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1 Introduction

Reversible logic is becoming a “hot” topic of research for a variety of reasons, one of which is its connections
to quantum computing. Since prior reports have elaborated on this, this report will simply direct the reader
to these [20] and to introductory works reversible logic such as [4, 32] and [1]. for more details on the
motivation behind this area.

This report provides the reader with background in the current status of synthesis for reversible logic, paying
particular attention to three approaches:

• ESOP-based Toffoli-gate cascade synthesis,

• template-matching, and

• sorting-based Toffoli-gate cascade synthesis.

2 Background

2.1 Reversible Logic

[26] provides the following definitions:

Definition 2.1 a gate is reversible if the (Boolean) function it computes is bijective,

and

Definition 2.2 a well-formed reversible logic circuit is an acylic combinational logic circuit in which all
gates are reversible, and are interconnected without fanout.

This definition assumes that the circuit is strictly combinational; considerations for sequential logic are
addressed in [19]. In general, a function is reversible if there is a one-to-one and on-to mapping from the
inputs to the outputs (and vice versa) of the function. For example, the function shown in Figure 1(A) is
reversible, while the function shown in Figure 1(B) is not.
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x y x′ y′

00 00
01 01
10 11
11 10

x y x′ y′

00 00
01 00
10 00
11 11

(A) (B)

Figure 1: (A) An example of a reversible function. It is one-to-one and on-to. (B) An example of a
non-reversible function.

2.1.1 Representations

A key consideration in this area lies in the question of how to represent a reversible function and/or an
implementation of a reversible function as a reversible circuit.

One way to represent a reversible function is as permutation of the rows of its truth table. For instance,
Figure 2 shows a reversible function with the input rows of the truth table labeled on the left and the
resulting outputs labeled on the right. A permutation vector for this function could therefore be given as
(0, 1, 3, 2).

x y x′ y′

0 00 00 0
1 01 01 1
2 10 11 3
3 11 10 2

Figure 2: A reversible function with the permutation vector (0, 1, 3, 2).

Other techniques treat reversible functions as special classes of traditional logic functions, and then use
traditional representations such as the espresso PLA format [23], which is a tabular form of the well-known
sum-of-products (SOP) representation, or the exclusive-or version of this known as a ESOP. An ESOP form
results when the OR (+) operator in a SOP expression is replaced with the exclusive-or (⊕) operator. The
reader is directed to [27] and [24] for more information on the ESOP representation. Both the use of SOPs
and ESOPs have the benefits of not being exponential in the number of variables, and of being able to
leverage the extensive amount of previous work (see, for example, [24]) in minimization of these formats.

More recently two standard formats for representing reversible logic functions and circuits have been pro-
posed: the RevLib (rl) format and the The RevLib format can be used either to specify a reversible function,
before an implementation has been determined, or to define a circuit implementing the reversible function.
The function specification consists of all the truth table outputs for the function. Input are not given, as
it is assumed that the outputs are given in standard row ordering (inputs ordered 0 to 2n − 1). Circuit
specifications consist of a list of reversible gates that, when cascaded in the order given, will implement the
function. Details of this proposed format are given in [34].

Maslov, Dueck and Scott also propose a format for representation of reversible logic circuit implementations,
again in terms of a list of reversible gates. Details of this proposed format are given in [11].

Most of the commonly used representations of reversible logic functions are exponential in the number of
signals, or variable used by the function. Some authors have suggested the use of decision diagrams to
mitigate this problem. The reader is directed to a variety of works for more information in this area:
[14, 28, 17, 5, 29, 30].
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2.1.2 Reversible Gates

Because a reversible gate must be bijective, this means that the traditional inverter is considered reversible,
while the traditional AND gate is not.

x x
0 1
1 0

x y x · y
0 0 0
0 1 0
1 0 0
1 1 1

(A) (B)

Table 1: (A) The traditional inverter, a reversible gate. (B) The traditional AND gate, which is irreversible.

The most commonly used reversible gates include the NOT gate (or the inverter), a SWAP gate, and
variations on these. Table 2 lists the behaviour of some reversible gates. The Feynman and Toffoli are

gate behaviour
NOT (x)→ (x⊕ 1)
Feynman (x, y)→ (x, x⊕ y)
Toffoli (x, y, z)→ (x, y, xy ⊕ z)
SWAP (x, y)→ (y, x)
Fredkin (x, y, z)→ (x, z, y) iff x = 1

Table 2: The behaviour of a selection of more commonly used reversible logic gates.

in essence extensions of the NOT gate, while the Fredkin extends the behaviour of the SWAP gate. It is
common to extend these behaviours to any number of control lines. In this case the Toffoli gate may be
referred to as TOFn, where n is the total number of signal lines the gate is operating on. A TOFn gate may
also be referred to as a (n, n− 1) Toffoli gate, where n is the total number of lines and n− 1 is the number
of control lines. This is somewhat redundant, however, and so we will generally use the first notation in this
report.

The generalized behaviour of the TOFn gate can be characterized as

(xn−1, xn−2, . . . , x1, x0)→ (xn−1, xn−2, . . . , x1, x0 ⊕ c)

where c = xn−1 · xn−2 · · · · · x1. The variables used in the computation of c are referred to as control lines,
while x0 in this case is the target. Any of the variables may be designated as the target, in which case that
variable is not used in the computation of c.

A further generalization allows the control variables to be used in either their positive or complemented
form. A notation for this assigns a numeric value to the behaviour of each line as given in Table 3. For

-1 unused
0 negative control
1 positive control
2 target

Table 3: The mapping of values to functionality for each line in a generalized Toffoli gate.

example, a TOF4 gate that has x3 as a negative control line, x2 as a positive control line, x1 as the target
and x0 as a positive control line would be denoted TOF(0,1,2,1) (or alternatively T (0, 1, 2, 1)).

Figure 3 illustrates the symbols used for the gates discussed in this report.
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Figure 3: (A) NOT gate, or TOF1 gate. (B) TOF2 gate. (C) TOF3 gate. (D) The generalized Toffoli gate
T (0, 1, 2, 1).

2.2 Terminology

In most cases this report will explain terminology as it is needed. In addition we will try to point out
when differing terminology is used for the same or similar concepts by different authors. However a short
comment on one point is useful: although we refer to “inputs” and “outputs” of a reversible function, this
is a misnomer. This is because a reversible function may be implemented using some quantum technology,
where wires and traditional technologies cannot be used, and where inputs/outputs are really starting/ending
states of some technological entity implementing the function.

Given this we will assume that the reader understands this caveat and in most cases we refer to either lines
of the circuit, assuming that these will be implemented by some reversible technology equivalent, or to the
variables in the function to be implemented.

3 Existing Reversible Synthesis Techniques

As recent researchers have found, synthesizing reversible logic functions is not a trivial process. In fact, early
researchers in this area generally limited themselves to trials on functions with only 3 inputs. This report
focuses on three techniques. We first introduce the basic idea behind each of the techniques.

3.1 Maslov et al.’s Template Technique

Maslov, Miller and Dueck have published a number of papers leading to what I will refer to here as the
template technique. Parts of this algorithm are often referred to as MMD. Details for this technique are first
introduced in [13] and further elaborated on in [9] and [10].

The technique begins with a truth table describing a reversible function, and produces a cascade of Fredkin
and Toffoli gates. The steps are as follows:

1. use NOT gates to transform the first row of outputs in the truth table to 00 · · · 0, and then update all
output rows according to the changes.

2. moving down the truth table use the simplest possible (i.e. having the fewest control lines) to bring
each output pattern to the form of its corresponding input pattern without influencing previous rows
in the table.

3. apply the template simplification rule

For example, given the function shown in Table 4 the tranformation process is as follows:
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xyz x′y′z′

000 000
001 011
010 100
011 101
100 110
101 010
110 111
111 001

Table 4: A n = 3 reversible function to synthesize.

xyz x′y′z′

000 000
001 001
010 100
011 111
100 110
101 010
110 101
111 011

xyz x′y′z′

000 000
001 001
010 010
011 111
100 110
101 100
110 011
111 101

a) b)

xyz x′y′z′

000 000
001 001
010 010
011 011
100 110
101 100
110 111
111 101

xyz x′y′z′

000 000
001 001
010 010
011 011
100 100
101 110
110 101
111 111

c) d)

Table 5: Truth tables corresponding to the steps in the template-based transformation synthesis approach.

Step 0 No change is required for this step; row 0 is already correct

Step 1 The goal is now to transform the output pattern 011 to match the input pattern 001; one way to do
this is to apply the function y′ = y⊕z, which matches the Feynman gate, and then apply this function
to all of the outputs resulting in the truth table shown in Table 5a).

Step 2 Row 2 has 100 in the output column and 010 in the input column; swap x′ and y′ to make them match.
The resulting truth table is shown in Table 5b).

Step 3 The next change required is in row 3 wherew there is 111 in the output column and 011 in the input
column. The Toffoli gate can be applied to make the required change: x′ = x⊕yz. The result is shown
in Table 5c).

Step 4 In row 4 the goal is to change 110 to 100; apply y′ = y ⊕ x. The result is shown in Table 5d).

Now all output patterns match the inputs, and the resulting cascade of gates is shown in Figure 4. The final
step is to examine the cascade of gates and replace any series of gates that match a variety of templates
determined by the authors (see [9] for details) if such a replacement reduces the number of gates in the series.
Templates have been determined by identifying all series of gates which realize the identity function, and by
enumerating exhaustively the templates consisting of 1–6 gates. These templates have then been classified
to reduce the number of different templates. These classes are based on the functionality of the templates.
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Figure 4: The resulting cascade of gates for the truth table in Table 4.

3.2 ESOP-based Synthesis

[3] introduces a technique based on the ESOP representation. This technique is attractive for two reasons:

1. it requires as input a non-exponential representation of the function to be synthesized, and

2. it is so simple that actually performing the synthesis should prove to be very fast and potentially
scalable to larger functions.

The problem with the basic technique is that for a reversible function of n variables the implementation
requires 3n lines: one line for each input and one for the negated form of each input, as well as one line for
each output. The technique consists of creating a circuit with the required number of lines and inserting
one gate for each cube in the ESOP cubelist. If we allow CNOT (Toffoli) gates to control more than one
output, then such a technique will result in a cascade with exactly p gates, p being the number of cubes (or
products) in the ESOP cubelist. An example is shown in Figure 5.

.i 3

.o 3

.p 3
1-1 101
001 010
100 001
.e

x3
x3x2
x2
x1
x1
f3
f2
f1

0〉
0〉
0〉

a) b)

Figure 5: a) An ESOP cubelist. b) The resulting cascade of gates when generating a circuit from the cubelist
in a).

Optimizations to address these problesm were introduced in [3]. One optimization consists of sorting the
cubes such that all cubes containing the non-negated form of a particular variable are moved to the top of
the list, while all cubes containing the negated form of that same variable were moved to the bottom of the
list. This process is then repeated within each of the two halves of the list for the next variable, and so
on. This allows the removal of lines representing the negated form of each input variable and instead use
NOT gates to switch as needed. In the very worst case, where all minterms are included in the cubelist,
this would result in 2n − 1 inverters, since the 2n cubes could be ordered in such a way that only one bit
changed between each cube. This is extremely unlikely, however. A cost function is used to determine which
variables should be sorted on first – for instance, variables that do not use their negated version can appear
anywhere in the ordering, while variables that are used extensively AND with a relatively even number of
negated and non-negated appearances would benefit from being dealt with early on in the ordering process.
In determining such a cost function both of these factors are considered. We assign a value of +1 to each
place where the variable appears as a 1 in the cubelist; a value of −1 to each place where the variable
appears as a 0 in the cubelist, and a value of 0 if the variable appears as a don’t care. Then we wish to
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maximize
∑
|xi| to determine if a variable appears as a non-don’t care value in a majority of the cubes,

and to minimize |
∑

xi| to determine if a variable appears fairly often in both its negated and non-negated
forms, rather than just in one or the other.

Cxi = p1(
1∑
|xi|

) + p2(|
∑

xi|) (1)

Equation 1 gives a formula with two parameters that can be varied to alter the contribution of each part
of the function, and each of the summations will run from cube 1 to cube p in the list. Experimentation
has shown that setting the two parameters p1 = p2 = 1 allows the second portion of the equation, the
|
∑

xi| to overwhelm the first portion, and so the parameter p1 should be set to some value to allow the two
contributions to be more equal. It is likely that p1 should vary with p (the number of cubes).

The reader is directed to [21] for more information on ESOP-based logic synthesis.

3.3 Sorting-based Synthesis

A new method proposed in [22] utilizes row moves to convert a given 0, 1 permutation matrix to the identity.
In effect, such row moves may be viewed as sorting rows of the matrix. Since sorting is such a well-known
problem in computer science the expectation is that the body of knowledge surrounding this area can be
applied to the problem of reversible logic synthesis.

A permutation matrix is a matrix generated by taking a m × m identity matrix and permuting the rows
according to some permutation vector. Since a permutation vector is one way of representing a reversible
function of size n then a m×m permutation matrix (where m = 2n) may be created by reordering the m×m
identity matrix according to the ordering in the permutation vector p that represents a given reversible
function.

Since it is possible to construct a reversible gate cascade that has the effect of moving row i to row j, the
problem of constructing such a cascade becomes that of determining the order in which rows should be moved
in order to re-sort the permutation matrix into the identity. Because the sizes of the permutation transfer
matrices are exponential in the number of dependent variables, the row swapping operations are implemented
as graph operations over the Quantum Multiple-Valued Decision Diagram (QMDD) data structure [14]. This
allows for most relatively large reversible circuit specifications to be represented in a compact manner, and
the row-swapping operation is implemented in a very efficient manner using QMDD.

In general the algorithm for transforming the permutation matrix M into the identity is

while (M!=I)

(1) in M determine a row i to move to row j

(2) determine Toffoli operations T

that perform the row move

Work has not progressed a great deal on investigations for step (1), although this is clearly an area where
there are a great deal of options.

For step (2) we first focus on row moves that require exactly one TOF(n) gate. A swap of two rows that
are adjacent in terms of the bit patterns of their location will only require one TOF(n) gate. For instance,
suppose we wish to move row i to row j. To determine if a single TOF(n) gate can accomplish this, we can
use the value k = i ⊕ j. If k is a power of 2 then there exists a generalized TOF(n) gate that will swap
the two rows. To determine the configuration of the gate one formulates the Toffoli configuration with the
binary representation of i then sets the (log k)th position as the target line. For example, let us assume we
have a function with 4 variables for which we wish to swap rows 10 and 14. Then the binary expansions for
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i and j are 1010 and 1110 respectively, and k = 0100 = 4. We set the TOF(4) configuration to intially be
T (1, 0, 1, 0), and then set the value at position log k = 2 to 2 indicating the target. This results in a gate
configuration of T (1, 2, 1, 0)1.

To formulate a row move that requires multiple row swaps the authors suggest the use of a Gray code sequence
that transforms i to j. For any sequential pair of rows ga and gb in the Gray code sequence, k = ga⊕ gb is a
power of two, and g0 = i while gq = j, where g0 is the first row in the Gray code sequence and gq is the last
row. This allows the formulation of a corresponding Toffoli operation, and then the concatenation of the
Toffoli swaps one gets from applying the process to each sequential pair of rows in the Gray code sequence
corresponds to a row move that moves row i to row j. For instance, for the situation in Table 6, it is clear
that we need to move row 0 to row 7, and vice versa. We would thus generate a Gray code to transform
the bit pattern 000 into the bit pattern 111, and for each pair in the bit pattern formulate the appropriate
TOF(3) gate. An illustration of this process is shown in Figure 6.

x y z x’y’z’
000 111
001 001
010 010
011 011
100 100
101 101
110 110
111 000

Table 6: A reversible function in which row 0 and row 7 have been swapped.

000
001
011
111

TOF(0,0,2)
TOF(0,2,1)
TOF(2,1,1)

(A) (B)

Figure 6: (A) A Gray code sequence for converting 000 into 111, and the corresponding TOF(3) configurations
for each pair of rows. (B) The Toffoli gate cascade corresponding to the three TOF(3) configurations in (A).

NOTE: minimization of the ESOP is performed by the EXORCISM software, as described in [15] and as
available for download [12].

4 Conclusions & Future Work

This report provides examples of three techniques used in reversiblel logic synthesis. We note that there are
a variety of other approaches not addressed here; some of these are listed below for the reader to pursue as
desired:

• De Vos et al. [18], [31], [33], [32]

• Shende et al. [25], [26]

1Recall that the positions are ordered in reverse, i.e. T (x3, x2, x1, x0).
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• synthesis for Peres gates [2]

• Perkowski et al. [6], [16], [8], [7]

• Wille et al. [34], [36],[35]

In particular we highlight the works in [21] and [35]; future work will include ways to incorporate these two
techniques.
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