size of the t4List 
} 
 
// The method that derives a list of all possible valid input combinations. 
// This list is used for calculating the final type for rules. 
void Rules::genTypeFourList(int num_pos) { 
   int arrHeight = len; 
   int arrWidth = N/2; 
    
   // This is the lookup table for all possible combinations 
   // to be calculated from. Rather than hard-coding it, this 
   // is calculated once at runtime. 
   vector<vector<int> > arr; 
    
   // Initialize the vector for the given size (based on values passed in 
   // at runtime. 
   for (int i = 0; i < arrHeight; i++) { 
      arr.push_back( *(new vector<int>) ); 
      for (int j = 0; j < arrWidth; j++) { 
         arr[i].push_back(0); 
      } 
   } 
 
   // Assign the values for the "A" row as odd numbers beginning at 1 
   // so: 1, 3, 5, 7, 9, ... 
   int skip = 0; 
   for (int i = 0; i < arrWidth; i++) { 
      arr[0][i] = (i + 1) + skip; 
      skip++; 
   } 
    
   // Build the remaining rows based on "previous row" 
   for (int i = 1; i < arrHeight; i++) { 
      skip = pow(2.0, (double) (i - 1)); 
      for (int j = 0; j < arrWidth; ) { 
         for (int k = 0; k < skip; k++) { 
            arr[i][j] = arr[i-1][j] + skip; 
            j++; 
         } 
         for (int k = 0; k < skip; k++) { 
            arr[i][j] = arr[i-1][j]; 
            j++; 
         } 
      } 
   } 
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   // In concept we create a temp 2d vector (the data is 4 cells wide...one 
   // for each variable) and copy item from each row of the lookup table in 
   // every possible combination. Not all of these combinations are valid as 
   // we can't have the same variables from different rows. [a][b][c^a][d^a] 
   // would be valid, while [a^c][b][c^a][d^a] is not (a^c occurs twice... 
   // c^a - or 0101 - can be wruitten as a^c - 0101). In reality, we do the 
   // checking for validity in the same step as the list creation to avoid 
   // storing a huge temporary table. 
    
   int numCol = arrWidth; 
   int numRow = arrHeight; 
   int endAt = pow((double) numCol, (double) numRow); 
   int vl = numRow; 
    
   // Creat a vector of size n where n is the number of variables. 
   // Keeps track of which items from each row we are using. To 
   // ensure we achieve ever combination. 
   vector<int> vars(vl); 
    
   for (int i = 0; i < endAt; i++) { 
      vector<int> tmp; 
      // increment the appropriate row based on what was added to the 
      // working tmp vector. 
      for (int j = vl - 2; j >= 0; j--) { 
         if (vars[j+1] == numCol) { 
            vars[j+1] = 0; 
            vars[j]++; 
         } 
      } 
       
      // get the next combination 
      for (int j = 0; j < vl; j++) { 
         tmp.push_back(arr[j][vars[j]]); 
      } 
       
      vars[vl-1]++; 
       
      vector<int> a(N); 
       
      // Calculate the linear independence of this combination 
      // First run 
      for (int m = 1; m < N; m++) { 
         a[m] = tmp[0] * ((m >> (numRow-1)) & 1); 
      } 
       
      // For all the consecutive calcs. 
      for (int m = 1; m < N; m++) { 
         for (int k = 1; k < numRow; k++) { 
            a[m] ^= tmp[k] * ((m >> (numRow-k-1)) & 1); 
         } 
      } 
       
      int aRes = 1; 
       
      int al = a.size(); 
       
      // Check if it is independent or not. If it is, add it to the list 
      // of known valid combinations 
      for (int m = 1; m < al; m++) { 
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         if (a[m] == 0) 
            aRes = 0; 
      } 
       
      if (aRes) { 
         t4List.push_back(tmp); 
      } 
   } 
} 
 
// Debug method for printing out the contents 
// of each rule vector 
void Rules::printRules() { 
   cout << endl << "Type 1" << endl; 
   for (int i = 0; i < t1Rules.size(); i++) { 
      cout << i << "\t"; 
      for (int j = 0; j < t1Rules[i].size(); j++) { 
         cout << t1Rules[i][j] << " "; 
      } 
      cout << endl; 
   } 
    
   cout << endl << "Type 2" << endl; 
   for (int i = 0; i < t2Rules.size(); i++) { 
      cout << i << "\t"; 
      for (int j = 0; j < t2Rules[i].size(); j++) { 
         cout << t2Rules[i][j] << " "; 
      } 
      cout << endl; 
   } 
    
   cout << endl << "Type 4" << endl; 
   for (int i = 0; i < t4Rules.size(); i++) { 
      cout << i << "\t"; 
      for (int j = 0; j < t4Rules[i].size(); j++) { 
         cout << t4Rules[i][j] << " "; 
      } 
      cout << endl; 
   } 
} 

C.4 Classify 

C.4.1 Classify.h 
/* 
 *  Classify.h 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
 
class Classify { 
private: 
    
   int numVar, vecLen; 
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   unsigned int numFn; 
    
   // -- 2D arrays of rules -- 
   int **type1; 
   int **type2; 
   int **type4; 
   // ------------------------ 
    
   // -- Length of the rule arrays -- 
   int s1, s2, s4; 
    
public: 
   Classify(int); 
    
   unsigned char *generateClasses(int*); 
}; 

C.4.2 Classify.cpp 
/* 
 *  Classify.cpp 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "Classify.h" 
#include "Rules.h" 
#include "Transform.h" 
 
Classify::Classify(int num) { 
   numVar = num; 
   vecLen = pow(2.0, (double)numVar); 
   numFn = (pow(2.0, (double)vecLen))/2; 
 
   // -- Generate the rules -- 
   Rules r(numVar); 
   r.generateRules(); 
   // ------------------------ 
 
   // -- Save the size of each array -- 
   s1 = (r.getType1()).size(); 
   s2 = (r.getType2()).size(); 
   s4 = (r.getType4()).size(); 
   // --------------------------------- 
    
   // -- Allocate a 2D array based on the size of the generated vector -- 
   type1 = allocArr(s1, vecLen); 
   type2 = allocArr(s2, vecLen); 
   type4 = allocArr(s4, vecLen); 
   // ------------------------------------------------------------------- 
 
   // -- Create an array version of the array vector -- 
   // The array has much faster accesses than a vector (which matters for 
   // millions of accesses) 
   r.getType1Arr(type1, s1, vecLen); 
   r.getType2Arr(type2, s2, vecLen); 
   r.getType4Arr(type4, s4, vecLen); 
   // ------------------------------------------------- 
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} 
 
unsigned char *Classify::generateClasses(int *len) { 
   // -- Vector of temp files -- 
   vector<fstream*> g; 
    
   int numGroups = vecLen/2; 
    
   // Files are set to read-only 
   for (int i = 0; i < numGroups; i++) { 
      g.push_back(new fstream(intToString(len[i]).c_str(), ios::in)); 
   } 
 
   // Store size of the vector (faster than computing each time) 
   int gSize = g.size(); 
   // -------------------------- 
    
 
   // Transform contructor 
   Transform t(numVar, type1, type2, type4, s1, s2, s4); 
 
   // -- Create array for results -- 
   unsigned char *arr; 
   arr = new unsigned char[numFn]; 
   // ------------------------------ 
    
   int t2Flag = 0; 
   // -- Keep track of class number -- 
   int count = 0; // store the highest assigned class number "so far" 
   int fl = 0; 
   // -------------------------------- 
   string line = ""; 
    
   // For each file in the vector 
   for (int i = 0; i < gSize; i++) { 
       
      // Initialize the array to an invalid value (so we can tell what 
      // values have been found, and which have been not). Since 0 
      // is a special case, we know none of the other values will ever 
      // be 0. Originally this was -1, but an unsigned bool cannot store 
      // a -1. 
      for (unsigned int h = 0; h < numFn; h++) { 
         arr[h] = 0; 
      } 
       
      // Originally the flag was set so we'd only do negation of output 
      // on the last category, but this isn't correct so it is ignored 
      // in the transform code. Not used and can be removed (but since it works 
      // I'm not going to mess with it). 
      if (i == (gSize - 1)) 
         t2Flag = 1; 
       
      bool *tmpArr; // results from the transformation call 
      int lineInt; 
 
      // get the first line 
      getline((*g[i]), line); 
      while(!(*g[i]).eof()) { 
         // turn the string into an int 
         lineInt = atoi(line.c_str()); 
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         count++; 
         fl = 0; 
          
         // Check to see if we've already processed this entry. If we have, 
         // skip it because it's useless extra processing. This speeds up 
         // execution time dramatically. 
         if (arr[lineInt] == 0) { 
 
            // Do the transformation on this function and store a pointer 
            // to the results. 
            tmpArr = t.trans(lineInt, t2Flag); 
             
            // -- Fold the results into the main array --  
            // This will hold all the results to-date for this 
            // particular category (temp file) 
             
            // Since we are processing this function, there's a chance 
            // that the increment in class number is valid. 
            fl = 1; 
             
            // this might be the right class number, so assign it for now. 
            int classNum = count; 
             
            for (unsigned int j = 0; j < numFn; j++) { 
               // if the function wasn't found, skip past the rest of the 
               // code in the for loop 
               if (tmpArr[j] != 1) 
                  continue; 
                
               // if the function has already been classified, use that 
               // class number instead. 
               if (arr[j] != 0) { 
                  classNum = arr[j]; 
                  // since we already have a class number, the new one in 
                  // "count" won't be valid, so flag it. 
                  fl = 0; 
                  // Break because once we find one, ALL found functions will 
                  // be the same class, so there's no point continuing. 
                  break; 
               } 
            } 
             
            // Assign the class number for all of the found functions 
            for (unsigned int m = 0; m < numFn; m++) { 
               if (tmpArr[m] == 1) { 
                  arr[m] = classNum; 
               } 
            } 
            // ------------------------------------------ 
             
            // clean up 
            delete[] tmpArr; 
         } 
         // If the flag is not true, we shouldn't have incremented out 
         // class number, so correct it. 
         if (fl == 0) 
            count--; 
          
         // Get the next line 
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         getline((*g[i]), line); 
      } // end while file is not EOF 
       
      // Close the file now that it's been finished. 
      (*g[i]).close(); 
       
      // -- Output the results for this pre-filtered file -- 
      // File name 
      string s = "output" + intToString(i+1); 
       
      // Check if old files are laying around. Remove it if there is. 
      if (fileExists(s.c_str())) 
         remove(s.c_str()); 
       
      fstream fout(s.c_str(), ios::out | ios::app); 
       
      for (unsigned int p = 0; p < numFn; p++) { 
         // Only print if there's a valid entry (non-0) 
         if (arr[p] != 0) 
            fout << "f("<< p << ")\tclass: " << (int)arr[p] << endl; 
      } 
       
      fout.close(); 
      // --------------------------------------------------- 
       
   } // end for each file 
    
   // Return a pointer to the array of results 
   // (no longer useful since the printing is now done within 
   // this method to print out the results "to date") 
   return arr; 
} 

C.5 Transform 

C.5.1 Transform.h 
/* 
 *  Transform.h 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
 
class Transform { 
private: 
   void permuteVar(unsigned int, int); 
   void negateVar(unsigned int, int); 
   void negateOut(unsigned int, int); 
   void typeFour(unsigned int, int); 
   void addFunction(unsigned int); 
    
   unsigned int swapBits(unsigned int, int*); 
    
   bool *arr; 
   unsigned int mask; 
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   int numVar, vecLen; 
   unsigned numFn; 
   int s1, s2, s4; 
    
   int **type1; 
   int **type2; 
   int **type4; 
    
   int *a; 
    
public: 
   Transform(int, int**, int**, int**, int, int, int); 
   ~Transform(); 
    
   bool *trans(unsigned int, int); 
}; 

C.5.2 Transform.cpp 
/* 
 *  Transform.cpp 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-05. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "Transform.h" 
 
Transform::Transform (int num, int **t1, int **t2, int **t4, int size1, int size2, int 
size4) { 
 
   numVar = num; 
   vecLen = pow(2.0, (double)numVar); 
   numFn = (pow(2.0, (double)vecLen))/2; 
    
   // -- Assign passed values to global vars -- 
   type1 = t1; 
   type2 = t2; 
   type4 = t4; 
    
   s1 = size1; 
   s2 = size2; 
   s4 = size4; 
   // ----------------------------------------- 
    
   a = new int[vecLen]; 
    
   // -- Calculate the mask for inverted output -- 
   for (int i = 0; i < vecLen; i++) { 
      mask = (mask << 1) | 1; 
   } 
   // -------------------------------------------- 
       
} 
 
// Cleanup 
Transform::~Transform() { 
   delete[] a; 
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} 
 
bool *Transform::trans(unsigned int num, int t2Flag = 0) { 
   arr = new bool[numFn]; 
    
   // Initialize to false 
   for (unsigned int j = 0; j < numFn; j++) { 
      arr[j] = 0; 
   } 
    
   // Apply Type 1 tranformation 
   permuteVar(num, t2Flag); 
    
   return arr; 
} 
 
// Type 1 Transfomation 
// This method transforms the function into all derivative functions 
// by applying the Type 1 rules to the function passed in as a parameter 
void Transform::permuteVar(unsigned int num, int t2Flag) { 
   unsigned int newNum; 
    
   // For each item in the Type 1 rule list: swap the bits and pass 
   // this new function to the Type 2 transformation method 
   for (int i = 0; i < s1; i++) { 
      newNum = swapBits(num, type1[i]); 
      negateVar(newNum, t2Flag); 
   } 
 
} 
 
// Type 2 Transfomation 
// This method transforms the function into all derivative functions 
// by applying the Type 2 rules to the function passed in as a parameter 
void Transform::negateVar(unsigned int num, int t2Flag) { 
   unsigned int newNum; 
    
   // For each item in the Type 2 rule list: swap the bits and pass 
   // this new function to the Type 3 transformation method 
   for (int i = 0; i < s2; i++) { 
      newNum = swapBits(num, type2[i]); 
      negateOut(newNum, t2Flag); 
   } 
} 
 
// Type 3 Transformation 
// There are no "rule," per se, for type 3 transformations as 
// there is no pattern of bit swapping that will achieve the 
// transformation. Instead, the original, and the inverted function 
// are considered 
void Transform::negateOut(unsigned int num, int t2Flag) { 
   // Apply type4 transform to the original passed function 
   typeFour(num, t2Flag); 
    
   // Apply type4 transform to the inverted passed function 
   num ^= mask; 
   typeFour(num, t2Flag); 
 
} 
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// Type 4 Transfomation 
// This method transforms the function into all derivative functions 
// by applying the Type 4 rules to the function passed in as a parameter 
void Transform::typeFour(unsigned int num, int t2Flag) { 
   unsigned int newNum; 
    
   // For each item in the Type 4 rule list: swap the bits and add 
   // the function to the list of derivative functions 
   for (int i = 0; i < s4; i++) { 
      newNum = swapBits(num, type4[i]); 
      addFunction(newNum); 
   } 
} 
 
// Add the function to the list of derivative functions 
void Transform::addFunction(unsigned int num) { 
   // Hard coded version uses array instead of something more advanced 
   // This is due to speed requirements. 
   if (num < numFn) { 
      // mark the function as found (change array value to TRUE). 
      arr[num] = 1; 
   } 
} 
 
// Swap the order of the bits of the Integer based on the inputted 
// order 
unsigned int Transform::swapBits(unsigned int num, int *order) { 
   // Hard coded for 3, 4 and 5 variables. 
   a[0]  = (num >> vecLen-1) & 1; 
   a[1]  = (num >> vecLen-2) & 1; 
   a[2]  = (num >> vecLen-3) & 1; 
   a[3]  = (num >> vecLen-4) & 1; 
    
   a[4]  = (num >> vecLen-5) & 1; 
   a[5]  = (num >> vecLen-6) & 1; 
   a[6]  = (num >> vecLen-7) & 1; 
   a[7]  = (num >> vecLen-8) & 1; 
    
   if (numVar > 3) { 
      a[8]  = (num >> vecLen-9) & 1; 
      a[9]  = (num >> vecLen-10) & 1; 
      a[10] = (num >> vecLen-11) & 1; 
      a[11] = (num >> vecLen-12) & 1; 
       
      a[12] = (num >> vecLen-13) & 1; 
      a[13] = (num >> vecLen-14) & 1; 
      a[14] = (num >> vecLen-15) & 1; 
      a[15] = (num >> vecLen-16) & 1; 
    
      if (numVar > 4) { 
         a[16] = (num >> vecLen-17) & 1; 
         a[17] = (num >> vecLen-18) & 1; 
         a[18] = (num >> vecLen-19) & 1; 
         a[19] = (num >> vecLen-20) & 1; 
          
         a[20] = (num >> vecLen-21) & 1; 
         a[21] = (num >> vecLen-22) & 1; 
         a[22] = (num >> vecLen-23) & 1; 
         a[23] = (num >> vecLen-24) & 1; 
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         a[24] = (num >> vecLen-25) & 1; 
         a[25] = (num >> vecLen-26) & 1; 
         a[26] = (num >> vecLen-27) & 1; 
         a[27] = (num >> vecLen-28) & 1; 
          
         a[28] = (num >> vecLen-29) & 1; 
         a[29] = (num >> vecLen-30) & 1; 
         a[30] = (num >> vecLen-31) & 1; 
         a[31] = (num >> vecLen-32) & 1; 
      } 
   } 
    
   // -- using the order, add the value stored in a[] to the end of the -- 
   // function. By the end of the loop, all bits will be represented. 
   unsigned int finNum = 0; 
    
   for (int z = 0; z < vecLen; z++) { 
      finNum = (finNum << 1) | a[order[z]]; 
   } 
   // -------------------------------------------------------------------- 
    
   return finNum; 
} 

C.6 Misc 

C.6.1 Misc.h 
/* 
 *  Misc.h 
 *  ClassifyCPP 
 * 
 *  Created by Neil Anderson on 2006-08-11. 
 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "main.h" 
 
int getPrecision(int); 
int bvtoi(vector<int>); 
vector<int> itobv(int, int); 
 
int **allocArr(int, int); 
void deallocArr(int **); 
 
string intToString(int); 
long double fac(int, int); 
long double C(int, int); 
 
bool fileExists(const string&); 

C.6.2 Misc.cpp 
/* 
 *  Misc.cpp 
 *  Classify 
 * 
 *  A library of useful functions used throughout the code. 
 * 
 *  Created by Neil Anderson on 2006-08-11. 
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 *  Copyright 2006 Neil Anderson. All rights reserved. 
 * 
 */ 
 
#include "Misc.h" 
 
// Return the number of bits needed to represent a given integer. 
int getPrecision(int x) { 
   return ((log (x) / log (2)) + 1); 
} 
 
// Convert a vector of binary values into an integer 
// Ex: 
// [0][1][1][1][0][0][1][1] 
//      becomes: 
// 01110011 (115 in decimal) 
int bvtoi(vector<int> v) { 
   int result = 0; 
   int s = v.size(); 
    
   for (int i = 0; i < s; i++) { 
      result = (result << 1) | v[i]; 
   } 
   return result; 
} 
 
// Convert a an integer into a vector of binary values 
// Ex: 
// 01110011 (115 in decimal) 
//      becomes: 
// [0][1][1][1][0][0][1][1] 
vector<int> itobv(int value, int prec) { 
   vector<int> result; 
    
   for (int i = 0; i < prec; i++) { 
      result.push_back((value >> (prec-i-1)) & 1); 
   } 
    
   return result; 
} 
 
// Dynamically allocate a 2D array. 
int **allocArr(int numRows, int numCol) { 
   int **ppi = new int*[numRows]; 
   int *curPtr = new int[numRows * numCol]; 
    
   for (int i = 0; i < numRows; i++) { 
      *(ppi + i) = curPtr; 
      curPtr += numCol; 
   } 
    
   return ppi; 
} 
 
// Clean up the allocArr call when finished with the data. 
void deallocArr(int ** arr) { 
   delete[] *arr; 
   delete[] arr; 
} 
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// Factorial. A cutoff was added so that it can be used 
// for binomial coefficients for large numbers. The cutoff 
// is used as part of the simplifaction of the binomial 
// coefficient equation before computation. 
long double fac(int n, int cutoff = 0) { 
   long double f = 1.0; 
    
   int i = 1; 
    
   if (cutoff !=0) 
      i += cutoff; 
    
   for (; i <= n; i++) { 
      f *= (long double)i; 
   } 
    
   return f; 
} 
 
// Binomial coefficient. 
long double C(int n, int r) { 
   long double result = 0; 
    
   if (r < 0 || r > n) 
      result = 0; 
   else { 
      // Simplify the equation by using the factorial's 
      // curoff function 
      if (r > (n - r)) { 
         result = (long double)(fac(n, r)/fac(n-r)); 
      } else { 
         result = (long double)(fac(n, (n-r))/fac(r)); 
      } 
   } 
   return result; 
} 
 
// Convert an int to a string. Used for concatenating ints to strings (like 
// adding a loop counter number to the end of a file name) 
string intToString(int num) { 
   ostringstream myStream; 
   myStream << num << flush; 
    
   return(myStream.str()); 
} 
 
// Check to see if a file already exists. 
bool fileExists(const string& fileName) { 
   fstream fin; 
   fin.open(fileName.c_str(), ios::in); 
   if(fin.is_open()) { 
      fin.close(); 
      return true; 
   } 
   fin.close(); 
   return false; 
} 


