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Abstract. There is a very little work in the literature that deals with
reversible logic synthesis using only SWAP and Fredkin (SF) gates.
This paper presents several applications using these gates, as well as a
quantum-level realization and a synthesis approach. The positive-controlled
Fredkin gate is essential for synthesizing falling edge-triggered and asyn-
chronous loadable reversible sequential circuits. Conversely, negative-
controlled Fredkin gates are required if the circuit is designed to be rising
edge-triggered. Our quantum realization of negative-controlled Fredkin
gate requires five 2-qubit elementary quantum gates, the same as that
required for realizing a positive-controlled Fredkin gate. We also propose
and evaluate the performance of a synthesis approach using SF gates for
realizing conservative reversible functions. Our results shows that circuit
realization for conservative function using SF gates is more e�cient than
To↵oli gates.

Keywords: reversible logic, SWAP gate, Fredkin gate, To↵oli gates,
multiple control gates, mixed polarity gates, quantum gates, logic syn-
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1 Introduction

Reversible circuits have drawn the attention of researchers for their many ad-
vantages over traditional irreversible circuits. A reversible function is a bijective
function. A logic gate is a reversible gate if the output function of the gate is bi-
jective [1]. Two most widely used reversible logic gate families are NOT-CNOT-
To↵oli (NCT) and SWAP-Fredkin (SF). A SWAP gate is a (2 ⇥ 2) reversible
logic gate which interchanges the input bits at the output. Fredkin and Tof-
foli proposed a reversible controlled swap gate (also called Fredkin gate) in [2].
This gate is a positive-controlled gate i.e., it swaps the two target inputs when
the control input is 1. The authors showed that it is a universal gate and any
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reversible circuit can be synthesized using only Fredkin gates. Smolin and DiVin-
cenzo presented an implementation of the positive-controlled Fredkin gate using
five 2-qubit elementary quantum gates in [3]. Although the positive-controlled
Fredkin gate is a universal gate, little work has focused on synthesizing reversible
circuits using only Fredkin gates. So far as we know, only Bruce et al. has pro-
posed a design for a full-adder using five positive-controlled Fredkin gates in [4].

Positive-controlled Fredkin gates are essential for designing reversible sequan-
tial circuits [5–7]. Positive-controlled Fredkin gates can be used to make the se-
quential circuit falling edge-triggered and asynchronous loadable. For example,
Fig. 1 shows the reversible realization of a 2-bit falling edge-triggered up counter
with asynchronous load using the design method of [7]. The feedback section of
the circuit provides the feedback of the state outputs Q1 and Q0. The next state
logic section generates the next states. When the clock is C = 1, the target
inputs of the two positive-controlled Fredkin gates of the falling edge trigered
section are swapped and the fed-back state values are passed to the state out-
puts. When C goes to 0 (falling edge), the target inputs are not swapped and the
generated next states are passed to the state outputs. On the other hand, when
the load control value is L = 0, the target inputs of the two positive-controlled
Fredkin gates of the asynchronous load section are not swapped and the gen-
erated next states or fed-back states are passed to the state outputs. When L

is 1, the target inputs of the positive-controlled Fredkin gates are swapped and
the asynchronous load data D1 and D0 are loaded to the state outputs Q1 and
Q0, respectively. If the reversible sequential circuit is required to be rising edge-
triggered, then the positive-controlled Fredkin gates of the edge trigger section
of the circuit must be replaced by a negative-controlled Fredkin gate. In this
case, the swapping is done when the control input is 0. Similarly, if the asyn-
chronous load is required to be done when L is 0, then the positive-controlled
Fredkin gates of asynchronous load section of the circuit must be replaced by
negative-controlled Fredkin gates.

A positive-controlled Fredkin gate can be realized using five 2-qubit elemen-
tary quantum gates [3]. We propose a realization of the negative-controlled Fred-
kin gate, which is like the positive-controlled Fredkin gate requires five 2-qubit
elementary quantum gates. This o↵ers a unique addition to the literature, as
there are currently no other proposals for the design of negative-controlled Fred-
kin gates. We have shown the use of negative-controlled Fredkin gate in the
design of rising edge-triggered reversible sequential circuit with asynchronous
load when the load input value is 0.

In this paper, we have also proposed a transformation based synthesis algo-
rithm using SF gates in order to realize the conservative reversible functions.
Note that a conservative reversible function is one where the number of 1 in in-
put is equal to the number of 1 at the corresponding output. We compared our
proposed approach with the basic transformation approach which is proposed
in [10] and the comparative result shows that our proposed algorithm performs
better from the perspective of gate count and quantum cost.
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Fig. 1. Reversible realization of 2-bit falling edge-triggered up counter with asyn-
chronous load.

The organization of the paper is as follows. In section 2, we present three 2-
qubit elementary quantum gates needed to realize the negative-controlled Fred-
kin gate. We illustrate also realization of a To↵oli gate with top negative control
and bottom positive control, which is used as an intermediate gate for realiz-
ing the negative-controlled Fredkin gate in section 3. In section 4, we present
the realization of the negative-controlled Fredkin gate. We present our proposed
SF based synthesis approach with performance evaluation of this approach in
section 6. Finally, we conclude the paper in section 7.

2 Some 2-Qubit Elementary Quantum Gates

In this section we discuss some 2-qubit elementary quantum gates which we
incorporate in our proposed realization of a negative-controlled Fredkin gate.

2.1 Feynman Gate

The 2-qubit Feynman gate, also known as CNOT gate is shown in Fig. 2. The
input x is the control input and passed unchanged to the output. The input
t is the target input. When the control input is x = 1, the target input t is
complemented at the output. When x = 1, the target input is passed unchanged
to the output. The target output is expressed as r = x� t.

2.2 Square-Root-of-NOT Gates

Fig. 3(a) shows the controlled-V (or CV) gate. The input x is the control input
and the input y is the target input. The unitary transform shown in Equ. 1
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Fig. 2. Feynman gate.

V =


(1 + i)/2 (1� i)/2
(1� i)/2 (1 + i)/2

�
(1)

is applied on the target input y when the control input is x = 1. When x = 0
the target input y is passed unchanged to the output. The CV gate is called the
square-root-of-NOT gate, since

V ⇥ V =


0 1
1 0

�
(2)

which is the unitary transform of the NOT gate. Therefore, the cascaded ap-
plication of two CV gates acts as a Feynman gate. Fig. 3(b) shows the controlled-
V+ (or CV+) gate. The unitary transform which is shown in Equ. 3

V

+ =


(1� i)/2 (1 + i)/2
(1 + i)/2 (1� i)/2

�
(3)

is applied on the target input y when the control input is x = 1. For x = 0
the target input y is passed unchanged to the output. The CV+ gate is also
called the square-root-of-NOT gate, since

V

+ ⇥ V

+ =


0 1
1 0

�
(4)

A Cascade application of two CV+ gates acts as a Feynman gate. The CV
and the CV+ gates are the inverse of each other, since V ⇥ V

+ = V

+ ⇥ V = I.
Therefore, the cascaded application of a CV and a CV+ gates acts as a 2-qubit
identity gate which restores the control and the target inputs at the outputs.

Fig. 3. 2-qubit square-root-of-NOT gates.
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3 Realization of To↵oli Gate with Top Negative Control

and Bottom Positive Control

In the realization of our proposed negative-controlled Fredkin gate, we use a
To↵oli gate with top negative control and bottom positive control as an inter-
mediate gate. In this section we discuss the realization of a top negative control
and bottom positive control (3⇥ 3) To↵oli gate using 2-qubit elementary quan-
tum gates.

The symbol of a To↵oli gate with top negative control and bottom positive
control is shown in Fig. 4(a). The inputs a and b are the control inputs and the
input c is the target input. When the control inputs are a = 0 and b = 1, the
target input c is complemented at the output, otherwise the target input c is
passed unchanged to the output. The target output is expressed as r = c� a

0
b.

The realization of a To↵oli gate with two positive controls using five 2-qubit
elementary quantum gates is presented in [8]. Realization of a To↵oli gate with
top positive control and bottom negation control using a similar technique is
presented in [9]. This realization also requires five 2-qubit elementary quantum
gates. We follow this technique and present a realization of a To↵oli gate with
top negative control and bottom positive control in Fig. 4(b). This realization
also requires five 2-qubit elementary quantum gates. The behaviour of the circuit
shown in Fig. 4(b) is discussed for all possible four inputs of a and b. When a = 0
and b = 0, then x = 0 and the two V gates and the V+ gate will be inactive and
the target input c will be passed unchanged to the target output r. When a = 0
and b = 1, then x = 1 and the two V gates will be active and the V+ gate will
be inactive. Thus the target input c will be complemented at the target output
r, since application of two V gates acts as a NOT gate. When a = 1 and b = 0,
then x = 1 and the first V gate will be inactive. However, the V+ gate and the
second V gate will be active. Thus the target input c will be passed unchanged
to the target output r, since cascaded application of V and V+ gates act as an
identity gate. Finally, when a = 1 and b = 1, then x becomes 0. The first V gate
and the V+ gate will be active and the second V gate will be inactive. Thus the
target input c will be passed unchanged to the target output r.

Fig. 4. (a) To↵oli gate with top negative control and bottom positive control and (b)
its realization using 2-qubit elementary quantum gates.
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4 Realization of Negative-Controlled Fredkin Gate

The symbol of the negative-controlled Fredkin gate is shown in Fig. 5 (a). The
input a is the control input and the inputs b and c are the target inputs. When
the control input a = 0, the two target inputs are swapped at the target outputs.
For a = 1, the target inputs pass to the target outputs without interchanging
the values. The two target outputs are expressed as q = ab�a

0
c and r = a

0
b�ac.

The realization of the negative-controlled Fredkin gate using one top negative
control and bottom positive control To↵oli gate and two Feynman gates is shown
in Fig. 5 (b). In Fig. 5 (b), x = b� c. The two target outputs are as follows:

r = c� a

0
x

= c� a

0(b� c)

= c� a

0
b� a

0
c

= a

0
b� c(1� a

0)

= a

0
b� ac

q = x� r

= b� c� a

0
b� ac

= b(1� a

0)� c(1� a)

= ab� a

0
c

Fig. 5. (a) Negative-controlled Fredkin gate and (b) its realization with two Feynman
gates and one To↵oli gate with top negative control and bottom positive control.

If the To↵oli gate shown in Fig. 5 (b) is decomposed using the realization
illustrated in Fig. 4(b), then the realization of a negative-controlled Fredkin
gate can be done as shown in Fig. 6. The two circuits of Fig. 7 are equivalent.
Using this equivalency, the circuit from Fig. 6 can be rearranged as in Fig. 8
by commuting the last two Feynman gates. The two 2-qubit quantum gates in
two dashed boxes act on the same lines. The operation of the first gate can be
expressed using a 4⇥4 unitary matrix. Similarly, the operation of the second gate
can also be expressed by another 4⇥ 4 unitary matrix. As these two gates are in
cascade, their final operation can be described by the matrix multiplication of the
two 4⇥4 unitary matrices, which will be another 4⇥4 unitary matrix representing
an elementary 2-qubit quantum gate. Therefore, the two gates in the dashed
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boxes are in practice work as one 2-qubit quantum gate. Thus, the realization of
the negative-controlled Fredkin gate requires five 2-qubit elementary quantum
gates. A similar argument is used in [3].

Fig. 6. Realization of negative-controlled Fredkin gate by decomposing the To↵oli gate
from Fig. 5 (b) using the realization of Fig. 4(b).

Fig. 7. Circuits of (a) and (b) are equivalent.

Fig. 8. Rearranged circuit of Fig. 6.

5 Negative-Controlled Fredkin Gates in Reversible

Sequential Circuit Design

The reversible circuit for 2-bit up counter as shown in Fig. 1 can be made rising
edge-triggered and asynchronours loadable when the load input value is 0 using
negative-controlled Fredkin gates as shown in Fig. 9. When the clock input
C = 0, the target inputs of the two negative-controlled Fredkin gates of the
rising edge trigger section are swapped and the state feedback is passed to the
status outputs Q1 and Q0. When C goes from 0 to 1 (rising edge), then the two
target outputs of the negative-controlled Fredkin gates are not swapped and the
generated next states are passed to the state outputs Q1 and Q0. When the load
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control value L = 1, then the target inputs of the two negative-controlled Fredkin
gates of the asynchronous load section are not swapped and the generated or
fed-back states are passed to the state outputs Q1 and Q0. When L is set to 0,
the target outputs of the negative-controlled Fredkin gates are swapped and the
asynchronous load data D1 and D0 are loaded to the state outputs Q1 and Q0
respectively.

Fig. 9. Reversible realization of 2-bit rising edge-triggered up counter with asyn-
chronous load value is 0.

6 Proposed SF Based Synthesis Approach

6.1 Logic Synthesis in Reversible Logic

Logic synthesis means transforming a logic function into a corresponding logic
circuit. During the process of transformation, the relationships between the in-
puts and the outputs of a logic function determine the number, the type and the
order in which the logic gates should appear in the circuit. If a logic function
is already reversible, then the synthesis process can take place immediately in
order to transform the function into a circuit design. However, if a logic function
is not reversible, the first step in most synthesis algorithm is to transform the
irreversible function into a reversible one. One or more garbage outputs and/or
constant inputs are added to an irreversible function in order to transform the ir-
reversible logic function into a reversible logic function. In most cases, a reversible
circuit design with lower garbage outputs and/or constant inputs is considered
a desirable design. There are a number of logic synthesis techniques in reversible
logic [11] and a transformation based logic synthesis is one of the most popular
one. One of the major advantages of a transformation based synthesis algorithm
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is that a circuit realization based on this algorithm does not create any garbage
output and constant input line. Thus in terms of input-output lines, the size of
the circuit which is realized using a transformation based synthesis is minimum.

6.2 Transformation Based Synthesis Algorithm

The input of the transformation based synthesis algorithm is a truth table of
a reversible function. Thus if a function is not reversible, the first step is to
transform the irreversible function into a reversible function. The basic working
principle of the transformation based synthesis algorithm is to apply reversible
operations to a reversible function in order to generate an identity function. The
transformation based synthesis algorithm was proposed by Miller et al. [10].
They demonstrated two variations: a basic algorithm and a bidirectional algo-
rithm. The authors used the NCT gate library in circuit realization. In the basic
algorithm, the reversible logic operations are applied to the output of the func-
tion’s truth table. We assume that we are applying the algorithm to a reversible
function of n variables. The objective is to make f(i) = i, for i = 0 to 2m � 1.
For example for n = 3 after applying the transformation algorithm the output
function f(3) should be 011. The following is the basis of transformation based
logic synthesis approach.

Step 0: If f(0) = 0, no transformation is required and go to step 2. Otherwise,
if f(0) 6= 0, apply a (1x1) To↵oli gate (NOT gate) in order to achieve f(0) = 0.
After applying a NOT gate, the bit combination 000 will be at the top row of
the output truth table.

Step 1: For 1 6 i < 2m � 1: If f(i) = i, no transformation is required and
proceed to next i. If f(i) 6= i, apply the smallest (k ⇥ k) To↵oli gate, k = 2
to n in order to make f

i(i) = i. One or more gates require in order to achieve
f

i(i) = i.
The choice of a gate during each step of transformation is crucial in order to

maintain convergence. The gate in one step of transformation must not change
the order of bits of the previous steps. Consider the following (3⇥ 3) reversible
function f =

P
(0, 4, 1, 3, 2, 5, 6, 7) in Table 1. The transformation based synthe-

sis transforms the function to an identity function, f t =
P

(0, 1, 2, 3, 4, 5, 6, 7).
The circuit which is generated by following the basic transformation algo-

rithm is presented in figure 10. The whole transformation process requires 8
CNOT gates and 4 To↵oli gates. Thus the gate count is 12. The quantum cost is
((8⇥ 1) + (4⇥ 5)) = 28. The next subsection describes our proposed algorithm.
We also show the circuit realization for the same function using our proposed
algorithm.

6.3 Our Proposed SF based Synthesis Approach

Before describing our proposed approach, it is important to observe the property
of the function which is shown in Table 1. The truth table of the function shows
that the number of 1’s in each input bit combination and the bit combination in
the corresponding output is equal. Thus the function is a conservative function.
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Table 1. Truth table of a (3⇥ 3) reversible function

input output
a
i

b
i

c
i

a
o

b
o

c
o

(0) 0 0 0 0 0 0 (0)
(1) 0 0 1 1 0 0 (4)
(2) 0 1 0 0 0 1 (1)
(3) 0 1 1 0 1 1 (3)
(4) 1 0 0 0 1 0 (2)
(5) 1 0 1 1 0 1 (5)
(6) 1 1 0 1 1 0 (6)
(7) 1 1 1 1 1 1 (7)

a0

b0

c0

at

bt

ct

Fig. 10. The equivalent circuit of function in table 1, generated using transformation
based synthesis

We hypothesize that a circuit realization for a conservative reversible function
would be more e�cient if we use a SF-based transformation synthesis instead
of a NCT-based synthesis approach. The basic idea of the SF-based transfor-
mation synthesis is the same as the approach which was presented in [10]. The
di↵erence is that instead of using the logic gates from the NCT gate family, we
use only SWAP and Fredkin gates to realize the transformations. The algorithm
examines one row of the truth table at each step to verify whether the bit com-
bination of the row at output is equal to the corresponding bit combination of
the row at input. If f(i) = i, no transformation is required. However at step i,
if f(i) 6= i the algorithm follows a greedy approach to generate a sequence of
one or more reversible logic gates that realize the required transformation. We
use the same function from Table 1 to demonstrate the SF-based transformation
synthesis. We also use the simple one direction transformation for this example.
As before, the algorithm begins with the output of the function. Table 2 shows
the transformation stages.

Step 0: The input output relation for the first row of the function (Table 1) is
f(0) = 0, which satisfies the required input-output relation. So we do not need
any transformation.

Step 1: In the second row of the table we have, f(4) �! 1. We need to map
100 to 001. A single SWAP gate, S(a,c) is enough for this mapping. A SWAP
gate, S(a,c) interchanges the bits of a and c at output.

Step 2: After using SWAP gate at the 1st Step, we have 100 in the third row.
We need to transform the bits into 010. A SWAP gate, S(a,b) does the required
transformation at this stage.
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Step 3: At this stage of transformation, we need to map f(6) �! 3. A SWAP
gate, S(a,c) could transform 110 to 011, however this mapping would also change
the bits in the previous rows. One of the basic concepts of the transformation
based synthesis is that a mapping in one stage must not alter any bit in any
of the previous rows. Hence, we need a (3 ⇥ 3) Fredkin gate for the required
mapping at this stage. We use a Fredkin gate F(b;a,c), which swaps the two
target bits of a and c, when the control bit of the gate b = 1.

Step 4: At this step, the bit combination in fifth row is already in proper po-
sition. We need to transform 110 into 101. A (3⇥3) Fredkin gate F(a;b,c) swaps
the values of b and c when the value of ’a’ is 1. By applying the Fredkin gate
F(a;b,c) at this step the rest of the entries of the truth table are organized prop-
erly. The resulting circuit realization of the function from Table 1 is displayed
in Figure 11.

Table 2. Transformation stages of the function in table 1 using SF based Transforma-
tion

step 0 step 1 step 2 step 3 step 4
output (i) (ii) (iii) (iv) (v)
a b c a0 b0 c0 a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0
0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1
1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

No Transformation S(a,c) S(a,b) F(b;a,c) F(a;b,c)

a0

b0

c0

at

bt

ct

Fig. 11. SF based synthesis for the function from Table 1

6.4 Comparison of NCT and SF based Synthesis Approaches

The Figures 10 and 11 show two circuits for the same function from Table 1.
The former circuit was realized following the basic transformation based algo-
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rithm from [10], while the latter circuit realization is generated by the SF-based
transformation algorithm. In Figure 11, we have a gate count of 4 as compared
to a gate count of 12 for the circuit in Figure 10. Moreover in terms of quan-
tum cost analysis, the SF gate based transformation synthesis has shown much
better result as compared with the basic transformation based synthesis using
NCT gate family. It is seen that the quantum cost of the implementation is
(2 ⇥ 3) + (2 ⇥ 5) = 16, where the quantum cost for the circuit realization in
Figure 10 is 28. The percentages of decrease in gate count and quantum cost are
67% and 43% respectively, which is a very significant improvement.

In order to compare the SF gate based transformation approach with NCT
gate based transformation approach from a wider perspective, we have generated
all possible (3 ⇥ 3) conservative reversible functions. There are 36 conservative
(3⇥3) reversible functions in total. We have realized all the 36 conservative (3⇥3)
reversible functions using both basic transformation based synthesis algorithm
and our proposed SF-based algorithm. Performance was evaluated in terms of
gate count and quantum cost. Table 3 shows the results. The first row of the
table shows that the circuit realization using SF-based synthesis requires 6 less
gates compared to the basic approach. Moreover, the quantum cost reduces from
25 to 13. The percentages of reduction in gate count and quantum cost are 67%
and 48% respectively. After observing the entire table, the highest percentage of
reduction in gate count is 67%. We achieve the highest percentage of reduction
in gate count for more than half of the (3⇥ 3) conservative reversible functions.

As we see from Table 3, the SF-based synthesis approach performs extremely
well as compared to the other approach as far as gate count is concerned. One of
the reasons behind the performance improvement is that the nature of operation
of a SWAP gate or a controlled SWAP gate (Fredkin gate) allows the gate to
adapt well with the property of a conservative function. Since a function is con-
servative, we need to transform a bit combination into another bit combination
with the same number of 1’s and 0’s. Most of this type of transformation can be
done with fewer operations if we exchange the bits of a row instead of inverting
the bits. The ability of changing two bits at a time gives SF gates benefit over
NCT gate family for realizing conservative reversible circuits.

From the perspective of quantum cost, the performance of SF based synthesis
is also better as compared to the NCT based synthesis. Among the 36 functions,
we have achieved lower QC for almost 70% of the functions. For the remaining
functions, the QC is the same for both approaches. So there is not a single
instance where the NCT based synthesis performs better than our proposed
approach. By using SF based synthesis over the NCT based synthesis, the highest
percentage of decrease in quantum cost is 70%. However, the average percentage
of reduction of quantum cost using the SF based synthesis is 29% as compared to
the NCT based synthesis. The last row of Table 3 shows 0 in all columns. Because
the input-output relationship f(i) = i holds for all the bit combination of the
particular function i.e. the function is an identity function. So no transformation
is necessary for the function.
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Table 3. Performance comparison of basic transformation based synthesis and SF gate
transformation based synthesis

Basic Transformation SF gate transformation Reduction Percentage of Decrease
GC QC GC QC GC QC GC QC
9 25 3 13 6 12 66.67 48.00
6 10 2 8 4 2 66.67 20.00
9 25 3 13 6 12 66.67 48.00
6 10 2 8 4 2 66.67 20.00
3 3 1 3 2 0 66.67 0.00
6 18 2 8 4 10 66.67 55.56
7 11 3 11 4 0 57.14 0.00
10 26 4 16 6 10 60.00 38.46
9 21 3 11 6 10 66.67 47.62
6 6 2 6 4 0 66.67 0.00
7 11 3 11 4 0 57.14 0.00
10 26 4 16 6 10 60.00 38.46
9 25 3 13 6 12 66.67 48.00
6 10 2 8 4 2 66.67 20.00
3 3 1 3 2 0 66.67 0.00
6 18 2 8 4 10 66.67 55.56
7 23 3 13 4 10 57.14 43.48
4 8 2 8 2 0 50.00 0.00
9 21 3 11 6 10 66.67 47.62
6 6 2 6 4 0 66.67 0.00
7 11 3 11 4 0 57.14 0.00
10 26 4 16 6 10 60.00 38.46
9 13 3 11 6 2 66.67 15.38
12 28 4 16 8 12 66.67 42.86
3 3 1 3 2 0 66.67 0.00
6 18 2 8 4 10 66.67 55.56
9 25 3 13 6 12 66.67 48.00
6 10 2 8 4 2 66.67 20.00
7 23 3 13 4 10 57.14 43.48
4 8 2 8 2 0 50.00 0.00
3 7 1 5 2 2 66.67 28.57
6 22 2 10 4 12 66.67 54.55
3 7 1 5 2 2 66.67 28.57
6 22 2 10 4 12 66.67 54.55
3 15 1 5 2 10 66.67 66.67
0 0 0 0 0 0 0 0
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As mentioned above, the proposed transformation algorithm using SF gate
family follows the greedy approach. We have designed our algorithm in this way,
because the basic transformation based synthesis algorithm which is proposed in
[10] also follows the greedy approach. Thus in order to make a fair comparison,
we have chosen the greedy approach. At every step of transformation, the algo-
rithm selects a gate which costs less in terms of quantum cost. When there is a
choice between a SWAP gate and a controlled SWAP gate in order to make a
transformation happen, the algorithm selects a SWAP gate, since a SWAP gate
has a minimum quantum cost than a Fredkin gate. For example, if we observe
the column (ii) of Table 2, we need to transform 100 into 010. There are two
choices for this mapping. We could use either a SWAP gate S(a,b) or a negative
controlled Fredkin gate, F

0
(a, b; c). A SWAP gate S(a,b) exchanges the bits of a

and b. A negative controlled Fredkin gate, F
0
(a, b; c) swaps the values of a and b

when c is 0. Any two of the gates can sever the purpose at this stage. However,
the proposed SF gate based transformation selects a SWAP gate, S(a,b) in this
case. Because a SWAP gate has lower quantum cost than a Fredkin gate. How-
ever, if we use a F

0
(a, b; c) at this stage, we get a circuit which is presented in

Figure 12. The use of F
0
(a, b; c) gate reduces the quantum cost from 16 to 13 as

we compared with the circuit in Figure 11. Moreover, one less gate is needed in
this circuit realization. The interesting fact is that the circuit in Figure 12 is not
even optimum. The choice of gate is one of the crucial factors in order to design
an optimum circuit. The circuit which is represented in Figure 13 is further op-
timized circuit representation for the reversible function in consideration. The
Figure 13 shows that the gate count is 2 and the quantum cost is 10. Now if
we compare the gate count and quantum cost of the Figure 13 with that of the
NCT gate based basic transformation synthesis (Figure 10), the gate count has
been reduced to 12 to 2, which is 6 times reduction. The quantum cost has been
reduced from 28 to 10, which is almost 3 times of improvement in quantum cost
of a circuit.

In a nutshell, the SF-based transformation approach performs much better
than the NCT based transformation for all the (3 ⇥ 3) conservative reversible
functions. The performance of the SF gate based transformation can be improved
further if the selection of gate at each stage can be done intelligently rather than
following a greedy way.

a0

b0

c0

at

bt

ct

Fig. 12. Another circuit realization for the function from table 1
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Fig. 13. More e�cient circuit realization for the function from truth table 1

We have also generated all the possible (4⇥ 4) conservative reversible func-
tion. The are 414720 conservative (4⇥ 4) reversible functions in total. We have
investigated the circuit realization for each of the function using SF based syn-
thesis and NCT based synthesis. However unlike the case of (3 ⇥ 3) functions,
there are some circuit realization where the gate count and quantum cost in-
crease by using SF gate bases transformation synthesis as compared to that of
NCT gate based synthesis. Among all the 414720 (4⇥ 4) conservative reversible
functions, the quantum cost increases in case of 27213 functions and the gate
count increase for only 2 functions. We have found that the gate count has
been increased by only 1 in those two functions. On the other hand, the highest
number of reduction in gate count by using SF based transformation as com-
pared with that of NCT based transformation is 27. The highest percentage of
reduction in gate count by using our proposed synthesis algorithm is 87% and
the highest reduction in gate count, on average, is 61%. By using the SF based
synthesis we achieve the highest reduction in quantum cost is 104, whereas the
highest percentage of reduction of quantum cost is 87%. By considering all the
functions, the average percentage of decrease of quantum cost is 35%.

7 Conclusion

The contribution of this work is twofold. First, we present a unique realization
of a negative-controlled Fredkin gate using five 2-qubit elementary quantum
gates. This is identical to the number of gates required for the implementation
of a positive-controlled Fredkin gate presented in [3]. Note that an addition
of a NOT gate in the realization of a positive-controlled Fredkin gate could
also be a realization of a negative-controlled Fredkin gate. However, unlike our
proposal, this would increase the quantum cost of the realization. Secondly, we
propose a transformation based synthesis algorithm using SF gate in order to
realize conservative reversible function. A conservative function maintains parity
between its inputs and outputs. This property makes a conservative function an
important class of reversible fucnion in applications such as fault dection, fault
testing and the desing of fault tolarent reversible circuits. We have generated all
possible (3 ⇥ 3) and (4 ⇥ 4) conservative functions. We compare our approach
with the NCT based synthesis which is proposed in [10]. For those functions we
see that the synthesis of conservative reversible functions using SF gates is more
e�cient than using NCT gates based on two important performance matrices:
gate count and quantum cost.

Jacqueline Rice
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We also show that a negative-controlled Fredkin gate is very useful for design-
ing rising edge-triggered reversible sequential circuits, while a negative-controlled
Fredkin gate is also important to make a sequential circuit asynchronous load-
able for load input value 0. In addition, this paper shows that the usefulness of
a negative control Fredkin gate in circuit realization. The outcome of this work
indicates the necessity of classifying reversible functions. The synthesis process
in reversible logic would be more e�cient if we know the class of a reversible
function in advance. Therefore, classifying reversible functions and using the
benefits of SF-gates in circuit realization for di↵erent classes of functions will be
an important area of further research.
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