
The Classification Of Boolean Functions Using The Rademacher-Walsh Transform

by

Neil Arnold Anderson
B.Sc, University Of Lethbridge, 2004

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

MASTER OF SCIENCE

in the Department Of Computer Science

 Neil Anderson, 2007
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

 ii

Supervisory Committee

The Classification Of Boolean Functions Using The Rademacher-Walsh Transform

by

Neil Anderson
Bachelor of Science, University of Lethbridge, 2004

Supervisory Committee

Dr. Jon C. Muzio, Department of Computer Science, University of Victoria
Supervisor

Dr. Jacqueline Rice, Department of Mathematics and Computer Science, University of Lethbridge
Supervisor

Dr. Micaela Serra, Department of Computer Science, University of Victoria
Departmental Member

Dr. David Wessels, Department of Computing Science, Malaspina University College
Outside Examiner

 iii

Abstract

Supervisory Committee
Dr. Jon C. Muzio, Department of Computer Science, University of Victoria
Supervisor

Dr. Jacqueline Rice, Department of Mathematics and Computer Science, University of Lethbridge
Supervisor

Dr. Micaela Serra, Department of Computer Science, University of Victoria
Departmental Member

Dr. David Wessels, Department of Computing Science, Malaspina University College
Outside Examiner

When considering Boolean switching functions with n input variables, there are 2
2

n

possible functions that can be realized by enumerating all possible combinations of input

values and arrangements of output values. As is expected with double exponential

growth, the number of functions becomes unmanageable very quickly as n increases.

This thesis develops a new approach for computing the spectral classes where the

spectral operations are performed by manipulating the truth tables rather than first

moving to the spectral domain to manipulate the spectral coefficients. Additionally, a

generic approach is developed for modeling these spectral operations within the

functional domain. The results of this research match previous for n ! 4 but differ when

 n = 5 is considered. This research indicates with a high level of confidence that there are

in fact 15 previously unidentified classes, for a total of 206 spectral classes needed to

represent all 2
2

n

 Boolean functions.

 iv

Table of Contents

Supervisory Committee ...ii
Abstract..iii
Table of Contents... iv
List of Tables... vii
List of Figures... viii
1 - Introduction ...1

1.0 Digital Logic And Boolean Switching Functions ..1
1.1 Motivation...2
1.2 Overview ...4
1.3 Summary...5

2 - Background..6
2.0 Introduction...6
2.1 Boolean Switching Functions ...6
2.2 Binary Representation ...7
2.3 Classification..8

2.3.1 Definition Of Classification ...9
2.3.2 Algebraic Classification ...9

2.3.2.1 Permutation Of Input Variables ...10
2.3.2.2 Negation Of Input Variables ..10
2.3.2.3 Negation Of Output...11

2.3.3 Spectral Classification ...12
2.3.3.1 Computing Spectral Coefficients ..14
2.3.3.2 Type 1: Permutation Of Input Variables ..17
2.3.3.3 Type 2: Negation Of Input Variables ...17
2.3.3.4 Type 3: Negation Of Output..18
2.3.3.5 Type 4: Variable Replacement With XOR ..18
2.3.3.6 Type 5: Output Replacement With XOR ..19

2.4 Spectral Signature..20
2.5 Other Function Groups ...20

2.5.1 Threshold ...20
2.5.2 Unate..22

2.6 Rules ...22
2.7 Double Exponential...23
2.8 Linear Independence ...23
2.9 The Problem..24
2.10 Summary...25

3 - Related Work...27
3.0 Introduction...27
3.1 Alternate Representations Of The Hadamard Transform....................................27
3.2 Other Transforms..28
3.3 History Of The Problem..29

 v

3.4 Summary...30
4 - Approaches ..32

4.0 Introduction...32
4.1 The Spectral Domain ..32
4.2 The Functional Domain ..33

4.2.1 Pre-Filter...34
4.2.2 Operations ..36

4.2.2.1 Type 1: Permutation Of Input Variables ..37
4.2.2.2 Type 2: Negation Of Input Variables ...37
4.2.2.3 Type 3: Negation Of Output..38
4.2.2.4 Type 4: Variable Replacement With XOR ..38
4.2.2.5 Applying The Rules ...40

4.2.3 The Canonical Function ...44
4.3 Summary...44

5 - Results And Analysis ..46
5.0 Introduction...46
5.1 The New Results ...46
5.2 The Difficulties Of n ≥ 5 ..48
5.3 Evidence..50

5.3.1 Compared Functions...50
5.3.2 Number Of Coefficients Per Class And Group..51
5.3.3 Calculations Of The Number Of Rules...54

5.4 Other Analysis ...56
5.4.1 Complexity ...56

5.4.1.1 Brute Force ..57
5.4.1.2 Optimization..57

5.4.3 Prediction ...59
5.5 Results Confidence ..61
5.6 Summary...62

6 - Conclusion And Future Work...63
6.0 Introduction...63
6.1 Future Work ..63

6.1.1 Implementation Analysis ...63
6.1.2 Theoretical ...64
6.1.3 Improvements To The Approach..64

6.2 Conclusion...66
Bibliography..68
A - Implementation ...69

A.0 Introduction..69
A.1 Language ..69
A.2 Program Structure ..71

A.2.1 main.cpp ..72
A.2.2 Prefilter Class ...73
A.2.3 Classify Class..74
A.2.4 Rules Class...75

A.2.4.1 Type 1: Permutation Of Input Variables ...75
A.2.4.2 Type 2: Negation Of Input Variables ..76

 vi

A.2.4.3 Type 4: Variable Replacement With XOR..77
A.2.5 Transform Class ...83

A.3 Optimizations ...85
A.3.1 Reducing The Problem ..85
A.3.2 Programming Techniques ..86

A.3.2.1 Dynamic Vs. Fixed Data Structures...86
A.3.2.2 Bitwise Operators ..88
A.3.2.3 Picking Data Types That Fit..89
A.3.2.4 Memory Vs. Clock Cycles..90
A.3.2.5 Object-Oriented Programming..90
A.3.2.6 Dividing The Problem...91

A.4 Problems...92
A.5 Summary ..92

B - Classes ...94
B.0 Introduction ..94
B.1 Complete Spectral Class List For n = 5..94
B.2 Transcription Of Hurst Printouts ..98
B.3 Summary ..103

C - Source Code..104
C.1 Main...104

C.1.1 main.h..104
C.1.2 main.cpp..104

C.2 Prefilter...105
C.2.1 Prefilter.h ...105
C.2.2 Prefilter.cpp..106

C.3 Rules...107
C.3.1 Rules.h...107
C.3.2 Rules.cpp ...108

C.4 Classify ...113
C.4.1 Classify.h..113
C.4.2 Classify.cpp ..114

C.5 Transform...117
C.5.1 Transform.h...117
C.5.2 Transform.cpp ...118

C.6 Misc..121
C.6.1 Misc.h ..121
C.6.2 Misc.cpp ..121

 vii

List of Tables

Table 1 – Truth table for Figure 1...1
Table 2 - Correlation between spectral coefficients and input variables for n = 312
Table 3 – Truth table for Function 189 ...15
Table 4 – The number of functions for n = 1 through 10 ...25
Table 5 – Number of Functions for n = 3 ..36
Table 6 – Type 1 Rules for n = 3...37
Table 7 – Type 2 Rules for n = 3...37
Table 8 – Type 3 transformations for n = 3 ...38
Table 9 – Type 4 input variable lookup table for n = 4 ..40
Table 10 – All possible combinations of input variables from lookup table in Table 9....40
Table 11 – Type 4 Rules for n = 3 ...42
Table 12 – Previously unidentified classes for n = 5 ...47
Table 13 – Number of functions per class and group for n = 3.......................................51
Table 14 – Number of functions per class and group for n = 4.......................................52
Table 15 – Number of functions per class and group for n = 5.......................................53
Table 16 – Number of rules for n ≤ 6 ..54
Table 17 – Comparison between classes for n = 3,4,5 ..60
Table 18 – Logical representation of lookup table for n = 4 ...78
Table 19 – Decimal representation of lookup table for n = 4..78
Table 20 – Lookup table generation for n = 5..79
Table 21 – Complete spectral class list for n = 5 ..98
Table 22 – Transcription of Hurst Printouts..101

 viii

List of Figures

Figure 1 – Digital Circuit...1
Figure 2 – a) AND b) OR c) XOR d) NOT...6
Figure 3 – Truth table format..8
Figure 4 – Type 1: Permute input variables x2 and x1...10
Figure 5 – Type 2: Negate input variable x2...11
Figure 6 – Type 3: Negate output vector values ...11
Figure 7 – Spectral coefficients for n = 4 ..13
Figure 8 – Reordered spectral coefficients for n = 4 ...13
Figure 9 – Hadamard transformation matrix for n = 3...15
Figure 10 – Example converting the output vector of Function 189 from Z to Y encoding
..16
Figure 11 – Calculate the spectral coefficients for Function 189.....................................16
Figure 12 – Type 4: Substitute x2 ⊕ x1 for input variable x2..18
Figure 13 – Type 5: Perform XOR between the output vector and x2............................19
Figure 14 – Threshold function for n = 2 ...21
Figure 15 – Spectral output order for Hadamard (SH), Walsh (SW), Rademacher-Walsh
(SRW), and Walsh-Paley (SWP) transforms ..28
Figure 16 – a) Original function b) Function a with x2 replaced with x2 ⊕ x038
Figure 17 – True bits on the diagonal ..39
Figure 18 – Transformation rule combinations (Details in Figure 19).............................41
Figure 19 - Details of Figure 18 ...43
Figure 20 – Implementation flow...71
Figure 21 – Pseudocode for pre-filter logic...73
Figure 22 – Pseudocode for classification logic...74
Figure 23 – Pseudocode for Type 1 rule generation ...76
Figure 24 – Example of array item 4 (011) ...76
Figure 25 – Pseudocode for Type 2 rule generation ...77
Figure 26 – Pseudocode for lookup table creation..80
Figure 27 – Pseudocode for linear independence check for n = 381
Figure 28 – C++ code to check linear independence for any value of n81
Figure 29 – Innermost for loop logic..82
Figure 30 – Innermost loop logic for n = 2 (unfolded loops) ...82
Figure 31 – Pseudocode for rule generation ...83
Figure 32 – Pseudocode for transformation logic ...84
Figure 33 – All possible functions for n = 1 ..85
Figure 34 – Check if any bits are set to true ...89
Figure 35 – Check if any bits are true using bitwise operators ..89
Figure 36 – Addendum printout for Hurst Class 31 in 0/1 encoding102

 ix

Science, my lad, is made up of mistakes, but they are mistakes which it is useful to
make, because they lead little by little to the truth.

- Jules Verne

Chapter
1 - Introduction

1.0 Digital Logic And Boolean Switching Functions
In the field of digital logic, there are many techniques for representing circuits. One

representation is shown in Figure 1.

x

x

x
0

1

2

Figure 1 – Digital Circuit

Another representation is a truth table, which is used to tabulate the output for each

possible combination of input values. For n inputs, a truth table lists 2
n possible results.

For example, the circuit in Figure 1 can be represented by the truth table in Table 1.

x2 x1 x0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 1 – Truth table for Figure 1

Circuits with even a moderate number of input variables generate truth tables that are

very large. A more compact representation of the circuit can be achieved using a

2

mathematical expression called a Boolean switching function. The circuit in Figure 1 can

be represented by the Boolean switching function in Equation (1.1).

f (X) = x

2
x

2
+ x

1
x

0
+ x

2
x

0
 (1.1)

Often the output vector of the truth table may be encoded as an integer for an even more

compact representation. In this case, the individual bits of the integer correspond to truth

table values. For example, the truth table output vector for (1.1) is:

 10111101

There are several ways of encoding this vector as an integer. In [2] the output vector of a

function is encoded as an octal number. In octal, this function would be referred to as

Function Number 275. It is possible to use any encoding scheme to represent a function,

including hexadecimal and decimal. In this thesis, we have chosen to use a decimal

representation. The decimal encoding for this example would be Function Number 189.

As these encodings are simply different interpretations of the same underlying bit strings,

the function numbers can be converted between representations for direct comparison.

As indicated by Hurst, et al. in [2], although encoding provides a compact

representation of the functions, it does not “give any direct indication of functions of

similar structure or complexity.” A classification system could be used to group functions

together based on other properties such as these, and also provide an even more compact

representation of these functions.

1.1 Motivation

When considering Boolean switching functions with n variables, there are 2
2

n

 possible

functions, each of which can be realized by enumerating all possible combinations of

input values and arrangements of output values. As is expected with double exponential

3

growth, the number of functions becomes unmanageable very quickly as n increases. To

put this growth into perspective, n = 4 produces a manageable 65,536 functions, while

 n = 6 produces in excess of 1.8 !10
19 functions.

If one was to examine all possibilities for equivalent circuits when designing a processor,

for example, it becomes impossible to consider all possible scenarios as the number of

inputs for the circuit increases. Not all circuit realizations are considered equal, as some

will provide superior qualities for power consumptions, physical space, latency, etc.

Classification could assist this kind of application by making the navigation and selection

of functions more manageable.

Using classification, all 2
2

n

 functions can be considered through a small number of

representative functions. Hurst, et al. [2] list two advantages of classification:

1. Increased understanding of functions that have essentially identical

circuit realisations, leading to the classification of all functions of ≤n

variables in some compact manner.

2. Possibility of establishing a small set of “standard functions” or

“prototype functions,” from which any particular function may be

realised by implementation of appropriate operations corresponding to the

classification procedure.

The spectral classes for functions with n ! 5 input variables were calculated in [2] and

[4]. Considering 30 years have passed since the previous work was computed, it seemed

reasonable that advances in computer hardware might allow for computing functions

where n > 5 . With this possibility in mind, this research aims to reproduce the results

from [2] and [4], albeit with a different approach, and attempts to harness current

 2
2

n

4

technology to calculate spectral classes for n > 5 . The goals for this research are as

follows:

1) Develop a new approach for computing spectral classes, and implement this

approach.

2) Independently reproduce and verify the results published in [2], the spectral

classes for n = 5 , ensuring they are a valid basis for future work. This goal is to be

carried out using the results of goal 1.

3) Use the knowledge gained in goal 2 to investigate the possibility of computing the

spectral classes for functions with values of n greater than 5. If it is feasible to

compute the spectral classes for n > 5 , then provide the classes for as many values

of n as possible.

1.2 Overview
In Chapter 2, this thesis provides an overview of various established Boolean function

classification techniques. Chapter 2 also provides a more in-depth look at the established

details of a particular classification technique within the spectral domain, as this is the

focus of this thesis. Problems similar to spectral classification, and the approach used for

previous work, are discussed in Chapter 3. In Chapter 4 various approaches for

computing spectral classes are considered and discussed, including their advantages and

disadvantages, with a focus on the approach used in this thesis. The new results from this

research and the analysis of the approach used are presented in Chapter 5. Chapter 6

covers potential future work and improvements to the approach.

The implementation of the techniques discussed in this thesis are discussed in detail in

Appendix A, including specific techniques used to optimize for execution time and

resource usage. Included in Appendix B is the classification lists created by this

5

implementation in Appendix A, and the transcription and reconstruction of the results

from previous work. Finally, Appendix C contains the C++ source code that produced

the results discussed in this thesis.

1.3 Summary
This research attempts to reproduce the spectral classes produced in [2] and [4] for

 n ! 5 by performing all operations within the functional domain, rather than the spectral

domain. Although the goal is spectral classification, the operations can be accomplished

by manipulating the truth tables rather than first moving to the spectral domain to

manipulate the spectral coefficients. The results of this research match [2] and [4] for

 n ! 4 but differ when n = 5 is considered. This research indicates with a high level of

confidence that there are in fact 15 additional classes, for a total of 206 spectral classes

needed to represent all 2
2

5

 Boolean functions.

Computer hardware has not advanced enough for spectral classification of functions

with n > 5 input variables to be calculated with existing approaches to classification, even

with heavy optimization.

6

Chapter
2 - Background

2.0 Introduction
This chapter presents the concepts and definitions required for the topics covered in

this thesis. Concepts introduced in this chapter include Boolean switching functions,

classification, and the spectral domain. Additionally, we introduce a concept that we have

termed "rules," which is essential to the classification approach introduced in this thesis.

2.1 Boolean Switching Functions
According to Hurst, et al. [2] and Rice [1], a Boolean switching function (referred to

simply as a function for the remainder of this thesis) is a mathematical equation that

describes a logic system based on Boolean logic operations. The basic logic operations

are: AND, OR, NOT and XOR (exclusive-OR). There are also the operations NAND

(not-AND), NOR (not-OR), and XNOR (not-exclusive-OR) which can be derived by

combining the basic logic operations.

x1 x0
0 0 0
0 1 0
1 0 0
1 1 1

x1 x0
0 0 0
0 1 1
1 0 1
1 1 1

x1 x0
0 0 0
0 1 1
1 0 1
1 1 0

 x
0 1
1 0

(a) (b) (c) (d)
Figure 2 – a) AND b) OR c) XOR d) NOT

Traditionally in Boolean logic, AND and OR are represented by the intersection (!),

and union (!) symbols, but may also be represented by sum (+) and product (! , or

7

simply adjacent terms) symbols. For example, expression (2.1) represents an AND

operation between variables

x

0
 and

x

1
, while expression (2.2) represents the OR

operation. For the purposes of this thesis, the sum and product operators will be used.

x

0
x

1
 (2.1)

x

0
+ x

1
 (2.2)

The exclusive-OR operator is represented by ! , while the NOT operator, also known as

invert, negate, or bar, is traditionally represented by the symbol ¬ preceding the

variable, or a solid bar above the variable as seen in equation (2.3).

 x (2.3)

The output for the AND operation, as seen in Figure 2a, is true when the values of all

input variables are true, and false in all other cases. For the OR operation, as seen in

Figure 2b, the output is true when the value of at least one input variable is set to true.

The output for the NOT operation, as seen in Figure 2d, is the opposite value of the

input variable. Exclusive-OR, as seen in Figure 2c, has the output of true when there are

an odd number of input variables with the value set to true, but false for all other cases,

including when both input bits are set to true. The operations NAND, NOR and XNOR

are simply the NOT operation applied to the output of AND, OR and XOR respectively.

2.2 Binary Representation
The decimal representation of a Boolean function relies on the assumption of a certain

order of the output vector bits in the truth table. For this thesis, it is assumed that the

most significant bit of the integer is the first row of an ordered truth table (the “zero”

row). For example, as seen in Figure 3, the order of the bits to be encoded as an integer

8

would be abcdefgh . If the output vector happens to be shorter than the data type used to

represent it, the number is padded with zeros on the left hand side (most significant bits).

x2 x1 x0
0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

Figure 3 – Truth table format

The convention used in this thesis is as follows: the input variables of a truth table are

read from right to left. In the example in Figure 3, the first column on the right is the

output vector, followed by the column for variable z and followed by variables y and x .

This thesis also labels variables with a single letter and an incrementing subscript; the first

variable on the right-most variable column can also be called input variable 1, or

x

i
 and

the left most column of the truth table is the n th input variable, or

x

n
. In general, when

subscripts are not used, the term “variable y ” would be used rather than “input variable

2” in that example.

Latin letters are used for output vector and truth table results when referring to generic

cases rather than specific cases with defined truth values. In general, the letters chosen for

these generic examples begin with lowercase a and increase incrementally.

2.3 Classification

Given that 2
2

n

 unique functions can be realized for n input variables, it is evident that

even for relatively small values of n it is impossible to evaluate all possible functions.

Once a classification technique is determined, if one considers a representative function of

a given class as a generic black box circuit, it could be used as a building block for all

9

functions within that class. To build a different circuit within this class, one would start

with the black box circuit, and modify the inputs and/or outputs using simple operations

equivalent to the established classification criteria. For example, a function may only

differ from the representative function by an inverter on the output. With a generic

circuit for each class, a potential application for classification is automatic circuit

optimization (for power efficiency, physical space, speed, etc.) for an arbitrary value of n.

2.3.1 Definition Of Classification
The classification of a set of functions F into classes

Q

1
,Q

2
,…,Q

p
 based on

transformations

T

1
,T

2
,…,T

m
 is such that:

F = Q
1
!Q

2
!…!Q

p
and

Q
i
"Q

j
= # where i $ j

Two functions

f

i
, f

j
, i ! j , are in the same class

Q

k
 if and only if

f

i
 can be obtained

from

f

j
 by the application of some appropriate set of transformations from

T

1
,…,T

m
. No

set of transformations applied to a function in

Q

i
 can lead to a function in

Q

j
, for any

 i, j !{1,…, p} where i " j .

2.3.2 Algebraic Classification
The most common classification scheme is based on NPN: Negation of input variables

(N), Permutation of input variables (P), and Negation of output (N). This technique is

referred to as algebraic classification as described by [4]. These transformations are

described in detail in sections 2.3.2.2, 2.3.2.1, and 2.3.2.3.

10
2.3.2.1 Permutation Of Input Variables

As discussed previously, in the functional domain, a function can be represented as a

truth table with columns for input variables on the left and a column for the output of the

function on the right, as in Figure 4.

x2 x1 x0
0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

→

x1 x2 x0
0 0 0 a
0 0 1 b
1 0 0 c
1 0 1 d
0 1 0 e
0 1 1 f
1 1 0 g
1 1 1 h

→

x1 x2 x0
0 0 0 a
0 0 1 b
0 1 0 e
0 1 1 f
1 0 0 c
1 0 1 d
1 1 0 g
1 1 1 h

Original Permute

x

2
 and

x

1
 Sort

Figure 4 – Type 1: Permute input variables x2 and x1

To permute the input variables, the entire column of each variable to be affected is

moved to its new location, while leaving the output vector untouched. The resulting table

is no longer an ordered truth table (with input values incrementing from 0 through n).

We then sort the rows to restore the ordered truth table by swapping entire rows. Sorting

the truth table results in a new output vector, which represents the output vector of the

new function. Using a bit string to represent the function, output vector abcdefgh is

transformed into abefcdgh when permuting input variables x and y.

2.3.2.2 Negation Of Input Variables
To negate the input variables, the values in the entire column of each variable to be

affected are inverted, while leaving the output vector untouched, as illustrated in Figure 5.

11

x

2

x

1

x

0

0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

→

x

2

x

1

x

0

1 0 0 a
1 0 1 b
1 1 0 c
1 1 1 d
0 0 0 e
0 0 1 f
0 1 0 g
0 1 1 h

→

x

2

x

1

x

0

0 0 0 e
0 0 1 f
0 1 0 g
0 1 1 h
1 0 0 a
1 0 1 b
1 1 0 c
1 1 1 d

15
Original

 Negate

x

2
 Sort

Figure 5 – Type 2: Negate input variable x2

The resulting table is no longer an ordered truth table (values incrementing from 0 to n).

We then sort the rows to restore the ordered truth table layout by swapping entire rows.

Sorting the truth table results in a new output vector, which represents the output vector

of the new function. Using a bit string to represent the function, output vector abcdefgh is

transformed into efghabcd when negating input variable x2.

2.3.2.3 Negation Of Output
In the functional domain, the negation of the output is accomplished in a single step, as

in Figure 6.

x

2

x

1

x

0

0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

→

x

2

x

1

x

0

0 0 0 ¬ a
0 0 1 ¬ b
1 1 0 ¬ c
1 1 1 ¬ d
1 0 0 ¬ e
1 0 1 ¬ f
0 1 0 ¬ g
0 1 1 ¬ h

Original Negate Output

Figure 6 – Type 3: Negate output vector values

To negate the output vector, the every value in the output vector is inverted.

12
2.3.3 Spectral Classification

In contrast to the output vector in the functional domain, which consists of the truth

table output, a function is defined in the spectral domain by a vector of spectral

coefficients.

The spectral domain has the distinct advantage of allowing one to see the “global

picture of the network,” rather than simply the “discrete nature of the data format.” [2]

As input variables are changed, one can see how it affects the entire function, making the

spectral domain particularly useful.

The output vector in the spectral domain, S , consists of individual coefficients which

use the notation

s
!

 where subscript ! is a subset of
 1,…,n . Table 2 lists the "meaning"

of the spectral coefficients, or how they correlate with the input variables of the function,

for n = 3 . This can be generalized for any value of n.

s

0
 (number of false - number of true minterms)

s
1

 similarity to input variable

x

1

s

2
 similarity to input variable

x

2

s
12

 similarity to input variable

x

1
! x

2

s

3
 similarity to input variable

x

3

s
13

 similarity to input variable

x

1
! x

3

s

23
 similarity to input variable

x

2
! x

3

s
123

 similarity to input variable

x

1
! x

2
! x

3

Table 2 - Correlation between spectral coefficients and input variables for n = 3

The generalized spectral coefficient output vector S for n = 4 , as achieved by the

Hadamard transformation matrix (further discussed in Section 2.3.3.1) can be observed in

Figure 7.

13

s

0
 s

1
 s

2
 s

12
 s

3
 s

13
 s

23
 s

123
 s

4
 s

14
 s

24
 s

124
 s

34
 s

134
 s

234
 s

1234

Figure 7 – Spectral coefficients for n = 4

The coefficients are often reordered into groups according to their order, as seen in

Figure 8, but the actual output order depends on the transformation matrix used in their

calculation.

s

0
; s

1
s

2
s

3
s

4
; s

12
s
13

s
14

s
23

s
24

s
34

; s
123

s
124

s
134

s
234

; s
1234

Figure 8 – Reordered spectral coefficients for n = 4

The significance of the values are summed up by Hurst, Miller and Muzio [2] as follows:

i. The sum of all spectral coefficients s of S for any fully defined function f(X) is ±2n

ii. The maximum value of any individual s is ±2n; this occurs when f(X) is identically equal
to any row in [the spectral transform matrix] or its compliment. The range of each s is
{-2n,-2n+2,...,0,...,2n-2,2n}

iii. When any individual s is maximum-valued, all remaining 2n-1 coefficients of S will be
zero-valued

iv. When any input variable xi is redundant in a given function f(X), the 2n-1 spectral
coefficients that contain i in their subscript identification will all be zero-valued.

Spectral classification encompasses the previously defined NPN classes and adds two

additional operations involving the XOR Boolean operator. The NPN operation types 1

through 3 will be briefly defined in terms of the spectral domain while additional spectral

operations (referred to as Type 4 and Type 5) will be described in terms of both

functional domain and the spectral domain, as their functional domain properties have

not previously been defined. All definitions are based on those by Hurst, Miller, and

Muzio in [2].

In order to fully explain this technique, we must first provide some background on the

spectral representation of a function, and how we calculate the spectral coefficients.

14

2.3.3.1 Computing Spectral Coefficients
Calculating the vector of spectral coefficients, S , is achieved with equation (2.4).

 S =T
n
Y (2.4)

The T term is the Hadamard transformation matrix, which is defined in equation (2.5).

The matrix is a complete 2
n
! 2

n matrix where n is the number of input variables. It is

possible to use other transformation matrices, but the order of the spectral coefficients will

be different. The Hadamard transformation matrix was chosen due to its recursive

nature, and to allow direct comparison to previous work by other authors. The

Hadamard transformation matrix’s recursive definition makes it particularly attractive for

programmatic implementation.

T
n
!

T
n!1

T
n!1

T
n!1 !T

n!1

"

#
$

%

&
' where T

0
! +1 (2.5)

The Y is the output vector of the function in the functional domain, but +1/!1 encoding

is used rather than the more common 0 /1 encoding. Equation (2.6) can be used to

convert the output vector Z (the 0 /1 encoded output vector of the truth table for the

function) to the +1/!1 encoded Y vector.

y

j
=1! 2z

j
 for all j (2.6)

In equation (2.6), lower case y and z are considered to be elements of Y and Z

respectively. An example of a Hadamard transformation matrix where n = 3 can be seen

in the example in Figure 9.

15

T
3
!

1 1 1 1 1 1 1 1

1 !1 1 !1 1 !1 1 !1

1 1 !1 !1 1 1 !1 !1

1 !1 !1 1 1 !1 !1 1

1 1 1 1 !1 !1 !1 !1

1 !1 1 !1 !1 1 !1 1

1 1 !1 !1 !1 !1 1 1

1 !1 !1 1 !1 1 1 !1

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

Figure 9 – Hadamard transformation matrix for n = 3

In Chapter 1, Function 189 that represents the circuit in Figure 1 is presented. Using the

Hadamard transform, this function can be moved from the functional domain to the

spectral domain.

x

2

x

1

x

0

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 3 – Truth table for Function 189

The first step to transform Function 189 into the spectral domain is to take the output

vector, Z , from Table 3 and convert it to the +1/-1 encoding using (2.6). The conversion

of vector Z to Y is demonstrated in Figure 10.

16

1

0

1

1

1

1

0

1

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

'

1(2(1)

1(2(0)

1(2(1)

1(2(1)

1(2(1)

1(2(1)

1(2(0)

1(2(1)

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

=

(1

+1

(1

(1

(1

(1

+1

(1

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

Figure 10 – Example converting the output vector of Function 189 from Z to Y encoding

Using (2.4), the output vector Y can be transformed into the spectral domain as seen in

Figure 11.

s
0

s
1

s
2

s
12

s
3

s
13

s
23

s
123

=

1 1 1 1 1 1 1 1

1 !1 1 !1 1 !1 1 !1

1 1 !1 !1 1 1 !1 !1

1 !1 !1 1 1 !1 !1 1

1 1 1 1 !1 !1 !1 !1

1 !1 1 !1 !1 1 !1 1

1 1 !1 !1 !1 !1 1 1

1 !1 !1 1 !1 1 1 !1

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

!1

+1

!1

!1

!1

!1

+1

!1

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

=

!4

0

0

!4

0

!4

4

0

Figure 11 – Calculate the spectral coefficients for Function 189

The final output in the output vector, S , using the reordered format in Figure 8 is:

 !4; 0 0 0; ! 4 ! 4 4; 0

Note that the coefficients are "numerically equal to {! agreements between output

 f (X) and the appropriate input function [minus] ! disagreements between f (X) and

the input function}” [2].

17
2.3.3.2 Type 1: Permutation Of Input Variables

The spectral Type 1 operation, permutation of input variables, is the same operation as

described in Section 2.3.1.2. We now discuss Type 1 in terms of the spectral domain

rather than the functional domain.

In the spectral domain, if input variables

x

i
 and

x

j
 are swapped, all spectral

coefficients which include subscripts i and j must also be swapped, as seen in (2.7).

si ! s j

sik ! s jk

sikl ! s jkl

!

 (2.7)

All other coefficients remain unchanged.

2.3.3.3 Type 2: Negation Of Input Variables
The spectral Type 2 operation, negation of input variables, is the same operation as

described in Section 2.3.1.2. We now discuss Type 2 in terms of the spectral domain

rather than the functional domain.

In the spectral domain, if an input variable

x

i
 is negated, all spectral coefficients that

include subscript i must be negated, as seen in (2.8).

si ! "si

sij ! "sij

sikl ! "sikl

!

 (2.8)

All other coefficients remain unchanged.

18
2.3.3.4 Type 3: Negation Of Output

The spectral Type 3 operation, negation of output, is the same operation as described

in section 2.3.1.3. We now discuss Type 3 in terms of the spectral domain rather than the

functional domain.

In the spectral domain, if the output is negated, all spectral coefficients are negated, as

seen in (2.9).

s
0
! "s

0

s
1
! "s

1

s
2
! "s

2

!

s
12...n

! "s
12...n

 (2.9)

2.3.3.5 Type 4: Variable Replacement With XOR
In the functional domain, the input variables are represented in a truth table with the

resulting output vector on the right hand side, as in Figure 12.

x

2

x

1

x

0

0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

→

x

2
! x

1

x

1

x

0

0 0 0 a
0 0 1 b
1 1 0 c
1 1 1 d
1 0 0 e
1 0 1 f
0 1 0 g
0 1 1 h

→

x

2
! x

1

x

1

x

0

0 0 0 a
0 0 1 b
0 1 0 g
0 1 1 h
1 0 0 e
1 0 1 f
1 1 0 c
1 1 1 d

Original Substitute

x

2
! x

1
 for x Sort

Figure 12 – Type 4: Substitute x2 ⊕ x1 for input variable x2

To replace the input variables with an XOR expression, the entire column of each

variable to be affected has its values replaced based on the result of the expression, while

leaving the output vector untouched. The resulting table is no longer an ordered truth

table (values incrementing from 0 to n). We sort the rows to restore the ordered truth

19

table layout by swapping entire rows. Sorting the truth table results in a new output

vector, which represents the output vector of the new functions.

In the spectral domain, if variable

x

i
 is replaced with

x

i
! x

j
, all spectral coefficients

which include subscripts i and ij must be swapped, as seen in (2.10).

si ! sij

sik ! sijk

sikl ! sijkl

!

 (2.10)

All other coefficients remain unchanged.

2.3.3.6 Type 5: Output Replacement With XOR
In the functional domain, the input variables are represented in a truth table with the

resulting output vector on the right hand side, as in Figure 13. To replace the output

vector item with Type 5 modified values, the selected variable must be applied to each

item in the output vector using the XOR operator. The resulting output vector is the new

function created by the Type 5 classification transform.

x

2

x

1

x

0

0 0 0 a
0 0 1 b
0 1 0 c
0 1 1 d
1 0 0 e
1 0 1 f
1 1 0 g
1 1 1 h

→

x

2

x

1

x

0

0 0 0 a ⊕ x2
0 0 1 b ⊕ x2
1 1 0 c ⊕ x2
1 1 1 d ⊕ x2
1 0 0 e ⊕ x2
1 0 1 f ⊕ x2
0 1 0 g ⊕ x2
0 1 1 h ⊕ x2

Original Output XORed by x2
Figure 13 – Type 5: Perform XOR between the output vector and x2

In the spectral domain the output of the function is replaced with the XOR of the

function and a variable:

f (X) ! f (X)" x

i
. As seen in (2.11), spectral coefficients with

subscript i are swapped with its equivalent coefficient lacking an i subscript.

20

si ! s
0

sij ! s j

sijk ! s jk

!

 (2.11)

All pairs of spectral coefficients are swapped and therefore all 2
n coefficients are affected.

2.4 Spectral Signature
In [2] and [4], an abbreviated form is used to represent the properties of a spectral

class. This thesis refers to this form as the function's spectral signature, or simply its

signature. The signature's form is the made up of the spectral coefficient

s

o
, followed by

the first order coefficients, and the "summary of the complete spectrum." [2] The

summary of the complete spectrum is simply a list of the absolute values of the spectral

coefficients and the number of occurrences of each. For example, using the function in

Figure 11, the signature for Function 189 would be:

 !4 0 0 0 4 " 0 4 " 4

2.5 Other Function Groups
There have been numerous other approaches to grouping functions according to some

specific property. Although the focus of this research is on spectral classification, it is

worthwhile to consider these other approaches, as they have been the focus of

classification attempts in the past.

2.5.1 Threshold
A threshold function, which may also be referred to as a linearly separable function, is a

function where the 2
n minterms are represented as nodes in a n -dimensional space

hyper-cube where a plane can “unambiguously divide all true (f (X) =1) nodes from all

21

false (f (X) = 0) nodes” [2]. The 2
n nodes are equally spaced. An example for n = 2 can

be seen in Figure 14.

Figure 14 – Threshold function for n = 2

Although linear separation can be used to classify functions, the effectiveness of

classification decreases as n increases. The equation of the plane can be calculated by

equation (2.12), as given in [2].

a
1
x

1
+ a

2
x

2
+ ...+ a

n
x

n
= d

where all the a
i
 are constants

 (2.12)

The axes of the n -dimensional hyper-cube are the input variables

x

1
,x

2
,...,x

n
, while

a

i

and d are constants.

Given the equation of the plane, any node on the origin side of the partition will have

equation (2.13).

a

1
x

1
+ a

2
x

2
+ ...+ a

n
x

n
< d (2.13)

The remaining nodes (on the plane and to the opposite side of the origin) have equation

(2.14).

a

1
x

1
+ a

2
x

2
+ ...+ a

n
x

n
! d (2.14)

22

Therefore, one can say if a node has the equation (2.13) then f (X) = 0 , otherwise if the

node has equation (2.14) then f (X) =1 . Each constant

a

i
 represents the “weight” or

importance of an input variable to the output of the function in a threshold logic gate. [2]

2.5.2 Unate
A unate function is defined as a function where both a variable and its complement do

not exist within a minimized sum of products representation of f (X) , according to [2].

For example, the function

f (X) = x

1
x

2
+ x

1
x

3
 is unate, while the function

g (X) = x

1
x

2
+ x

1
x

3
 is not (both

x

1
 and

x

1
 exist within a minimized sum of products

expression for g (X)). Although this is a fairly simple criterion for classification, there

exists a caveat that makes determining whether or not is unate very complex. A function

must be minimized before it can be determined whether or not it is unate.

2.6 Rules
For the purposes of this thesis, a very specific definition for the term “rule” is used. A

rule is the representation for the permutation of the output vector for a given

transformation of the function. For example, in Rule (2.15), letters of the alphabet

represent the original output vector of the function.

a,b,c,d ,e, f , g ,h{ } (2.15)

b,a,c,d , f ,e, g ,h{ } (2.16)

Rule (2.16) represents how the binary values of the original vector are interchanged. If the

original output vector is

0,1,1,0,1,0,1,0() , then the rule stated in (2.16) states that the new

output vector is

1,0,1,0,0,1,1,0() .

23

2.7 Double Exponential
For the purpose of this thesis, the term "double exponential," is used to describe a

constant to the power of an exponential function, as seen in equations (2.17).

 f (x) = abn

 (2.17)

Complexity analysis for double exponential algorithms results in O(2c
n

) where a, b, and c

are constants.

2.8 Linear Independence
Let K be a commutative field. An ordered set of n elements (

x

1
,x

2
,…,x

n
), all

x

i
!K is

an n -vector over K . The r n -vectors

y

1
, y

2
,…, y

r
 are linearly dependent over K if

there exist scalars

a

1
,a

2
,…,a

r
 not all 0 such that:

a

1
y

1
+ a

2
y

2
+…+ a

r
y

r
= 0

otherwise they are linearly independent. In our case, K = GF(2) = {0,1} .

As an example, given the three vectors of (1,0,0) , (0,1,0) , and (0,0,1) , it can be seen

that they are linearly independent because no one vector can be created by combinations

of the remaining vectors. In contrast, the vectors (2,!1,1) , (1,0,1) , and (3,!1,2) , are not

linearly independent since the first two vectors can be added to create the third vector.

In this research, only the functional domain is considered for the constants

a

i
; in our

case the constants

a

i
!{0,1} . Note, the implementation of XOR is addition mod2. For

each function the 2
n
!1 equations in equation (2.18) must be calculated.

24

0 f
1
+ 0 f

2
+!+ 0 f

n!1
+1 f

n
" 0

0 f
1
+ 0 f

2
+!+1 f

n!1
+ 0 f

n
" 0

"

1 f
1
+1 f

2
+!+1 f

n!1
+ 0 f

n
" 0

1 f
1
+1 f

2
+!+1 f

n!1
+1 f

n
" 0

 (2.18)

2.9 The Problem
The number of functions for a given number of input variables increases double

exponentially. This growth causes consideral problems when trying to process the

functions. When considering all possible functions for a given number of input variables,

 n , as tabulated in Table 4, it becomes apparent how quickly the number of functions

becomes unmanageable. For situations where n < 5 , all functions can be considered and

processed relatively easily. Even for n = 4 , the total number of functions to consider is

only 65,536, which would consume only 128KB of memory assuming the Boolean output

vectors are stored as short integers (16 bits or 2 Bytes). Simply increasing n by 1 to n = 5

causes the number of functions to increase to over 4 million. To store all possible

functions for n = 5 , a full integer (32 bits or 4 Bytes) is needed, consuming over 16GB of

memory. Increasing n again to n = 6 , the number of functions pushes the memory usage

to over 137,438,953,476GB of memory when storing the functions as long long integers

(64 bits or 8 Bytes). Although today it is possible to load 16GB worth of data into primary

storage, albeit not particularly feasible, it is currently not possible to load

137,438,953,476GB of data on any one storage device. Even without considering

processing the data, the simple storage of all these functions quickly becomes impractical.

Compromises could be made to not store all functions in memory at once, but at the cost

of overall computing time as there is an increase in overhead due to memory

management. The problem is already very computationally intensive, and adding the

25

extra burden of memory swapping makes the approaches used in this implementation

unfeasible.

 n Number of Functions Times larger than n = 5

1 4 -
2 16 -
3 256 -
4 65,536 -
5 4,294,967,296 1
6 1.8447744074 x 1019 ~4,294,967,296
7 3.4028236692 x 1038 ~7.9 x 1028

8 1.1579208924 x 1077 ~2.7 x 1067

9 1.3407807930 x 10154 ~3.1 x 10144

10 1.7976931349 x 10308 ~4.2 x 10298

Table 4 – The number of functions for n = 1 through 10

Even applying a small operation to all possible functions that would only take a single

clock cycle in a processor would quickly become too slow to be useful.

As an example, consider a computer system where there is no overhead for loading

data from memory, possesses a 2.5GHz processor, and which can perform 2,500,000,000

single clock cycle operations per second. If one were to use this system to process all

possible functions for n = 5 with a single clock cycle operation, it would take

approximately 1.7 seconds. Increasing n to n = 6 , this same operation would now take

7,378,697,629 seconds, or nearly 234 years. This example is not realistic, as most useful

operations would take many more than a single clock cycle to accomplish, and system

overhead would be a fairly significant factor.

2.10 Summary
It is apparent that some form of classification is needed to abbreviate the list of

functions that are processed, yet still be able to be assured that all possible functions are

considered. Rather than iteratively trying every possible function looking for the most

suitable function for a given purpose, the ability to process a certain subset of functions

26

could make such a task feasible by reducing the number of functions significantly.

Classification based on certain properties of the functions should accomplish this goal.

The concepts needed for this thesis, such as Boolean switching functions, classification,

the spectral domain, and the newly introduced concept of rules are defined. These

concepts are used and expanded upon in the subsequent chapters.

27

Chapter

3 - Related Work
3.0 Introduction

There are many problems that use the same techniques as spectral classification. Some

problems are simply equivalent forms of spectral classification, while others are used for

other types of classification.

The previous work of spectral classification in [2], which is the basis for this research,

published only the list of spectral signatures, but lacks the required details needed for

further analysis of the data. This thesis focuses on spectral coefficients that have been

produced by the Hadamard transform, but it is by no means the only spectral transform

available. Of the transforms available, some are canonical specializations of the

Hadamard transform, while others expose entirely different properties of the function.

3.1 Alternate Representations Of The Hadamard Transform
In addition to spectral classification using the Hadamard transform, other transforms

such as the Walsh, Rademacher-Walsh, and Walsh-Paley can be used, albeit with a

different resulting spectral ordering. [2]

28

S
H

S
W

S
RW

S
WP

s
0

s
0

s
0

s
0

s
1

s
3

s
3

s
3

s
2

s
23

s
2

s
2

s
12

s
2

s
1

s
23

s
3

s
12

s
23

s
1

s
13

s
123

s
13

s
13

s
23

s
13

s
12

s
12

s
123

s
1

s
123

s
123

Figure 15 – Spectral output order for Hadamard (SH), Walsh (SW), Rademacher-Walsh

(SRW), and Walsh-Paley (SWP) transforms

Although these transforms retain the same information as a Hadamard transform, they

do not have a recursive definition that is particularly suitable for programmatic

implementation. Additionally, the Hadamard spectral output maintains an ordering that

compares to a standard truth table, as seen in Figure 15. In the logic design environment,

it is common to use the term "Rademacher-Walsh transform," even if the implementation

is based on another equivalent transform such as Hadamard.

3.2 Other Transforms
Transforms that are not equivalent to the Hadamard transform, such as the

autocorrelation transform, can be used to examine other properties of classes of functions.

The autocorrelation transform essentially compares the function to itself when shifted by

a certain amount using an XOR. [1]

Transforms used for Reed-Muller and arithmetic expansion can also be useful, but

these transforms are not further examined in this work, as they are not relevant to this

thesis. Details on Reed-Muller and arithmetic expansion can be found in [8].

29

Not all transforms are discrete transforms. Other transforms such as the Haar [2][8]

transform or the Fourier series of transforms can be used on non-Boolean and continuous

data sets. The Fourier transform has both a continuous and discrete version. The discrete

Fourier transform (DFT) is an approximation of the continuous Fourier transform. The

DFT has a fast implementation, typically referred to as a fast Fourier transform (FFT),

which is commonly used in spectral analysis, data compression, partial differential

equations, and the multiplication of large integers or polynomials, to name a few.

The DFT and the Walsh transform are directly related, although the “kernel” for a

DFT is more complex as it must support n possible values compared to the 2 possible

values for a Walsh transform. However, the same FFT approach can be used for the

rapid evaluation of the Walsh transform. These transforms are mentioned strictly for

comparison purposes and will not be further discussed in this thesis; details of these

transforms can be found in [6].

3.3 History Of The Problem

In the mid-1970s, Edwards classified all 2
2

n

 possible functions using the five spectral

operations for n ! 5 [7]. It was thought that the signature, as defined in Section 2.4, was

sufficient to define the classes. In [7], it was reported that 47 spectral classes were

required to completely classify all 2
2

n

 functions.

Further investigation in [4] discovered that one of the 47 classes published in [7] did

not meet the definition of the classification. This offending class was therefore split into

separate classes with the same signature in order fit the classification definition. This

discovery also proved that the spectral signature on its own is not enough to classify all

30

 2
2

n

 functions. The number of classes published in [4] increased to 48 classes over the

original results published in [7] due to this split.

A complementary approach was taken in [2] using only the first 4 operation types to

classify the 2
2

n

 functions. The approach used in [2] produced 191 classes, which were

mapped to the equivalent classes in [4] using the signature of each class. As the classes in

[2] have fewer criteria than the classes in [4], there are multiple classes defined in [2] for

each class defined in [4].

The general process used in [7], [4], and [2] was to transform a starting function, f ,

into the spectral domain,

S

f
, and attempt to construct all other functions in the same

spectral class using the five spectral transformations. In order for this to be computed in a

reasonable amount of time for n = 5 , the problem was extensively pruned and optimized.

Unfortunately, the details of these optimizations are unavailable.

The goal of this research is to independently verify the results published in [2] using the

first four spectral operations. As there is a history of errors with this problem, it seems

necessary to check these results before building on them and attempting to compute the

classes for larger values of n . To further contrast the original work, the processing in our

approach takes place entirely in the functional domain, with the exception of the direct

comparison to the previous work.

3.4 Summary
The techniques used in this research for spectral classification of Boolean functions

relate to other problems such as the Fourier series and Reed-Muller codes. Additionally,

there are transforms that can be used in place of the Hadamard transform used in this

work.

31

These techniques are not new, and spectral classification for n = 5 has been previously

been published. The published work, which serves as the basis for this research,

unfortunately doesn't contain the necessary details needed to expand future work upon,

and therefore is reproduced in this work.

32

Chapter

4 - Approaches
4.0 Introduction

There are two major approaches that can be used to perform spectral classification of

Boolean functions. The most obvious approach for spectral classification is function

manipulation within the spectral domain, as accomplished in [2] and [4]. The more

counter-intuitive approach is to perform all of the equivalent transformations within the

functional domain. Both approaches have their advantages and disadvantages, as

discussed later in this chapter. This research chose the functional domain based on

several of the advantages of this domain, as well as its uniqueness compared to the work

in [2] and [4]. As the techniques used for function transformation within the functional

domain are counter-intuitive, it is worthwhile discussing how to systematically generate all

possible rules, and ensure that these transforms are applied to all possible functions.

4.1 The Spectral Domain
As seen in Chapter 3, previous classification was accomplished within the spectral

domain. The functions are converted from the functional domain into the spectral

domain, resulting in a spectrum of 2
n coefficients. The spectra are transformed using the

four types of operations. These operations simply interchange or negate the 2
n spectral

coefficients resulting in other functions that reside within the same spectral class.

33

One of the biggest advantages of the spectral domain is the global nature of the

representation. Because of this global nature, it is possible to make observations about

groups of functions and optimize accordingly.

The biggest disadvantage of this approach is the potential overhead of converting the

functions into the spectral domain in the first place. This overhead can be reduced

depending on the approach used to generate the functions. Additionally, there has been

work on methods of moving between the functional and spectral domain quickly using a

fast Hadamard transform [1][2][4]. Unlike the fast Hadamard transform, which is related

to the fast Fourier transform, alternative methods of quickly transforming functions into

the spectral domain have been proposed in [9] and [10] using decision diagrams.

4.2 The Functional Domain
We chose in this research to focus on the functional domain rather than first moving to

the spectral domain to apply the transformation operations. In the functional domain, the

operations are applied directly to the function’s truth table representation. The operations

change the order of the truth table, and therefore change the order of the bits in the

output vector (with the exception of Type 3, which simply inverts the output values). All

of the operations for a given value of n can be predetermined and represented as rules.

These rules are simply templates that represent how the values of one function’s output

vector are interchanged to become another function. Any functions resulting from the

transformations applied to the original reside within the same spectral class.

One of the biggest advantages of working within the functional domain is the

elimination of conversion overhead when moving to the spectral domain. Although this

overhead can be greatly reduced, as previously mentioned, it can quickly become

impractical as the value of n increases.

34

Another advantage of working in the functional domain is that current computers are

very good at low-level Boolean operations. Awareness of the details of the low-level

execution of the high-level language code allows for improved overall speeds due to

shorter, more efficient, machine code produced by the compiler. An example code that

can assist the compiler in producing more efficient machine code can be found in A.3.2.2.

As only Boolean values need to be stored, they can be stored very compactly within data

structures such as Integers, and can be operated on with Boolean operations such as

AND, OR, XOR, and SHIFT. All of these operations can be handled very quickly. [11]

The biggest disadvantage compared to the spectral domain is the local nature of the

function. Since a single function cannot indicate anything about other functions, it is

difficult to optimize. The only optimization that has been made in this work is to pre-filter

the functions; to group the functions based on the number of true bits in the output vector

of the function’s truth table. This optimization can be made due to the nature of the Type

1, 2, and 4 operations where the number of true bits is not changed. As explained in

Section 4.2.1, this optimization can also cover the Type 3 operations. Note that this

optimization does not hold for Type 5 operations.

4.2.1 Pre-Filter
The functions are categorized according to the number of true minterms of the output

vector, resulting in 2
n
+1 categories. The trivial cases, 0 and 2

n only have 1 function

each, leaving 2
n
!1 non-trivial cases to consider.

Let function f have k true minterms so that f is in category

C

k
. Under a Type 3

transformation, a function

f !C

k
 is translated into

!f "C

!k
 where !k = 2

n
" k .

35
Theorem

If

f
1
!C

k
1

 and

f

2
!C

k
2

,

k

1
! k

2
,

k

1
,k

2
! 2

n"1 , then

f
1
 and

f

2
 are in different spectral

classes.

Proof

In order to establish the result, it is necessary to prove that if

f
1
!C

k
1

, then

f
1
 cannot

be transformed into some function

f

2
,

f

2
!C

k
2

,

k

1
! k

2
,

k

1
,k

2
! 2

n"1 by any of the four

spectral transformations.

Consider each of the four possible transformations:

• Type 1: Clearly a permutation of the input variables cannot change the number

of true minterms in the output vector.

• Type 2: Clearly a negation of an input variable cannot change the number of

true minterms in the output vector.

• Type 3: The inverse of a function takes the number of true minterms outside the

range considered.

• Type 4: The XOR of input variables is a more complex rearrangement of the

input set; however, any rearrangement of the input set does not change the

cardinality of the output vector.

 !

The number of functions in each of these 2
n categories,

C

k
, for an n variable function

can also be calculated using the binomial coefficient,

m

r

!

"#
$

%&
, where m is 2

n and r is the

number of true minterms in that category.

36

The number of categories is reduced to

1

2
(2n) because functions with k and 2

n
! k true

minterms are combined into the same category as they are in the same spectral class

because of the Type 3 transformation. Since the functions with k and 2
n
! k true bits are

combined into the same category, then:

C
k
=

2
n

k

!

"#
$

%&
+

2
n

2
n ' k

!

"#
$

%&
 where k (2

n'1

C
k
=

2
n

k

!

"#
$

%&
 where k = 2

n'1

 (4.1)

The example in Table 5, for n = 3 includes the trivial case where k = 0 .

 k Functions

0, 8

8

0

!

"#
$

%&
+

8

8

!

"#
$

%&
 2

1, 7

8

1

!

"#
$

%&
+

8

7

!

"#
$

%&
 16

2, 6

8

2

!

"#
$

%&
+

8

6

!

"#
$

%&
 56

3, 5

8

3

!

"#
$

%&
+

8

5

!

"#
$

%&
 112

4

8

4

!

"#
$

%&
 70

 2

2
n

 256
Table 5 – Number of Functions for n = 3

If one considers only the first 2
2

n
!1 functions, such as the implementation in Appendix

A.3.1, the number of functions is also reduced to half for each category.

4.2.2 Operations
As previously defined, all of the functions within a spectral class can be realized from

any one function and a combination of the specified four types of operations. The

37

approach developed for this thesis is to create a list of rules (as defined in Section 2.6) for

each type of the spectral operation. For each type of operation, a list of every possible

outcome is created. The rules simply describe how the output bits from the current

function are remapped to create a new function within the same spectral class.

4.2.2.1 Type 1: Permutation Of Input Variables
The Type 1 operation involves permuting the input variables of the function. It is

possible to permute n input variables in n! possible ways resulting in n! rules, including

the original function.

 Rules Input Variables
 x2 x1 x0
0 a b c d e f g h x2 x1 x0
1 a c b d e g f h x2 x0 x1
2 a b e f c d g h x1 x2 x0
3 a c e g b d f h x0 x2 x1
4 a e b f c g d h x1 x0 x2
5 a e c g b f d h x0 x1 x2

Table 6 – Type 1 Rules for n = 3

For n = 3 , there are 6 Type 1 rules, as seen in Table 6. Recall that the Latin characters

represent values of the individual bits in the output vector.

4.2.2.2 Type 2: Negation Of Input Variables
The Type 2 operation involves negating the input variables of the function. It is

possible to negate n input variables in 2
n possible ways resulting in 2

n rules, including

the original function.

 Rules Input Variables
 x2 x1 x0
0 a b c d e f g h x2 x1 x0
1 b a d c f e h g x2 x1 ¬x0
2 c d a b g h e f x2 ¬x1 x0
3 d c b a h g f e x2 ¬x1 ¬x0
4 e f g h a b c d ¬x2 x1 x0
5 f e h g b a d c ¬x2 x1 ¬x0
6 g h e f c d a b ¬x2 ¬x1 x0
7 h g f e d c b a ¬x2 ¬x1 ¬x0

Table 7 – Type 2 Rules for n = 3

38

Only the negation of the input variables is considered on the original ordering of the

variables. For n = 3 , there are 8 Type 2 rules, as seen in Table 7.

4.2.2.3 Type 3: Negation Of Output
The Type 3 operation involves negating the output vector of the function. There are 2

possible functions that can be realized based on this type of operation. The first function

is the original unaltered function, while the second possible function is where the output

bits of the original function are inverted. Based on the narrow definition of “rule” used in

this research, a rule for Type 3 operation does not exist since there is no interchange of

output bits.

0 a b c d e f g h

1 a ⊕ 1 b ⊕ 1 c ⊕ 1 d ⊕ 1 e ⊕ 1 f ⊕ 1 g ⊕ 1 h ⊕ 1
Table 8 – Type 3 transformations for n = 3

The two Type 3 operations for n = 3 are listed in Table 8.

4.2.2.4 Type 4: Variable Replacement With XOR
The Type 4 operation involves replacing an input variable of a circuit with an XOR

pre-filter such as the example in Figure 16. In the example, variable

x

2
 in Figure 16a is

replaced with the resulting value of

x

2
! x

0
, as seen in Figure 16b.

x
0

x
1

x
2

x
0

x
1

x
2

a) b)

Figure 16 – a) Original function b) Function a with x2 replaced with x2 ⊕ x0

39

The variable replacement in this operation is limited, requiring that the original input

variable, that is to be replaced, still be present in the final circuit. In other words,

x

2
 in

Figure 16a may be replaced with

x

2
! x

0
, but not with

x

1
! x

0
, as

x

2
 is no longer part of

the replacement. If the circuit is considered in the form of a matrix, where each row

represents a variable, and the column indicates if the variable is included in the pre-filter

replacement, circuits in Figure 16 would be represented by the matrices in Figure 17. In

matrix form, each combination must have true bits on the diagonal.

 x
2

x
1

x
0

x
2

x
1

x
0

1

1

1

!

"

#
#
#

$

%

&
&
&

 x
2

x
1

x
0

x
2

x
1

x
0

1 1

1

1

!

"

#
#
#

$

%

&
&
&

 a) b)
Figure 17 – True bits on the diagonal

A complete list of Type 4 operations must include all valid combinations of input

variables with all valid pre-filter combinations. To produce this list, a list of all possible

combinations of input variables, including both valid and invalid replacements, must be

created. Within this list of all combinations the invalid combinations must be identified

and removed leaving us with a list of all valid replacement input combinations. The

technique used to removed invalid combinations is discussed later in this chapter.

To create the initial list of possible input replacements, a table of all possible

replacements for a given variable is generated, as seen in Table 9. Each row of Table 9

contains a list of possible replacements for that particular input variable. Choosing one

item from each row in Table 10 creates one possible Type 4 operation. This is repeated

until all possible combinations have been realized. The list will contain (2
n!1)n items.

40

x

3

x

3
! x

2

x

3
! x

1

x

3
! x

2
! x

1

x

3
! x

0

x

3
! x

2
! x

0

x

3
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

2

x

3
! x

2

x

2
! x

1

x

3
! x

2
! x

1

x

2
! x

0

x

3
! x

2
! x

0

x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

1

x

3
! x

1

x

2
! x

1

x

3
! x

2
! x

1

x

1
! x

0

x

3
! x

1
! x

0

x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

0

x

3
! x

0

x

2
! x

0

x

3
! x

2
! x

0

x

1
! x

0

x

3
! x

1
! x

0

x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

Table 9 – Type 4 input variable lookup table for n = 4

Recall this is only a list of potential Type 4 operations, as some of these combinations are

in fact invalid. To separate the valid operations from the invalid combinations, a linear

independence check is done on the vectors of each input combinations (the rows of the

matrix in Figure 17). If a combination is found to be linearly independent, it is added to

the list of valid Type 4 operations.

 x3 x2 x1 x0

0

x

3

x

2

x

1

x

0

1

x

3

x

2

x

1

x

3
! x

0

2

x

3

x

2

x

1

x

2
! x

0

 ! ! ! ! !

4094

x

3
! x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

2
! x

1
! x

0

8
4

!

"

#
#

$

#
#

4095

x

3
! x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

x

3
! x

2
! x

1
! x

0

Table 10 – All possible combinations of input variables from lookup table in Table 9

With a complete list of valid input variable replacements for Type 4 operations, each row

can be used to generate the Type 4 rules using the method in Section 2.3.3.5. For n = 3 ,

there are 34 Type 4 rules, as seen in Table 11. Only the XOR replacement of the input

variables is considered on the original ordering of the variables.

4.2.2.5 Applying The Rules
Simply applying each of the rules for each rule type to a starting function will not

achieve the desired result of producing all possible functions in a spectral class. The lists of

rule only indicate the possible outcomes for that specific rule type, not combinations of all

41

possible operations. In other words, applying all of the Type 1 rules to a function will only

produce the functions resulting from combinations of permutations rather than

combinations of any type of operation.

To create all possible functions, all of the rules must be considered in combination. In

other words, one must combine all rules in all of the possible combinations. This concept

can be best visualized by placing the rules in a tree, where each level of the tree represents

a type of operation, as seen in Figure 18, where the dotted line represents the

continuation of the pattern. The details of Figure 18 can be examined in Figure 19.

Type 2

Type 4

Type 3

Type 1

Figure 18 – Transformation rule combinations (Details in Figure 19)

Each result of the Type 1 rules must be operated on by each of the Type 2 rules. For each

result of the Type 2 rules, the Type 3 operations must be applied. Finally, for each Type

3 result, each Type 4 operation must be applied. The leaf nodes of the tree will represent

all possible functions that can be realized from the original starting function. The first leaf

node, when considering a post-order traversal, represents the starting function: in other

words, unmodified.

42

 Rules Input Variables
 x2 x1 x0
0 a b c d e f g h x2 x1 x0
1 a b c d f e h g x2 x1 x2 ⊕ x0
2 a b d c e h h g x2 x1 x1 ⊕ x0
3 a b d c f e g h x2 x1 x2 ⊕ x1 ⊕ x0
4 a b c d g h e f x2 x2 ⊕ x1 x0
5 a b c d h g f e x2 x2 ⊕ x1 x2 ⊕ x0
6 a b d c h g e f x2 x2 ⊕ x1 x1 ⊕ x0
7 a b d c g h f e x2 x2 ⊕ x1 x2 ⊕ x1 ⊕ x0
8 a d c b e h g f x2 x1 ⊕ x0 x0
9 a d c b h e f g x2 x1 ⊕ x0 x2 ⊕ x0
10 a d c b g f e h x2 x2 ⊕ x1 ⊕ x0 x0
11 a d c b f g h e x2 x2 ⊕ x1 ⊕ x0 x2 ⊕ x0
12 a b g h e f c d x2 ⊕ x1 x1 x0
13 a b h g f e c d x2 ⊕ x1 x1 x2 ⊕ x0
14 a b h g e f d c x2 ⊕ x1 x1 x1 ⊕ x0
15 a b g h f e d c x2 ⊕ x1 x1 x2 ⊕ x1 ⊕ x0
16 a h g b e d c f x2 ⊕ x1 x1 ⊕ x0 x0
17 a h g b d e f c x2 ⊕ x1 x1 ⊕ x0 x2 ⊕ x1 ⊕ x0
18 a g h b f d c e x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 x2 ⊕ x0
19 a g h b d f e c x2 ⊕ x1 x2 ⊕ x1 ⊕ x0 x1 ⊕ x0
20 a f c h e b g d x2 ⊕ x0 x1 x0
21 a f h c e b d g x2 ⊕ x0 x1 x1 ⊕ x0
22 a h c f g b e d x2 ⊕ x0 x2 ⊕ x1 x0
23 a h f c g b d e x2 ⊕ x0 x2 ⊕ x1 x2 ⊕ x1 ⊕ x0
24 a h c f e d g b x2 ⊕ x0 x1 ⊕ x0 x0
25 a h f c d e g b x2 ⊕ x0 x1 ⊕ x0 x2 ⊕ x1 ⊕ x0
26 a f c h g d e b x2 ⊕ x0 x2 ⊕ x1 ⊕ x0 x0
27 a f h c d g e b x2 ⊕ x0 x2 ⊕ x1 ⊕ x0 x1 ⊕ x0
28 a f g d e b c h x2 ⊕ x1 ⊕ x0 x1 x0
29 a f d g e b h c x2 ⊕ x1 ⊕ x0 x1 x1 ⊕ x0
30 a g f d h b c e x2 ⊕ x1 ⊕ x0 x2 ⊕ x1 x2 ⊕ x0
31 a g f d h b c e x2 ⊕ x1 ⊕ x0 x2 ⊕ x1 x1 ⊕ x0
32 a d g f e h c b x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 x0
33 a d g f h e c b x2 ⊕ x1 ⊕ x0 x1 ⊕ x0 x2 ⊕ x0

Table 11 – Type 4 Rules for n = 3

43

Rule 1

Rule 2

...

Rule n

Rule 1.1

Rule 1.2

...

Rule 1.n

Rule 2.1

Rule 2.2

...

Rule 2.n

Rule n.1

Rule n.2

...

Rule n.n

...

Rule 1.1.1

Rule 1.1.2

...

Rule 1.1.1.1

Rule 1.1.1.2

...

Rule 1.1.1.n

Rule 1.1.2.1

Rule 1.1.2.2

...

Rule 1.1.2.n

...

...

...

......

......

Rule 1.2.1

Rule 1.2.2

Rule 1.2.1.1

Rule 1.2.1.2

...

Rule 1.2.1.n

Rule 1.2.2.1

Rule 1.2.2.2

...

Rule 1.2.2.n

Rule 1.n.1

Rule 1.n.2

Rule 1.n.1.1

Rule 1.n.1.2

...

Rule 1.n.1.n

Rule 1.n.2.1

Rule 1.n.2.2

...

Rule 1.n.2.n

Rule 2.1.1

Rule 2.1.2

Rule 2.1.1.1

Rule 2.1.1.2

...

Rule 2.1.1.n

Rule 2.1.2.1

Rule 2.1.2.2

...

Rule 2.1.2.n

Rule 2.2.1

Rule 2.2.2

Rule 2.2.1.1

Rule 2.2.1.2

...

Rule 2.2.1.n

Rule 2.2.2.1

Rule 2.2.2.2

...

Rule 2.2.2.n

Rule 2.n.1

Rule 2.n.2

Rule 2.n.1.1

Rule 2.n.1.2

...

Rule 2.n.1.n

Rule 2.n.2.1

Rule 2.n.2.2

...

Rule 2.n.2.n

Rule n.1.1

Rule n.1.2

Rule n.1.1.1

Rule n.1.1.2

...

Rule n.1.1.n

Rule n.1.2.1

Rule n.1.2.2

...

Rule n.1.2.nRule n.2.1

Rule n.2.2

Rule n.2.1.1

Rule n.2.1.2

...

Rule n.2.1.n

Rule n.2.2.1

Rule n.2.2.2

...

Rule n.2.2.n

Rule n.n.1

Rule n.n.2

Rule n.n.1.1

Rule n.n.1.2

...

Rule n.n.1.n

Rule n.n.2.1

Rule n.n.2.2

...

Rule n.n.2.n

Figure 19 - Details of Figure 18

44

4.2.3 The Canonical Function
The function that we have chosen as the canonical function for each class is the first

occurrence of that particular class number. The canonical function is defined to be the

function whose representation is the smallest decimal integer in the class. This choice was

made because the implementation used for the results published in this thesis encounters

the functions in ascending order from Function 0 to 2
2

n

.

In section 2.2, we noted that the decimal integer represents the output vector of the

function’s truth table where the bit of the zero row is the most significant bit, and the bit

of the 2
n th row is the least significant. Due to this representation, the canonical function

is the function that has its true bits concentrated towards the right hand side of the

integer, or the 2
n th row of the truth table.

There do not appear to be any observations that can be made about the class based on

the canonical function as it is in the functional domain. As previously stated, the

functional domain can only give a “local view” of the function [1].

This representation is chosen because it is the simplest way to retrieve results based on

the implementation. This may not be the best representation for the entire class, but

because of the local view of the functional domain, it is not clear whether there is enough

information to determine if any one function can best represent an entire class.

4.3 Summary
In order to spectrally classify Boolean functions, the functions must be either

transformed and manipulated in the spectral domain, or in the less conventional

functional domain. Previous work focused on the spectral domain, which is the most

obvious approach for classifying functions spectrally.

45

This research focuses on working in the functional domain, which seems counter-

intuitive if the functions are to be classified based on properties of the spectral domain. A

systematic approach is proposed for generating all possible transforms and how to apply

them to all possible functions, ensuring that all realizations are considered.

46

Chapter
5 - Results And Analysis

5.0 Introduction
In [2] it was stated that there are 191 spectral classes to represent all functions for

 n = 5 . The work resulting in this thesis, however, indicates that several classes may

inadvertently have been combined and that there are in fact 206 spectral classes needed

to represent all 2
2

5

functions. As classifying all functions for n = 5 is a problem that grows

double-exponentially as the value of n increases, this problem must be optimized in order

to compute a solution, and a computational solution is not easily checked. There is strong

evidence indicating the results reported in this thesis are correct.

Careful analysis of the optimizations in this implementation indicates that 5.84 !10
11

transformations are required to classify all 2
2

5

 functions. Although this is still a lot of

computation, it is significantly less than the 1.22 !10
19 transformations that must be

performed when no optimization is added to the problem.

5.1 The New Results
The spectral classification of functions for n ! 5 has been previously computed on

several occasions. For both n = 3 and n = 4 , this research agrees with the previous

research that the number of classes is 6 and 18 respectively. For n = 5 , the number of

classes we generate differs from previous work. The classification of [2] list spectral

coefficients for 191 classes, while this research finds 206 classes are necessary to represent

47

all 2
2

5

 functions. The functions in Table 12 are the canonical functions for the extra 15

classes not present within the previous lists. Although the new research identifies 15

previously unidentified classes, the remaining 191 classes have a 1-to-1 pairing with the

spectral classes listed in [2].

Class
Number

Group
Number

Function
Number

 s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum

57 11 202079 10 10 6 10 10 14 1 x14 5 x10 7 x6 19 x2
76 12 218479 8 8 4 8 8 16 1 x16 8 x8 16 x4 7 x0
82 12 471895 8 8 12 8 8 12 2 x12 8 x8 14 x4 8 x0
111 13 1514327 6 10 10 10 10 10 6 x10 10 x6 16 x2
124 14 472951 4 8 12 8 8 16 1 x16 1 x12 6 x8 15 x4 9 x0
137 14 1514365 4 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0
138 14 1515325 4 8 8 12 8 12 2 x12 8 x8 14 x4 8 x0
160 15 1515327 2 6 10 14 10 14 2 x14 2 x10 10 x6 18 x2
163 15 1523007 2 6 10 10 10 14 1 x14 5 x10 7 x6 19 x2
165 15 1523070 2 6 6 6 10 14 1 x14 3 x10 13 x6 15 x2
170 15 18291671 2 10 10 10 10 10 6 x10 10 x6 16 x2
190 16 1523581 0 8 8 8 8 16 1 x16 12 x8 19 x0
191 16 1523582 0 4 8 8 8 16 1 x16 8 x8 16 x4 7 x0
199 16 18291679 0 8 8 12 12 12 3 x12 6 x8 13 x4 10 x0
200 16 18291709 0 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0

Table 12 – Previously unidentified classes for n = 5

All of the functions in Table 12 have a spectral signature that match classes contained

within the other 191 classes. Much like the findings in [4], it is likely that the

optimizations used in the implementation lead to the inadvertent combination of multiple

classes.

All previous work [2][4] has taken place in the spectral domain, while this research

demonstrates that spectral classification is viable in the functional domain. This new

approach is conceptually similar to how these operations are carried out on hardware

circuits. If one considers a generic black-box circuit, the operations manipulate the input

and output of the circuit, and record the changes in the truth table. The implementation

of this approach manipulates the truth tables of a circuit rather than moving the

functional representation into the spectral domain, then perform the operations. This

approach is unique because it proposes generic rules to describe the operations. The rules

approach models these input and output manipulations at the truth table level as a

generic description of the operation that is valid for all functions for a specified value of

48

 n . A method is also proposed for combining the rule sets for all operations considered so

that ensures that all 2
2

n

 functions are considered. These rules must be recalculated for

each unique value of n , but the algorithm is the same for all values.

This thesis also proposes that algorithm for applying all combinations of all operations

should not be optimized to ensure that all 2
2

n

 functions are considered. The alternative

optimization that proposed is to prune the data set to reduce the overall work needed to

compute the spectral classes. As is discussed later in this chapter, pruning the data set

provides the most substantial reduction in overall work needed for this problem.

5.2 The Difficulties Of n ≥ 5
When comparing this work to previous work [2][4], there is no discrepancy for the

number of classes for n < 5 . So what makes calculating and analysing for n > 4 so

difficult?

The number of total functions grows double exponentially while the number of

transformations that must be applied to these functions also grows very quickly. This

means that while calculating for n ! 4 can be accomplished quite easily, n = 5 is still a

very large problem and prohibitively time consuming to compute in an unoptimized

brute force approach.

One of the problems with optimizing to calculate the number of classes for 2
2

5

functions is that since there are too many functions for a brute force approach, it is

possible for one of the optimizations to lead to an error in the number of classes. The

large number of functions also means it is impossible to check each of the results for

correctness.

49

Using the same optimizations to calculate the classes for n ! 4 can help indicate if there

are errors in the optimizations, but it is not absolute proof. As seen when comparing this

research to [2] and [4], the number of classes only disagree when n > 4 . There are a few

factors that may indicate why this might be.

It seems as though the coefficients “behave” differently for n > 4 . As the value of n

increases, there are more ways to combine the truth values of each function. It is possible

that that not all combinations of the four operation types are needed to compute all of the

classes for n ! 4 . At one time, it was thought that the “signature”, which consists of the

zero and first order coefficients plus a count of the coefficient magnitudes, was unique to

a class and that classification could be done in this way. For n ! 4 , these signatures are

unique, but once n = 5 is considered, the signature for each class is no longer unique.

It is possible that the spectral classes for n < 5 are in fact special cases and it is not

possible to observe any patterns without knowing the classes for n > 5 . Once spectral

classes for n > 5 are calculated, it may be possible that there are different patterns for

even and odd values of n . Unfortunately, until the spectral class structure for higher

values of n are computed, the answers to these questions will remain unknown.

The list of spectral classes listed in [2] and [4] notes that previous work has determined

that Hurst class 45 should in fact be split into two different classes, and that the defined

signature is not enough to differentiate the functions. All of the new functions in Table 12

share signatures with previously defined spectral classes.

The biggest difficulty in comparing current work to past work is the lack of a complete

set of previous test results. Although a summary of each canonical function has been listed

in [2], it is impossible to determine the exact canonical function based on this

information. Due to the age of the original research, much of the raw data has also been

50

lost. Much of the comparison between current work and previous work is accomplished

by comparing the results in [2] with some intermediate raw data listed in section B.2.

Additionally, some assumptions have to be made when comparing current results to the

list in [2] as there are times when it is impossible to differentiate between classes that

contain the same signature.

Source code, or a list of optimizations to the original work is also not available. Without

knowing what approach was used, or how the problem set was reduced, it is difficult to

determine exactly why there is a discrepancy between results.

5.3 Evidence
Although we were unable to check each individual function to confirm they are in the

appropriate spectral class, a number of approaches were used to instil confidence in these

results. This seems necessary given the discrepancies with the previous research, and the

inability to directly verify the results of the previous work.

Any of the individual tests, described in the following sections, are not enough in

themselves to indicate likely correctness. Collectively these tests show that it is less likely

that the results are incorrect, as it would take many compounded errors and coincidences

to have incorrect data, yet pass all of these tests. If this work is to be used as the basis for

future work, it is important that the confidence in these results is as high as possible. In

addition to increasing the confidence in these results, these tests provide insight into the

optimizations, and the avenues for future work.

5.3.1 Compared Functions
Each canonical function was converted to the spectral domain and the signatures were

compared to the signatures in [2]. As there is no complete spectral listing for the classes in

[2], it was not possible to know the exact function we were comparing against. It is,

51

however, possible to compare the magnitude counts between the lists. It turns out that

there is a 1-to-1 match between the 191 classes in the list in [2] and 191 of the classes of

this research. In this research, there are an additional 15 classes that share magnitude

counts, possibly indicating classes that have previously been inadvertently combined.

5.3.2 Number Of Coefficients Per Class And Group
The approach used in this work to generate the spectral classes uses a pre-filter step that

separates the functions into groups based on the number of true bits in the output vector,

as described in Section 4.2.1. As stated in that section, it is also possible to calculate the

number of functions in each such group.

A count for the number of functions within each class has been generated, and the

numbers for the functions that reside in each pre-filter group are added up. The sum of

the function within each group is equal to the calculated (and expected) number. The

implementation only considers the first 2
2

n
!1 functions; therefore the number of functions

per group, and in total, is exactly half.

Pre-filter Group Class Number Number of Functions Group Sum

1 0 1 1
2 1 8 8
3 2 28 28
4 3 56 56
5 4 7
 5 28 35

= 128 128

Table 13 – Number of functions per class and group for n = 3

For n = 3 , there are a total of 128 total functions in 5 pre-filter groups, as seen in Table

13.

52

Pre-filter Group Class Number Number of Functions Group Sum
1 0 1 1
2 1 16 16
3 2 120 120
4 3 560 560
5 4 140
 5 1,680 1,820

6 6 1,680
 7 2,688 4,368

7 8 840
 9 6,720
 10 448 8,008

8 11 240
 12 6,720
 13 4,480 11,440

9 14 15
 15 960
 16 420
 17 5,040 6,435

= 32,768 32,768

Table 14 – Number of functions per class and group for n = 4

Much like n = 3 , the total number of functions for n = 4 is as calculated. There are

32,768 functions in 9 pre-filter groups for n = 4 as seen in Table 14.

Pre-filter
Groups

Class
Number

Number of
Functions Group Sum Pre-filter

Groups
Class

Number
Number of
Functions Group Sum

1 0 1 1 103 19,998,720
2 1 32 32 104 6,666,240
3 2 496 496 105 79,994,880
4 3 4,960 4,960 106 277,760
5 4 1,240 107 9,999,360

 5 34,720 35,960 108 6,666,240
6 6 34,720 109 6,666,240

 7 166,656 201,376 110 19,998,720
7 8 17,360 111 53,329,920 143,775,520

 9 416,640 15 112 7,440
 10 27,776 113 555,520
 11 444,416 906,192 114 208,320

8 12 4,960 115 4,999,680
 13 416,640 116 833,280
 14 277,760 117 833,280
 15 2,222,080 118 6,666,240
 16 444,416 3,365,856 119 833,280

9 17 620 120 4,999,680
 18 119,040 121 26,664,960
 19 52,080 122 19,998,720
 20 624,960 123 39,997,440
 21 3,333,120 124 26,664,960
 22 4,444,160 125 26,664,960
 23 277,760 126 6,666,240
 24 1,666,560 10,518,300 127 2,222,080

10 25 14,880 128 138,880
 26 416,640 129 4,999,680
 27 277,760 130 2,499,840
 28 952,320 131 1,666,560
 29 833,280 132 19,998,720
 30 9,999,360 133 9,999,360
 31 6,666,240 134 3,333,120
 32 6,666,240 135 9,999,360
 33 2,222,080 28,048,800 136 79,994,880

11 34 52,080 137 39,997,440
 35 416,640 138 79,994,880
 36 27,776 139 6,666,240
 37 119,040 140 39,997,440
 38 6,666,240 141 3,333,120 471,435,600
 39 4,444,160 16 142 992
 40 83,328 143 119,040

53
Pre-filter
Groups

Class
Number

Number of
Functions Group Sum Pre-filter

Groups
Class

Number
Number of
Functions Group Sum

 41 4,999,680 144 833,280
 42 1,666,560 145 3,333,120
 43 19,998,720 146 138,880
 44 2,222,080 147 6,666,240
 45 19,998,720 148 2,499,840
 46 317,440 149 4,999,680
 47 833,280 150 39,997,440
 48 2,666,496 64,512,240 151 2,222,080

12 49 104,160 152 6,666,240
 50 166,656 153 6,666,240
 51 833,280 154 2,499,840
 52 6,666,240 155 9,999,360
 53 444,416 156 6,666,240
 54 1,666,560 157 6,666,240
 55 9,999,360 158 6,666,240
 56 13,332,480 159 39,997,440
 57 19,998,720 160 39,997,440
 58 19,998,720 161 79,994,880
 59 317,440 162 26,664,960
 60 6,666,240 163 39,997,440
 61 9,999,360 164 79,994,880
 62 31,997,952 165 19,998,720
 63 166,656 166 6,666,240
 64 6,666,240 129,024,480 167 53,329,920

13 65 8,680 168 444,416
 66 104,160 169 19,998,720
 67 1,666,560 170 31,997,952
 68 2,666,496 171 19,998,720 565,722,720
 69 208,320 17 172 31
 70 1,249,920 173 7,936
 71 9,999,360 174 29,760
 72 26,664,960 175 416,640
 73 3,333,120 176 277,760
 74 3,333,120 177 4,999,680
 75 3,333,120 178 4,444,160
 76 9,999,360 179 4,340
 77 2,222,080 180 833,280
 78 4,999,680 181 156,240
 79 39,997,440 182 624,960
 80 39,997,440 183 9,999,360
 81 3,333,120 184 277,760
 82 39,997,440 185 1,666,560
 83 26,664,960 186 416,640
 84 13,888 187 2,499,840
 85 833,280 188 26,664,960
 86 2,499,840 189 39,997,440
 87 2,666,496 225,792,840 190 4,999,680

14 88 34,720 191 9,999,360
 89 138,880 192 6,666,240
 90 1,666,560 193 4,999,680
 91 2,499,840 194 39,997,440
 92 3,333,120 195 39,997,440
 93 13,332,480 196 222,208
 94 6,666,240 197 9,999,360
 95 6,666,240 198 3,333,120
 96 2,222,080 199 26,664,960
 97 39,997,440 200 39,997,440
 98 26,664,960 201 15,998,976
 99 8,888,320 202 833,280
 100 1,666,560 203 833,280
 101 19,998,720 204 2,666,496
 102 9,999,360 205 13,888 300,540,195
 = 2,147,438,648 2,147,438,648

Table 15 – Number of functions per class and group for n = 5

The statistics for n = 5 continues the trend with 2,147,438,648 functions in 17 pre-filter

groups. The new spectral classes have been bolded in Table 15.

Examining Table 15, it is evident that all classes contain at least 1 function. The

previously unidentified classes are classes that encapsulate a large number of functions,

54

and therefore are not classes that are special cases, such as Class 0. Additionally, all of the

previously unidentified classes have function counts that occur elsewhere in the list,

indicating that these classes are not mistakes. For example, both Class 195 and Class 200

have the same number of functions.

5.3.3 Calculations Of The Number Of Rules
It is possible to calculate the number of rules required to transform a starting function

into all other possible functions within that class. The number of rules for n ! 6 can be

seen in Table 16. These numbers are valuable for comparing to the number of rules

generated by this implementation.

 n n =1 n = 2 n = 3 n = 4 n = 5 n = 6

Type 1 n! 1 2 6 24 120 720

Type 2
 2

n 2 4 8 16 32 64

Type 4 n/a* 1 3 34 1688 370,752 347,638,784†
Table 16 – Number of rules for n ≤ 6‡

For Type 1 transformations, n! rules are needed to produce all possible permutation of

the input variables while Type 2 transformations require 2
n rules. Type 3

transformations do not have rules, as defined in Section 2.6, but rather the output of the

function is simply inverted. Therefore, for all values of n , the number of transformations

for Type 3 is simply the constant 2. Type 4 transformations are a bit more complicated as

there is no known general case to calculate the required number of rules. In general, only

an upper bound can be specified, as in section 4.2.2.4, which includes invalid

transformations.

* The generalized equation is currently unknown

† This value has not been confirmed with Maple

‡ Generally spectral classification is only considered for n ≥ 3

55

Although the number of rules generated by this implementation for Types 1 and 2 are

confirmed, Type 4 cannot be compared if no general case can be provided. To confirm

the number of Type 4 rules, an alternate method of generating the rules was created and

its results compared to the implementation described in Appendix A. Note that all rules

for the spectral operations include the original non-permuted ordering.

The alternative method was created using Maple, and all possible combinations of

input variables for each value of n , in the same method used for Table 10, were checked

for linear independence. Each set of input variables was checked using the determinant

function that is built into Maple.

V
0

V
1

!

V
n mod 2

! 0 (5.1)

If the result of the determinant modulo 2 does not equal 0, then it is considered to be

linearly independent, and therefore a valid combination of input variables.

For n ! 5 , the number of linearly independent sets returned from Maple equalled the

number of Type 4 rules generated by the implementation in Appendix A.

In this research, and attempt was made to identify a general case for calculating the

number of Type 4 rules. This attempt at a generalized closed formula failed, and a search

for a known sequence of integers was undertaken. The On-Line Encyclopedia Of Integer

Sequences [6] was searched for an existing sequence which includes 34, 1688, 370752.

Currently, there are no sequences that include 34, 1688, 370752 in [6].

56

5.4 Other Analysis

5.4.1 Complexity
Spectral classification of Boolean functions is a very large problem and the number of

transformations that must take place can be described by Expression (5.2):

 A ! B !C ! D ! E (5.2)

where:

A: The total number of functions to be considered

B: The number of Type 1 transformations

C: The number of Type 2 transformations

D: The number of Type 3 transformations

E: The upper bounds§ for Type 4 transformations

In the worst case, this is an upper bound. The implementation of this approach is highly

dependant on the order of (5.2). Although (5.2) uses the product symbol, this expression is

not commutative as expected with. In this implementation, for each item saved in A, the

work associated with parts B, C, D, and E can be completely avoided. This is true for

every term going from right to left in the expression. In other words, for each item saved

in B, work in C, D, and E are avoided. For each item saved in C, work in D, and E are

avoided, and so on.

Alternatively, consider this expression as a tree where Figure 18 represents the terms B,

C, D, and E. In this tree, Figure 18 is the child node for each item in A. If there are 2
2

n

starting functions with A, it means that Figure 18 must be traversed 2
2

n

 times; once for

each item of A. The optimization approaches in this section are simply methods to prune

§ See section 5.3.3

57

this tree. The further up the tree these optimizations occur, the larger the overall benefit

to the problem.

The analysis of (5.2) is first considered in its worst case, and then progressively refined

as optimizations are introduced in the following sections. Optimizations are most effective

when earlier components of (5.2) are avoided as subsequent terms are also avoided.

Therefore, the focus of this research is to reduce the number of earlier terms that need to

be considered.

5.4.1.1 Brute Force
In the worst case, the total number of function transformations that must be performed

is:

A: 2
2

n

B: n!

C: 2
n

D: 2

E: (2
n!1)n

Therefore, there are 2
2n

! n!! 2n
! 2 ! (2n"1)n transformations that must be performed to

spectrally classify all functions of n input variables.

5.4.1.2 Optimization
The number of starting functions can be reduced by half by observing that the second

half of all 2
2

n

 is simply a Type 3 operation applied to the first 2
2

n
!1 functions.

58

Recall that the order in which the rules are applied according to expression (5.2) is

important, and cannot be changed. The optimized implementation of this thesis begin

with:

A: 2
2

n
!1

B: n!

C: 2
n

D: 2

E: (2
n!1)n

Therefore there are 2
2n

!1
" n!" 2n

" 2 " (2n!1)n transformations in the optimized general

case for functions with n input variables. Since all possible combinations of all four

spectral transformations are applied to a starting function, all functions that exist within

the same class as the starting function are also discovered. This observation further

reduces the number of starting functions from 2
2

n
!1 to the number of spectral classes,

S

n

where n is the number of input variables. As a result of the second optimization to A , the

number of transformations in the optimized general case is now

S

n
! n!! 2n

! 2 ! (2n"1)n .

For n = 5 , the total number of transformations is:

A: 205

B: 5!

C: 2
5

D: 2

E: 370,752**

** As calculated in section 5.3.3

59

Therefore the number of spectral transformations required to classify all functions for

 n = 5 is 5.84 !10
11 which is significantly smaller than the brute force case that would

require 1.22 !10
19 spectral transformations.

5.4.3 Prediction

It has already been shown that classification of all 2
2

n

 functions is an incredibly difficult

problem, especially as n increases to values above 4. For values of n where n > 5 , it is

impractical to use current methods of classification; therefore some other method is

needed to calculate these classes.

One approach is to use existing data from smaller values of n and extrapolating the

data for the desired value of n . Using prediction of this nature, it may be possible to

derive all, or a large portion, of the classes for n +1 variables based on the data from

lesser values of n . This could greatly decrease the amount of processing needed and could

make classification for n > 5 feasible.

When considering the first 128 functions for n = 3,4,5 , as seen in Table 17, many of

the classes remain the same as the value of n increases. In Table 17, class numbers that

do not match for a given function, for all of n = 3,4,5 , have been highlighted. So far, it is

unclear whether any conclusions can be drawn from this data.

Another trend is evident when the list is split into sections containing 4 functions. For

the majority of these groups, the second and third functions from these groups share

values. There are a couple of exceptions near the middle of the table, which also makes

the outcome of this approach unclear.

60
Class Class Function

Number n=3 n=4 n=5
Function
Number n=3 n=4 n=5

0 0 0 0 64 1 1 1
1 1 1 1 65 2 2 2
2 1 1 1 66 2 2 2
3 2 2 2 67 3 3 3
4 1 1 1 68 2 2 2
5 2 2 2 69 3 3 3
6 2 2 2 70 3 3 3
7 3 3 3 71 5 5 5
8 1 1 1 72 2 2 2
9 2 2 2 73 3 3 3
10 2 2 2 74 3 3 3
11 3 3 3 75 5 5 5
12 2 2 2 76 3 3 3
13 3 3 3 77 5 5 5
14 3 3 3 78 5 5 5
15 4 4 4 79 3 6 6 X
16 1 1 1 80 2 2 2
17 2 2 2 81 3 3 3
18 2 2 2 82 3 3 3
19 3 3 3 83 5 5 5
20 2 2 2 84 3 3 3
21 3 3 3 85 4 4 4
22 3 3 3 86 5 5 5
23 5 5 5 87 3 6 6 X
24 2 2 2 88 3 3 3
25 3 3 3 89 5 5 5
26 3 3 3 90 4 4 4
27 5 5 5 91 3 6 6 X
28 3 3 3 92 5 5 5
29 5 5 5 93 3 6 6 X
30 5 5 5 94 3 6 6 X
31 3 6 6 X 95 2 8 8 X
32 1 1 1 96 2 2 2
33 2 2 2 97 3 3 3
34 2 2 2 98 3 3 3
35 3 3 3 99 5 5 5
36 2 2 2 100 3 3 3
37 3 3 3 101 5 5 5
38 3 3 3 102 4 4 4
39 5 5 5 103 3 6 6 X
40 2 2 2 104 3 3 3
41 3 3 3 105 4 4 4
42 3 3 3 106 5 5 5
43 5 5 5 107 3 6 6 X
44 3 3 3 108 5 5 5
45 5 5 5 109 3 6 6 X
46 5 5 5 110 3 6 6 X
47 3 6 6 X 111 2 8 8 X
48 2 2 2 112 3 3 3
49 3 3 3 113 5 5 5
50 3 3 3 114 5 5 5
51 4 4 4 115 3 6 6 X
52 3 3 3 116 5 5 5
53 5 5 5 117 3 6 6 X
54 5 5 5 118 3 6 6 X
55 3 6 6 X 119 2 8 8 X
56 3 3 3 120 5 5 5
57 5 5 5 121 3 6 6 X
58 5 5 5 122 3 6 6 X
59 3 6 6 X 123 2 8 8 X
60 4 4 4 124 3 6 6 X
61 3 6 6 X 125 2 8 8 X
62 3 6 6 X 126 2 8 8 X
63 2 8 8 X 127 1 11 12 X

Table 17 – Comparison between classes for n = 3,4,5

61

5.5 Results Confidence
The data resulting from the work in this research differs from previously published data

in [2] and [4]. The obvious question is whether this data can be considered more or less

reliable than the data it is being compared to. It is still infeasible to verify each class for

correctness, but there is very strong evidence that the new class structure is correct.

The approach used in this research considers nearly all of the 2
2

n

 possible functions

rather than extensively pruning the problem. The pruning applied to the problem, as

described in Section 5.4.1.2, is fairly straightforward and it is easily provable that the

optimizations do not allow for unrealized functions.

Although it is unclear whether or not previous works used the same implementation

and optimizations for n < 5 , this implementation is the same, and uses the same

optimizations for all values of n .

The number of classes for n = 3,4 , as calculated by this implementation, equals the

known number of classes calculated previously for the same values of n , but only differs

once n = 5 . This weighs favourably towards the method in which the functions are

realized, as errors in the algorithm might also be apparent in the lower values of n .

In section 5.3.2, statistics on the number of functions per pre-filter group and class are

examined, and the distribution of functions among the classes and groups appears to be

reasonable. Section 5.3.1 indicates a 1-to-1 relationship between 191 of the 206 of the

classes discovered in this research, and 191 of 191 classes indicated in [2]. A reasonable

explanation is that the implementation in [2] over pruned the problem and combined a

few classes that should have been separate.

The number of transformations, or rules, generated by this implementation has also

been independently checked using a separate implementation, as seen in Section 5.3.3.

62

Although the number of operations, and not the operations themselves, have been

checked, it is necessary for at least two operations to be incorrect for the list to be

incorrect, yet poses the same number of operations. For the generated list to be incorrect

for n = 5 , it is likely that errors would also occur for n < 5 .

Individually, these points do not prove the correctness of the data, but combined they

make a very strong case for the results achieved in this research.

5.6 Summary
This research indicates that there are 15 new spectral classes, not previously identified

in any work. There is strong evidence that these 15 previously unidentified classes had

been inadvertently combined with other classes in previous work, but as the number of

functions for values of n increases double-exponentially, the results cannot be checked

with brute force.

The optimizations employed in this research significantly reduce the number of

operations needed to classify all 2
2

n

 functions compared to the unoptimized problem.

63

Chapter
6 - Conclusion And Future Work

6.0 Introduction
As with all research, this work has introduced many questions that are beyond the

scope of this thesis. Further research will be needed to prove these results, and to classify

functions with n > 5 input variables. It is likely that this work will require new

approaches, as current approaches tend not to scale well. Additional use of technology,

such as specialized co-processors, or distributed computing, may also be required to

perform all of the needed calculations.

6.1 Future Work
Although the analysis in Chapter 5 instils a high level of confidence in the results

produced in this research, further work could be done to further improve the confidence

in these results. Several approaches, which are beyond the scope of this research, could be

used to further increase confidence, if necessary. The following section describes some of

these approaches.

6.1.1 Implementation Analysis
An independent code review of the implementation in Appendix A could increase the

confidence in the algorithm. Additionally, a code review could identify logic errors, if they

exist.

64

Re-implementation of spectral classification in the spectral domain could also increase

the confidence in the results. A separate implementation would be best served if it was

independent of this implementation and did not share a code base.

6.1.2 Theoretical
As stated in section 5.3.3, the general equation for the number of Type 4

transformations is currently unknown. To formulate this, the number of linearly

independent vector sets for all vector sets where the diagonal contain true bits (Figure 17)

must be determined. This would likely be a large enough problem to constitute its own

research thesis.

With current technology it is likely that the algorithm used in this research will not scale

to classification for n > 5 , and therefore a new approach is needed. Prediction based on

lower values of n could provide a lower and/or upper bound for the number of classes

for a given number of input variables. In the best case, prediction could provide an exact

number of classes.

Current work to partition the problem for parallelization, pre-filtering, is described in

section 4.2.1. The pre-filter approach does split the functions into groups, but these

groups are not small enough to greatly reduce the running time when n > 5 . Some

method for increasing the granularity of the pre-filter could make a highly parallel

implementation feasible.

6.1.3 Improvements To The Approach
The biggest enemy to this approach is primary memory usage. To reduce CPU and

I/O overhead due to swapping, or other class storage schemes, values for all starting

functions are placed in main memory. In other words, values for 2
2

n
!1 functions must be

65

stored in main memory. For n ! 5 , this is manageable, but for n > 5 this will simply not

be practical for the foreseeable future. To calculate n > 5 , some other class storage

scheme will be needed; likely one that increases processing time.

Allowing the classification and transformation to be run in parallel could reduce the

overall running time of extra processing at the classification stage, but at the risk of

duplicating processing on certain classes. In other words, if a starting function is realized

in the previous pass, but not yet classified, realization of all functions from that starting

function will occur, even though its class is already known.

Implementation of this approach for parallel processing to be run on distributed

systems could increase the overall throughput of the application. Parallel processing is

vary favourable for this kind of work because the realization of all functions for a given

class and starting function does not depend on any external data until the end of the

processing where it must be merged into the class list. Failing an improvement in

granularity, a merging scheme is needed that allows multiple sets of realized functions,

that potentially reside within the same class, to be classified. The problem with a merging

scheme is that there is wasted work when there is a class collision (in both merging, and

calculating it all in the first place since one pass is enough to realize all functions in that

class).

Finally, implementation of an FPGA accelerated solution would likely yield improved

real-life results over an entirely software solution assuming I/O bottlenecks can be

minimized.

66

6.2 Conclusion
The research for this thesis continues where [2] left off with calculating the spectral

classes for n = 5 . The goals for this research comprises of:

4) Develop a new approach for computing spectral classes, and implement this

approach.

5) Independently reproduce and verify the results published in [2], the spectral

classes for n = 5 , ensuring that it is a valid basis for future work. This goal is to be

carried out using the results of goal 1.

6) Use the knowledge gained in goal 2 to investigate the possibility of computing the

spectral classes for functions with values of n greater than 5. If it is feasible to

compute the spectral classes for n > 5 , then provide the classes for as many values

of n as possible.

This research successfully achieves these goals, which are presented in detail in this thesis.

A summary of the findings for each of these goals is as follows:

1) A new approach to computing spectral classes is proposed where the spectral

operations and classification are performed entirely in the functional domain.

a. This is significant as the classification with this approach completely avoids

spectral transformations, except for the analysis and direct comparison

between the results and previous work.

b. The concept of Rules is introduced. A model created to represent the

spectral operations in the functional domain

c. An optimization approach is proposed where the data set (the starting

functions) is reduced rather than pruning the algorithm, allowing for

feasible running times for n = 5 .

67

2) A discrepancy between the results produced in this thesis, and the list of classes

published in [2] was found.

a. A list of 15 new spectral classes with the same signatures as classes found in

[2] is been tabulated. It appears that this is due to class splitting, much like

the findings in [4].

3) With current technology, it is not possible to compute the spectral classes for

 n > 5 using currently known techniques. Future work on algorithms and

approaches, and advances in technology are needed before this will become

feasible.

68

Bibliography

[1] J. E. Rice. “Autocorrelation Coefficients in the Representation and Classification of
Switching Functions.” Ph.D Thesis, University of Victoria, 2003.

[2] S. L. Hurst, D. M. Miller, and J. C. Muzio. “Spectral Techniques in Digital Logic.”

Academic Press, Inc., Orlando, Florida, 1985.

[3] E.D Nering, “Linear Algebra and Matrix Theory.” John Wiley and Sons, Inc., London,

1965.

[4] S. L. Hurst. “The Logical Processing of Digital Systems.” Crane, Russak & Company,

Inc., New York, 1978.

[5] K. G. Beauchamp. “Applications of Walsh and Related Functions.” Academic Press,

London, 1984.

[6] “The On-Line Encyclopedia Of Integer Sequences.” 18 April 2007.

<http://www.research.att.com/~njas/sequences/> (18 April 2007).

[7] C. Edwards. "The Application of the Rademacher-Walsh Transform to Boolean

Function Classification and Threshold Logic Synthesis." in IEEE Trans. on Comp. pages
48-65, 1975.

[8] S. L. Hurst. “The Interrelationships Between Fault Signatures Based Upon Counting

Techniques.” Developments in Integrated Circuit Testing. ed. D. M. Miller, Academic Press,
London, 1987.

[9] D. M. Miller. “An Improved Method for Computing a Generalized Spectral

Coefficient.” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
Volume 17, Number 3. pages 233-238, March 1998.

[10] M. A. Thornton, R. Drechsler, D. M. Miller, and W. Townsend. "Computing Walsh,

Arithmetic and Reed-Muller Spectral Decision Diagrams Using Graph
Transformations." GLVLSI 2002.

[11] R. Hyde. "Write Great Code Volume 2: Thinking Low-Level, Writing High-Level."

 No Starch Press, San Francisco, 2004.

69

Appendix

A - Implementation

A.0 Introduction
This chapter is intended to provide an introduction to the implementation of the

application used to produce the classification results for n = 3,4,5 . Pseudocode is

provided for the more significant sections of the implementation, along with explanations

of why the decisions were made and why it works. This section should also help explain

the full source code provided in Appendix C.

A.1 Language
The implementation for this application was accomplished in stages using a prototype

approach, which was crucial to the choice of the programming language. Originally, the

goal was to develop an approach to classify all 2
2

n

 functions for n = 3 . As n = 3 only

produces 256 functions, and implementation was not considered for n > 3 , Java was

chosen because of its ease of use and vast array of libraries. In this early stage, all of the

processing was directed at the transformation and classification of the function, and the

rules were computed by hand. In addition to hand-computed rules, the code was simple

and many assumptions were hard coded.

Once successfully accomplishing spectral classification for n = 3 , the application was

modified to calculate the classes for n = 4 . At first, this seemed like a trivial change, but it

quickly became evident that creating the Type 4 rules for n = 4 by hand is not practical.

70

Code was written to generate all three rule types. Although some assumptions were made

in order to save development time initially, scalability was a consideration in the design of

this class.

The new rule generation code allowed all 2
2

n

 functions for n = 4 to be classified

correctly. In order to calculate n > 4 it was determined that the code must be re-written

using an object oriented approach and to be scalable rather than being re-written for

each value of n . Using Java’s dynamic structures such as ArrayLists (equivalent to the

Vector data type in C++) and Maps, the entire application was re-written in a format

structure similar to final structure described in section A.2, including removing the

assumptions made by the existing Rule generation.

At this point, it was determined that Java was simply too slow and had too much

overhead to finish the calculations in any reasonable amount of time and with the

resources available. It was decided that the size of the problem for n = 5 was simply too

large to be implemented in Java. As an alternative to Java, C++ was determined to be an

appropriate replacement as it offered similar libraries and capabilities, but also offered

decreased overhead, increased performance for certain types of calculations, and the

ability to write at a lower level if needed.

The entire application was ported over to C++ using similar data types and structures

as the original Java version. As a result, the C++ version of the code experienced similar

performance issues as the Java version. Although the C++ version was able to complete

more of the problem than the Java version in the same amount of time, the amount of

time it would need to completely classify all 2
2

5

 functions was still not good enough. In

71

fact, the application needed to be highly optimized, as described in section A.3, in order

to achieve usable running times.

In the end, the C++ low overhead and ability to program at a low level allowed for a

more efficient implementation of the algorithms. Additionally, C++’s vast libraries

allowed for the use of built-in functions that decreased the amount of needed code, and

therefore reduced the likelihood of errors.

A.2 Program Structure
The structure of this application is split into four major classes: Pre-filtering, Rule

generation, Classification, and Transformation. In addition to the four class types, there is

a main application file and a library of common tools used by all of the classes.

The implementation uses a modular approach and the flow of work can be visualized

by the diagram in Figure 20.

Prefilter.cpp main.cpp

Rules.cpp Classify.cpp

Start/Stop

1

2

3

4

5

6

9

10

Transform.cpp

7

8

Figure 20 – Implementation flow

The first step in the classification process is for main.cpp to setup the environment with

some simple calculations based on the number of input variables. Next, in step 2 of Figure

20, main.cpp calls Prefilter.cpp that is designed to separate all of the 2
2

n

 possible

functions into groups based on the number of true bits within its binary representation.

72

Prefilter.cpp creates 2
n!1 files on the secondary storage device and sends the list of files

back to main.cpp in step 3. The main.cpp section then sends this list of files to

Classify.cpp, as seen in step 4. The purpose of Classify.cpp is to do spectral classification

for all of the functions in the pre-filtered function files. The first step that Classify.cpp

must do is create a list of rules, or transformations, that must be applied to each function

in the list, which is accomplished by a call to Rules.cpp in step 5. Rules.cpp compiles a list

of transformations for Types 1, 2, and 4 (the Type 3 transformation simply inverts all of

the values and therefore does not need a set of rules) that are returned to Classify.cpp. For

each function in the pre-filter groups, Classify.cpp sends the function number and set of

rules to Transform.cpp, as seen in step 7. Transform.cpp applies the rules to function and

keeps a list of all functions that are generated throughout the transformation process. In

step 8, this list of generated functions is returned to Classify.cpp to be incorporated into

the list of classes. Steps 7 and 8 are done once for every single function in the current pre-

filter group. After Classify.cpp has processed a pre-filter group, the functions are written

to secondary storage with the corresponding class number that was assigned during the

process. Once all of the pre-filter groups have been processed, control is passed back to

main.cpp, the classes for 0 true bits are printed to secondary storage (this is a special case

and no calculations are needed). At this point, main.cpp can clean up any temporary files,

such as the pre-filter group files, and quit.

A.2.1 main.cpp
Main.cpp is the main module of the application and is responsible for setting up the

environment, such as global variables, and pre-filter temporary file names. First, this

module calculates the number of functions needed based on n . Second, the file names for

73

the temporary files are defined, based on the number of functions in each pre-filter group.

The prefilter module is then called, and this information is passed to the classification

module. Finally, the main module does housekeeping and prints out Function 0.

A.2.2 Prefilter Class
Based on the theorem described in section 4.3.1, Type 1, Type 2 and Type 4

transformations cannot change the number of true bits (“ones”) in a function. Therefore,

one can say that if all functions are separated into groups based on the number of true

bits, a class cannot have functions that exist in more than one of these groups. The only

other transformation is Type 3, and although it does change the number of true bits, the

output is a simple inversion. The number of pre-filter groups can be reduced by half by

grouping the inverted output with the main functions. For example, Functions a and b

where a =1110000 and b =11100011 can be grouped together because a has 3 true bits,

and the inversion of b has 3 true bits.

SET n to the number of input variables
CREATE prefilter_group_list with 2n-1 items

FOR each prefilter_group_list item
 CREATE group file with index number as file name

 FOR each function
 SET number_of_ones to 0

 FOR each bit of the function number
 IF the bit is true THEN
 INCREMENT number_of_ones
 ENDIF
 ENDFOR

 FOR each prefilter_group_list item index number
 IF number_of_ones equals the index number THEN
 WRITE function number to prefilter_group_file
 ELSEIF number_of_ones equals 2n-index number THEN
 WRITE function number to prefilter_group_file
 ENDIF
 ENDFOR

 ENDFOR

ENDFOR

Figure 21 – Pseudocode for pre-filter logic

74

In Figure 21, this calculation can be seen as the condition statement in the final FOR

loop. As the number of true bits is a simple count, the inverse of the count is simply the

number of true bits subtracted from 2
n .

A.2.3 Classify Class

The Classify class is responsible for reading each of the 2
2

n

 function numbers from the

pre-filtered group files, assigning class numbers, and writing the classes to output files.

SET class_number_tracker to 0
SET increment_flag to false

CREATE classes_array with 2
2
n

 elements
CREATE final_class_number

FOR each pre-filter file
 CREATE temp_working array

 FOR each function in the pre-filter file
 INCREMENT class_number_tracker
 SET increment_flag to false

 IF this function has not already been found THEN
 CALL transformation class for this function
 SET temp_working array to results from transformation call
 SET increment_flag to true
 SET final_class_number to class_number_tracker

 FOR each item in temp_working array
 IF no value THEN
 CONTINUE
 ENDIF

 IF classes_array item has existing value THEN
 SET class_number to existing value
 SET increment_flag to false
 ENDFOR
 ENDIF

 ENDFOR

 FOR each item in temp_working array
 IF temp_working array item has value THEN
 SET classes_array item to final_class_number
 ENDIF
 ENDFOR

 ENDIF

 IF increment_flag is false THEN
 DECREMENT class_number_tracker
 ENDIF

 ENDFOR

 WRITE all found classes to output file

ENDFOR

Figure 22 – Pseudocode for classification logic

75

An array of 2
2

n

 elements is created to store the list of classes and initialized to an invalid

class number. For each function number, the number is sent to the transformation class.

The return value from the transformation class is a list of functions that can be achieved

from this number by applying all of the Type 1-4 transformations. For each item in this

list, we check the classes array to see if it has previously been assigned a class number. If

any of the found functions exist in the classes array with a valid class number, all of new

functions are marked in the classes array with the found class number. If none of the

functions find a match in the classes array, the next sequential class number is assigned to

all of the new functions.

A.2.4 Rules Class
The Rules class creates a list rules, or transformations, that are used by the

transformation class. These rules describe to the transformation class how bits the output

vectors (the function numbers) must be interchanged in order to create a new function

number in the same class as the original. Rules for Types 1, 2, and 4 are created and

passed back to the Classify class. There is no need to create a set of rules for Type 3

transformations as the output is simply inverted once.

A.2.4.1 Type 1: Permutation Of Input Variables
The permutation class makes use of the next_permutation() method built in to the C++

STL. This method returns every possible permutation of a supplied array. Based on these

values, the new output array can be determined by a working copy of the function, the

original starting function and the iteration of the loop.

76
CREATE original array with n elements
CREATE t1_rules stack

SET num to 0
FOR each element in original array
 SET original array element to num
 INCREMENT num
ENDFOR

REPEAT
 CREATE working_temp_rule stack

 SET outer_loop_value to 0

 FOR 0 through 2
n

 CREATE orig_temp array of size n
 CREATE new_temp array of size n
 CALL itobv to convert outer_loop_value to array
 SET orig_term to value returned by itobv

 SET inner_loop_value to 0
 FOR 0 through n
 SET new_term with index of inner_loop_value to orig_temp_
 with index of original with index of inner_loop
 INCREMENT inner_loop_value
 ENDFOR

 CALL bvtoi to convert new_term back to a binary value
 SET val to value returned by bvtoi
 PUSH val to working_temp_rule
 INCREMENT outer_loop_value

 ENDFOR

 PUSH working_temp_rule to t1_rules

 CALL next_permutation function
UNTIL no next_permutation value

Figure 23 – Pseudocode for Type 1 rule generation

A.2.4.2 Type 2: Negation Of Input Variables

To create a list of 2
n Type 2 transformations, the value resulting from an XOR

between the list index number and each of the truth table entries for the given number of

variables, as seen in the example for n = 3 in Figure 24.

011!000 = 011" d

011!001 = 010" c

011!010 = 001" b

011!011 = 000" a

011!100 =111" h

011!101 =110" g

011!110 =101" f

011!111 =100" e

Figure 24 – Example of array item 4 (011)

77

This XOR calculation is done for each of the 2
n rules, with the indices 0 through n (in

its binary representation).

CREATE type_2_rules stack
SET outer_loop_value to 0

FOR 0 through 2
n

 CREATE working_temp_rule stack
 SET inner_loop_value to 0

 FOR 0 through 2
n

 SET val to inner_loop_value XOR outer_loop_value
 PUSH val to working_temp_rule
 INCREMENT inner_loop_value
 ENDFOR

 PUSH working_temp_rule to type_2_rules

 INCREMENT outer_loop_value
ENDFOR

Figure 25 – Pseudocode for Type 2 rule generation

A.2.4.3 Type 4: Variable Replacement With XOR
Conceptually, the Type 4 rule generation method creates a list of all possible functions

that can be created with the given number of input variables. The method then traverses

through the list, checking whether the combination is linearly independent. If a function

is found to be linearly independent, and therefore a valid function, it is added to the list of

known valid functions. Based on this list of valid functions, the resulting output vectors of

these functions are added to the Type 4 rule list.

The implementation of the Type 4 rule generation is split into two main methods. First,

a list of all possible input variable combinations must be created. Secondly, based on

these input combinations, the validity of the function must be determined, and an output

vector for the function must be created and added to Type 4 rule list.

A.2.4.3.1 Variable Input Combination List

The Type 4 transformation involves replacing an individual variable with itself XORed

with one or more of the other input variables, as outlined in Section 2.3.2.2. To

implement this so that all possible combinations are considered, it is easiest to create a

78

table of all possible substitutions for a given input variable. Each row in Table 18

represents all possible substitutions for the variable listed in the first column. To consider

all possible combinations of all possible input variables, a list must be compiled of all

combinations from the table that contains one selection from each row.

x

3

(0001)

x

3
! x

2

(0011)

x

3
! x

1

(0101)

x

3
! x

2
! x

1

(0111)

x

3
! x

0

(1001)

x

3
! x

2
! x

0

(1011)

x

3
! x

1
! x

0

(1101)

x

3
! x

2
! x

1
! x

0

(1111)

x

2

(0010)

x

3
! x

2

(0011)

x

2
! x

1

(0110)

x

3
! x

2
! x

1

(0111)

x

2
! x

0

(1010)

x

3
! x

2
! x

0

(1011)

x

2
! x

1
! x

0

(1110)

x

3
! x

2
! x

1
! x

0

(1111)

x

1

(0100)

x

3
! x

1

(0101)

x

2
! x

1

(0110)

x

3
! x

2
! x

1

(0111)

x

1
! x

0

(1100)

x

3
! x

1
! x

0

(1101)

x

2
! x

1
! x

0

(1110)

x

3
! x

2
! x

1
! x

0

(1111)

x

0

(1000)

x

3
! x

0

(1001)

x

2
! x

0

(1010)

x

3
! x

2
! x

0

(1011)

x

1
! x

0

(1100)

x

3
! x

1
! x

0

(1101)

x

2
! x

1
! x

0

(1110)

x

3
! x

2
! x

1
! x

0

(1111)

Table 18 – Logical representation of lookup table for n = 4

The logical representation, as shown in Table 18, can be converted into a binary

representation by creating a binary number of length n , and using each bit to represent a

different input variable. In our representation, the least significant bit represents the first

variable. For example,

x

3
! x

2
! x

1
 would be equivalent to 0111.

 2
n!1

x

3
 1 3 5 7 9 11 13 15

x

2
 2 3 6 7 10 11 14 15

x

1
 4 5 6 7 12 13 14 15

x

0
 8 9 10 11 12 13 14 15

 n

Table 19 – Decimal representation of lookup table for n = 4

The binary representation shown in the parentheses in Table 18 can instead be

represented by the decimal integer which is beneficial in implementation. This table can

be easily generated programmatically.

79

x

0

x

1

x

2

x

3

x

4

1 00001 +20 2 00010 +21 4 00100 +22 8 01000 +23 16 10000
3 00011 → 3 00011 +21 5 00101 +22 9 01001 +23 17 10001
5 00101 +20 6 00110 → 6 00110 +22 10 01010 +23 18 10010
7 00111 → 7 00111 → 7 00111 +22 11 01011 +23 19 10011
9 01001 +20 10 01010 +21 12 01100 → 12 01100 +23 20 10100

11 01011 → 11 01011 +21 13 01101 → 13 01101 +23 21 10101
13 01101 +20 14 01110 → 14 01110 → 14 01110 +23 22 10110
15 01111 → 15 01111 → 15 01111 → 15 01111 +23 23 10111
17 10001 +20 18 10010 +21 20 10100 +22 24 11000 → 24 11000
19 10011 → 19 10011 +21 21 10101 +22 25 11001 → 25 11001
21 10101 +20 22 10110 → 22 10110 +22 26 11010 → 26 11010
23 10111 → 23 10111 → 23 10111 +22 27 11011 → 27 11011
25 11001 +20 26 11010 +21 28 11100 → 28 11100 → 28 11100
27 11011 → 27 11011 +21 29 11101 → 29 11101 → 29 11101
29 11101 +20 30 11110 → 30 11110 → 30 11110 → 30 11110
31 11111 → 31 11111 → 31 11111 → 31 11111 → 31 11111

Table 20 – Lookup table generation for n = 5

As seen in Table 20, the lookup table, like the one in Table 19, can be generated by

first filling the first row with the odd integers from 0 to 2
n . The remaining n !1 rows are

filled in one at a time, using the previous rows as a reference. Using a “skip” value of 2
k

where k goes from 0 to n ! 2 , the table can be programmatically generated by adding

the skip value to the value of the item in the same column, but the row above. This occurs

the same number of times as the value of the skip value, and then the same number of

columns are skipped. This process continues until all column elements are filled. For each

successive row, k of the skip value is increased. Table 20 illustrates this pattern

graphically. The pseudocode in Figure 26 demonstrates how this lookup table can be

created at runtime for any value of n , rather than hard coding it for each value

considered.

80

CREATE arr 2D array of width 2
n-1

 and height n

INITIALIZE arr values to 0

SET skip_value to 0

SET loop_value to 0
FOR 0 through width of arr
 SET arr value of index width of 0 and index height of loop_value to_
 loop_value + 1 + skip_value
 INCREMENT skip_value
 INCREMENT loop_value
ENDFOR

SET loop_value to 1
FOR 1 through height of arr

 SET skip to 2
loop value-1

 SET inner_loop_value to 0
 FOR for 0 through width of arr
 FOR 0 through skip_value
 SET arr value of index width loop_value and height of_
 inner_loop_value to value of arr with index width_
 of (loop_value - 1) and height of inner_loop_
 + skip_value
 INCREMENT inner_loop_value
 ENDFOR

 FOR 0 through skip_value
 SET arr value of index width loop_value and height of_
 inner_loop_value to value of arr with index width_
 of (loop_value - 1) and height of inner_loop_
 INCREMENT inner_loop_value
 ENDFOR
 ENDFOR
 INCREMENT loop_value
ENDFOR

Figure 26 – Pseudocode for lookup table creation

Once the lookup table has been generated, a list of all possible combinations, using one

item from each row, must be compiled.

81
CREATE type4_rules stack
CREATE temp array with 3 elements

CREATE check array with 2
3
- 1 elements

SET check element 1 to the result of:
 (0 * temp index 1) OR (0 * temp index 2) OR (1 * temp index 3)

SET check element 2 to the result of:
 (0 * temp index 1) OR (1 * temp index 2) OR (0 * temp index 3)

SET check element 3 to the result of:
 (0 * temp index 1) OR (1 * temp index 2) OR (1 * temp index 3)

SET check element 4 to the result of:
 (1 * temp index 1) OR (0 * temp index 2) OR (0 * temp index 3)

SET check element 5 to the result of:
 (1 * temp index 1) OR (0 * temp index 2) OR (1 * temp index 3)

SET check element 6 to the result of:
 (1 * temp index 1) OR (1 * temp index 2) OR (0 * temp index 3)

SET check element 7 to the result of:
 (1 * temp index 1) OR (1 * temp index 2) OR (1 * temp index 3)

IF any element in check is not equal to 0 THEN
 PUSH temp to type4_rules
ENDIF

Figure 27 – Pseudocode for linear independence check for n = 3

The basic logic for the linear independence check of an input variable combination is

the literal implementation of equation (2.18), as seen in Figure 27.

// First run
for (int m = 1; m < vecLen; m++) {
 a[m] = tmp[0] * ((m >> (numRow-1)) & 1);
}

// For all the consecutive calculations
for (int m = 1; m < vecLen; m++) {
 for (int k = 1; k < numRow; k++) {
 a[m] ^= tmp[k] * ((m >> (numRow-k-1)) & 1);
 }
}

Figure 28 – C++ code to check linear independence for any value of n

This specific example can be implemented to encompass any value of n , as seen in

Figure 28. Although the nested loops and extensive use of bitwise operators obscure the

intention of this code, it is still essentially a literal implementation of equation (2.18).

82
A.2.3.4.2 Type 4 Rule Generation

This method converts the valid XORed variable combinations provided by the

type4List() method from a binary representation into rule format as expected by the

transformation class. The core of this method is the line of code displayed in Figure 29,

which is taken from the source code in section Appendix C.3.2.

 tmp[m] = tmp[m] ^ (((t4List[i][m] >> j) & 1) * ((k >> j) & 1));
Figure 29 – Innermost for loop logic

Although the bitwise operations and nested loops obscure this code, it simply isolates

the individual bits of each column item in the t4List array for a given row, and

multiplying that bit by the isolated bit for that iteration of the loop.

tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((0 >> 0) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((1 >> 0) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((2 >> 0) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 0) & 1) * ((3 >> 0) & 1));

tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((0 >> 1) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((1 >> 1) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((2 >> 1) & 1));
tmp[0] = tmp[0] ^ (((t4List[i][0] >> 1) & 1) * ((3 >> 1) & 1));

tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((0 >> 0) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((1 >> 0) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((2 >> 0) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 0) & 1) * ((3 >> 0) & 1));

tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((0 >> 1) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((1 >> 1) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((2 >> 1) & 1));
tmp[1] = tmp[1] ^ (((t4List[i][1] >> 1) & 1) * ((3 >> 1) & 1));

Figure 30 – Innermost loop logic for n = 2 (unfolded loops)

By undoing some of the nested loops for an example of n = 2 , as in Figure 30, the code

becomes clearer. For each row in the t4List array, 16 assignment operations take place on

tmp (8 to each element of the array). Each line simply takes the current value of tmp, does

a bitwise OR with the result of the isolated variable multiplied by the equivalent bit

within the integers 0 through 2
n .

83
CREATE t4_rules stack
CREATE initial_order stack

SET loop_count to 0

FOR 0 through 2
n

 PUSH loop_count to initial_order
 INCREMENT loop_count
ENDFOR

PUSH initial_order to t4_rules

CALL genTypeFourList
SET t4_list to returned 2D (width of n) array from genTypeFourList

SET loop_i to 0
FOR each item in t4_list
 CREATE temp_working_rule stack
 SET loop_k to 0

 FOR 0 through 2
n

 CREATE temp stack
 SET loop_m to 0
 FOR 0 through n
 PUSH 0 to temp
 SET loop_j to 0
 FOR 0 through n
 SET shift_item to t4_list with index loop_i and loop_m SHIFT_
 right by loop_j all AND by 1
 SET or_item to shift_item multiplied by loop_k SHIFT right_
 by loop_j all AND by 1
 SET temp with index of loop_m to the value in temp with index_
 of loop_m OR by or_item
 INCREMENT loop_j
 ENDFOR
 INCREMENT loop_m
 ENDFOR
 CALL bvtoi to convert temp to binary format
 SET t_result to bvtoi returned value
 PUSH to temp_working_rule
 INCREMENT loop_k
 ENDFOR
 PUSH temp_working_rule to t4_rules
 INCREMENT loop_i
ENDFOR

Figure 31 – Pseudocode for rule generation

The pseudocode provided in Figure 31 places the code in Figure 29 in context of the

nested for loops.

A.2.5 Transform Class
The Transform class is responsible for producing a list of all possible functions that can

be generated when all four transformation types are applied to a single starting function.

The main transformation method may be called up to 2
2

n

 times by the classification class:

once for each of the 2
2

n

 starting functions.

84
METHOD transform

 CREATE classes_array with 2
2
n

 elements
 CALL type_1 method with function_number
 RETURN classes_array to caller

ENDMETHOD

METHOD type_1
 FOR each item in type1_rules
 CALL swapBits method with function_number and rule
 SET num to value returned by swapBits
 CALL type_2 method with num
 ENDFOR
ENDMETHOD

METHOD type_2
 FOR each item in type2_rules
 CALL swapBits method with function_number and rule
 SET num to value returned by swapBits
 CALL type_3 method with num
 ENDFOR
ENDMETHOD

METHOD type_3

 SET mask to 2
n
 true bits

 CALL type_3 method with function_number
 SET num to function_number XOR mask
 CALL type_3 method with num
ENDMETHOD

METHOD type_4
 FOR each item in type4_rules
 CALL swapBits method with function_number and rule

 IF value returned by swapBits is smaller than 2
2
n

 THEN
 SET class_array element with index of function_number to true
 ENDIF
ENDMETHOD

METHOD swapBits

 CREATE original array with 2
n
 bits

 FOR all bits of function_number
 SET original element to value of that bit
 ENDFOR

 SET new_function_number to 0;

 FOR all elements of order array
 SET new_function_number to new_function_number shifted left by 1_
 place and OR with value of original with the index of the_
 rule order with the index of the current element
 ENDFOR
ENDMETHOD

Figure 32 – Pseudocode for transformation logic

For each function, the transformation begins by calling the Type 1 classification

method. The Type 1 method traverses this list of rules, applying them to the function and

storing the new functions in a working list. This working list is globally available to all of

the transformation methods the transformation class. For each item in a rule list, the

85

current transformation method calls the method below it. In other words, if the rules of

all types were to be stored in a tree, where each level represented a transformation type,

as in Figure 18, the order in which the rule would be processed would be the same as if

one were to perform a pre-order traversal. Once the final rule is processed, the list of

functions accumulated throughout the traversal is passed back to the classification class.

A.3 Optimizations

A.3.1 Reducing The Problem
As previously discussed, Type 3 transformations simply invert the values in the output

vector, as seen in Figure 33. On every iteration of the classification process, all four

transformation types are applied to each function. Since Type 3 is applied to every

function, by the time half of the functions have been processed, all possible functions have

been discovered and classified.

00!11

01!10

10!01

11!00

Figure 33 – All possible functions for n = 1

If all functions have been discovered by the time 2
2

n
!1 functions have been processed,

processing the remaining 2
2

n
!1 is redundant. Based on this observation, the

implementation only considers the first 2
2

n
!1 functions. Without considering any other

optimizations, this could reduce the running time to half of the original.

Using this same observation, it becomes obvious that storing values above 2
2

n
!1 is also

redundant. Reducing memory requirements to half at n = 5 is significant as it allowed us

to fit the application into the primary storage; something that had not been possible with

86

the available equipment. The ability to store all working data in primary storage

significantly reduces the overhead that would be needed for a system that relies on

caching to a secondary storage device.

The optimization, used to reduce the amount of calculations, is to check if the current

starting function has previously been discovered. If this function has previously been

discovered, applying the transformations will simply return other functions that have

already been discovered. As this is redundant processing, the expensive transformation

processing can be eliminated.

A.3.2 Programming Techniques
This application needed to be highly optimized in order to run on the available

resources, and also complete in a reasonable amount of time. The following sections

describe techniques used to optimized portions of code identified to be bottlenecks when

using runtime profilers.

A.3.2.1 Dynamic Vs. Fixed Data Structures
As discussed in Appendix A.1, a significant portion of the implementation was focused

around reducing the overhead associated with programming language. The original C++

version of this application made extensive use of the C++ STL’s dynamic data structures.

The advantage of these structures is that they provide the developer easy to use tools,

while also reducing the likelihood of errors. On the other hand, the disadvantages of these

structures are based on their ease of use. For example, a STL Vector data structure can

be used with any data type, and contains bounds checking to avoid errors due to incorrect

access. These extra checks and layers of abstraction add a small amount of overhead to

every call to that structure. For an average application, the number of calls to these

structures are not that great, and the overhead does adversely affect the application. The

87

benefits to the developer greatly outweigh the small change in performance.

Unfortunately for certain applications, such as this implementation, the number of calls to

these structures are in the billions or trillions rather than hundreds of thousands. In the

case of this application for n = 5 , the temporary working array in the Transform class is

modified approximately 2.8 Billion times for each starting function. If no optimizations

are applied to reduce the dataset, the application could modify this array 1.2 !10
19 times

when considering all 2
2

5

 functions, and this only considers one data structure in one class.

The overhead of a STL Vector, no matter how slight, adds up to be very significant over

the entire running time.

As the dynamic data structures were not suitable for this application, fixed size data

structures, such as the traditional array, had to be examined. The advantage of an array

is that there is no level of abstraction that causes overhead for accessing or modifying the

data contents. The biggest disadvantage of using an array is that the sizes must be pre-

determined, or hard coded, which eliminates the scalability of the code. Additionally, the

program stack is not large enough to contain an array large enough to store 2
2

5

, or even

 2
2

5
!1 functions. Fortunately, unlike Java, C++ allows direct allocation and manipulation

of heap memory using the new operator (or the C-style malloc operator). Additionally, the

new operator can allocate memory at runtime, so the scalability of the code is not lost.

This memory can still be thought of, and accessed, like a regular array using the square

brackets (Example: a[4]). Since all reads and writes to this dynamically created array are

directly to memory, and not through accessor methods, there is no additional overhead.

The dynamically allocated arrays were used any time it would be accessed many times,

size needed to be determined at run time, or items were simply too large to fit in the

88

stack. There are cases where Vectors and regular arrays are used, but only scalability and

performance were not adversely affected.

A.3.2.2 Bitwise Operators
Modern microprocessors rely on a certain small set of primitive operations to

accomplish all of the calculations. Typically, a high level language is used and a compiler

reduces these commands to combinations of the primitive operations. If an application is

written considering "low-level execution of [the] high-level program," it is possible to

create code that will run faster, or more memory efficient than what the compiler can

derive from generic high-level code [11]. Modern compilers are well written and highly

optimized, so it’s not likely that for a random command, a person could write better code,

but if an approach is taken to take advantage of these low level structures, it is possible to

come up with a faster, or more memory efficient solution. For example, the output vector

of a function’s truth table consists of 2
n true or false values. One approach would be to

create an array of 2
n Boolean values, and store each of the results in one of the elements.

In C++, the Boolean data type is an 8-bit value. For n = 4 , this array would take 128 bits

of memory to store a single function. If one considers bitwise operators, this same

function can be represented using a short integer, which takes only 16 bits. The result is

that to simply store these functions, 8 times less memory is needed, which become

significant when considering the size of the problem.

The previous example illustrated how being conscious of the low level operation of the

processor allowed for more efficient memory usage, a second example can illustrate how

bitwise operators can result in faster calculations. The individual bits can be easily

accessed and using combinations of shift (>> or <<), AND (&), OR (|), and XOR (^)

89

operations. Consider the case where we want to check if any of the bits in the output

vector are set to true. In Figure 34, a traditional approach using an array to store the

output vector is used. In order to do this, each bit of the output vector would have to be

checked.

int fn[4] = {0, 0, 1, 1}
int result = 0;
for (int i = 0; i < 4; i++) {
 if (fn[i] = 1) {
 result = 1;
 }
}

if (result) {
 // There are bits set to true
} else {
 // There are no bits set to true
}

Figure 34 – Check if any bits are set to true

If a bit was found to be true, we would set a flag, and then after checking each bit, we

would test to see if the flag had been set. If we consider the same problem using bitwise

operators, like in Figure 35, we can do an XOR between a mask of all true bits, and the

binary representation of the function. If the integer happens to be anything other than 0,

we know that one of the bits is true.

int fn = 3; // Binary: 0011
int mask = 15; // Binary: 1111
if (fn ^ mask) {
 // There are bits set to true
} else {
 // There are no bits set to true
}

Figure 35 – Check if any bits are true using bitwise operators

Neither of these examples would have been achieved through compiler optimization

since the problem is conceptually different. If one thinks in terms of a lower level of

operation, bitwise operators can be a powerful tool in code optimization.

A.3.2.3 Picking Data Types That Fit
In order to calculate for n = 5 , it was important to use the smallest data types possible

to be able to squeeze the application into the available memory. One way to accomplish

90

this is by the method mentioned in A.3.2.2, which represents functions as ints and

longs rather than storing the values in an array or similar structure. Another example is

the temporary list of classes maintained by the Transform class. Rather than storing an

array of 2
2

n
!1 ints, which are 32-bits in length, an array of 2

2
n
!1 bool were used

instead, which only take 8 bits of memory each.

A.3.2.4 Memory Vs. Clock Cycles
In software development, we must often balance how we use resources. On one hand,

we can have a very fast algorithm, but it uses a lot of memory. On the other hand, we can

have an algorithm that computes the same thing, but is very memory efficient. This

memory efficiency usually comes at the cost of running speed.

This application at n > 4 is both CPU and memory intensive, which makes it very

difficult to choose which side to sacrifice. Based on the resources available, it was

determined that with the reduced problem set, it is possible to keep large arrays with

values for each function in memory in the methods that are used frequently. This allows

for the minimum amount of CPU overhead in sections of the code that are being run the

most.

A.3.2.5 Object-Oriented Programming
Object-oriented programming is very good for creating scalable, modular, and reusable

code. In the case of this implementation, if an improved algorithm for swapping the

output vector bits is created, it is very simple to change without affecting the rest of the

system. Unfortunately the overhead associated with this level of abstraction, much like the

abstract data types in the STL that were previously discussed, can have a detrimental

effect on the performance of the application.

91

To counter the effects of abstraction overhead, it was necessary to break some of the

object-oriented conventions. Many of these choices included setting arrays and variables

as globals rather than passing them as parameters. This allows the structures to be

computed and allocated once, rather than when needed.

It was also necessary to pay careful attention to how data is passed, when needed. If a

structure, such as a Vector, is passed by value rather than by reference, the overhead of

the copy on each call of the method can add up very quickly. Every method in the

commonly called methods (especially in the Transform class) were carefully examined to

ensure all calls were pass-by-reference, and the effects were confirmed using a profiler.

A.3.2.6 Dividing The Problem
The pre-filtering that takes place in the application splits starting functions into self-

contained groups. It has previously been shown that functions within these groups cannot

be transformed into functions that are part of the other groups. This allows the groups to

be classified separately.

Because of this property, it is possible that the groups could be processed in parallel,

whether it is on multiple machines, or multiple threads. Although the pre-filtering has

been implemented, multi-threading has not since for each thread, it would require an

additional copy of the classes and temporary working arrays to be stored in memory,

which would not have fit in the resources available. It is also possible to run this

application on two separate machines, but we did not have two machines with sufficient

primary storage for this application.

92

A.4 Problems
There are several issues that become apparent when trying to implement spectral

classification of functions, as this is a huge problem, and one that grows double

exponentially.

Due to this size, many compromises must be made during implementation. Critical

decisions were made when choosing an appropriate programming language with

sufficient abilities yet low overall overhead. Many times implementation required that

good coding practices be ignored in order to achieve acceptable performance results.

Although it is possible to make some headway with programming techniques, the

problem is still very large, and the problem size must be reduced. Some techniques

involve making assumptions based on the overall properties of the problem, while other

approaches involve dividing the problem into smaller portions. Unfortunately, the pre-

filtering technique, although simple and relatively low overhead, is not scalable. As n

increases to values over 5, these smaller portions are still far too large to be usable.

Scalability is not realistic with this approach as it relies heavily on keeping the entire

problem in primary memory to reduce performance hits due to system overhead. The

size of the problem becomes so great, that future work will likely have to rely on other

approaches such as prediction.

A.5 Summary
The implementation used for this research calculates the spectral classes for n = 3,4,5

without needing any changes in optimizations or algorithms, therefore we are assured

that for all considered values of n , the same approach is used.

The approaches used for this implementation mirror the concepts described in this

thesis. There are a few specific cases where the implementation uses a slightly different

93

approach, such as rolling two steps into a single step, in order to decrease memory usage,

and running time; conceptually, though, the approaches are the same.

Spectral classification of Boolean functions is a difficult problem to implement due to

the double exponential growth of the problem. Implementations that work well for n ! 5

are not necessarily appropriate for n > 5 . Optimizations that make n = 5 feasible do not

necessarily help for larger values of n ; in fact, the approaches used in this implementation

to make n = 5 run fast enough to be feasible would make it impossible to calculate n ! 6

with current technology.

The implementation was originally intended to be completely object oriented, but due

to the size of the problem, optimizations that break standard object oriented approaches

are needed. Although this implementation is not entirely object oriented, the modular

intent of the implementation is maintained. This implementation could scale higher,

given enough resources, but without some technological breakthroughs in hardware, it is

not feasible.

Future work on implementation will likely require new approaches storing, indexing,

and processing the data in order to make n > 5 possible, as well as further optimizations

to the algorithm and approach.

94

Appendix
B - Classes

B.0 Introduction
The results of this research have yielded different results than previous work in [2].

Much of the work in this research involves comparing the work in [2] to the current

results to identify where the discrepancies occur. As the class list in [2] is not complete

and only lists the spectral signature, rather than the entire spectrum of the canonical

function, some reconstruction of working data from archives is needed. The result of this

work is a complete list of spectral classes produced by this research, and a reconstructed

list of the data produced in [2].

B.1 Complete Spectral Class List For n = 5
To make this spectral class list as comparable as possible to the list in [2], the same

presentation format of the first order spectral coefficients, and a summary of the complete

spectrum are used. Additionally, the decimal representation of the function, which is

listed in the “Function Number” column of Table 21, has been added in order to identify

the exact canonical function used for this classification. This function number can also be

used to calculate the entire spectrum of the function if desired. In addition to the function

number, a class number, as described in section 4.2.3, and a pre-filter group number have

been added.

95

Finally, the equivalent canonical function number from [2] has been added under the

heading of “Book,” which uses a different approach to ordering and assigning canonical

numbers. As there are more classes listed in this list than there are in [2], a dash (-) has

been placed in the column rather than a number for certain functions.

Class
Number

Group
Number††

Function
Number s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum Book‡‡

0 0 0 32 0 0 0 0 0 1 x32 31 x0 2

1 1 1 30 2 2 2 2 2 1 x30 31 x2 4

2 2 3 28 0 4 4 4 4 1 x28 15 x4 16 x0 7

3 3 7 26 2 2 6 6 6 1 x26 7 x6 24 x2 10

4 4 15 24 0 0 8 8 8 1 x24 7 x8 24 x0 17
5 4 23 24 4 4 4 8 8 1 x24 3 x8 16 x4 12 x0 14

6 5 31 22 2 2 6 10 10 1 x22 3 x10 4 x6 24 x2 21
7 5 279 22 6 6 6 6 10 1 x22 1 x10 10 x6 20 x2 25

8 6 63 20 0 4 4 12 12 1 x20 3 x12 12 x4 16 x0 29
9 6 287 20 4 4 8 8 12 1 x20 1 x12 4 x8 14 x4 12 x0 35
10 6 854 20 4 4 4 4 12 1 x20 1 x12 30 x4 87
11 6 65815 20 8 8 8 8 8 1 x20 6 x8 15 x4 10 x0 39

12 7 127 18 2 2 2 14 14 1 x18 3 x14 28 x2 42
13 7 319 18 2 6 6 10 14 1 x18 1 x14 2 x10 6 x6 22 x2 48
14 7 855 18 6 6 6 6 14 1 x18 1 x14 12 x6 18 x2 91
15 7 65823 18 6 6 10 10 10 1 x18 3 x10 9 x6 19 x2 54
16 7 66390 18 6 6 6 6 10 1 x18 1 x10 15 x6 15 x2 95

17 8 255 16 0 0 0 16 16 4 x16 28 x0 56
18 8 383 16 4 4 4 12 16 2 x16 2 x12 14 x4 14 x0 60
19 8 831 16 0 8 8 8 16 2 x16 8 x8 22 x0 64
20 8 863 16 4 4 8 8 16 2 x16 4 x8 16 x4 10 x0 100
21 8 65855 16 4 8 8 12 12 1 x16 2 x12 4 x8 14 x4 11 x0 72
22 8 66391 16 8 8 8 8 12 1 x16 1 x12 6 x8 15 x4 9 x0 105
23 8 197461 16 8 8 8 8 8 1 x16 12 x8 19 x0 108
24 8 197462 16 4 8 8 8 8 1 x16 8 x8 16 x4 7 x0 112

25 9 511 14 2 2 2 14 18 1 x18 3 x14 28 x2 41
26 9 895 14 2 6 6 10 18 1 x18 1 x14 2 x10 6 x6 22 x2 47
27 9 1911 14 6 6 6 6 18 1 x18 1 x14 12 x6 18 x2 90
28 9 65919 14 6 6 6 14 14 3 x14 1 x10 7 x6 21 x2 76
29 9 66367 14 2 10 10 10 14 2 x14 4 x10 4 x6 22 x2 81
30 9 66399 14 6 6 10 10 14 2 x14 2 x10 10 x6 18 x2 118
31 9 197463 14 6 10 10 10 10 1 x14 5 x10 7 x6 19 x2 124
32 9 197991 14 6 6 10 10 10 1 x14 3 x10 13 x6 15 x2 130
33 9 202070 14 10 6 6 6 10 1 x14 3 x10 13 x6 15 x2 134

34 10 1023 12 0 4 4 12 20 1 x20 3 x12 12 x4 16 x0 28
35 10 1919 12 4 4 8 8 20 1 x20 1 x12 4 x8 14 x4 12 x0 34
36 10 6014 12 4 4 4 4 20 1 x20 1 x12 30 x4 86
37 10 66047 12 4 4 4 16 16 2 x16 2 x12 14 x4 14 x0 59
38 10 66431 12 4 8 8 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 71
39 10 67447 12 8 8 8 8 16 1 x16 1 x12 6 x8 15 x4 9 x0 104
40 10 197439 12 0 12 12 12 12 6 x12 10 x4 16 x0 84
41 10 197471 12 4 8 12 12 12 4 x12 4 x8 12 x4 12 x0 140
42 10 197999 12 4 4 12 12 12 4 x12 28 x4 143
43 10 198007 12 8 8 8 12 12 3 x12 6 x8 13 x4 10 x0 152
44 10 202071 12 12 8 8 8 12 4 x12 4 x8 12 x4 12 x0 147
45 10 202075 12 8 8 8 8 12 2 x12 8 x8 14 x4 8 x0 158
46 10 218454 12 12 4 4 4 12 4 x12 28 x4 154
47 10 218458 12 8 4 4 4 12 2 x12 8 x8 14 x4 8 x0 163
48 10 463702 12 8 8 8 8 8 1 x12 10 x8 15 x4 6 x0 167

†† Pre-filter group

‡‡ The equivalent class number in [2]

96
Class
Number

Group
Number

Function
Number s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum Book

49 11 2047 10 2 2 6 10 22 1 x22 3 x10 4 x6 24 x2 20
50 11 6015 10 6 6 6 6 22 1 x22 1 x10 10 x6 20 x2 24
51 11 66559 10 2 6 6 14 18 1 x18 1 x14 2 x10 6 x6 22 x2 46
52 11 67455 10 6 6 10 10 18 1 x18 3 x10 9 x6 19 x2 53
53 11 71550 10 6 6 6 6 18 1 x18 1 x10 15 x6 15 x2 94
54 11 197503 10 2 10 10 14 14 2 x14 4 x10 4 x6 22 x2 80
55 11 198015 10 6 6 10 14 14 2 x14 2 x10 10 x6 18 x2 117
56 11 198519 10 6 10 10 10 14 1 x14 5 x10 7 x6 19 x2 123
57 11 202079 10 10 6 10 10 14 1 x14 5 x10 7 x6 19 x2 -
58 11 202095 10 6 6 10 10 14 1 x14 3 x10 13 x6 15 x2 129
59 11 218455 10 14 6 6 6 14 3 x14 1 x10 7 x6 21 x2 75
60 11 218459 10 10 6 6 6 14 1 x14 3 x10 13 x6 15 x2 133
61 11 463677 10 6 10 10 10 10 6 x10 10 x6 16 x2 170
62 11 463703 10 10 10 10 10 10 6 x10 10 x6 16 x2 175
63 11 471868 10 2 10 6 6 10 6 x10 10 x6 16 x2 178
64 11 471894 10 6 10 6 6 10 4 x10 16 x6 12 x2 182

65 12 4095 8 0 0 8 8 24 1 x24 7 x8 24 x0 16
66 12 6143 8 4 4 4 8 24 1 x24 3 x8 16 x4 12 x0 13
67 12 67583 8 4 4 8 12 20 1 x20 1 x12 4 x8 14 x4 12 x0 33
68 12 71551 8 8 8 8 8 20 1 x20 6 x8 15 x4 10 x0 38
69 12 197631 8 0 8 8 16 16 2 x16 8 x8 22 x0 63
70 12 198143 8 4 4 8 16 16 2 x16 4 x8 16 x4 10 x0 99
71 12 198527 8 4 8 12 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 69
72 12 202111 8 8 8 8 12 16 1 x16 1 x12 6 x8 15 x4 9 x0 103
73 12 202621 8 8 8 8 8 16 1 x16 12 x8 19 x0 107
74 12 202622 8 4 8 8 8 16 1 x16 8 x8 16 x4 7 x0 111
75 12 218463 8 12 4 8 8 16 1 x16 2 x12 4 x8 14 x4 11 x0 70
76 12 218479 8 8 4 8 8 16 1 x16 8 x8 16 x4 7 x0 -
77 12 460663 8 8 8 12 12 12 4 x12 4 x8 12 x4 12 x0 139
78 12 463679 8 4 12 12 12 12 4 x12 4 x8 12 x4 12 x0 146
79 12 463711 8 8 8 12 12 12 3 x12 6 x8 13 x4 10 x0 151
80 12 463741 8 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 157
81 12 471869 8 4 12 8 8 12 2 x12 8 x8 14 x4 8 x0 162
82 12 471895 8 8 12 8 8 12 2 x12 8 x8 14 x4 8 x0 -
83 12 472423 8 8 8 8 8 12 1 x12 10 x8 15 x4 6 x0 166
84 12 996156 8 0 8 8 8 8 16 x8 16 x0 184
85 12 996181 8 8 8 8 8 8 16 x8 16 x0 186
86 12 996182 8 4 8 8 8 8 12 x8 16 x4 4 x0 189
87 12 1514326 8 8 8 8 8 8 16 x8 16 x0 191

88 13 8191 6 2 2 6 6 26 1 x26 7 x6 24 x2 9
89 13 69631 6 2 2 10 10 22 1 x22 3 x10 4 x6 24 x2 19
90 13 71679 6 6 6 6 10 22 1 x22 1 x10 10 x6 20 x2 22
91 13 198655 6 2 6 10 14 18 1 x18 1 x14 2 x10 6 x6 22 x2 45
92 13 202239 6 6 6 6 14 18 1 x18 1 x14 12 x6 18 x2 89
93 13 202623 6 6 10 10 10 18 1 x18 3 x10 9 x6 19 x2 51
94 13 218495 6 10 6 6 10 18 1 x18 3 x10 9 x6 19 x2 52
95 13 218751 6 6 6 6 10 18 1 x18 1 x10 15 x6 15 x2 93
96 13 460671 6 6 6 14 14 14 3 x14 1 x10 7 x6 21 x2 74
97 13 463743 6 6 10 10 14 14 2 x14 2 x10 10 x6 18 x2 115
98 13 464759 6 10 10 10 10 14 1 x14 5 x10 7 x6 19 x2 121
99 13 464766 6 6 6 10 10 14 1 x14 3 x10 13 x6 15 x2 127
100 13 471871 6 2 14 10 10 14 2 x14 4 x10 4 x6 22 x2 79
101 13 471903 6 6 10 10 10 14 1 x14 5 x10 7 x6 19 x2 122
102 13 471927 6 6 14 6 10 14 2 x14 2 x10 10 x6 18 x2 116
103 13 471933 6 6 10 6 10 14 1 x14 3 x10 13 x6 15 x2 128
104 13 472431 6 6 6 10 10 14 1 x14 3 x10 13 x6 15 x2 132
105 13 472439 6 10 10 6 10 14 1 x14 3 x10 13 x6 15 x2 169
106 13 996157 6 2 10 10 10 10 6 x10 10 x6 16 x2 173
107 13 996183 6 6 10 10 10 10 6 x10 10 x6 16 x2 174
108 13 996711 6 6 6 10 10 10 4 x10 16 x6 12 x2 180
109 13 1513277 6 10 10 10 10 10 6 x10 10 x6 16 x2 177
110 13 1514301 6 6 10 10 10 10 4 x10 16 x6 12 x2 181
111 13 1514327 6 10 10 10 10 10 6 x10 10 x6 16 x2 -

112 14 16383 4 0 4 4 4 28 1 x28 15 x4 16 x0 6
113 14 73727 4 4 4 8 8 24 1 x24 3 x8 16 x4 12 x0 12
114 14 200703 4 0 4 12 12 20 1 x20 3 x12 12 x4 16 x0 27
115 14 202751 4 4 8 8 12 20 1 x20 1 x12 4 x8 14 x4 12 x0 31
116 14 218623 4 8 4 4 12 20 1 x20 1 x12 4 x8 14 x4 12 x0 32
117 14 218879 4 4 4 4 12 20 1 x20 1 x12 30 x4 85
118 14 219007 4 8 8 8 8 20 1 x20 6 x8 15 x4 10 x0 37
119 14 460799 4 4 4 12 16 16 2 x16 2 x12 14 x4 14 x0 58
120 14 463871 4 4 8 8 16 16 2 x16 4 x8 16 x4 10 x0 98
121 14 464767 4 8 8 12 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 67
122 14 471935 4 4 12 8 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 68
123 14 472447 4 8 8 8 12 16 1 x16 1 x12 6 x8 15 x4 9 x0 102
124 14 472951 4 8 12 8 8 16 1 x16 1 x12 6 x8 15 x4 9 x0 -

97
Class
Number

Group
Number

Function
Number s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum Book

125 14 472957 4 8 8 8 8 16 1 x16 8 x8 16 x4 7 x0 110
126 14 989047 4 8 8 12 12 12 4 x12 4 x8 12 x4 12 x0 137
127 14 989054 4 4 4 12 12 12 4 x12 28 x4 141
128 14 996159 4 0 12 12 12 12 6 x12 10 x4 16 x0 83
129 14 996191 4 4 8 12 12 12 4 x12 4 x8 12 x4 12 x0 138
130 14 996221 4 4 8 8 12 12 2 x12 8 x8 14 x4 8 x0 156
131 14 996719 4 4 4 12 12 12 4 x12 28 x4 142
132 14 996727 4 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 160
133 14 1513279 4 8 12 12 12 12 4 x12 4 x8 12 x4 12 x0 145
134 14 1513342 4 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 161
135 14 1514303 4 4 12 12 12 12 4 x12 28 x4 153
136 14 1514335 4 8 8 12 12 12 3 x12 6 x8 13 x4 10 x0 149
137 14 1514365 4 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 -
138 14 1515325 4 8 8 12 8 12 2 x12 8 x8 14 x4 8 x0 -
139 14 1523005 4 8 8 8 8 12 3 x12 6 x8 13 x4 10 x0 150
140 14 1523035 4 8 8 8 8 12 1 x12 10 x8 15 x4 6 x0 165
141 14 18290620 4 8 8 8 8 8 12 x8 16 x4 4 x0 188

142 15 32767 2 2 2 2 2 30 1 x30 31 x2 3
143 15 81919 2 2 6 6 6 26 1 x26 7 x6 24 x2 8
144 15 204799 2 2 6 10 10 22 1 x22 3 x10 4 x6 24 x2 18
145 15 219135 2 6 6 6 10 22 1 x22 1 x10 10 x6 20 x2 23
146 15 462847 2 2 2 14 14 18 1 x18 3 x14 28 x2 40
147 15 464895 2 6 6 10 14 18 1 x18 1 x14 2 x10 6 x6 22 x2 43
148 15 472063 2 2 10 6 14 18 1 x18 1 x14 2 x10 6 x6 22 x2 44
149 15 472575 2 6 6 6 14 18 1 x18 1 x14 12 x6 18 x2 88
150 15 472959 2 6 10 10 10 18 1 x18 3 x10 9 x6 19 x2 49
151 15 489335 2 10 10 6 6 18 1 x18 3 x10 9 x6 19 x2 50
152 15 489339 2 6 10 6 6 18 1 x18 1 x10 15 x6 15 x2 92
153 15 989055 2 6 6 14 14 14 3 x14 1 x10 7 x6 21 x2 73
154 15 996223 2 2 10 10 14 14 2 x14 4 x10 4 x6 22 x2 77
155 15 996735 2 6 6 10 14 14 2 x14 2 x10 10 x6 18 x2 113
156 15 997239 2 6 10 10 10 14 1 x14 5 x10 7 x6 19 x2 119
157 15 997245 2 6 6 10 10 14 1 x14 3 x10 13 x6 15 x2 125
158 15 1513343 2 10 10 10 14 14 2 x14 4 x10 4 x6 22 x2 78
159 15 1514367 2 6 10 10 14 14 2 x14 2 x10 10 x6 18 x2 114
160 15 1515327 2 6 10 14 10 14 2 x14 2 x10 10 x6 18 x2 -
161 15 1515383 2 10 10 10 10 14 1 x14 5 x10 7 x6 19 x2 120
162 15 1515390 2 6 6 10 10 14 1 x14 3 x10 13 x6 15 x2 126
163 15 1523007 2 6 10 10 10 14 1 x14 5 x10 7 x6 19 x2 -
164 15 1523039 2 10 6 10 10 14 1 x14 3 x10 13 x6 15 x2 131
165 15 1523070 2 6 6 6 10 14 1 x14 3 x10 13 x6 15 x2 -
166 15 2045757 2 6 10 10 10 10 6 x10 10 x6 16 x2 168
167 15 2045783 2 10 10 10 10 10 6 x10 10 x6 16 x2 171
168 15 18290558 2 10 10 10 10 10 6 x10 10 x6 16 x2 172
169 15 18290621 2 10 10 10 10 10 6 x10 10 x6 16 x2 176
170 15 18291671 2 10 10 10 10 10 6 x10 10 x6 16 x2 -
171 15 18291708 2 6 6 6 10 10 4 x10 16 x6 12 x2 179

172 16 65535 0 0 0 0 0 32 1 x32 31 x0 1
173 16 98303 0 4 4 4 4 28 1 x28 15 x4 16 x0 5
174 16 212991 0 0 8 8 8 24 1 x24 7 x8 24 x0 15
175 16 221183 0 4 4 8 8 24 1 x24 3 x8 16 x4 12 x0 11
176 16 466943 0 4 4 12 12 20 1 x20 3 x12 12 x4 16 x0 26
177 16 473087 0 4 8 8 12 20 1 x20 1 x12 4 x8 14 x4 12 x0 30
178 16 489343 0 8 8 8 8 20 1 x20 6 x8 15 x4 10 x0 36
179 16 987135 0 0 0 16 16 16 4 x16 28 x0 55
180 16 989183 0 4 4 12 16 16 2 x16 2 x12 14 x4 14 x0 57
181 16 996351 0 0 8 8 16 16 2 x16 8 x8 22 x0 61
182 16 996863 0 4 4 8 16 16 2 x16 4 x8 16 x4 10 x0 96
183 16 997247 0 4 8 12 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 65
184 16 1013623 0 8 8 8 8 16 1 x16 12 x8 19 x0 106
185 16 1013627 0 4 8 8 8 16 1 x16 8 x8 16 x4 7 x0 109
186 16 1513471 0 8 8 8 16 16 2 x16 8 x8 22 x0 62
187 16 1514495 0 8 4 8 16 16 2 x16 4 x8 16 x4 10 x0 97
188 16 1515391 0 8 8 12 12 16 1 x16 2 x12 4 x8 14 x4 11 x0 66
189 16 1523071 0 8 8 8 12 16 1 x16 1 x12 6 x8 15 x4 9 x0 101
190 16 1523581 0 8 8 8 8 16 1 x16 12 x8 19 x0 -
191 16 1523582 0 4 8 8 8 16 1 x16 8 x8 16 x4 7 x0 -
192 16 2039671 0 8 8 12 12 12 4 x12 4 x8 12 x4 12 x0 135
193 16 2045759 0 4 12 12 12 12 4 x12 4 x8 12 x4 12 x0 136
194 16 2045791 0 8 8 12 12 12 3 x12 6 x8 13 x4 10 x0 148
195 16 2045821 0 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 155
196 16 18290559 0 12 12 12 12 12 6 x12 10 x4 16 x0 82
197 16 18290623 0 8 12 12 12 12 4 x12 4 x8 12 x4 12 x0 144
198 16 18290686 0 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 159
199 16 18291679 0 8 8 12 12 12 3 x12 6 x8 13 x4 10 x0 -
200 16 18291709 0 8 8 8 12 12 2 x12 8 x8 14 x4 8 x0 -
201 16 18300397 0 8 4 8 8 12 1 x12 10 x8 15 x4 6 x0 164

98
Class
Number

Group
Number

Function
Number s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum Book

202 16 18823036 0 8 8 8 8 8 16 x8 16 x0 183
203 16 18823100 0 4 8 8 8 8 12 x8 16 x4 4 x0 187
204 16 18823126 0 8 8 8 8 8 16 x8 16 x0 185
205 16 54482538 0 0 8 8 8 0 16 x8 16 x0 190

Table 21 – Complete spectral class list for n = 5

B.2 Transcription Of Hurst Printouts
This section is a transcription and organization of the most complete data available

from the previous works at the time of the writing of this thesis. As indicated earlier,

spectral classes listed in Appendix B of [2] are simply summaries of the spectral data, and

not complete listings. With only the spectral summary, it is impossible to determine the

exact function used as the canonical function. Copies of the original printouts were

obtained which provided the complete spectrum for each canonical function. Although

the spectral summary in [2] is in its final form, the printouts were not. The printouts

simply state the function number listed as the “Hurst Class” in Table 22 and therefore the

data “Class Number” column was matched by hand to the summary in [2].

To save space, and to allow more direct comparison between various lists, only the first

order coefficients and spectral summary are listed, rather than the entire spectrum. In

order to not lose data when displayed in the more compact form, the decimal

representation of the function was calculated from the complete spectrum of each

function, and added to Table 21.

Class
Number§§

Hurst
Class***

Function
Number†††

 s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum

1 1a 1771476585 0 0 0 0 0 0 1 x32 31 x0
2 1b 0 32 0 0 0 0 0 1 x32 31 x0

3 2a 1771476584 2 -2 -2 -2 -2 -2 1 x30 31 x2
4 2b 1 30 2 2 2 2 2 1 x30 31 x2

5 3a 1771476586 0 -4 0 0 0 0 1 x28 15 x4 16 x0
6 3b 1019462463 -4 0 4 4 4 4 1 x28 15 x4 16 x0
7 3c 3 28 0 4 4 4 4 1 x28 15 x4 16 x0

§§ The equivalent class number in [2]

*** As listed on the original printouts

††† Calculated from complete spectra listed on original printouts

99
Class
Number

Hurst
Class

Function
Number

 s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum

8 4a 1771476590 -2 -2 -2 2 2 2 1 x26 7 x6 24 x2
9 4b 267448328 6 -2 -2 -6 -6 -6 1 x26 7 x6 24 x2
10 4c 7 26 2 2 6 6 6 1 x26 7 x6 24 x2

11 5b 1019462443 0 -4 4 4 0 0 1 x24 3 x8 16 x4 12 x0
12 5a 1771476606 -4 0 0 0 4 4 1 x24 3 x8 16 x4 12 x0
13 5c 16776983 -8 4 4 4 8 8 1 x24 3 x8 16 x4 12 x0
14 5d 23 24 4 4 4 8 8 1 x24 3 x8 16 x4 12 x0

15 6a 1771476582 0 0 0 0 0 0 1 x24 7 x8 24 x0
16 6b 267448320 8 0 0 -8 -8 -8 1 x24 7 x8 24 x0
17 6c 15 24 0 0 8 8 8 1 x24 7 x8 24 x0

18 7a 1771476598 -2 2 2 -2 2 2 1 x22 3 x10 4 x6 24 x2
19 7b 267448336 6 2 2 -10 -6 -6 1 x22 3 x10 4 x6 24 x2
20 7c 16776991 -10 2 2 6 10 10 1 x22 3 x10 4 x6 24 x2
21 7d 31 22 2 2 6 10 10 1 x22 3 x10 4 x6 24 x2

22 8a 1771476862 -6 2 2 2 2 6 1 x22 1 x10 10 x6 20 x2
23 8b 1019462187 2 -6 2 2 2 -2 1 x22 1 x10 10 x6 20 x2
24 8c 65256 10 -6 -6 -6 -6 22 1 x22 1 x10 10 x6 20 x2
25 8d 279 22 6 6 6 6 10 1 x22 1 x10 10 x6 20 x2

26 9a 1771476566 0 4 0 0 0 0 1 x20 3 x12 12 x4 16 x0
27 9b 1019462403 4 0 4 4 -4 -4 1 x20 3 x12 12 x4 16 x0
28 9c 16777023 -12 0 4 4 12 12 1 x20 3 x12 12 x4 16 x0
29 9d 63 20 0 4 4 12 12 1 x20 3 x12 12 x4 16 x0

30 10c 1721342073 0 0 0 -4 4 0 1 x20 1 x12 4 x8 14 x4 12 x0
31 10b 267448592 4 4 4 -8 -8 -4 1 x20 1 x12 4 x8 14 x4 12 x0
32 10a 1771476854 -4 4 4 0 0 4 1 x20 1 x12 4 x8 14 x4 12 x0
33 10d 16776735 -8 0 0 4 12 8 1 x20 1 x12 4 x8 14 x4 12 x0
34 10e 65248 12 -4 -4 -8 -8 20 1 x20 1 x12 4 x8 14 x4 12 x0
35 10f 287 20 4 4 8 8 12 1 x20 1 x12 4 x8 14 x4 12 x0

36 11c 267514136 0 4 4 -4 -4 -4 1 x20 6 x8 15 x4 10 x0
37 11b 1019396651 4 -8 0 0 0 0 1 x20 6 x8 15 x4 10 x0
38 11a 1771542398 -8 4 4 4 4 4 1 x20 6 x8 15 x4 10 x0
39 11d 65815 20 8 8 8 8 8 1 x20 6 x8 15 x4 10 x0

40 12a 1771476502 2 2 2 2 -2 -2 1 x18 3 x14 28 x2
41 12b 16777087 -14 2 2 2 14 14 1 x18 3 x14 28 x2
42 12c 127 18 2 2 2 14 14 1 x18 3 x14 28 x2

43 13a 1771476822 -2 6 2 2 -2 2 1 x18 1 x14 2 x10 6 x6 22 x2
44 13c 267448624 2 2 6 -10 -6 -2 1 x18 1 x14 2 x10 6 x6 22 x2
45 13b 1019462147 6 -2 2 2 -2 -6 1 x18 1 x14 2 x10 6 x6 22 x2
46 13d 16776767 -10 -2 2 2 14 10 1 x18 1 x14 2 x10 6 x6 22 x2
47 13e 65216 14 -2 -6 -6 -10 18 1 x18 1 x14 2 x10 6 x6 22 x2
48 13f 319 18 2 6 6 10 14 1 x18 1 x14 2 x10 6 x6 22 x2

49 14c 1721276537 2 -2 -2 -6 2 2 1 x18 3 x10 9 x6 19 x2
50 14b 267514128 2 6 6 -6 -6 -6 1 x18 3 x10 9 x6 19 x2
51 14a 1771542390 -6 6 6 2 2 2 1 x18 3 x10 9 x6 19 x2
52 14d 16711199 -6 -2 -2 2 10 10 1 x18 3 x10 9 x6 19 x2
53 14e 130784 10 -2 -2 -6 -6 18 1 x18 3 x10 9 x6 19 x2
54 14f 65823 18 6 6 10 10 10 1 x18 3 x10 9 x6 19 x2

55 15a 1771476630 0 0 0 0 0 0 4 x16 28 x0
56 15b 16777215 -16 0 0 0 16 16 4 x16 28 x0

57 16a 1771476758 0 4 4 4 -4 0 2 x16 2 x12 14 x4 14 x0
58 16b 1019462211 4 0 0 0 0 -4 2 x16 2 x12 14 x4 14 x0
59 16c 16776831 -12 0 0 0 16 12 2 x16 2 x12 14 x4 14 x0
60 16d 65152 16 -4 -4 -4 -12 16 2 x16 2 x12 14 x4 14 x0

61 17a 1771476310 0 8 0 0 0 0 2 x16 8 x8 22 x0
62 17c 267449136 0 0 8 -8 -8 0 2 x16 8 x8 22 x0
63 17b 1019461635 8 0 0 0 0 -8 2 x16 8 x8 22 x0
64 17d 64704 16 0 -8 -8 -8 16 2 x16 8 x8 22 x0

65 18e 1768462249 0 -4 0 0 -4 4 1 x16 2 x12 4 x8 14 x4 11 x0
66 18c 267514160 0 4 8 -8 -4 -4 1 x16 2 x12 4 x8 14 x4 11 x0
67 18a 1771542358 -4 8 4 4 0 0 1 x16 2 x12 4 x8 14 x4 11 x0
68 18f 1010680572 -4 0 -4 -4 8 0 1 x16 2 x12 4 x8 14 x4 11 x0
69 18b 1019396611 8 -4 0 0 -4 -4 1 x16 2 x12 4 x8 14 x4 11 x0
70 18d 16711231 -8 -4 0 0 12 12 1 x16 2 x12 4 x8 14 x4 11 x0
71 18g 130752 12 0 -4 -4 -8 16 1 x16 2 x12 4 x8 14 x4 11 x0
72 18h 65855 16 4 8 8 12 12 1 x16 2 x12 4 x8 14 x4 11 x0

100
Class
Number

Hurst
Class

Function
Number

 s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum

73 19a 1771542294 -2 6 6 6 -2 -2 3 x14 1 x10 7 x6 21 x2
74 19b 1019396675 6 -2 -2 -2 -2 -2 3 x14 1 x10 7 x6 21 x2
75 19c 16711295 -10 -2 -2 -2 14 14 3 x14 1 x10 7 x6 21 x2
76 19d 130688 14 -2 -2 -2 -10 14 3 x14 1 x10 7 x6 21 x2

77 20a 1771541846 -2 10 2 2 2 -2 2 x14 4 x10 4 x6 22 x2
78 20c 267514672 -2 2 10 -6 -6 -2 2 x14 4 x10 4 x6 22 x2
79 20d 16710719 -6 -2 -2 -2 14 10 2 x14 4 x10 4 x6 22 x2
80 20b 1019396099 10 -2 -2 -2 -2 -6 2 x14 4 x10 4 x6 22 x2
81 20e 130240 14 2 -6 -6 -6 14 2 x14 4 x10 4 x6 22 x2

82 21a 1771410774 0 12 0 0 0 0 6 x12 10 x4 16 x0
83 21c 267645744 -4 0 12 -4 -4 -4 6 x12 10 x4 16 x0
84 21b 1019265027 12 0 -4 -4 -4 -4 6 x12 10 x4 16 x0

85 22a 1771444094 -4 4 4 4 4 4 1 x20 1 x12 30 x4
86 22b 32488 12 -4 -4 -4 -4 20 1 x20 1 x12 30 x4
87 22c 33047 20 4 4 4 4 12 1 x20 1 x12 30 x4

88 23a 1771472758 -2 2 2 2 2 2 1 x18 1 x14 12 x6 18 x2
89 23b 267444496 6 2 2 -6 -6 -6 1 x18 1 x14 12 x6 18 x2
90 23c 61152 14 -6 -6 -6 -6 18 1 x18 1 x14 12 x6 18 x2
91 23d 4383 18 6 6 6 6 14 1 x18 1 x14 12 x6 18 x2

92 24b 267481368 2 6 6 -2 -2 -6 1 x18 1 x10 15 x6 15 x2
93 24a 1771509630 -6 6 6 6 6 2 1 x18 1 x10 15 x6 15 x2
94 24c 98024 10 -2 -2 -2 -2 18 1 x18 1 x10 15 x6 15 x2
95 24d 98583 18 6 6 6 6 10 1 x18 1 x10 15 x6 15 x2

96 25a 1771475798 0 4 4 0 0 0 2 x16 4 x8 16 x4 10 x0
97 25c 267449648 0 4 4 -8 -8 0 2 x16 4 x8 16 x4 10 x0
98 25b 1019463171 4 0 0 4 -4 -4 2 x16 4 x8 16 x4 10 x0
99 25d 16775743 -8 -4 4 0 16 8 2 x16 4 x8 16 x4 10 x0
100 25e 64192 16 -4 -4 -8 -8 16 2 x16 4 x8 16 x4 10 x0

101 26c 1771534473 0 0 0 0 0 -4 1 x16 1 x12 6 x8 15 x4 9 x0
102 26a 1771538294 -4 4 4 4 4 0 1 x16 1 x12 6 x8 15 x4 9 x0
103 26d 267460335 -8 0 0 8 8 4 1 x16 1 x12 6 x8 15 x4 9 x0
104 26b 126688 12 -4 -4 -4 -4 16 1 x16 1 x12 6 x8 15 x4 9 x0
105 26e 69919 16 8 8 8 8 12 1 x16 1 x12 6 x8 15 x4 9 x0

106 27b 535949584 0 8 8 -8 -8 -8 1 x16 12 x8 19 x0
107 27a 2039977846 -8 8 8 0 0 0 1 x16 12 x8 19 x0
108 27c 268501279 16 8 8 8 8 8 1 x16 12 x8 19 x0

109 28c 267612440 0 4 8 0 0 -8 1 x16 8 x8 16 x4 7 x0
110 28a 1771378558 -4 8 4 4 4 4 1 x16 8 x8 16 x4 7 x0
111 28b 1019232811 8 -4 0 0 0 0 1 x16 8 x8 16 x4 7 x0
112 28d 229655 16 4 8 8 8 8 1 x16 8 x8 16 x4 7 x0

113 29a 1771541334 -2 6 6 2 2 -2 2 x14 2 x10 10 x6 18 x2
114 29c 267515184 -2 6 6 -6 -6 -2 2 x14 2 x10 10 x6 18 x2
115 29b 1019397635 6 -2 -2 2 -6 -2 2 x14 2 x10 10 x6 18 x2
116 29d 16710207 -6 -6 2 -2 14 10 2 x14 2 x10 10 x6 18 x2
117 29e 129728 14 -2 -2 -6 -6 14 2 x14 2 x10 10 x6 18 x2
118 29f 16647616 10 2 -6 -2 14 -6 2 x14 2 x10 10 x6 18 x2

119 30a 1754765142 -2 6 2 2 2 2 1 x14 5 x10 7 x6 19 x2
120 30c 250736944 2 2 6 -10 -2 -2 1 x14 5 x10 7 x6 19 x2
121 30e 1751672918 6 -2 -6 -6 2 2 1 x14 5 x10 7 x6 19 x2
122 30b 1036173827 6 -2 2 2 -6 -6 1 x14 5 x10 7 x6 19 x2
123 30d 33488447 -10 -2 2 2 10 10 1 x14 5 x10 7 x6 19 x2
124 30f 16843071 14 6 10 10 10 10 1 x14 5 x10 7 x6 19 x2

125 31a 1 x14 3 x10 13 x6 15 x2
126 31b 1 x14 3 x10 13 x6 15 x2
127 31c 1 x14 3 x10 13 x6 15 x2
128 31d 1 x14 3 x10 13 x6 15 x2
129 31e 1 x14 3 x10 13 x6 15 x2
130 31f 198999 14 6 6 10 10 10 1 x14 3 x10 13 x6 15 x2

131 32a 697800534 -2 6 6 6 2 2 1 x14 3 x10 13 x6 15 x2
132 32b 2093138435 6 -2 -2 -2 -6 -6 1 x14 3 x10 13 x6 15 x2
133 32c 1090453055 -10 -2 -2 -2 10 10 1 x14 3 x10 13 x6 15 x2
134 32d 1073807679 14 6 6 6 10 10 1 x14 3 x10 13 x6 15 x2

135 33a 1771279702 0 8 4 0 0 0 4 x12 4 x8 12 x4 12 x0
136 33e 868863756 0 0 -4 8 -8 0 4 x12 4 x8 12 x4 12 x0
137 33c 1520477797 4 -4 0 -4 -4 4 4 x12 4 x8 12 x4 12 x0

101
Class
Number

Hurst
Class

Function
Number

 s0 s1 s2 s3 s4 s5 Summary Of Complete Spectrum

138 33d 267776816 -4 4 8 -4 -4 -4 4 x12 4 x8 12 x4 12 x0
139 33b 1019658243 8 0 -4 0 0 -8 4 x12 4 x8 12 x4 12 x0
140 33f 392384 12 4 -8 -4 -4 12 4 x12 4 x8 12 x4 12 x0

141 34a 1771410422 -4 4 4 -4 4 4 4 x12 28 x4
142 34b 267646352 -4 4 4 -4 -4 -4 4 x12 28 x4
143 34c 260704 12 -4 4 -4 -4 12 4 x12 28 x4

144 35a 1754765078 0 4 4 4 0 0 4 x12 4 x8 12 x4 12 x0
145 35b 1036173891 4 0 0 0 -4 -4 4 x12 4 x8 12 x4 12 x0
146 35d 1751672854 8 -4 -4 -4 0 0 4 x12 4 x8 12 x4 12 x0
147 35c 33488511 -12 0 0 0 12 12 4 x12 4 x8 12 x4 12 x0

148 36a 1770493238 0 4 4 4 0 0 3 x12 6 x8 13 x4 10 x0
149 36b 1020444771 4 0 0 -8 4 -4 3 x12 6 x8 13 x4 10 x0
150 36d 15662175 -4 0 -8 0 12 12 3 x12 6 x8 13 x4 10 x0
151 36c 870174572 -8 4 -4 4 0 0 3 x12 6 x8 13 x4 10 x0
152 36e 1178784 12 0 0 -8 -4 12 3 x12 6 x8 13 x4 10 x0

153 37a 697800662 -4 4 4 4 4 4 4 x12 28 x4
154 37b 1090453183 -12 -4 -4 -4 12 12 4 x12 28 x4

155 38b 1019662507 0 -4 -4 -4 4 0 2 x12 8 x8 14 x4 8 x0
156 38a 1771275774 -4 0 0 0 8 4 2 x12 8 x8 14 x4 8 x0
157 38c 1768719617 8 4 -4 4 -4 -8 2 x12 8 x8 14 x4 8 x0
158 38d 388200 12 0 -8 0 0 12 2 x12 8 x8 14 x4 8 x0

159 39a 697800022 0 8 4 4 4 0 2 x12 8 x8 14 x4 8 x0
160 39c 446998117 4 -4 0 0 0 4 2 x12 8 x8 14 x4 8 x0
161 39d 1341256496 -4 4 8 -8 -8 -4 2 x12 8 x8 14 x4 8 x0
162 39b 2093137923 8 0 -4 -4 -4 -8 2 x12 8 x8 14 x4 8 x0
163 39e 1073872064 12 4 -8 -8 -8 12 2 x12 8 x8 14 x4 8 x0

164 40c 1010557082 0 -8 4 -4 4 -4 1 x12 10 x8 15 x4 6 x0
165 40a 1771156784 4 4 8 -8 -8 0 1 x12 10 x8 15 x4 6 x0
166 40b 1520600579 8 -8 4 4 -4 -4 1 x12 10 x8 15 x4 6 x0
167 40d 467801 12 4 8 8 8 8 1 x12 10 x8 15 x4 6 x0

168 41a 1753716022 2 2 2 2 2 2 6 x10 10 x6 16 x2
169 41b 853397356 -6 2 -6 2 2 2 6 x10 10 x6 16 x2
170 41c 17956000 10 2 2 -6 -6 10 6 x10 10 x6 16 x2

171 42a 697997878 2 -10 6 2 2 2 6 x10 10 x6 16 x2
172 42e 2083573660 -2 2 -6 -2 -10 6 6 x10 10 x6 16 x2
173 42c 447326469 6 -6 2 6 -2 -2 6 x10 10 x6 16 x2
174 42d 1341979728 -6 6 -10 -6 -6 -6 6 x10 10 x6 16 x2
175 42b 2093993827 -10 2 -6 6 -2 -2 6 x10 10 x6 16 x2

176 43a 697668950 2 10 2 2 2 2 6 x10 10 x6 16 x2
177 43c 1341387568 -6 2 10 -6 -6 -6 6 x10 10 x6 16 x2
178 43b 2093006851 10 2 -6 -6 -6 -6 6 x10 10 x6 16 x2

179 44c 1989188697 2 6 -2 -6 -6 2 4 x10 16 x6 12 x2
180 44a 2040501078 -6 6 6 2 2 -6 4 x10 16 x6 12 x2
181 44b 536474928 -6 6 6 -6 -6 -6 4 x10 16 x6 12 x2
182 44d 269089472 10 -2 -2 -6 -6 10 4 x10 16 x6 12 x2

183 45a 1788184500 0 0 0 0 0 0 16 x8 16 x0
184 45a 818929134 -8 0 -8 0 8 8 16 x8 16 x0
185 45b 16 x8 16 x0
186 45b 16 x8 16 x0

187 46c 1674235660 0 -4 -8 8 -8 0 12 x8 16 x4 4 x0
188 46a 965776726 4 8 4 -4 -4 4 12 x8 16 x4 4 x0
189 46b 1824899075 8 4 -8 0 0 -8 12 x8 16 x4 4 x0

190 48b 1522983501 0 0 -8 0 0 0 16 x8 16 x0
191 48a 1777717630 -8 8 0 -8 8 0 16 x8 16 x0

Table 22 – Transcription of Hurst Printouts

Hurst classes 31 and 45 have been highlighted in Table 21 as the complete data is

unavailable. The function number for class 130 (Hurst class 31f) comes directly from the

Hurst function number listed in Figure 36 for case 30. This function was cross-referenced

102

with the complete data from the implementation in Appendix A that was determined to

be in spectral class 32 (from Table 21), which is equivalent to class 130 in [2]. The listed

spectral summary is based on the data from the implementation in Appendix A.

The Hurst class 45 should in fact be 2 separate classes, as discussed in [2], but the

printouts did not reflect this. As there is no additional information available on which

functions are listed for Hurst class 45, they are assumed to be class 45a and that 45b is the

missing data. It is fairly certain that the functions listed for Hurst class 45 in Table 22 are

in the correct Hurst class, but it is uncertain which functions correspond to sub-class.

CLASS HURST PRIMARY SUMMARY
 CLASS COEFFICIENTS

 1 31A 13 7 5 5 5 3 1x13, 1x7, 3x5, 12x3, 15x1
 2 31B 15 7 5 5 5 3 1x15, 1x7, 3x5, 13x3, 14x1
 3 31C 13 7 5 5 3 3 1x13, 1x7, 3x5, 12x3, 15x1
 4 31D 15 7 5 5 3 3 1x15, 1x7, 3x5, 13x3, 14x1
 5 31E 11 7 5 5 3 3 1x11, 1x7, 2x5, 13x3, 15x1
 6 31F 9 5 5 5 3 3 1x9, 3x5, 13x3, 15x1

CASE 31

FUNCTION 00030957

IN BINARY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 1

SPECTRUM 31A 13 -1 -1 3 -3 1 -3 1 1 1 1 1 -1 -1 3 -5 -3 -3 1 1 3 3 3

TRANSFORMED SPECTRUM
13 -3 -5 -3 -5 -3 -1 1 -5 1 3 1 -1 -3 3 1 -7 3 -3 -1 1 3 1 3 -3 3 1 -1 1 -1

SPECTRUM 31B 15 3 3 -1 1 -3 1 -3 1 1 1 1 -1 -1 -5 3 -3 -3 1 1 3 3 -5

TRANSFORMED SPECTRUM
15 3 -5 -1 -5 3 -1 -1 -5 3 3 3 3 -1 3 -1 -7 -3 1 -3 1 1 1 1 -3 -3 1 1 1 -3

SPECTRUM 31C 13 -1 -1 3 1 -3 1 -3 1 1 1 1 -5 3 -1 -1 1 1 -3 -3 -5 3 3

TRANSFORMED SPECTRUM
13 -3 3 1 -5 1 3 -3 -5 1 -1 1 -5 -3 -1 -3 -7 -1 1 3 1 3 1 -1 1 3 -3 3 1 -1

SPECTRUM 31D 15 -3 1 -3 3 -1 -1 3 -5 3 -1 -1 1 1 1 1 -5 3 3 3 1 1 -3

TRANSFORMED SPECTRUM
15 -3 -3 1 -5 -1 -1 3 -5 -1 3 -1 1 -3 1 -3 -7 1 -3 -3 3 3 -1 -1 -5 3 3 3 1

SPECTRUM 31E 11 3 -1 -1 1 1 1 1 1 -3 1 -3 3 -1 -1 3 -7 -3 -3 1 -5 -1

TRANSFORMED SPECTRUM
11 -3 3 1 -5 1 3 -3 -5 1 -1 1 3 -3 -1 -3 -7 -1 -3 -1 1 3 -3 3 1 3 1 -1 1 -1

SPECTRUM 31F 9 -3 -3 1 -5 -1 3 -1 -5 3 3 3 1 1 -3 -3 -5 3 -1 -1 1 1 1

Figure 36 – Addendum printout for Hurst Class 31 in 0/1 encoding

103

The Hurst class 47 is not listed in Table 22 because the functions listed on the printouts

were determined to be invalid functions. As expected, since these functions are invalid,

they do not correspond with any functions listed in [2]. The data provided in an

Addendum printout, as seen in the Figure 36 transcription, is incomplete due to wide-

format printer paper being photocopied onto letter sized paper in a portrait orientation.

The original copy is unavailable.

B.3 Summary
The tables in this chapter provide a complete list of the spectral classes, and their

canonical functions, produced in this research. Additionally, a reconstructed table of the

data used to generate the signatures tabulated in [2] is provided. Although 100% of the

data used for [2] could not be recovered, a large percentage of the information could be

reconstructed using the tables in [2] and intermediate data used for the publication.

The list of spectral classes tabulated from this research should provide adequate data

for use for comparison in future work as the canonical functions are presented in a form

that allows complete reconstruction of the spectral coefficients, and provides and exact

listing of the chosen canonical function for each class.

104

Appendix
C - Source Code

C.1 Main

C.1.1 main.h
/*
 * main.h
 * Classify
 *
 * Created by Neil Anderson on 2006-10-20.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>
#include <fstream>
#include <string>
#include <cstdlib>
#include <sstream>

using namespace std;

C.1.2 main.cpp
/*
 * main.cpp
 * Classify
 *
 * Created by Neil Anderson on 2006-08-10.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"
#include "Prefilter.h"
#include "Classify.h"
#include "Misc.h"

int main (int argc, char * const argv[]) {
 // -- Various values used throuout --
 // Rather than passing these values throughout the program they are
 // just re-calculated in a few places
 int numVar = 5;

105
 int vecLen = pow(2.0, (double)numVar);
 unsigned int numFn = (pow(2.0, (double)vecLen))/2;
 // ----------------------------------

 // -- Array that stores the number of items in each group --
 // also used for pre-filter temp file names
 int *len;
 len = new int[vecLen];

 int numGroups = vecLen/2;

 for (int i = 0; i < numGroups; i++) {
 // binomial coefficient
 len[i] = (int)C(vecLen, i+1);

 // the last group only needs to store half
 if (i == numGroups-1)
 len[i] /= 2;
 }
 // ---

 // -- Prefilter the groups --
 // These lines can be commented out if we want to use temp files
 // that have previously been generated (they have to be placed in
 // the running director).
 Prefilter p(numVar);
 p.pre(len);
 // --------------------------

 // -- Classify the data contained in the temp files --
 // The return value of classes (the data it points to) used to be printed
 // out at the end, but now it is printed within the generateClasses
 // method in order to print the results after each group is processed
 // in case the program is stopped part way through...then at last you get
 // partial results.
 Classify c(numVar);
 unsigned char *classes;
 classes = c.generateClasses(len);
 // ---

 // -- Print the 0 case ----------
 if (fileExists("output0"))
 remove("output0");

 fstream fout("output0", ios::out | ios::app);
 fout << "f(0)\tclass: 0" << endl;
 fout.close();
 // ------------------------------

 return 0;
}

C.2 Prefilter

C.2.1 Prefilter.h
/*
 * Prefilter.h
 * Classify
 *

106
 * Created by Neil Anderson on 2006-10-20.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"

class Prefilter {
private:
 unsigned int numVar, vecLen, numFn;

 int *destList;
public:
 Prefilter(int);
 ~Prefilter();
 void pre(int *);
};

C.2.2 Prefilter.cpp
/*
 * Prefilter.cpp
 * Classify
 *
 * Created by Neil Anderson on 2006-10-20.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "Prefilter.h"
#include "Misc.h"

Prefilter::Prefilter(int num) {
 numVar = num;
 vecLen = pow(2.0, (double)numVar);
 numFn = (pow(2.0, (double)vecLen))/2;
}

// Deconstructor cleans up the temp files so there's no crap laying around.
Prefilter::~Prefilter() {
 int s = vecLen/2;

 for (int i = 0; i < s; i++) {
 remove(intToString(destList[i]).c_str());
 }
}

void Prefilter::pre(int *len) {
 // -- Create vector of temp files --
 vector<fstream*> g;

 destList = len;

 int numGroups = vecLen/2;

 // Files are set to write-only
 for (int i = 0; i < numGroups; i++) {
 // Since we are appending files, we want to make sure we're
 // starting clean - remove any file with the same name we want to use
 // if it already exists.
 if (fileExists(intToString(len[i])))

107
 remove(intToString(len[i]).c_str());

 g.push_back(new fstream(intToString(len[i]).c_str(), ios::out | ios::app));
 }
 // ----------------------------------

 for (unsigned int i = 0; i < numFn; i++) {
 // -- Count the number if true bits --
 unsigned int res = 0;
 for (unsigned int j = 0; j < vecLen; j++) {
 res += (i >> j) & 1;
 }
 // -----------------------------------

 for (int j = 1; j <= numGroups; j++) {
 // Assign the value to the correct file. Sort by the number
 // of true bits in the integer.
 // Ex. 00110001 has 3 true bits. All integers with 3 true or 3 false
 // bits should be in the same category.
 if (res == j || res == vecLen - j) {
 (*g[j-1]) << i << endl;
 break;
 }
 }
 }

 // -- Close all the files we created and had open --
 for (int i = 0; i < g.size(); i++) {
 (*g[i]).close();
 }
 // ---
}

C.3 Rules

C.3.1 Rules.h
/*
 * Rules.h
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"
#include "Misc.h"

class Rules {
private:
 vector<vector<int> > t1Rules;
 vector<vector<int> > t2Rules;
 vector<vector<int> > t4Rules;
 vector<vector<int> > t4List;

 int N; // same as vecLen
 int len; // same as numVar

 void permuteVarRules(int);

108
 void negateVarRules(int);
 void typeFourRules(int);
 void genTypeFourList(int);

public:

 Rules(int);

 void generateRules(void);

 void printRules(void);

 vector<vector<int> > getType1(void);
 vector<vector<int> > getType2(void);
 vector<vector<int> > getType4(void);

 void getType1Arr(int **, int, int);
 void getType2Arr(int **, int, int);
 void getType4Arr(int **, int, int);
};

C.3.2 Rules.cpp
/*
 * Rules.cpp
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "Rules.h"

Rules::Rules(int numVar) {
 len = numVar;
 // N is the same as vecLen
 N = pow(2.0, (double) numVar);
}

void Rules::generateRules() {
 permuteVarRules(N);
 negateVarRules(N);
 typeFourRules(N);
}

// Type 1 Rules accessor method
vector<vector<int> > Rules::getType1() {
 return t1Rules;
}

// Type 2 Rules accessor method
vector<vector<int> > Rules::getType2() {
 return t2Rules;
}

// Type 3 Rules accessor method
vector<vector<int> > Rules::getType4() {
 return t4Rules;
}

109
// Convert Type 1 Rules vector to 2D array
// Arrays are faster to access than vectors. This matters because
// they are accessed so many times in this program.
void Rules::getType1Arr(int **tmp, int h, int w) {
 for (int i = 0; i < h; i++) {
 for (int j = 0; j < w; j++) {
 tmp[i][j] = t1Rules[i][j];
 }
 }
}

// Convert Type 2 Rules vector to 2D array
// Arrays are faster to access than vectors. This matters because
// they are accessed so many times in this program.
void Rules::getType2Arr(int **tmp, int h, int w) {
 for (int i = 0; i < h; i++) {
 for (int j = 0; j < w; j++) {
 tmp[i][j] = t2Rules[i][j];
 }
 }
}

// Convert Type 2 Rules vector to 2D array
// Arrays are faster to access than vectors. This matters because
// they are accessed so many times in this program.
void Rules::getType4Arr(int **tmp, int h, int w) {
 for (int i = 0; i < h; i++) {
 for (int j = 0; j < w; j++) {
 tmp[i][j] = t4Rules[i][j];
 }
 }
}

// Generate Type 1 Rules
void Rules::permuteVarRules(int num_pos) {
 vector<int> intArr;
 vector<int>::iterator iterBegin;
 vector<int>::iterator iterEnd;

 // initialize the vector to [0][1] ... [n-1][n]
 for (int i = 0; i < len; i++) {
 intArr.push_back(i);
 }

 // -- Pointers to the beginning and end of the vector --
 iterBegin = intArr.begin();
 iterEnd = intArr.end();
 // ---

 do {
 vector<int> a_rule;
 for (int j = 0; j < num_pos; j++) {
 // convert the function into a bit vector
 vector<int> org_term = itobv(j, len);
 vector<int> new_term(len);

 int s = org_term.size();
 // assign the re-arranged bits to the new term
 for (int k = 0; k < s; k++) {
 new_term[k] = org_term[intArr[k]];

110
 }
 // convert the new term back to an in
 int index = bvtoi(new_term);
 // add the order value to the order list
 a_rule.push_back(index);
 }
 // Add the rule to the list
 t1Rules.push_back(a_rule);

 // Permute the values until there are no new permutations
 } while (next_permutation(iterBegin, iterEnd));
}

// Generate the type 2 rules
void Rules::negateVarRules(int num_pos) {
 for (int j = 0; j < num_pos; j++) {
 vector<int> a_rule;
 for (int i = 0; i < num_pos; i++) {
 // XOR between numbers 0 - 2^n and all the truth table
 // entries (represented as integer...which also happens
 // to be 0 - 2^n)
 int index = i ^ j;
 a_rule.push_back(index);
 }
 t2Rules.push_back(a_rule);
 }
}

// Generate the type 4 rules
void Rules::typeFourRules(int num_pos) {
 vector<int> initOrder;

 // Add the unmodified version to the list (we need an unswapped
 // function for each step).
 for (int i = 0; i < num_pos; i++) {
 initOrder.push_back(i);
 }

 t4Rules.push_back(initOrder);

 // Generate the list of combinations
 genTypeFourList(num_pos);

 int ts = t4List.size();
 for (int i = 0; i < ts; i++) {
 vector<int> a_rule;
 for (int k = 0; k < num_pos; k++) {
 vector<int> tmp;
 for (int m = 0; m < len; m++) {
 tmp.push_back(0); // entry placeholder with 0 value
 for (int j = 0; j < len; j++) {
 // Take each entry from the t4 list (combinations of xored vars)
 // and multiplies each bit in the entry by that variable's
 // assigned value (k)
 // Set entry to correct value:
 tmp[m] = tmp[m] ^ (((t4List[i][m] >> j) & 1) * ((k >> j) & 1));
 // result:
 // tmp[0] = (x*x's value) ^ (y*y's value) ^ ...
 // depending on what bits are "used" in the mth variable of the
 // ith entry of the t4 list

111
 }
 }
 int tres = 0;

 // Turn the vector into an int (could use the newly built
 // bvtoi method instead, but this was written before and it
 // works, so why fix it?)
 for (int c = 0; c < len; c++) {
 tres = (tres << 1) | tmp[c];
 }
 // add the value to the rule
 a_rule.push_back(tres);
 }
 // add the rule to the list
 t4Rules.push_back(a_rule);
 } // end for the size of the t4List
}

// The method that derives a list of all possible valid input combinations.
// This list is used for calculating the final type for rules.
void Rules::genTypeFourList(int num_pos) {
 int arrHeight = len;
 int arrWidth = N/2;

 // This is the lookup table for all possible combinations
 // to be calculated from. Rather than hard-coding it, this
 // is calculated once at runtime.
 vector<vector<int> > arr;

 // Initialize the vector for the given size (based on values passed in
 // at runtime.
 for (int i = 0; i < arrHeight; i++) {
 arr.push_back(*(new vector<int>));
 for (int j = 0; j < arrWidth; j++) {
 arr[i].push_back(0);
 }
 }

 // Assign the values for the "A" row as odd numbers beginning at 1
 // so: 1, 3, 5, 7, 9, ...
 int skip = 0;
 for (int i = 0; i < arrWidth; i++) {
 arr[0][i] = (i + 1) + skip;
 skip++;
 }

 // Build the remaining rows based on "previous row"
 for (int i = 1; i < arrHeight; i++) {
 skip = pow(2.0, (double) (i - 1));
 for (int j = 0; j < arrWidth;) {
 for (int k = 0; k < skip; k++) {
 arr[i][j] = arr[i-1][j] + skip;
 j++;
 }
 for (int k = 0; k < skip; k++) {
 arr[i][j] = arr[i-1][j];
 j++;
 }
 }
 }

112

 // In concept we create a temp 2d vector (the data is 4 cells wide...one
 // for each variable) and copy item from each row of the lookup table in
 // every possible combination. Not all of these combinations are valid as
 // we can't have the same variables from different rows. [a][b][c^a][d^a]
 // would be valid, while [a^c][b][c^a][d^a] is not (a^c occurs twice...
 // c^a - or 0101 - can be wruitten as a^c - 0101). In reality, we do the
 // checking for validity in the same step as the list creation to avoid
 // storing a huge temporary table.

 int numCol = arrWidth;
 int numRow = arrHeight;
 int endAt = pow((double) numCol, (double) numRow);
 int vl = numRow;

 // Creat a vector of size n where n is the number of variables.
 // Keeps track of which items from each row we are using. To
 // ensure we achieve ever combination.
 vector<int> vars(vl);

 for (int i = 0; i < endAt; i++) {
 vector<int> tmp;
 // increment the appropriate row based on what was added to the
 // working tmp vector.
 for (int j = vl - 2; j >= 0; j--) {
 if (vars[j+1] == numCol) {
 vars[j+1] = 0;
 vars[j]++;
 }
 }

 // get the next combination
 for (int j = 0; j < vl; j++) {
 tmp.push_back(arr[j][vars[j]]);
 }

 vars[vl-1]++;

 vector<int> a(N);

 // Calculate the linear independence of this combination
 // First run
 for (int m = 1; m < N; m++) {
 a[m] = tmp[0] * ((m >> (numRow-1)) & 1);
 }

 // For all the consecutive calcs.
 for (int m = 1; m < N; m++) {
 for (int k = 1; k < numRow; k++) {
 a[m] ^= tmp[k] * ((m >> (numRow-k-1)) & 1);
 }
 }

 int aRes = 1;

 int al = a.size();

 // Check if it is independent or not. If it is, add it to the list
 // of known valid combinations
 for (int m = 1; m < al; m++) {

113
 if (a[m] == 0)
 aRes = 0;
 }

 if (aRes) {
 t4List.push_back(tmp);
 }
 }
}

// Debug method for printing out the contents
// of each rule vector
void Rules::printRules() {
 cout << endl << "Type 1" << endl;
 for (int i = 0; i < t1Rules.size(); i++) {
 cout << i << "\t";
 for (int j = 0; j < t1Rules[i].size(); j++) {
 cout << t1Rules[i][j] << " ";
 }
 cout << endl;
 }

 cout << endl << "Type 2" << endl;
 for (int i = 0; i < t2Rules.size(); i++) {
 cout << i << "\t";
 for (int j = 0; j < t2Rules[i].size(); j++) {
 cout << t2Rules[i][j] << " ";
 }
 cout << endl;
 }

 cout << endl << "Type 4" << endl;
 for (int i = 0; i < t4Rules.size(); i++) {
 cout << i << "\t";
 for (int j = 0; j < t4Rules[i].size(); j++) {
 cout << t4Rules[i][j] << " ";
 }
 cout << endl;
 }
}

C.4 Classify

C.4.1 Classify.h
/*
 * Classify.h
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"

class Classify {
private:

 int numVar, vecLen;

114
 unsigned int numFn;

 // -- 2D arrays of rules --
 int **type1;
 int **type2;
 int **type4;
 // ------------------------

 // -- Length of the rule arrays --
 int s1, s2, s4;

public:
 Classify(int);

 unsigned char *generateClasses(int*);
};

C.4.2 Classify.cpp
/*
 * Classify.cpp
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "Classify.h"
#include "Rules.h"
#include "Transform.h"

Classify::Classify(int num) {
 numVar = num;
 vecLen = pow(2.0, (double)numVar);
 numFn = (pow(2.0, (double)vecLen))/2;

 // -- Generate the rules --
 Rules r(numVar);
 r.generateRules();
 // ------------------------

 // -- Save the size of each array --
 s1 = (r.getType1()).size();
 s2 = (r.getType2()).size();
 s4 = (r.getType4()).size();
 // ---------------------------------

 // -- Allocate a 2D array based on the size of the generated vector --
 type1 = allocArr(s1, vecLen);
 type2 = allocArr(s2, vecLen);
 type4 = allocArr(s4, vecLen);
 // ---

 // -- Create an array version of the array vector --
 // The array has much faster accesses than a vector (which matters for
 // millions of accesses)
 r.getType1Arr(type1, s1, vecLen);
 r.getType2Arr(type2, s2, vecLen);
 r.getType4Arr(type4, s4, vecLen);
 // ---

115
}

unsigned char *Classify::generateClasses(int *len) {
 // -- Vector of temp files --
 vector<fstream*> g;

 int numGroups = vecLen/2;

 // Files are set to read-only
 for (int i = 0; i < numGroups; i++) {
 g.push_back(new fstream(intToString(len[i]).c_str(), ios::in));
 }

 // Store size of the vector (faster than computing each time)
 int gSize = g.size();
 // --------------------------

 // Transform contructor
 Transform t(numVar, type1, type2, type4, s1, s2, s4);

 // -- Create array for results --
 unsigned char *arr;
 arr = new unsigned char[numFn];
 // ------------------------------

 int t2Flag = 0;
 // -- Keep track of class number --
 int count = 0; // store the highest assigned class number "so far"
 int fl = 0;
 // --------------------------------
 string line = "";

 // For each file in the vector
 for (int i = 0; i < gSize; i++) {

 // Initialize the array to an invalid value (so we can tell what
 // values have been found, and which have been not). Since 0
 // is a special case, we know none of the other values will ever
 // be 0. Originally this was -1, but an unsigned bool cannot store
 // a -1.
 for (unsigned int h = 0; h < numFn; h++) {
 arr[h] = 0;
 }

 // Originally the flag was set so we'd only do negation of output
 // on the last category, but this isn't correct so it is ignored
 // in the transform code. Not used and can be removed (but since it works
 // I'm not going to mess with it).
 if (i == (gSize - 1))
 t2Flag = 1;

 bool *tmpArr; // results from the transformation call
 int lineInt;

 // get the first line
 getline((*g[i]), line);
 while(!(*g[i]).eof()) {
 // turn the string into an int
 lineInt = atoi(line.c_str());

116

 count++;
 fl = 0;

 // Check to see if we've already processed this entry. If we have,
 // skip it because it's useless extra processing. This speeds up
 // execution time dramatically.
 if (arr[lineInt] == 0) {

 // Do the transformation on this function and store a pointer
 // to the results.
 tmpArr = t.trans(lineInt, t2Flag);

 // -- Fold the results into the main array --
 // This will hold all the results to-date for this
 // particular category (temp file)

 // Since we are processing this function, there's a chance
 // that the increment in class number is valid.
 fl = 1;

 // this might be the right class number, so assign it for now.
 int classNum = count;

 for (unsigned int j = 0; j < numFn; j++) {
 // if the function wasn't found, skip past the rest of the
 // code in the for loop
 if (tmpArr[j] != 1)
 continue;

 // if the function has already been classified, use that
 // class number instead.
 if (arr[j] != 0) {
 classNum = arr[j];
 // since we already have a class number, the new one in
 // "count" won't be valid, so flag it.
 fl = 0;
 // Break because once we find one, ALL found functions will
 // be the same class, so there's no point continuing.
 break;
 }
 }

 // Assign the class number for all of the found functions
 for (unsigned int m = 0; m < numFn; m++) {
 if (tmpArr[m] == 1) {
 arr[m] = classNum;
 }
 }
 // --

 // clean up
 delete[] tmpArr;
 }
 // If the flag is not true, we shouldn't have incremented out
 // class number, so correct it.
 if (fl == 0)
 count--;

 // Get the next line

117
 getline((*g[i]), line);
 } // end while file is not EOF

 // Close the file now that it's been finished.
 (*g[i]).close();

 // -- Output the results for this pre-filtered file --
 // File name
 string s = "output" + intToString(i+1);

 // Check if old files are laying around. Remove it if there is.
 if (fileExists(s.c_str()))
 remove(s.c_str());

 fstream fout(s.c_str(), ios::out | ios::app);

 for (unsigned int p = 0; p < numFn; p++) {
 // Only print if there's a valid entry (non-0)
 if (arr[p] != 0)
 fout << "f("<< p << ")\tclass: " << (int)arr[p] << endl;
 }

 fout.close();
 // ---

 } // end for each file

 // Return a pointer to the array of results
 // (no longer useful since the printing is now done within
 // this method to print out the results "to date")
 return arr;
}

C.5 Transform

C.5.1 Transform.h
/*
 * Transform.h
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"

class Transform {
private:
 void permuteVar(unsigned int, int);
 void negateVar(unsigned int, int);
 void negateOut(unsigned int, int);
 void typeFour(unsigned int, int);
 void addFunction(unsigned int);

 unsigned int swapBits(unsigned int, int*);

 bool *arr;
 unsigned int mask;

118

 int numVar, vecLen;
 unsigned numFn;
 int s1, s2, s4;

 int **type1;
 int **type2;
 int **type4;

 int *a;

public:
 Transform(int, int**, int**, int**, int, int, int);
 ~Transform();

 bool *trans(unsigned int, int);
};

C.5.2 Transform.cpp
/*
 * Transform.cpp
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-05.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "Transform.h"

Transform::Transform (int num, int **t1, int **t2, int **t4, int size1, int size2, int
size4) {

 numVar = num;
 vecLen = pow(2.0, (double)numVar);
 numFn = (pow(2.0, (double)vecLen))/2;

 // -- Assign passed values to global vars --
 type1 = t1;
 type2 = t2;
 type4 = t4;

 s1 = size1;
 s2 = size2;
 s4 = size4;
 // ---

 a = new int[vecLen];

 // -- Calculate the mask for inverted output --
 for (int i = 0; i < vecLen; i++) {
 mask = (mask << 1) | 1;
 }
 // --

}

// Cleanup
Transform::~Transform() {
 delete[] a;

119
}

bool *Transform::trans(unsigned int num, int t2Flag = 0) {
 arr = new bool[numFn];

 // Initialize to false
 for (unsigned int j = 0; j < numFn; j++) {
 arr[j] = 0;
 }

 // Apply Type 1 tranformation
 permuteVar(num, t2Flag);

 return arr;
}

// Type 1 Transfomation
// This method transforms the function into all derivative functions
// by applying the Type 1 rules to the function passed in as a parameter
void Transform::permuteVar(unsigned int num, int t2Flag) {
 unsigned int newNum;

 // For each item in the Type 1 rule list: swap the bits and pass
 // this new function to the Type 2 transformation method
 for (int i = 0; i < s1; i++) {
 newNum = swapBits(num, type1[i]);
 negateVar(newNum, t2Flag);
 }

}

// Type 2 Transfomation
// This method transforms the function into all derivative functions
// by applying the Type 2 rules to the function passed in as a parameter
void Transform::negateVar(unsigned int num, int t2Flag) {
 unsigned int newNum;

 // For each item in the Type 2 rule list: swap the bits and pass
 // this new function to the Type 3 transformation method
 for (int i = 0; i < s2; i++) {
 newNum = swapBits(num, type2[i]);
 negateOut(newNum, t2Flag);
 }
}

// Type 3 Transformation
// There are no "rule," per se, for type 3 transformations as
// there is no pattern of bit swapping that will achieve the
// transformation. Instead, the original, and the inverted function
// are considered
void Transform::negateOut(unsigned int num, int t2Flag) {
 // Apply type4 transform to the original passed function
 typeFour(num, t2Flag);

 // Apply type4 transform to the inverted passed function
 num ^= mask;
 typeFour(num, t2Flag);

}

120
// Type 4 Transfomation
// This method transforms the function into all derivative functions
// by applying the Type 4 rules to the function passed in as a parameter
void Transform::typeFour(unsigned int num, int t2Flag) {
 unsigned int newNum;

 // For each item in the Type 4 rule list: swap the bits and add
 // the function to the list of derivative functions
 for (int i = 0; i < s4; i++) {
 newNum = swapBits(num, type4[i]);
 addFunction(newNum);
 }
}

// Add the function to the list of derivative functions
void Transform::addFunction(unsigned int num) {
 // Hard coded version uses array instead of something more advanced
 // This is due to speed requirements.
 if (num < numFn) {
 // mark the function as found (change array value to TRUE).
 arr[num] = 1;
 }
}

// Swap the order of the bits of the Integer based on the inputted
// order
unsigned int Transform::swapBits(unsigned int num, int *order) {
 // Hard coded for 3, 4 and 5 variables.
 a[0] = (num >> vecLen-1) & 1;
 a[1] = (num >> vecLen-2) & 1;
 a[2] = (num >> vecLen-3) & 1;
 a[3] = (num >> vecLen-4) & 1;

 a[4] = (num >> vecLen-5) & 1;
 a[5] = (num >> vecLen-6) & 1;
 a[6] = (num >> vecLen-7) & 1;
 a[7] = (num >> vecLen-8) & 1;

 if (numVar > 3) {
 a[8] = (num >> vecLen-9) & 1;
 a[9] = (num >> vecLen-10) & 1;
 a[10] = (num >> vecLen-11) & 1;
 a[11] = (num >> vecLen-12) & 1;

 a[12] = (num >> vecLen-13) & 1;
 a[13] = (num >> vecLen-14) & 1;
 a[14] = (num >> vecLen-15) & 1;
 a[15] = (num >> vecLen-16) & 1;

 if (numVar > 4) {
 a[16] = (num >> vecLen-17) & 1;
 a[17] = (num >> vecLen-18) & 1;
 a[18] = (num >> vecLen-19) & 1;
 a[19] = (num >> vecLen-20) & 1;

 a[20] = (num >> vecLen-21) & 1;
 a[21] = (num >> vecLen-22) & 1;
 a[22] = (num >> vecLen-23) & 1;
 a[23] = (num >> vecLen-24) & 1;

121
 a[24] = (num >> vecLen-25) & 1;
 a[25] = (num >> vecLen-26) & 1;
 a[26] = (num >> vecLen-27) & 1;
 a[27] = (num >> vecLen-28) & 1;

 a[28] = (num >> vecLen-29) & 1;
 a[29] = (num >> vecLen-30) & 1;
 a[30] = (num >> vecLen-31) & 1;
 a[31] = (num >> vecLen-32) & 1;
 }
 }

 // -- using the order, add the value stored in a[] to the end of the --
 // function. By the end of the loop, all bits will be represented.
 unsigned int finNum = 0;

 for (int z = 0; z < vecLen; z++) {
 finNum = (finNum << 1) | a[order[z]];
 }
 // --

 return finNum;
}

C.6 Misc

C.6.1 Misc.h
/*
 * Misc.h
 * ClassifyCPP
 *
 * Created by Neil Anderson on 2006-08-11.
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "main.h"

int getPrecision(int);
int bvtoi(vector<int>);
vector<int> itobv(int, int);

int **allocArr(int, int);
void deallocArr(int **);

string intToString(int);
long double fac(int, int);
long double C(int, int);

bool fileExists(const string&);

C.6.2 Misc.cpp
/*
 * Misc.cpp
 * Classify
 *
 * A library of useful functions used throughout the code.
 *
 * Created by Neil Anderson on 2006-08-11.

122
 * Copyright 2006 Neil Anderson. All rights reserved.
 *
 */

#include "Misc.h"

// Return the number of bits needed to represent a given integer.
int getPrecision(int x) {
 return ((log (x) / log (2)) + 1);
}

// Convert a vector of binary values into an integer
// Ex:
// [0][1][1][1][0][0][1][1]
// becomes:
// 01110011 (115 in decimal)
int bvtoi(vector<int> v) {
 int result = 0;
 int s = v.size();

 for (int i = 0; i < s; i++) {
 result = (result << 1) | v[i];
 }
 return result;
}

// Convert a an integer into a vector of binary values
// Ex:
// 01110011 (115 in decimal)
// becomes:
// [0][1][1][1][0][0][1][1]
vector<int> itobv(int value, int prec) {
 vector<int> result;

 for (int i = 0; i < prec; i++) {
 result.push_back((value >> (prec-i-1)) & 1);
 }

 return result;
}

// Dynamically allocate a 2D array.
int **allocArr(int numRows, int numCol) {
 int **ppi = new int*[numRows];
 int *curPtr = new int[numRows * numCol];

 for (int i = 0; i < numRows; i++) {
 *(ppi + i) = curPtr;
 curPtr += numCol;
 }

 return ppi;
}

// Clean up the allocArr call when finished with the data.
void deallocArr(int ** arr) {
 delete[] *arr;
 delete[] arr;
}

123
// Factorial. A cutoff was added so that it can be used
// for binomial coefficients for large numbers. The cutoff
// is used as part of the simplifaction of the binomial
// coefficient equation before computation.
long double fac(int n, int cutoff = 0) {
 long double f = 1.0;

 int i = 1;

 if (cutoff !=0)
 i += cutoff;

 for (; i <= n; i++) {
 f *= (long double)i;
 }

 return f;
}

// Binomial coefficient.
long double C(int n, int r) {
 long double result = 0;

 if (r < 0 || r > n)
 result = 0;
 else {
 // Simplify the equation by using the factorial's
 // curoff function
 if (r > (n - r)) {
 result = (long double)(fac(n, r)/fac(n-r));
 } else {
 result = (long double)(fac(n, (n-r))/fac(r));
 }
 }
 return result;
}

// Convert an int to a string. Used for concatenating ints to strings (like
// adding a loop counter number to the end of a file name)
string intToString(int num) {
 ostringstream myStream;
 myStream << num << flush;

 return(myStream.str());
}

// Check to see if a file already exists.
bool fileExists(const string& fileName) {
 fstream fin;
 fin.open(fileName.c_str(), ios::in);
 if(fin.is_open()) {
 fin.close();
 return true;
 }
 fin.close();
 return false;
}

