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Abstract

We study the non-vanishing on the line Re(s) = 1 of the convolution series associated
to two Dirichlet series in a certain class of Dirichlet series. The non-vanishing of various

L-functions on the line Re(s) = 1 will be simple corollaries of our general theorems.

Let f(2) = Yo% ap(n)e’™* and g(2) = Y oo a4(n)e*™ ™ be cusp forms of weight k and
level N with trivial character. Let Lg(s) = Y ° ar(n)n™® and Ly(s) = > o7 ag(n)n=° be
the L—fu}fl_cltions associated to f and g, respectively, where af(n) = df(n)/n% and ag(n) =
ag(n)/n = . Let

LU 9,9 = Gy(2s) Y %)
n=1

be the Rankin-Selberg convolution of L¢(s) and Ly(s). In [11] Rankin established the analytic
continuation of L(f®g, s) (see Theorem 1.5). Rankin’s Theorem has numerous number theoretic
applications. In [10], Rankin used this theorem to prove the non-vanishing of the modular L-
function associated to the discriminant function

o0

A(z) _ 627riz H (1 - e27rmz)

n=1

24

on the line Re(s) = 1. In fact, Rankin’s argument establishes the non-vanishing of L-functions
associated to eigenforms for the points on the line Re(s) = 1, except the point s = 1. In [9],

Ogg proved that the same result is true for s = 1. Moreover, he showed the following.

Theorem 0.1 (Ogg) If f and g are eigenforms with respect to the family of the Hecke operators
for To(N) and (f,g) =0, then L(f ® g,1) # 0. Here (f,g) denote the Petersson inner product
of f and g.
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In this paper we prove similar non-vanishing results (Theorem 2.3, Theorem 3.5 and Theorem
4.2) for the convolution of two Dirichlet series belonging to a certain family of Dirichlet series S*
(see Definitions 1.1 and 1.2). Our theorems are quite general and clearly demonstrate the close
connection between the analytic continuation of a Dirichlet series and its various convolutions
to the left of its half plane of convergence and its non-vanishing on the line Re(s) = 1. More

precisely, for two Dirichlet series F' and G € §* with Euler products

00 L oo N
F(S)—Hexp(Z%S?) and G(S)_HGXP<Zbi,(;£)>

k=1 k=1

valid on Re(s) > 1, we define the Euler product convolution of F' and G as

- -
kbr (p")be (p*)
(F®G)(s) = Hexp <Z —— |
— p
p k=1
We say F € §* is ®-simple in Re(s) > o9, if F'® F has an analytic continuation to Re(s) > oy,

except for a possible simple pole at s = 1. One of our main results is the following.

Theorem 2.3 Let F, G € §* be ®@-simple in Re(s) > 1 and t # 0. Then

(i) (F® F)(1+it) #0.

(i) If F ® G has an analytic continuation to the line Re(s) =1 and (F ® G)(s) =0 if and
only if (F ® G)(5) =0 for any s on the line Re(s) =1, then (F ® G)(1+it) # 0.

Note that this result does not say anything about the value of (F ® G)(s) at s = 1. to deal
with this case, in Section 3 we prove a non-vanishing theorem, valid on the line Re(s) = 1, for
Euler product convolution of two Dirichlet series in S* with completely multiplicative coefficients
(Theorem 3.5). Finally in Section 4 for Dirichlet series with general coefficients we prove the

following.

Theorem 4.2 Let o9 < 1, and assume the following:

(i) F and G (as elements of S*) are ®-simple in Re(s) > oo;

(11) F @ G has an analytic continuation to the half-plane Re(s) > op;

(iii) At least one of FQ F, G® G, or F ® G has zeros in the strip oy < Re(s) < 1.
Then (F ® G)(1 4+ it) # 0 for all real t.

Our general theorems have several applications. The non-vanishing of various classical L-
functions will be simple corollaries of our general theorems (see Corollaries 2.4, 2.6 and 4.4).
Moreover, as a consequence of our theorems, we will be able to extend Ogg’s theorem to the line
Re(s) = 1 (Corollary 2.6, (iv)). Another application will result in an extension of Ogg’s non-
vanishing result to the line Re(s) = 1 and for eigenforms with characters (Corollary 4.4, (iv)).
Corollary 4.4, (i1) gives a generalization of the non-vanishing result of Rankin to eigenforms with

characters. Finally non-vanishing of twisted symmetric square L-functions on the line Re(s) = 1



(Corollary 4.4, (v)) is a simple consequence of our theorems. Our general theorems could also be
applied to the L-functions associated to number fields, however, in applications of this paper we
restrict ourselves to Dirichlet and modular L-functions. For results of these types in the context

of automorphic forms and representations see [4], [12] and [13].
Our approach in this paper is motivated by [8] and section 8.4 of [6].

Notation In this paper we use the following notations:
¢(s) =302, 1/n®: the Riemann zeta-function,
Co(s) = II,)4(1 — 1/p)((s): the Riemann zeta-function with the Euler p-factors corre-
sponding to p | N removed,
Ly(s) =372, x(n)/n®: the Dirichlet L-function associated to a Dirichlet character x,
Sk(N): the space of cusp forms of weight k& and level N with the trivial character,
Sk(N,v): the space of cusp forms of weight k& and level N with character ¢ where
U(-1) = (1), B
(f,9) = fDO(N) f(2)g(2)y*2dxdy: the Petersson inner product of f, g € Sp(N,). Here,
Dy(N) is a fundamental domain for the congruence subgroup I'o(N),
Ls(s) =72 ar(n)/n’: the L-function associated to a cusp form f € Si(N, ),
Liy(s) = >0 ap(n)x(n)/n®: the twisted L-function associated to a cusp form f €
Si(NV,v) and a Dirichlet character ¥,
L(f ®g,8) = Ly, 5,(25) 2071 af(n)ag(n)/n®: the Rankin-Selberg convolution of Lj(s)
and Ly(s), where f € Sip(N,v1) and g € S(N,12),
L(sym?f,s) = L(f ® f,s)/Cn(s): the symmetric square L-function associated to a nor-
malized eigenform f in Si(N),
Ly(f ®9,8) = Ly, g2 (28) D0y ap(n)ag(n)x(n)/n®: the twisted Rankin-Selberg convo-
lution of L¢(s) and Ly(s), where f € Sp(N,v1), g € Sp(N,12) and x is a Dirichlet character,
Ly(sym?f,s) = Ly(f ® f,8)/Lyy(s): the twisted symmetric square L-function associated
to a normalized eigenform f with character v and a Dirichlet character .
Note that in the above definitions, we assume that Re(s) > 1 and for a normalized eigenform
f we have af(1) = 1.

1 A Class of Dirichlet Series

We consider the following class of Dirichlet Series.

Definition 1.1 The class S*! is the family of Dirichlet series F(s) =Y >  ap(n)n™* (Re(s) >
1) satisfying the following properties:

We use this notation to emphasis the relation of this class to the Selberg class S. Note that S C S*. For the
definition of the Selberg class S see [6], Chapter 8.



(a) (Euler Product): For Re(s) > 1, we have

e (32527

k=1

(b) (Ramanujan’s Hypothesis): For any fized € > 0,

where the implied constant may depend upon €.
(¢) (Analytic Continuation): F(s) has an analytic continuation to the line Re(s) = 1, except

for a possible pole at point s = 1.

For F € §*, we define

We continue by defining a convolution operation on S*.

Definition 1.2 For F, G € §*, the Euler product convolution of F and G is defined as

(F®G)( Hex (i%)

k=1 p
The following lemma shows that this operation is well-defined on the half plane Re(s) > 1.

Lemma 1.3 For F, G in §*, (F ® G)(s) is convergent for Re(s) > 1.

Proof Let e > 0. One can show that |ap(n)| < ¢(e)n® implies

cle k _ ke
(O = 1y "

(see [6] Exercise 8.2.9). Now suppose that ¢ = Re(s) > 1+ 3e. By applying (1) and the

expansion

e (p*)] <

22 23

oo (1 — 2) = 2L E L. 9
og (1 —2) z—|—2+3+ , (2)

valid for |z| < 1, we have

o0 o0 ke -1
exp <Z %) <K exp <Z )2 i /k> < <1 — p"42€> .

k=1 k=1

Since 0 — 2¢ > 1+ € > 1, the product Hp (1 — ﬁ) is convergent. ]



The next lemma will enable us to express several classical L-functions of number theory as
Euler product convolution of two simpler L-functions. This lemma plays an important role in

the applications of our general theorems.
Lemma 1.4 (i) {(s) is in S*, and for any F in §*, we have
(F®¢)(s) = F(s).
(ii) For F in 8*, we have
(C®F)(s) = F(s).
(iit) If x is a Dirichlet character (mod q), then Ly (s) is in S*, and
(Ly ® Ly)(s) = Cq(s).
(i) Let f be a normalized eigenform in Sy(N,v). Then Ly(s) is in S*, and
(Ly ® Ly)(s) = Lyx(s)-

(v) For any two normalized eigenforms f € Si(N,vy1) and g € Sp(N,v2) and Dirichlet
characters x1 and x2, Ly, (s) and Ly, (s) are in S*, and

(Lf,X1 ® L97X2>(8) = Lx1)22(f ®9,s).
Proof We only prove the identity in part (v). Using (2) we have

Ly (s) = [T = as@)xa(m)p™* +1(p)xa(p)’p~>) 7"

p

l
= 10 - oy @)~ (1 - By o HeXp<Z )+ﬁ£l(s))1<p)/l>

p =1
where ay(p)+ 87 (p) = ar(p), ay(p)Bs(p) = 11(p). We have also a similar product representation
for Ly, (s). So

— 5 S
(10 @ L0) = [T (Z as(p)! + 81 (0)) (@) + Bale) s () x27) /z)

s
=1 p

= 1@ = arp)agp)x1(P)x2(p)p™*) " (1 — ar(p)Be(p)x1 (P)x2(P)p )"

x (1= Br(p)ag(p)x1(p)x2(p)p~*) " (1 = Br(p)By(p)x1(P)x2(P)p )"



Applying the identity as(p') = ay(p)as(p'=t) — 1(p)as(p'=2) (and a similar one for the coeffi-
cients of g) repeatedly yields

ap(p)ag () —ay(p)as(p)ag(p)ag (B )+ (@a(p)as (p)2+v1 (p)ag(p) 201 (p) 2 (p))as (b 2)ag (P 2)
—1 (p) b (p)as (p)ay (02 ag ()ag (0F2) + b1 (0)*0a(p) as(p ) ag(p—*) = 0.

Using this we arrive at

(1~ $1(p)da(P)x1 (p)x2(p) P %) ! i ag (B)ag ()1 () x2(2')

ls
=0 p

=1 = er@)ag®)x1(P)x2()p*) " (1 = ar(p)Be()x1(P)x2(p)p )"

x (1= Br(p)ag(p)x1(p)x2(p)p~*) " (1 — Br(p)By(p)x1(P)x2(p)p )"

Therefore
— ay(n)ag(n)x1(n)xa(n)
Lyixo(f®g,5) = L¢11/32X12>Z%(28) Z ! : ns
n=1

. . o0 a la [
N T RN R ) Dl g(”l;,’il(p P2W) (1 L))
=0

This completes the proof. O
In our applications, we also need the following theorem of Rankin [11].

Theorem 1.5 (Rankin) Let f € Si(N,v¢n) and g € Sp(N,v2). Let

o \ "%
O(s) = <\/—N> F(s)I'(s+k—1)L(f®g,s).

Then both L(f ® g,s) and ®(s) are entire if 1 # o or (f,g) = 0. Otherwise, for N =1 they
are analytic everywhere except that L(f ® g,s) has a simple pole at s = 1 and ®(s) has simple
poles at points s =0 and 1, and for N > 1 both L(f ® g, s) and ®(s) are analytic except a simple
pole at s = 1.

2 Mertens’s Method

In 1898 Mertens gave a proof for the non-vanishing of ((s) on the line Re(s) = 1. Mertens’s proof
depends upon the choice of a suitable trigonometric inequality. This line of proof is adaptable
for establishing the non-vanishing of various L-functions. For example in [10], Rankin used this
method to prove the non-vanishing of L (s) on the line Re(s) =1, s # 1, where f is an eigenform
for To(N). Another example is the proof of the following lemma, due to K. Murty [7], which,

similar to Mertens’s proof, depends on a certain trigonometric inequality.



Lemma 2.1 Let f(s) be a complex function satisfying the following:
(i) f(s) is analytic in Re(s) > 1 and non-zero there;
(ii) log f(s) can be written as a Dirichlet series

oobn

n=1 n®
with by, >0 for Re(s) > 1
(i7i) On the line Re(s) =1, f(s) is analytic except for a pole of order e >0 at s =1.

Then, if f(s) has a zero on the line Re(s) = 1, the order of that zero is bounded by g.
Proof See [7], Lemma 3.2. O

Here by employing the above lemma we prove a conditional theorem regarding the non-
vanishing of (F' ® G)(s) on the punctured line Re(s) = 1 (s # 1). The following definition

describes one of the main conditions of our theorem.

Definition 2.2 For F € §* and og < 1, we say F is ®-simple in Re(s) > oq (resp. Re(s) > o0g),
if F ® F has an analytic continuation to Re(s) > oy (resp. Re(s) > o0p), except for a possible

simple pole at s = 1.
The following theorem is the main result of this section.

Theorem 2.3 Let F, G € §* be ®-simple in Re(s) > 1 and t # 0. Then

(i) (F® F)(1+it) #0.

(i) If F ® G has an analytic continuation to the line Re(s) =1 and (F ® G)(s) =0 if and
only if (F ® G)(5) =0 for any s on the line Re(s) =1, then (F @ G)(1 +it) # 0.

Proof (i) Let f(s) = (F ® F)(s). We have

g 1(s) = Y 3 DR _ 57 e

p k=1 n=1

with ¢(n) > 0. So, f(s) satisfies the conditions of Lemma 2.1 with e = 1. Therefore, the order
of the vanishing of f(s) at point 1 + 4t is < 1. This means that (F ® F)(1 + it) # 0.
(ii) Let
f(s) = (F@F)(s) (F®G)(s) (G F)(s) (G&G)(s).
Since for ¢ # 0, all the factors of f(s) have finite values at point 1 + it, in order to prove that
(F® G)(1+it) # 0, it suffices to show that f(1+ it) # 0. Note that

log f(s ZZ k|br(p +bG( MP :Zcf;l)

p k=1 n=1




with ¢(n) > 0. So, f(s) satisfies the conditions of Lemma 2.1 with e < 2, and therefore, the
order of the vanishing of f(s) at point 1+ it is < 1. Now suppose that f(1 + it) = 0. Thus,

(FoF)1+it) (FoG)(1+it) (FoG)(1—i) (GoG)(1+it) =0.

Since by part (i), (F® F)(141t) # 0 and (G®G)(1+it) # 0, it follows that (F ® G)(1+it) = 0.
This is a contradiction, otherwise, the order of the vanishing of f(s) at point 1+ it should be 2.
Il

Note In Theorem 2.3 in fact we can have (F®G)(1) = 0. To see this, Let F(s) = > > (=D

n=1 ns

and G(s) = ((s), where Q(n) is the total number of prime factors of n. Then we have (F ®
&)(s) = <29 and s (F & G)(1) = 0.
¢(s)
Corollary 2.4 Let f € Si(N,v¢) be a normalized eigenform for To(N) and let t # 0. Then
(1) C(1 +it) # 0.
(i) L(f ® f,1+4it) # 0.

(iii) For trivial ¢ we have L(sym?f, 1+ it) # 0. Here t is any real number including zero.

Proof (i) This is a consequence of part (i) of Theorem 2.3 with F(s) = ((s).

(i) From part (v) of Lemma 1.4 we have (Ly ® Ly)(s) = L(f ® f,s). By Theorem 1.5 we
know that L(f ® f,s) is entire except a simple pole at s = 1. Thus Ly(s) is ®-simple in the
whole plane. So L¢(s) satisfies all the conditions of part (i) of Theorem 2.3 and we have

L(f® f,1+it) = (L; ® Ly)(1 +it) # 0.

(i4i) Note that L(sym?f,s) = L(f ® f,s)/{n(s). So the result follows from part (i) and (%)
for t #0. For t = 0, L(sym?f,1) in a non-zero multiple of (f, f) (see [11], Theorem 3 (iii)) and

therefore it is non-vanishing. O

Corollary 2.5 If F = F € S* is analytic and ®-simple in Re(s) > 1, then F(1 +it) # 0 for
t #0.

Proof This is a simple consequence of part (4i) of the previous theorem with G(s) = ((s). O

Corollary 2.6 Let f € Si(N) be an eigenform for To(N), let x be a real non-trivial Dirichlet
character (mod q), and let t # 0. Then

(1) Ly (1 4 it) # 0.

(ii) Ly(1 +it) # 0.

(iii) Ly (1+it) # 0.

(iv) Suppose g € Sk(N) is also an eigenform for Uo(N). If (f,g) = 0, then L(f®g, 1+it) # 0.



Proof Note that without loss of generality, we can assume that f is normalized.
(i) By part (i) of Lemma 1.4, L, (s) is ®-simple in the whole plane. Since L, (s) is analytic
on the line Re(s) =1, by Corollary 2.5 we have the desired results.

(it) Part (v) of Lemma 1.4 and Theorem 1.5 imply that Ls(s) is ®-simple. Since Ly(s) is
analytic on the line Re(s) = 1, by Corollary 2.5 L¢(1 +it) # 0.

(iii) As we showed in part (i) and (ii) L(s) and L(s) are ®-simple. Now since f is an
eigenform and x is real, the coefficients of Ly, (s) are real. Also Ly ,(s) is the L-function
associated to a cusp form of weight k and level ¢>N (see [5], p. 127, Proposition 17 (b)). So,
Ly (s) is analytic on the line Re(s) = 1. Therefore, by part (iv) of Lemma 1.4 and part (ii) of
Theorem 2.3,

Lf’X(l +it) = (Ly ® Ly)(1 +it) # 0.

(iv) Note that the coefficients of eigenforms are real and L¢(s) and Ly(s) are ®-simple in the
whole plane. If (f, g) = 0, by Theorem 1.5 L(f ® g, s) is actually an entire function. Therefore,
by part (v) of Lemma 1.4 and part (7i) of Theorem 2.3, we have

L(f®g,1+it) = (L;y ® Ly)(1 +it) # 0.

This completes the proof. ]

3 Ingham’s Method

One of the main facts regarding Dirichlet series with positive coefficients is the following result

of Landau.

Lemma 3.1 (Landau) A Dirichlet series with non-negative coefficients has a singularity at its

abscissa of convergence.
Proof See [6], Exercise 2.5.14. O

In this section, we will show that for two Dirichlet series in $* with completely multiplicative
coefficients?, one can apply this lemma of Landau to prove a non-vanishing result, valid on the
line Re(s) = 1, for the convolution series. Our result is a generalization of Ingham’s proof of
the non-vanishing of the Riemann zeta-function on the line Re(s) =1 [3]. To do this, we start
with recalling some results regarding Dirichlet series with completely multiplicative coefficients

and completely multiplicative arithmetic functions.

2This means ar(mn) = ar(m)ar(n) for every m and n.



Lemma 3.2 For F,G € §* with completely multiplicative coefficients,

(F®G)(s) = i ar(r)ag(n)

Proof We have

< ap(p)* (ac(p)) /k -1 & ap(n)ag(n
TS N ARG I, T el

k=1

Definition 3.3 If f(n) is an arithmetic function, the formal L-series attached to f(n) is defined
by

If g(n) is also an arithmetic function, the Dirichlet convolution of f(n) and g(n) is defined

(fxg)(n) =) f(d)g

dn

by

The following identity of formal L-series, due to J. Borwein and Choi [1], will be fundamental

in the proof of the main result of this section.

Lemma 3.4 Let f1, fo, g1, g2 be completely multiplicative arithmetic functions. Then we have

i (f1 % 91)(n)(f2 * g2)(n) _ L(f1f2,8)L(g192, 8)L(f192, s) L(f291, 5)
n=1 n L(f1f29192,25) '

Proof See [1], Theorem 2.1. O
We are ready to state and prove the main result of this section.

Theorem 3.5 Let F', G € §* be two Dirichlet series with completely multiplicative coefficients.
Also assume the following:

(i) F and G are @-simple in Re(s) > %;

(ii) F ® G has an analytic continuation to Re(s) > &

(i) (F @ G) @ (F ® GQ) is analytic for Re(s) > 1 and has a pole at s = 1.

(iv) (F @ F)(s), (G®G)(s) and (F @ G)(s) have finite limits as s — %+ 3,
Then, (F ® G)(1+1it) # 0 for all t.

3This means s = o + it — % + it for any t as 0 — %+.

10




Proof Let

_ i apn(sn)’ G(s) = i ac;(sn)

n=1 n=1

and suppose that (F'® G)(1 +itg) = 0 for a real to. Let

fi(n) = ap(n)n™", fa(n) = ap(n)n'™, gi(n) = ag(n), g2(n) = ag(n),

and for Re(s) > 1, consider the following Dirichlet series

5) = i Wz—i)(w _ i (f1 *91)(n71if2 *g2)(n)

Since f1 and f> are completely multiplicative, by Lemma 3.2 we have

L(f1f2:s) Z‘GF = (F®F)(s).

Similarly, we can derive the following
L(g192,5) = (G® G)(s), L(f1g2,5) = (F ® G)(s +ito), L(fagr,s) = (G & F)(s —ito),

and
L(f1f29192,28) = [(F ® G) @ (F ® Q)] (2s).
So, by Lemma 3.4 and for Re(s) > 1, we have

£(s) = (FeF)(s) (FeG)(s+ity) (G F)(s—ity) (G G)(s)
(F®G) e (FoaG)(2s) '

Now by assumption of (F® G)(1+ity) = 0 we have in fact the analyticity of f(s) for Re(s) > 1,
and since the coefficients in the series are non-negative, by Lemma 3.1 the Dirichlet series

representing f(s) is convergent for Re(s) > % So, for n > 0, we have

(5o -

However, since (F ® G) ® (F' ® G) has a pole at s =1,

(F®G)e (Foq) (2(%—1—7])) =[(FoG)(F®G)(1+2n) — o0

] —0,
Jm £ (5+0)

which is a contradiction. OJ

as 7 — 07. This shows that

11



By choosing G(s) = ((s) in the previous theorem, we have

Corollary 3.6 Let F' € §* be analytic and ®@-simple in Re(s) > % If the coefficients of F' are
completely multiplicative and F(s) together with (F ® F')(s) have finite limits as s — %Jr, then

F(1+it) #0, for allt € R.
The following non-vanishing results are simple consequences of the previous corollary.

Corollary 3.7 Let x be a non-trivial Dirichlet character and let f(n) be a completely additive*
arithmetic function and let t € R. Then

(i) Ly(1 +it) #0.
(=1)/™x(n)

(ii) If 3, <.(= 1) x(n) = O(z?) for § < L, then L(s) = E —>—=~= s analytic in
= n
n=1

Re(s) > 6 and L(1 +it) # 0.

4 Ogg’s Method

In section 2, we proved a general non-vanishing result on the line Re(s) = 1, however our result
were applicable mostly for Dirichlet series with real coefficients and also it did not cover the
point s = 1. In the previous section we overcome these difficulties for the case of Dirichlet
series with completely multiplicative coefficients. In this section, we consider the extension of
the results of Section 3 to Dirichlet series with general coefficients. Our approach in this section
is motivated by a paper of Ogg [9]. The following lemma describes the basic ingredient of this
approach.

Lemma 4.1 Let f(s) be a complex function that satisfies the following:

(1) f(s) is analytic on the half-plane Re(s) > op;

(ii) log f(s) has a representation in terms of a Dirichlet series with non-negative coefficients
on the half-plane Re(s) > o1 (o1 > 00).
Then f(s) # 0 for Re(s) > og.

Proof Let oy be the largest real zero of f (09 < o2 < o1). Since log f(s) => > eln)

n=1 ns

for Re(s) > o1 (¢(n) > 0), and since log f(s) is analytic in a neighborhood of the segment
oy < 0 < o1, then by Lemma 3.1, we have log f(s) = 3%, <) for Re(s) > 0. Thus,

n=1 ns

Cc

™ S

log | f(c)| = Re(log f(a)) = log f(o) = >
n=1

4This means f(mn) = f(m)f(n) holds for all m and n.

12



for 0 > o9. Therefore, |f(o)| > 1 for 0 > o9. This contradicts the assumption f(o3) = 0, and
therefore f has no real zero o > 0. So log f(s) is analytic on the interval (o¢, 1], and Lemma
3.1 in fact shows that log f(s) exists and is analytic for Re(s) > o¢. This means that f(s) is
non-zero for Re(s) > oy. O

Here, we prove the main result of this section.

Theorem 4.2 Let 09 < 1, and assume the following:

(i) F and G (as elements of S*) are ®-simple in Re(s) > op;

(i) F @ G has an analytic continuation to the half-plane Re(s) > o9;

(i1i) At least one of F @ F', G ® G, or F ® G has zeros in the strip oo < Re(s) < 1.
Then (F @ G)(1 +it) # 0 for all real t.

Proof Suppose that (F'® G)(1 +itg) =0, and let
f(8)=(F®F)(s) (F®G)(s+ity) (G F)(s—ity) (G G)(s).

First of all note that G ® F' is analytic for Re(s) > o0g. Since (F ® G)(1 + itg) = 0, then
(G® F)(1 —1ity) =0, and since s = 1 is a pole of order < 1 for both FF ® F and G ® G, we
conclude that f(s) is analytic at point s = 1, and therefore, analytic for Re(s) > oo. Now note
that for Re(s) > 1,

ko2 2 o(n,
log (s sz|bF -I-bG( M)p] :ZQ

p k=1 n=1 ns
where ¢(n) > 0. So, f(s) satisfies the conditions of the Corollary 4.1 with o1 = 1, and therefore,
f(s) # 0 for Re(s) > og. This contradicts our assumption in (7). O

The following corollary gives an extension of Corollary 3.6 to the Dirichlet series with general

coefficients.
Corollary 4.3 Let F € S8* be analytic and ®-simple in Re(s) > L, then F(1 +it) # 0.

Proof Let G(s)=((s). Note that ' ® G = F and note that ((s) has zeros in the half-plane
Re(s) > 1/2 (see [2], p. 97). Thus, F(1+it) = (F ® G)(1 +it) # 0. O

Corollary 4.4 Let f € Si(N,v1) and g € Sk(N,2) be eigenforms for T'o(N), let x be a non-
trivial Dirichlet character (mod q) and let t be any real number. Then

(1) Ly (1 +it) # 0.

(ii) Lg(14it) # 0.
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(iii) Ly (1+it) # 0.

(iv) If Y1 # s or (£,9) =0, then L(f ® g, 1+it) # 0.

(v) Let fx(2) = 300 ap(n)x(n)e?™m=. Then if 1x is not a real character of order 2 or
fDO(qu) f(2) fx(2)y*2dady = 0, we have Ly (f ® f,1+it) # 0 and Ly (sym?f,1+it) # 0. Here
Do(Ng¢?) is a fundamental domain for To(Ng?).

Proof (i), (ii) Both are simple consequences of Corollary 4.3. Note that L,(s) and L¢(s) are
entire and ®-simple in the whole plane.

(iii) Note that Ly(s) and Ly(s) are ®-simple. Also by part (iv) of Lemma 1.4, we have
Liy(s) = (Ly ® Ly)(s). We know that Ly, (s) is a cusp form of weight k, level N¢* and
character ¥1x? (see [5], p. 127), so (L ® Ly )(s) is entire. Also note that (Lg ® Ly)(s) = (4(s)
has in fact infinitely many zeros (see [2], p. 97). So, all the conditions of Theorem 4.2 are met
and therefore, Ly, (1 +it) = (Ly ® Ly)(1 +1it) # 0.

(iv) By Theorem 1.5 we can show that conditions (i) and (i) of Theorem 4.2 are satisfied.
The result will be obtained if we only show that L(f®g, s) has a zero in the half-plane Re(s) < 1.
Again by Theorem 1.5, if ¢y # 15 or (f, g) = 0, then

or \ "%
O(s) = <\/—N> L(s)I'(s+k—1)L(f®g,s)

is analytic at s = 0. Since I'(s) has a pole at s = 0, then L(f ® g,0) = 0.

(v) First of all note that f; € Sk(Ng?,1¥x?) (see [5], p. 127) and Ly (f ® f,s) = L(f ® f, 5).
So under the given conditions, by part (iv) we have L, (f ® f, 1+ it) # 0. This together with
part (i) imply that Ly (sym?f,1+it) = Ly(f @ f, 1+ it)/Lyy (1 + it) # 0. O
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