
Determinants

§1. Prerequisites
1) Every row operation can be achieved by pre-multiplying (left-multiplying) by an invertible
matrixE called theelementary matrixfor that operation. The matrixE is obtained by applying the
row operation to the appropriate identity matrix. The matrix E is also denoted byAi j

�
c�, Mi

�
c�,

or Pi j , respectively, for the operations addc times row j to i operation, multiply rowi by c, and
permute rowsi and j, respectively.
2) The Row Reduction Theorem asserts that every matrixA can be row reduced to a unique row
echelon reduced matrixR. In matrix form: There is a unique row reduced matrixR and some
elementaryEi with Ep � � �E1A � R, or equivalently,A� F1 � � �FpRwhereFi � E�1

i are also elemen-
tary.
3) A matrixA determines a linear transformation: It takes vectorsx and gives vectorsAx.

§2. Restrictions
All matrices must be square. Determinants are not defined fornon-square matrices.

§3. Motivation
Determinants determine whether a matrix has an inverse. They give areas and play a crucial role
in the change of variables formula in multivariable calculus.
Let’s compute the area of the parallelogram determined by vectors

�
a�b� and

�
c�d�. See Figure 1.
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Figure 1.

The area is
�
a� c� �b� d� �2

�1
2ab� � 2

�1
2cd� �2bc� ab� ad� cb� cd� ab� cd�2bc� ad� bc.

Tentative definition: The determinant of a 2 by 2 matrix is

det

�
a b
c d 	 � 





a b
c d





 � ad� bc

which is the “signed” area of the parallelogram with sides determine by the rows of the matrix.
A similar argument for the signed volume of the parallelepiped (box with parallel sides) whose
sides are determined by vectors

�
a�b�c�, �d�e� f � and

�
g�h� i � shows








a b c
d e f
g h i








� aei� b f g� cdh� gec� h f a� idb�



We would like to extend these arguments to define determinants forn by n matrices. Unfortunately,
this approach has problems. It is unclear what then-dimensional analogue is and how signedn-
volume should be defined. Further the above formulas do not easily generalize.

§4. Area and Row Operations
Area satisfies a few properties which have a connection to rowoperations.
Area of the unit square is 1. Area is invariant under shearing(see top of Fig. 2.), which corresponds
to an add operation on the matrix. Area changes in proportionto a scaling (see middle of Fig. 2.),
which corresponds to a multiply operation.
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Figure 2.

Scaling by�1 negates the area (see bottom of Fig 2.) since by convention,the area is positive if
the angle from thefirst to thesecondvector iscounter-clockwise. In this case, the vectors in the
given order are said to form aright-handedsystem.
The above properties generalize easily and are closely enough connected to row operations that
they form a good starting point for defining determinants.

Definition: Thedeterminant, det
�
A� or �A�, of a squaren by n matrixA is the number satisfying

axioms:
Add Axiom — adding one row to another does not change the determinant
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Multiply Axiom — a constant can be pulled out of a single row
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Identity Axiom — identity has determinant 1
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� 1�

Remark: The determinant as defined above is actually a function from the set of all square ma-
trices to the set of numbers. There are two potential problems with every axiomatic approach like
this. First, the axioms may not be restrictive enough — therecould be several different determi-
nant functions satisfying the axioms — for instance, without the identity axiom this would be the
case. Second, the axioms may be too restrictive (“contradictory axioms”) — perhaps no function

satisfies them all — for instance, with additional axiom




1 0
0 1





 � 0 this would be the case.

Once we have deduced enough properties from the axioms, we show that there is no problem — the
determinant function is unique and it exists. If we relied ongeometry, becausen-volume satisfies
the above axioms, we would have the existence already. However, we do not rely on geometry, and
in fact, definen-volume using determinants.

Definition: Then-volumeof then-dimensional parallelepiped with sides determined by vectors
a1, � � �, an which form the rows of a matrixA is det

�
A�. The vectors are said to form aright-handed

or left-handedsystem as det
�
A� is positive or negative, respectively.n-volume is sometimes also

calledn-area. 1-volume is length, 2-volume is area and 3-volume is volume.

Proposition: General add row operations,Ai j
�
c�, do not change the determinant of a matrix.

Proof: Ai j
�
c� � M j

�
1�c�Ai j

�
1�M j

�
c� if c is non-zero.

Proposition: Each permute row operation changes the sign of the determinant.

Proof: Every permute operation can be achieved with three add operations and three multiply
by �1 operations. In matrix terms:�

0 1
1 0 	 � �

1 0
0 �1 	 �

1 1
0 1 	 �

1 0
0 �1 	 �

1 0
1 1 	 �

1 0
0 �1 	 �

1 1
0 1 	

Example: 




3 4
5 6






Add� 





3 4
0 �2�3






Add� 





3 0
0 �2�3






Multi �� 3 





1 0
0 �2�3






Multi �� 3 ��2�3 





1 0
0 1






Identity��2.

Example: Using a permute operation on previous, we see




5 6
3 4





 � 2.

3



Example: 




3 4
6 8






Add� 





3 4
0 0





 � 




3 4

0 �0 0 �0 




Multi �� 0 





3 4
0 0





 � 0.

The argument in the last example generalizes; ifA reduces to a matrixR with a row of zeros then
�A� � 0. Notice that, asquare matrix R in row echelon form either has a row of zeros or is the
identity. In the case whereA reduces toI , there can never be a row of zeros at any point in the
reduction, so�A� �� 0: only the multiply byc � 0 operation can generate a 0 determinant, but then
there is a row of zeros.
This shows:

Theorem (Determinants and Invertibility): �A� � 0 if and only if A does not reduce toI
if and only if A reduces to a form with a row of zeros if and only ifA�1 does not exist.

Application:
�
A� λI �x � 0 has a non-trivial solution inx if and only if �A� λI �� 0.

§5. Determinants via Row Operations
Proposition (Upper Triangular Determinants):









c1 �

. . .
0 cn









� c1c2 � � �cn

Proof: If any ci � 0 then the matrix does not reduce to the identity and its determinant is 0, while
if all ci are nonzero thenci can be pulled out giving

c1 � � �cn









1 �

. . .
0 1









Add� c1 � � �cn �I � � c1c2 � � �cn �

Similarly for lower triangular matrices.

Row Method: One of the computationally fast ways to compute a determinant is with row
operations. Use add operations to zero out the entries belowthe diagonal. Sometimes a few
permute operations are also needed, each contributing a�1 factor to the determinant. This leaves
an upper triangular matrix, whose determinant is the product of the diagonal entries.

Uniqueness: The row method shows that there can be at most one determinantfunction. Using
row operations, the value det

�
A� can be determined for everyA.

Note: det
�
a� � a for 1 by 1 matrices.

Caution: �a� usually means the absolute value, not the determinant so usedet
�
a� for 1 by 1

matrices.

Warning: �cA�� cn �A� for nby n matrices as there is one factor ofc for each row. Geometrically,
this is an obvious fact. If you take a cube and double the length of all the sides then the volume is
cn � 23 � 8 times as much.

§6. Determinants of Elementary Matrices and Products

�
1� �E � �

���
��

1 if E is an add matrix,

c if E � Mi
�
c�,�1 if E is a permute matrix.
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The add and multiply elementary matrices are triangular so the result is easy.
It follows that for elementaryE:�
2� �EA� � �E ��A�

because for the three cases in equation (1) we get�EA� is respectively�A�, c�A� and� �A� by using
the axioms and their immediate consequences.
This observation leads to:

Theorem: Forn by n matrices: �AB� � �A��B�
Proof: Write A in reduced formA � F1 � � �FpR.
If R� I , then

�AB� � �F1 � � �FpB� eq�2�� �F1 � � � � �Fp ��B� eq�2�� �F1 � � �Fp ��B� � �A��B��
If R �� I , thenRhas a row of zeros so�A�� 0. So it suffices to show�AB�� 0. NowAB� F1 � � �FpRB
and RB has a row of zeros sinceR does. SoAB cannot reduce toI , and must therefore have
determinant 0.

Corollary: �A�1 � � �A��1

Proof: TakeB � A�1 in the theorem obtaining 1� �A��A�1 �.
Example: Use �A� � 2, �B� � 3 and �C � � 5 to determine�ABCB�1A2 �.
Solution: �ABCB�1A2 � � �A��B��C ��B��1 �A�2. Although the original matrices cannot be rearranged,
since determinants are just numbers we can rearrange the determinants obtaining�A�3 �C �� 23 �5�
40.

Example: Under what condition isA�1BACinvertible? The determinant, which is�A��1 �B��A��C ��
�B��C � must be nonzero. ThusB andC must have nonzero determinant. The condition is that both
B andC must be invertible (and evidently alsoA otherwiseA�1BACwould be undefined).
Notice that although usuallyAB �� BA, it is nevertheless true that�AB� � �BA� since both are equal
to �A��B�.
Warning: �A� B� �� �A�� �B� for most matrices. For example, considerA � B � I for 2 by 2
matrices.

§7. Transposes and Column Operations
Theorem: �AT � � �A�
Proof: Write A in reduced formA � F1 � � �FpR. Then�AT �� �RTFT

p � � �FT
1 �� �RT ��FT

p � � � � �FT
1 ��

�FT
1 � � � � �FT

p ��RT �. We can drop all the transposes: the transpose of an add op. matrix is still an add
op.; the transpose of a multiply op., of a permute op. or ofR� I is the same matrix; the transpose
of R �� I is a matrix with a column of zeros and it must have determinantthe same as�R� � 0
since a matrix with a column of zeros can never reduce toI as the column never changes. Thus
�FT

1 � � � � �FT
p ��RT � � �F1 � � � � �Fp ��R� � �F1 � � �FpR� � �A�.

As a consequence,

Meta Rule: Any rule for determinants that holds for rows holds also for columns.

Example: 




1 20
3 40





 � 10 




1 2
3 4





.
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Example: The area of the parallelogram determined by
�
1�20� and

�
3�40� is the same as that

determined by
�
1�3� and

�
20�40� — it doesn’t matter whether the vectors are written as rows or

columns.

Example: det���ATB��1�T � � �
detA �detB��1.

§8. Additivity and the Laplace Expansion
Additivity: �a1 � � �an�1

�
b � c� � � �a1 � � �an�1b �� �a1 � � �an�1c� where the vectors are column

vectors. By permuting and transposing, a similar result holds for any row or column.

Proof (for addition on last column): Apply the same row operations simultaneously to all three
matrices reducing them to upper triangular form. Note thatE

�
b� c� � Eb� Ec so the last column

of the first matrix continues to be the sum of the last columns of the other two. Ifr1, � � �, rn�1, b�n and
r1, � � �, rn�1, c�n are the diagonal entries for the second and third matrix, then r1, � � �, rn�1, b�n � c�n
are the diagonal entries for the first matrix. Both sides of the equation equalr1 � � �rn�1

�
b�n � c�n�.

This result is fairly obvious geometrically by shearingb� c into b andc. See Figure 3.

a a

b

c

b+c b+c

i i

Figure 3.

Example: 




2 3
4 5





 � 




2 0
4 5





� 




0 3
4 5





 � 




2 0
4 5





 � 




4 5
0 3





 � 2 �5� 4 �3
The method used in the example can be extended. We expand a 3 by3 determinant using additivity
on the first column. The second equality is via column multiply ops and equality holds even if
a � 0, d � 0 org � 0. The third equality is obtained via permute ops. The last equality holds since
each matrix can be reduced to upper triangular form and the extra 1’s in the previous matrices do
not change the product of diagonal elements.
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The method above, called Laplace expansion, extends easilyto n by n matrices. By permuting and
transposing it extends to any row or column.

Laplace Expansion: GivenA square, letAi j be the matrix obtained by deleting thei-th row and
j-th column ofA. Ai j is called thei j-th minor matrixand its determinant is called thei j-th minor.

Consider the sign
��1�i� j . These form a checkerboard pattern

�
����

� � � � � �� � � � � �� � � � � �
...

...
...

. . .

�
���� . The i j-th

cofactoris ci j � ��1�i� j detAi j . Consider its product withai j :��1�i� jai j detAi j

Then detA is the sum of these terms over any one row or column. For the degenerate case of 1 by
1 matrices it is simply thea11 entry.

Remarks: Although the formula has a certain elegance and theoreticalusefulness it is an awful
formula for computations. For example, a random numerical 10 by 10 determinant takes about 330
multiplications or divisions via the row operation method,but over 3�6 million multiplications via
the Laplace expansion!
Some people use it to define the determinant, but it is also awful for this purpose because it is very
difficult to motivate, and totally detached from geometry and row reductions. It’s only saving grace
is that no divisions are required to compute it, and so it can be used in situations where division
could be a problem, for example, if you restrict the numbers to be integers — even then, however,
row operations can be used by first introducing the “field of fractions”.

Example: Use Laplace expansion on rows or columns with a lot of zeros:










0� 2 0 4
0� 3 0 0
0� 0 7 0
6� 0� 0� 0�










last row� �6








2� 0� 4�

3 0 0�
0 7 0� 







last column� �6 �4 




3 0
0 7





 � �6 �4 �3 �7�
Existence Theorem: There is a determinant function and the axioms for determinants are not
self contradictory. Namely, Laplace expansion down the first column satisfies the axioms.

Proof: The axioms hold for 1 by 1 matrices where det
�
a� is defined asa. The add axiom is

not applicable. The multiply axiom is true because det
�
ca� � ca� cdet

�
a�. The identity axiom is

trivially true.
Next we suppose the theorem is true forn � 1 by n � 1 matrices and show it holds forn by n
matrices. This proof technique is calledinduction. We only consider then � 3 case because the
general case is very similar but notationally messy. So assume that there is a determinant function
for 2 by 2 matrices. Then all the properties we have proved up to this point hold for 2 by 2
matrices. We need to show that 3 by 3 determinants defined by Laplace expansion down the first
column satisfy the axioms.
Identity Axiom: 







1 0 0
0 1 0
0 0 1
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 � 1
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Multiply Axiom: Without loss of generality consider the “multiply the first row byk” case. The
second equality follows by the multiply property for 2 by 2 determinants.
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Add axiom: Consider the case of adding the second to the first row. For the second equality
use additivity on the middle determinant and subtract the second row from the first in the last
determinant. For the last equality notice the second and fourth determinants cancel.
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§9. Cramer’s Rule
Cramer’s Rule: Write A � �a1 � � �an

�. If A is invertible, then the solution toAx � b is given by

xi � �a1 � � �b � � �an �
�a1 � � �ai � � �an � �

Example: The solution for

�
1 2
4 5 	 �

x1

x2 	 � �
3
6 	 hasx2 � 





1 3
4 6





� 




1 2
4 5





 �
�
6 �

12�� �5� 8�. However, Cramer’s rule is an inefficient method for finding solutions.

Proof of Cramer’s Rule: If Ax � b thenx1a1� � � �� xnan � b. So �a1 � � �b � � �an �� �a1 � � � �x1a1�� � � � xnan� � � �an �. Subtractx1 times the first column from thei-th column. Repeat for all columns
except for thei-th obtaining
�a1 � � � �xiai � � � �an � � xi �a1 � � �ai � � �an �.
§10. Adj formula
The matrixA hasi j -th elementai j . By definition thecofactormatrix is Cofactor

�
A� havingi j -th el-

ementci j � ��1�i� j detAi j . Theadjugateor (classical) adjointmatrix is Adj
�
A� � �

Cofactor
�
A ��T .

Its i j -th element isdi j � c ji .
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Example:

A � �
a b
c d 	 � Cofactor

�
A� � �

d �c�b a 	 � Adj
�
A� � �

d �b�c a 	 �
Theorem: A Adj

�
A� � �

detA�I
Proof: The ii -th element on the left is∑ j ai j d ji � ∑ j ai j ci j but the latter is det

�
A� by Laplace

expansion on thei-th row ofA. For off-diagonalil -elements, which we must show are zero, on the
left we get∑ j ai j cl j which amounts to a Laplace expansion on thel -th row of the matrix obtained
from A by duplicating thei-th row of A in the l -th row. Since this matrix has equal rows its
determinant is zero.

Remark: This formula can be used to computeA�1, but it is inefficient.

§11. Integral Matrices
Proposition: If A is integral, then detA is an integer.

Proof: Row operations do not help here. Instead note that Laplace expansion will involve just
integers.

Proposition: If A is integral and has an integral inverse, then detA � �1.

Proof: �A�1 � � 1� �A� so �A� is an integer whose reciprocal is an integer. The only such integers
are�1.

Proposition: If A is integral and detA � �1 thenA�1 is integral.

Proof: By the previous theoremAAdj
�
A� � ��1�I , so A�1 � �Adj

�
A�. Each entryci j ���1�i� j �Ai j � of Adj

�
A� is integral by the first proposition above.

§12. Miscellaneous
Theorem: If a linear transformation withn by n standard matrixA is applied on an object with
signedn-volumeV, then the signedn-volume of the resulting object is det

�
A� �V.

Proof: By slicing the object into a number ofn-parallelepipeds whosen-volume approximates
that of the object, it suffices to show the result for the case of a singlen-parallelepiped whose sides
are given byb1 � � � �bn. ThenV � �b1 � � �bn � � �B�. Then-parallelepiped obtained by applyingA
has sidesAb1 � � � �Abn and volume�Ab1 � � �Abn � � �AB� � �A��B� � �A�V.

The volume of then-parallelepiped inRm with sides determined by the columns ofm by n matrix
A is

�
det

�
ATA�. For example, the area of a parallelogram with sides

�
1�0�4� and

�
2�4�6� can

be found this way. Prove this by extending then-box for A to anm-box for �A�P� by adjoining
perpendicular unit vectors (which formP) and using previous results.

The sign of a permutation 1�� i1, 2 �� i2, � � �, n �� in, where �1�2� � � � �n� � �i1� i2 � � � � � in�, is
defined to be�ei1ei2 � � �ein �. This amounts to

��1�s wheres is the number of permutations needed
to rearrange the columns ase1 � � �en. The sign is 1 if and only ifei1 �ei2 � � � � �ein is righthanded.

The permanentof a matrix is defined in the same way as Laplace expansion except the signs��1�i� j are dropped. It would appear there is no good geometric interpretation for permanents.

c
�

1997 February, W. Holzmann
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