Homework 8

(1) Show that there is no positive integer \(n \) such that \(\phi(n) = 14 \).

(2) Find all positive integers \(n \) such that \(\phi(n)|n \).

(3) Show that if \(m \) and \(n \) are positive integers with \(m|n \), then \(\phi(m)|\phi(n) \).

(4) An integer \(n \) is perfect if \(\sigma(n) = n \). For example

\[
\sigma(6) = 1 + 2 + 3 + 6 = 2 \cdot 6.
\]

Let \(p \) be a prime number such that \(2^p - 1 \) is also prime. Prove that

\[
\sigma(2^p(2^p - 1)) = 2^{p+1}(2^p - 1).
\]

(5) The multiplicative function \(g \) is said to be the inverse of the multiplicative function \(f \) if \(f \cdot g = g \cdot f = i \) (recall that \(i(1) = 1 \) and \(i(n) = 0 \) for \(n > 1 \)). Show that if \(f \) is a non-zero multiplicative function, then \(f \) has an inverse.

Solutions:

(1) Let \(n = \prod_{i=1}^{r} p_i^{a_i} \). Assume that \(\phi(n) = 14 \). Note that \(\phi(n) = \prod_{i=1}^{r} p_i^{a_i-1}(p_i-1) \). Since we have that 7|\(\phi(n) \) we get that for some prime \(p_i|n \) we have \(7|p_i \) or \(7|\(p_i - 1 \). If \(7|p_i \), then \(p_i = 7 \), so \(6 = p_i - 1 |\phi(n) \). However, 3 \(| n \), so that’s not possible.

Therefore, we get \(7|p_i - 1 \), that is \(p_i = 7k + 1 \). Then \(7k|\phi(n) \) = 14, which implies \(k \leq 2 \). However, 7 \(\cdot 1 + 1 = 8 \) and 7 \(\cdot 2 + 1 = 15 \), and neither of them is a prime. Therefore, for no positive integer \(n \) can we have \(\phi(n) = 14 \).

(2) Assume that for some positive integer \(n \) we have \(\phi(n)|n \). First we prove that there is at most one odd prime dividing \(n \). Let \(n = 2^a p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \), where \(p_1, p_2, \ldots, p_k \) are distinct odd prime numbers. Then we get \(\phi(n) = 2^{a-1} \prod_{i=1}^{k} p_i^{a_i-1}(p_i - 1) \). Note that \(p_i - 1 \) is even, so \(p_i - 1 = 2m_i \) for some integer \(m_i \). Therefore

\[
\phi(n) = 2^{a-1+k} \prod_{i=1}^{k} p_i^{a_i-1} m_i,
\]

and in particular, \(2^{a-1+k}|\phi(n) \). However, \(2^{a+1} \not| n \). Therefore, if \(k > 1 \) then we can not have \(n|\phi(n) \). That is, there is at most one odd prime divisor of \(n \).

So, there are four cases to consider: \(n = 1 \), \(n = 2^a \), \(n = p^b \), and \(n = 2^a p^b \), where \(p \) is an odd prime number, and \(a, b \) are positive integers. When \(n = 1 \), we get \(\phi(n) = 1 \), so \(\phi(n)|n \). When \(n = 2^a \) we get \(\phi(n) = 2^{a-1} \), so \(\phi(n)|n \). When \(n = p^b \) we get \(\phi(n) \) is even, so we can’t have \(\phi(n)|n \). So the only case that is left is when \(n = 2^a p^b \). In this case, if \(\phi(n)|n \) we get

\[
(p - 1)2^{a-1}p^{b-1}|2^a p^b,
\]

which mean \(p - 1 \) is coprime to \(p \), this can only happen if \(p - 1 = 1 \) or \(2 \). However, since we are assuming that \(p \) is odd, we get that \(p - 1 = 2 \), which means \(p = 3 \). Therefore, this can only happen when \(n = 2^a 3^b \) with \(a, b > 0 \).

So, \(\phi(n)|n \) when \(n = 1, 2^a \) or \(2^a 3^b \).

(3) Let \(m, n \) be positive integers such that \(m|n \). Write \(n \) as product of two integers \(n_1 \) and \(n_2 \) so that \(n_1 \) is divisible only by primes that divide \(m \), and \(n_2 \) is divisible by all the primes that don’t divide \(m \). So \(\gcd(n_1, n_2) = \gcd(m, n_2) = 1 \) and \(n = n_1 n_2 \), and \(m|n_1 \). (Alternatively, we can write
\(n_1 = \gcd(m^*, n) \) for a large value of \(* \). Then we get \(\phi(n) = \phi(n_1)\phi(n_2) \) since \(\phi \) is multiplicative. If we show that \(\phi(m)|\phi(n_1) \) then, since \(\phi(n_2) \) is an integer, we get that \(\phi(m)|\phi(n) \).

Let

\[
\begin{align*}
n_1 &= p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k}, \\
m &= p_1^{b_1}p_2^{b_2} \cdots p_k^{b_k},
\end{align*}
\]

where \(0 < b_i \leq a_i \) (since \(m|n_1 \)) for \(1 \leq i \leq k \). Therefore

\[
\frac{\phi(n_1)}{\phi(m)} = \frac{\prod_{i=1}^{k} p_i^{a_i-1}(p_i - 1)}{\prod_{i=1}^{k} p_i^{b_i-1}(p_i - 1)} = \prod_{i=1}^{k} p_i^{a_i-b_i},
\]

and since \(a_i \geq b_i \) we get \(a_i - b_i \geq 0 \), which means

\[
\prod_{i=1}^{k} p_i^{a_i-b_i}
\]

is an integer. Therefore \(\phi(m)|\phi(n_1) \), which is the desired result.

4) Assume that \(2^p - 1 \) is prime. Note that \(\sigma(2^{p-1}) = 1 + 2 + 2^2 + \cdots + 2^{p-1} = 2^p - 1 \) and if \(2^p - 1 \) is prime then \(\sigma(2^p - 1) = 2^p \). Therefore

\[
\sigma(2^{p-1}(2^p - 1)) = \sigma(2^{p-1})\sigma(2^p - 1) = (2^p - 1)2^p,
\]

which means \(2^{p-1}(2^p - 1) \) is a perfect number.

5) Let \(f \) be a non-zero multiplicative function. We will construct the inverse of \(f \) recursively. That is we will construct \(g \) such that \(f* g(n) = e(n) \). First note that \(f(1) = 1 \) since \(f \) is assumed to be multiplicative. Define \(g(1) = 1 \) and

\[
g(n) = - \sum_{d|n, d < n} f(n/d)g(d),
\]

for \(n > 1 \). Then \(f* g(n) = e(n) \). To see this note that \(f* g(1) = f(1)g(1) = 1 = e(1) \), and for \(n > 1 \) we get

\[
f* g(n) = \sum_{d|n} f(n/d)g(d)
\]

\[
= f(1)g(n) + \sum_{d|n, d < n} f(n/d)g(d)
\]

\[
= - \sum_{d|n, d < n} f(n/d)g(d) + \sum_{d|n, d < n} f(n/d)g(d)
\]

\[
= 0.
\]