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Abstract—Reversible logic is becoming a more and more
attractive option to traditional logic, due to its potential to reduce
heat dissipation. However traditional circuit design techniques
can not always be translated to reversible circuits, and so
new techniques for e.g. fault tolerance must be developed. We
present a design for a reversible majority voter circuit which
has applications not only in the development of fault tolerant
reversible circuits, but also in areas such as data mining and
classification.

I. INTRODUCTION

In 1961 R. Landauer showed that KTln2 joules are dissi-
pated each time an information bit is lost during a logical
operation, where K is Boltzmann’s constant and T is the
operating temperature in Kelvin [1]. For instance, when a two-
input AND gate produces a single bit of output, this amount
of energy is dissipated as heat. As Moore’s law [2], predicting
a doubling of components every few years, has held true over
the last several decades, this heat dissipation is becoming
a major concern in traditional irreversible systems. However
reversible systems are, by definition, bijective, and thus there is
no information loss. Other reasons for research into reversible
systems includes connections to quantum computing [3], and
applications in cryptography [4], nano-computing technolo-
gies [5] and digital processing [6].

Since a reversible circuit maintains a one-to-one relationship
between inputs and outputs, achieving fault tolerance in such
a system is not an easy task. Fault tolerance is defined as
an attribute of a system that enables the system to correctly
perform its specified operations even in the presence of faults.
In order to make a system fault tolerant, it is necessary to build
in redundancy of some type, generally hardware redundancy,
software redundancy, information redundancy and/or timing
redundancy [7]. This added redundancy comes at a cost. A
common approach to fault tolerance is to incorporate hardware
redundancy by replicating one or more physical components
of a system. The cost of this is initially high, but is ammortized
over the lifetime of the system. Hardware redundancy can
offer an active approach, a passive approach or a combination
of both [7]. An active approach to fault tolerance works
by detecting a fault, locating the fault and recovering the
system through some form of reconfiguration. However fault
tolerance can also be achieved using a passive approach that
does not require detecting or reconfiguring, rather masking the

occurrence of faults. Masking contributes to a fault tolerant
system by hiding faults from the final outcome of the system.
Thus the fault may affect the system locally, but does not affect
the global performance of a system. A majority voter is com-
monly used to achieve fault tolerance in traditional systems [7]
by implementing triple modular redundancy (TMR) or N-
modular redundancy. The basic idea of TMR is to triplicate
the hardware and use a majority voter that determines the final
output by observing the outputs from all the modules. If one
of the modules become faulty, the majority voter can mask the
faulty outcome by observing the outcomes of the remaining
modules and correcting the faulty signal.

This paper presents designs for a majority voter to be
implemented using reversible logic. The proposed designs can
be used in order to build fault tolerant reversible circuits and
also can be used in the field of machine learning, as will be
described in Section IV.

II. BACKGROUND

A. Reversible Functions, Gates, & Circuits

Definition 1. A multiple output Boolean function f(x) :
Bm → Bn is reversible if it is bijective.

If B is a finite set and f(x) : Bm → Bn is a Boolean
function which maps each input vector to a unique output
vector (bijection) then f(x) is reversible. Each reversible
function is mapped on to a reversible circuit using reversible
gates.

Definition 2. A reversible gate computes a reversible func-
tion.

Let X := {x1, ...., xn} be the set of Boolean variables.
Then a reversible gate has the form g(C, T ), where C =
{xi1, ....xik} ⊂ X is the set of control lines and T =
{xj1, ...., xjl} ⊂ X with C ∩ T = φ is the set of target
lines [8]. Two commonly used reversible gates are Toffoli
gates and Fredkin gates. A Toffoli gate with no controls is
a NOT gate i.e. g(0, xj1). Similarly, a Toffoli gate g(xi1, xj1)
can be thought of as a controlled NOT (or CNOT) gate, and
g({xi1, ..xin}, xj1) is a n-bit Toffoli gate.

A Fredkin gate with no controls is a SWAP gate g(xj1, xj2),
which interchanges the two target input bits at output. A
n-bit positive control Fredkin gate g({xi1, ..xin}, xj1, xj2)
interchanges the two target bits at output when all the control
inputs are equal to 1. A reversible gate may also have negative
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Fig. 1. Several commonly used reversible gates.

control. In this case the gate becomes active when negative
control has a value of 0.

Figure 1 shows the symbols and notation for several re-
versible gates. Two important metrics used to compare re-
versible circuit implementations are gate count and quantum
cost. The gate count (GC) is the number of gates in a circuit
and the quantum cost (QC) is the number of basic quantum
gates required to implement macro-level reversible gates such
as the Toffoli and Fredkin gates [9], [10].

Definition 3. A network of reversible gates forms a re-
versible circuit and implements a reversible function.

An example reversible circuit is shown in Figure 2. For each
gate, the control lines are those that affect the functionality
of the gate, while the target is the line whose value may be
changed by the computation carried out by the gate.

Another important metric in the design of reversible circuits
is that of garbage, or ancillary lines. These are lines that
are necessary to maintain the reversibility of the function
but do not produce any desired functionality. For instance,
Figure 2 illustrates a reversible full adder [11], where the
desired functionality can be observed on lines C and S. Lines
g1 and g2 are necessary to maintain the reversibility, but do
not produce any desired functionality. Further discussion of
garbage lines can be found in e.g. [12], [13].
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Fig. 2. A reversible full-adder circuit.

III. THREE-INPUT REVERSIBLE MAJORITY VOTER

A. Previous Work

There have been only a few attempts in the literature to
design majority voter circuits in reversible logic. In [14],
authors proposed two designs based on Triplicated Modular
Redundancy. The circuit takes three inputs from the output
of three copied circuits and generate threes data outputs. In
order to maintain reversibility the voter is a 5-bit circuit with

two garbage lines and two constant input lines. The design
goal is to produce all 0 or all 1 on the three data outputs, thus
masking any faulty output. However our analysis suggests that
the design presented in [14] does not generate the intended
corrected output.

A simplifed majority voter circuit as shown in Figure 3
is presented in [15]. The authors describe a reversible fault
tolerant multiplexing scheme using a 3-bit repetition code. The
voter consists of two CNOT gates and one Toffoli gate, and
the majority output value is taken from the line labeled ao.
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Fig. 3. A reversible three input majority voter as proposed in [15].

B. Proposed Design

In this paper we present a simplified and cost effective
approach for designing a majority voter in reversible logic.
To introduce our approach, a reversible three input majority
voter is shown in Figure 4. The behaviour of this circuit is
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Fig. 4. A three input reversible majority voter.

characterized by the truth table in Table I. The output of

TABLE I
TRUTH TABLE FOR THE REVERSIBLE VOTER CIRCUIT.

after 1st gate after 2nd gate
abc a′b′c′ aoboco
000 000 000
001 001 001
010 010 010
011 011 101
100 101 011
101 100 100
110 111 111
111 110 110

interest is ao, which always gives the value held by majority
of the input lines. The other two lines are not useful, and thus
are considered garbage. The quantum cost of this circuit is
very low: 1 for the CNOT gate and 5 for the Fredkin gate, for
a total of 6, which is an improvement in design as compared
to the approach presented in [15] with a gate count of 3 and a
quantum cost of 7. As we see from the figure, the control of
the Fredkin gate is (a⊕ c). When a = c then (a⊕ c) = 0 and
the Fredkin gate will be inactive and will not interchange the
values of a and b at the output. In this case a is the value used
as the majority output. However when a 6= c then(a⊕ c) = 1



and the Fredkin gate will be active and swap the value of a
and b.. In this case, the value of b will be the majority output.

IV. APPLICATIONS & RELATED WORK

A. Fault Tolerance in Reversible Circuits

Although the concepts of fault tolerance and testing are
often confused, they are not the same. For instance, works
on testing such as [16] and [17] present approaches that
allow the circuit to be tested for faults, often using parity
preservation. However this does not provide fault tolerance, as
defined earlier. We provide here an overview of some works
that address fault tolerance in reversible logic.

Parity Preservation vs Fault Tolerance: Many works in
the literature that addresses fault tolerant circuit designs in
reversible logic use the term fault tolerant when really they are
referring to testing. Works that fall into this category include
[18], [11], [19], [20] and [21]. For instance, in [18] the authors
propose a 4-bit parity preserving reversible gate referred to
as an IG gate. The authors present an implementation of a
reversible full adder circuit with two IG gates and claim that
their proposed design is fault tolerant, suggesting that fault
tolerance can be achieved without any extra design effort
if a reversible circuit is built using parity preserving gates.
Similarly in [20], the authors present a synthesis of a parity
preserving Toffoli gate. Since a Feynman gate is already a
parity preserving gate, the authors used two of their proposed
parity preserving Toffoli gates and two double-Feynman gates
to design what they claim is a fault tolerant full adder circuit.
Fault tolerance is a property which enables a system to con-
tinue operating properly and generating the intended (correct)
output even in the event of a failure of some of system’s
components. In this event a fault tolerant circuit must have
the capability to supply corrected (intended) bits at the output.
A parity preserving circuit does not guarantee that the circuit
is fault tolerant, since their use of parity preservation offers
only error detection. Thus these designs cannot be categorized
as offering fault tolerance. Other works that indeed fall into
the category of fault tolerance were described previously in
Section III. As we present below, our proposed majority voter
can be used to build a reversible fault tolerant circuit with the
capability of masking a fault in a single output bit.

Fault Tolerant Reversible Full Adder: A fault tolerant full
adder design based on our proposed majority voter is shown
in Figure 5. Since we have two outputs (sum and carry) of
interest in a full adder, we need two majority voters to ensure
that faults in either output can be masked. As we see from
Figure 5 there are three carry lines that are connected to the
voter on top, while the bottom voter is connected to the three
the sum lines. This design can generate corrected output in the
presence of faults from any of the proposed fault models ( [22],
[23]) as long as the fault affects at most one of the triplicated
full adders. Similarly, this design can be applied to any type of
circuit, albeit with a significant amount of hardware overhead.
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Fig. 5. A fault tolerant reversible full-adder circuit design.
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Fig. 6. Ensemble method in classification/prediction.

B. Machine Learning

Classification and prediction are two widely used forms of
data analysis in machine learning. Classification and prediction
have many application areas such as medical diagnosis, per-
formance prediction, forecasting, target marketing, and fraud
detection [24]. The first step of a classification process is to
build a classifier by learning from training data set. There are
various methods which can be used to build a classifier such
as decision trees, Bayesian classification, rule based classi-
fication, and genetic algorithms. The next step is to test the
classifier for accuracy by using a test data set. The accuracy of
a classifier refers to the ability of a classier to correctly predict
the class label of a given data set. Ensemble methods are used
in order to achieve a high degree of accuracy. The principle
idea of an ensemble method as shown in Figure 6 is to combine
n classifier models for creating an improved composite model.
Bagging and boosting are two such ensemble techniques [24].
Bagging and boosting generate a set of n classifiers, and a
voting strategy can be used to combine the n classifiers and
generate a more accurate outcome. The voter in Figure 4 takes
three inputs, so this voter can combine results from three
classifiers. However, when the number of classifiers increases,
we need to extend the design of the majority voter. The next
section provides the design of a n-bit majority voter.



V. EXTENSION OF REVERSIBLE MAJORITY VOTER

Although an odd value of n is desirable for a n-bit voter, a
voter with an even number of inputs can sometimes be required
in different applications, for example in a machine learning
application where the goal is to predict an outcome from an
even number of observations. Here we present designs for both
odd and even bit majority voters.

First we consider the design of a n-bit majority voter where
n is even. When n is even there are input combinations
for which there is no majority value; that is, the number of
lines/input bits carrying 0 and the number of lines carrying
1 are equal. In such cases, we can consider both values to
be majority, or neither to be the majority, depending on the
requirements of the particular application. One might refer to
this as a “tie”. For a instance, when we have a 4-bit input of
(0, 1, 1, 0), the majority voter circuit could send either a 1 or
0 to the final output. For our design we consider this to be a
don’t care condition.

Figure 7(a) shows a design of a 4-bit reversible majority
voter consisting of three CNOT gates and one 4-bit Toffoli
gate. The output that reflects the majority is labeled ao. The
other three outputs are non-functional outputs. The GC and QC
of this 4-bit majority voter is 4 and 16 respectively. However,
it is possible to reduce these costs by using the functionality
of a 3-bit majority voter.
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Fig. 7. Two 4-bit reversible majority voters.

Lemma: For an even n, a (n − 1)-bit majority voter is
sufficient to determine the majority of n bits, assuming that
“ties” are treated as don’t cares.

Proof: Let x be a Boolean variable and {y0, . . . , yn−1} be
the n Boolean inputs to a n-bit majority voter where n is even.
Also, let l be the number of bits in {y0, . . . , yn−1} that take on
the value x. A sufficient condition for x to have the value of
the majority of bits in {y0, . . . , yn−1} is: dn/2e ≤ l which is
also a condition to determine the majority bit in a combination
of bits {y0, . . . , yn−2} i.e. for the next lower (odd) value of
n.

Figure 7(b) shows a design for a 4-bit majority voter. A 3-bit
majority voter works on the input bits a, b and c, and supplies
the majority bit of the four input bits to the final output ao.
The input bit d is passed to do unchanged. Table II shows the
behaviour of the 4-bit majority voter from Figure 7(b). The
design cost is the same as that of a 3-bit voter with a GC of
2 and QC of 6. We see also that the majority among the first
three bits serves as the final majority bit of all four bits, and

so in fact, the fourth bit has no effect in determining the final
outcome.

TABLE II
TRUTH TABLE OF THE 4 BITS MAJORITY VOTER SHOWN IN FIGURE 7(B).

abcd aobocodo
0000 0000
0001 0001
0010 0010
0011 0011 don’t care
0100 0100
0101 0101 don’t care
0110 1010 don’t care
0111 1011
1000 0110
1001 0111 don’t care
1010 1000 don’t care
1011 1001
1100 1110 don’t care
1101 1111
1110 1100
1111 1101

It is similarly possible to design a 6-bit voter by simply
including a sixth line to a 5-bit majority voter. Figure 8(b)
shows such a design. A 4-bit majority voter can be used in
designing a 5-bit voter. The dashed box on right side of a 5-bit
voter in Figure 8(a) shows a 4-bit majority voter. A constant
input pin is initialized to 0. A CNOT gate is connected from
each of the inputs of the 4-bit voter to the parity line pin.
The 4-bit voter manipulates the four bits (b, c, d and e) and
sends the majority of these four bits to the point labled x.
The value at x indicates three cases based on the number of
appearance of x in the four input bits: two, three or four times
of appearance.

Case 1: When the value of x appears twice in (b, c, d
and e), it indicates one of the don’t care conditions and hence
the fifth bit at the line labled a will be the final majority
bit. A group of CNOT gates as shown in the dashed box in
Figure 8(a) determines the parity of the four bits (b, c, d and e).
In a don’t care condition the parity bit is (x⊕x̄⊕x⊕x̄) = 0. In
this case, the 3-bit Fredkin gate in Figure 8(a) will be inactive,
so the bit at a will provide the majority bit at output a0. For
example when (a, b, c, d, e) = (0, 1, 0, 0, 1), the 4-bit voter
sends 1 to the point labled x in Figure 8(a). The CNOT gates
block calculates the parity (1⊕ 0⊕ 0⊕ 1) = 0. A 0 on parity
line will make two Fredkin gates inactive, hence the Fredkin
gates will not interchange the value of a and x at the output.
The bit at a(= 0) will go the output line ao as the majority
bit.

Case 2: When the value of x appears three times in the 4-
bit inputs, the value of x serves as the final majority bit of the
5-bit voter. In this case, the parity line pin = (x⊕x⊕x⊕x̄) =
1. Thus the 3-bit Fredkin gate becomes active and interchanges
the value of a and x. The value of x goes to the final output
ao. For example, when (a, b, c, d, e) = (1, 1, 0, 0, 0), the 4-bit
voter supplies 0 to x . In this case the output of the CNOT
gates block is (1 ⊕ 0 ⊕ 0 ⊕ 0) = 1, which activates the 3-
bit positive control Fredkin gate. Thus the 3-bit Fredkin gate



swaps the values of a(= 1) and x(= 0), and 0 goes to the
final output line ao as the majority bit.

Case 3: The last 5-bit negative control Fredkin gate is
included in Figure 8(a) to supply the majority bit at the output
when all four inputs of the 4-bit voter are the same and the fifth
input line of a 5-bit voter has an opposite bit. For example,
when (a, b, c, d, e) = (0, 1, 1, 1, 1), the output of the 4-bit voter
is ((x = 1), 0, 0, 0) and the parity line is (1⊕ 1⊕ 1⊕ 1) = 0.
In this case, the 3-bit Fredkin gate remains inactive. However
the three 0s on three lines labled pin, d and e activate the 5-bit
negative control Fredkin gate. The 5-bit Fredkin gate swaps
a(= 0) and x(= 1), thus the circuit sends 1 to the output line
ao.

The GC and QC of a 5-bit voter is 10 and 54 respectively.
We can use the 5-bit voter to design a 6-bit voter by simply
including the sixth line with the same design cost as shown
in Figure 8(b). In this way it is possible to extend a majority
voter circuit by building on designs for smaller voters.
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Fig. 8. Two reversible majority voters.

VI. CONCLUSION & FUTURE WORK

This paper presents a 3-bit reversible majority voter circuit.
The purpose of this circuit is to identify the bit value with
appears more than any other bit value on the three input bits,
assuming the use of Boolean (binary) values. Our proposed
design is simpler and of lower cost in terms of gate count
and quantum cost than existing designs in the literature. We
also provide the designs for extending the voter from 3-bits to
higher order bits. Moreover, we demonstrate two applications
for our voter, in the areas of machine learning and fault
tolerant reversible circuit design. We provide an overview and
analysis of existing works that term themselves to be fault
tolerant, but which do not meet the required characteristics

to be categorized as such. Lastly, we present a design for a
fault tolerant reversible full adder, the approach to which can
be extended to any reversible circuit. The proposed majority
voter can be used to generate a corrected output in the presence
of any type of fault as long as the fault affects a minority of
the n input lines to the voter. Future work includes improving
the robustness of the majority voter and developing techniques
for fault location as well as fault correction.
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