
Technical Report: Projects &

Background in Reversible Logic

TR-CSJR1-2005
J. E. Rice

University of Lethbridge
j.rice@uleth.ca

1 Introduction - What is Reversible Logic?

In order to discuss new trends and projects in the area of reversible logic one
must first have an understanding of what this is. First of all, we’ll restrict
our discussion of logic functions to two-valued functions describing switching
logic. Reversible multiple-valued functions are also possible, but are beyond
the scope of this report. We will be discussing functions that describe Boolean
logic circuits. These functions are generally built using logic gates. According
to Shende et. al. [16],

Definition 1.1 a gate is reversible if the (Boolean) function it computes is
bijective.

Bijective means one-to-one and onto; or, for those of us who forget our mathe-
matics terminology, there must be the same number of inputs as outputs, and
for each output value there is a unique input value that leads to it.

Table 1 shows the truth table for a 3x3 reversible function. Note that a
reduced representation can be obtained from the truth table by simply listing
the row numbers correspoinding to the binary expansions represented by the
inputs and by the outputs. If we assume that the inputs are given in numerical
order from 0 to 2n−1 then we can list simply the decimal numbering of the
outputs, in this case 0, 1, 3, 2, 4, 5, 7, 6.

Since, by our previous definition, we need reversible gates in order to build
reversible logic we must next define some reversible gates and how they behave.
Again according to Shende et. al. [16],

Definition 1.2 A k-CNOT is a (k + 1) × (k + 1) gate. It leaves the first k
inputs unchanged, and inverts the last iff all others are 1.

There are many types of k-CNOT gates, and they are referred to in the literature
in a variety of ways. Here is a few of the names given to the varieties:

• A 0-CNOT gate is just an inverter, referred to as a NOT gate.

1

xyz x’y’z’
0 000 000 0
1 001 001 1
2 010 011 3
3 011 010 2
4 100 100 4
5 101 101 5
6 110 111 7
7 111 110 6

Table 1: The truth table of a 3x3 reversible function.

gate behaviour
Not (x) → (x⊕ 1)
Feynman (y, x) → (y, x⊕ y)
Toffoli (z, y, z) → (z, y, x⊕ yz)
swap (x, y) → (y, x)
Fredkin (z, y, z) → (z, x, y) iff z = 1

Table 2: The behaviour of a selection of more commonly used reversible logic
gates.

• A 1-CNOT gate is called a controlled-NOT, or CNOT (this is also known
as a Feynman gate).

• A 2-CNOT gate is called a TOFFOLI gate.

Other gates include the SWAP gate and the FREDKIN gate. Table 2 lists
the behaviour of each of the most commonly used reversible gates. Figure 1
illustrates the symbols usually used for each of the gates. Each of the Toffoli,

x x’
y y’
x x’

z z’
y y’
x x’

(a) the NOT gate (b) the Feynman gate (c) the Toffoli gate

July 7, 2005 J. Rice - an overview of Reversible Logic 9 of 17

what is reversible logic? — 6

• another commonly used

reversible gate is the SWAP

gate:

• and you may have heard of the

Fredkin gate:

SWAP’s equivalent:

(x,y) (y,x)

Fredkin’s equivalent:

(z,y,x) (z,x,y) iff z = 1

x x’
y y’

y y’
x x’

z z’

• both Toffoli and Fredkin can be generalized to any number of

inputs

July 7, 2005 J. Rice - an overview of Reversible Logic 9 of 17

what is reversible logic? — 6

• another commonly used

reversible gate is the SWAP

gate:

• and you may have heard of the

Fredkin gate:

SWAP’s equivalent:

(x,y) (y,x)

Fredkin’s equivalent:

(z,y,x) (z,x,y) iff z = 1

x x’
y y’

y y’
x x’

z z’

• both Toffoli and Fredkin can be generalized to any number of

inputs

(d) the swap gate (e) the Fredkin gate

Figure 1: Symbols for some of the more commonly used reversible logic gates.

Fredkin and CNOT gate are universal gates [10]; that is, they each can be used
to create any logic circuit without the addition of any other type of gate. In
traditional logic the AND gate is a universal gate.

There are many different notations being used to denote these and other
gates. The symbols in Figure 1 are from [4]. Dueck et. al. [4] also use the
following notation:

2

• TOF(C; T) denotes a Toffoli gate, where C is a set of 0 or more control
inputs and T is the input to be inverted,

• FRE(C; T) denotes a Fredkin gate, where C is a set of 0 or more control
inputs and T is the inputs to be swapped, and the NOT can then be
written TOF(; T) and a SWAP can then be written FRE(; T).

2 Motivation - Why Reversible Logic?

In addition to understanding the background of a topic it is equally important
to understand why a particular topic is of interest. According to Frank [6]

...computers based mainly on reversible logic operations can reuse
a fraction of the signal energy that theoretically can approach arbi-
trarily near to 100% as the quality of the hardware is improved...

Many researchers believe that Moore’s law is at an end. We can’t keep in-
creasing performance as we have previously done, in order to meet consumer
demands, because we simply can’t keep up with the power requirements. For
an extremely convincing explanation of why this is so the reader is directed to
section 1.1 of [6]. If this doesn’t convince you then possibly Bennet’s statement
that “loss of information implies energy loss” [2] and Perkowski et. al.’s convic-
tions that “every future technology will have to use reversible gates in order to
reduce power” and “[our reversible techniques are] useful for arbitrary reversible
technology, e.g. quantum, CMOS, DNA, optical, etc.” [14] may convince us of
the usefulness of pursuing research in the area of reversible logic.

3 Issues

This is a relatively new area of work. One prominent researcher has identified
four big problems in the area. Frank [6] states that

1. we need to develop fast and cheap switching devices with adiabatic energy
coefficients well below those of transistors;

2. we also need clocking systems that are themselves of very high reversible
quality;

3. it is also essential that we pursue research into the design of highly-
optimized reversible logic circuits and algorithms.

4. Finally, the area faces an uphill social battle in overcoming the enormous
inertia of the established semiconductor industry.

I have chosen three projects, as described below, that fit into these problem
areas.

3

4 Projects

Much of my prior work has been in the are of traditional logic synthesis. Thus
it is logical for me to extend this knowledge to problem 3 in Frank’s list; the
problem of developing highly-optimized reversible logic circuits and algorithms.
This is, of course, logic synthesis.

Definition 4.1 Reversible logic synthesis: given a truth table or other specifica-
tion of a reversible Boolean logic function, how do we generate (what is usually)
a cascade of reversible gates to implement the function(s)?

4.1 Project 1 - Sequential Logic Synthesis for Reversible
Logic Circuits

Nearly all the literature on reversible logic synthesis has addressed only the
aspect of combinational logic. Researchers that have addressed the problem of
sequential logic synthesis for reversible logic are as follows:

• M. Frank, in “Approaching the Physical Limits of Computing” [5],

• Kwon et. al. in “A three-port nRERL register file for ultra-low-energy
applications” [9],

• Picton, in “Multi-Valued Sequential Logic Design Using Fredkin Gates” [15],
and

• Thapliyal et. al. in “A Beginning in the Reversible Logic Synthesis of
Sequential Circuits” [17].

Part of the problem is that the traditional description of reversible logic gates
seems to contradict the requirements for building sequential circuits. However,
in order to make reversible logic a feasible tool there must be some type of
revrsible memory gate or object, and tools for sequential logic design. The first
mention of sequential design for reversible logic was by Picton. He describes
the use of Fredkin gates to build clocked D-type latches, which can then be
combined to form more complex memory elements required in sequential logic
design. Since then Frank (in various presentations, including [5]) and Thapliyal
et. al. have considered this issue. I include Kwon et. al. in the above list since
in order to design a register, by nature sequential logic must be used. However
synthesis techniques are not mentioned at all in this work; indeed it appears
that the design is a one-off hand-tooled design, not suitable for general logic
synthesis or what we today know as CAD.

I propose to investigate this problem with the goal of developing a logic syn-
thesis technique, possibly combined with techniques discussed in the following
section, that is tailored towrards reversible logic solutions and will take into
account the requirements of sequential logic.

4

4.2 Project 2 - Decision Diagram-based Synthesis for Re-
versible Logic Circuits

Existing research into reversible logic synthesis seems to fall into two main
categories:

1. transform-based techniques, such as those introduced by Dueck et. al. [4,
13, 12], and

2. decomposition techniques, such as those introduced by Perkowksi et. al. [14],
De Vos et. al. [18] and Miller [11].

Other researchers in the area include Kerntopf [8, 7], Agrawal et. al. [1], and
Shende et. al. [16]. These latter works rely more on heuristics for deciding how
to build reversible circuits.

Any of us familiar with traditional logic synthesis will likely be aware of
the impact Bryant’s [3] binary decision diagrams have had on the area. In my
reading I have found it interesting to note that there are little to no details on
how thse useful tools may be extended to reversible logic synthesis. Perkowski
does certainly mention the use of PKDDs [14] but gives no information on
how the dd structure is then converted into a reversible gate layout. I intend
to provide these details, and also make use of the various decomposition and
transformation-based techniques in the design of heuristics combining the best
aspects of each of these methods.

4.3 Project 3 - Transforming a Traditional Gate-level Lay-
out to a Reversible Logic Layout

This section cannot begin with a list of existing work because in this area, there
is none. The motivation of this particular topic is to provide a bridge from
existing traditional logic designs to the novel reversible logic designs. Let’s face
it; academia and industry has put a lot of time and effort into the existing
designs we have. If we want to transition to reversible logic we must plan for it.

I intend to begin with traditional gate layouts such as (N)AND-(N)OR im-
plementations and devise algorithms and/or heuristics for generating reversible
equivalents. This, of course, is the simplest of traditional logic designs; muxes,
registers, and other more complex devices must be incorporated as the work
progresses. Clearly the work on sequential reversible logic synthesis from above
will provide help in this area as well.

5 Conclusion

This report is intended to fulfill two purposes; firstly to provide the reader with
an overview of the area of reversible logic and a list of references from the area,
and secondly to give a very brief overview of the projects I intend to pursue in
the area.

5

References

[1] A. Agrawal and N. K. Jha. Synthesis of Reversible Logic. In Proceedings
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2004.

[2] Bennet. Logic reversibility of computation. IBM J. of Research & Devel-
opment, 1973.

[3] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. on Comp., C-35(8):677–691, Aug. 1986.

[4] G. W. Dueck, D. Maslov, and D. M. Miller. Transformation-based synthesis
of networks of toffoli/fredkin gates. In Proceedings of the IEEE Canadian
Conference on Electrical and Computer Engineering, 2003.

[5] M. P. Frank. Approaching the Physical Limits of Computing. In Proceedings
of the International Symposium on Multiple-Valued Logic (ISMVL), 2005.

[6] M. P. Frank. Introduction to reversible computing: motivation, progress,
and challenges. In Proceedings of the 2nd Conference on Computing Fron-
tiers, pages 385–390, 2005.

[7] P. Kerntopf. Synthesis of Multipurpose Reversible Logic Gates. In Pro-
ceedings of the Euromicro Symposium on Digital System Design (DSD),
2002.

[8] P. Kerntopf. A New Heuristic Algorithm for Reversible Logic Synthesis. In
Proceedings of the Design Automation Conference (DAC), pages 834–837,
2004.

[9] J.-H. Kwon, J. Lim, and S.-I. Chae. A three-port nRERL register file
for ultra-low-energy applications. In Proceedings of the 2000 International
Symposium on Low Power Electronics and Design (ISLPED ’00), pages
161–166, 2000.

[10] Jon Marshall. http://www.themilkyway.com/quantum/finalreport/quantumgates,
2000.

[11] D. M. Miller. Spectral and Two-Place Decomposition Techniques in Re-
versible Logic. In Proceedings of the IEEE Midwest Symposium on Circuits
and Systems (MWCAS), pages II493–II496, 2002.

[12] D. M. Miller, G. W. Dueck, and D. Maslov. A Synthesis Method for MVL
Reversible Logic. In Proceedings of the 34th International Symposium on
Multiple-Valued Logic (ISMVL), 2004.

[13] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based al-
gorithm for reversible logic synthesis. In Proceedings of the 40th Design
Automation Conference, 2003.

6

[14] M. Perkowski, L. Joziwak, A. Mixhchenko, A. Al-rabadi, A. Coppola,
A. Buller, X. Song, M. Khan, S. Yanushkevich, V. P. Shmerko, and
M. Chrzanowska-Jeske. A general decomposition for reversible logic. In
Proceedings of the International Workshop on Methods and Representa-
tions (RM), 2001.

[15] P. Picton. Multi-Valued Sequential Logic Design using Fredkin Gates.
Multiple-Valued Logic, pages 241–251, 1996.

[16] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic
circuit synthesis. In IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 353–360, 2002.

[17] H. Thapliyal and M. B. Srinivas. A Beginning in the Reversible Logic Syn-
thesis of Sequential Circuits. In Proceedings of Military and Aerospace Pro-
grammable Logic Devices (MAPLD) International Conference, 2005. online
Sept. 2005, http://klabs.org/mapld05/abstracts/1012 thapliyal 2 a.html.

[18] A. De Vos and Y. Van Rentergem. Reversible computing: from mathemat-
ical group theory to electronical circuit experiment. In Proceedings of the
2nd conference on Computing frontiers, 2005.

7

