Determinants

81. Prerequisites

1) Every row operation can be achieved by pre-multiplyireft{imultiplying) by an invertible
matrix E called theelementary matrifor that operation. The matrik is obtained by applying the
row operation to the appropriate identity matrix. The makiis also denoted by;j(c), Mi(c),
or Bj, respectively, for the operations addimes row | to i operation, multiply row by c, and
permute rows and j, respectively.

2) The Row Reduction Theorem asserts that every matgan be row reduced to a unique row
echelon reduced matriR. In matrix form: There is a unique row reduced matRxand some
elementaryg with Ep---E;A=R, or equivalentlyA=F; - - - FpRwhereF; = Efl are also elemen-
tary.

3) A matrix A determines a linear transformation: It takes veckoasd gives vectorax.

82. Restrictions
All matrices must be square. Determinants are not defineddorsquare matrices.

§3. Motivation

Determinants determine whether a matrix has an inversey gine areas and play a crucial role
in the change of variables formula in multivariable calsulu

Let's compute the area of the parallelogram determined byove(a,b) and(c,d). See Figure 1.
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The area iga-+c)(b+d) — 2(3ab) — 2(3cd) — 2bc= ab+ ad+ ch+cd—ab—cd—2bc=ad - bc,
The determinant of a 2 by 2 matrix is
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which is the “signed” area of the parallelogram with sidetedaine by the rows of the matrix.
A similar argument for the signed volume of the parallelepigbox with parallel sides) whose
sides are determined by vectdesb,c), (d,e, f) and(g, h,i) shows
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We would like to extend these arguments to define deternsriant by n matrices. Unfortunately,
this approach has problems. It is unclear whatriftBmensional analogue is and how signed
volume should be defined. Further the above formulas do rsilyegeneralize.

84. Area and Row Operations

Area satisfies a few properties which have a connection tcopmvations.

Area of the unit square is 1. Area is invariant under shedsag top of Fig. 2.), which corresponds
to an add operation on the matrix. Area changes in propotrti@nscaling (see middle of Fig. 2.),
which corresponds to a multiply operation.
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Scaling by—1 negates the area (see bottom of Fig 2.) since by conventierarea is positive if
the angle from thdirst to thesecondvector iscounter-clockwiseln this case, the vectors in the
given order are said to formrgght-handedsystem.

The above properties generalize easily and are closelygénconnected to row operations that
they form a good starting point for defining determinants.

Thedeterminantdet A) or |A|, of a square by n matrix A is the number satisfying
axioms:
Add Axiom — adding one row to another does not change the determinant
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Multiply Axiom — a constant can be pulled out of a single row

ag a
ca |=c| & |, with ¢ = 0 allowed
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Identity Axiom — identity has determinant 1
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The determinant as defined above is actually a function fraset of all square ma-
trices to the set of numbers. There are two potential probheith every axiomatic approach like
this. First, the axioms may not be restrictive enough — tloexdd be several different determi-
nant functions satisfying the axioms — for instance, withtwe identity axiom this would be the
case. Second, the axioms may be too restrictive (“conti@gi@axioms”) — perhaps no function

satisfies them all — for instance, with additional axi ré 2 = 0 this would be the case.

Once we have deduced enough properties from the axioms,ometbht there is no problem — the
determinant function is unique and it exists. If we reliedg@ometry, becausevolume satisfies
the above axioms, we would have the existence already. Havwee do not rely on geometry, and
in fact, definen-volume using determinants.

Then-volumeof then-dimensional parallelepiped with sides determined byamsct
ai, - .., a, which form the rows of a matriA is de{A). The vectors are said to fornright-handed
or left-handedsystem as déd) is positive or negative, respectivelg-volume is sometimes also
calledn-area. 1-volume is length, 2-volume is area and 3-volumelisme.

General add row operation&;;j (c), do not change the determinant of a matrix.
Proof:  Aj(c) = Mj(1/c)Aij(1)Mj(c) if cis non-zero.
Each permute row operation changes the sign of the deteninina

Proof: Every permute operation can be achieved with three add tigessand three multiply
by —1 operations. In matrix terms:
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The argument in the last example generalize; iéduces to a matriRk with a row of zeros then

|A| = 0. Notice that, asquare matrix R in row echelon form either has a row of zeros or is the

identity. In the case whera reduces td, there can never be a row of zeros at any point in the
reduction, sdA| # 0: only the multiply byc = 0 operation can generate a 0 determinant, but then
there is a row of zeros.

This shows:

o

|Al=0 ifand onlyif A does notreduce tb
if and only if A reduces to a form with a row of zeros  if and only iA* does not exist.

(A—Al)x = 0 has a non-trivial solution im if and only if A—Al| = 0.

85. Determinants via Row Operations
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Proof: If anyc; = 0 then the matrix does not reduce to the identity and its detemt is 0, while
if all ¢; are nonzero theq can be pulled out giving

1 *
. Add
C1-++Cn . =C1...Coll| =c1C2---Cp.

0 1

Similarly for lower triangular matrices.

One of the computationally fast ways to compute a deterniigawith row
operations. Use add operations to zero out the entries bidlevdiagonal. Sometimes a few
permute operations are also needed, each contributiigfactor to the determinant. This leaves
an upper triangular matrix, whose determinant is the prodiihe diagonal entries.

The row method shows that there can be at most one deternfiimanion. Using
row operations, the value dét) can be determined for evedy

det(a) = afor 1 by 1 matrices.

|a| usually means the absolute value, not the determinant sadeis® for 1 by 1
matrices.

Warning:  |cA =c"|A| for nby n matrices as there is one factoradbr each row. Geometrically,
this is an obvious fact. If you take a cube and double the keafjall the sides then the volume is
c" = 23 = 8 times as much.

86. Determinants of Elementary Matrices and Products

1 if E is an add matrix,
(1) [E[=<c if E=M;(c),
—1 if E is a permute matrix.
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The add and multiply elementary matrices are triangulahsaesult is easy.
It follows that for elementar{e:

(2) [EAl = [E[|IA

because for the three cases in equation (1) weERtis respectivelyA|, c|A| and—|A| by using
the axioms and their immediate consequences.
This observation leads to:

Forn by nmatrices: |AB| = |A||B]
Proof:  Write Ain reduced formA=F;---FpR.
If R=1, then
eq?2) eq?2)
|AB| = [Fa---FpB| =" |Fa|---[Fp[[B =" |Fy---Fp|[B = [A[|B].
If R#1, thenRhas a row of zeros §@é| = 0. So it suffices to shoyAB| = 0. NowAB=F; ---F,RB
and RB has a row of zeros sinde does. SQAB cannot reduce td, and must therefore have
determinant O.
A=A
Proof: TakeB = A~ in the theorem obtaining % |A||A™1].

Use|A| = 2, |B| = 3 and|C| = 5 to determinéABCB1A?|.

Solution:|/ABCB 1A?| = |A||B||C||B| Y|AJ2. Although the original matrices cannot be rearranged,
since determinants are just numbers we can rearrange #verdieants obtainingA|°|C| = 23.5=
40.

Under what condition i&—*BACinvertible? The determinant, which|ia|~|B||A||C| =
|B||C| must be nonzero. ThiBandC must have nonzero determinant. The condition is that both
B andC must be invertible (and evidently algootherwiseA 'BACwould be undefined).

Notice that although usuallB # BA, it is nevertheless true thgaB| = |BA| since both are equal
to |A[|B].

Warning:  |A+B| # |A| + |B| for most matrices. For example, consides B = | for 2 by 2
matrices.

87. Transposes and Column Operations

AT| = |A
Proof:  Write Ain reduced formA=Fy---FyR. Then|AT| = |RTF] ---F | = [RT||F] |-+ |F | =
[F{|---|Fy [IRT|. We can drop all the transposes: the transpose of an add dpx featill an add
op.; the transpose of a multiply op., of a permute op. dRef | is the same matrix; the transpose
of R# | is a matrix with a column of zeros and it must have determitlh@tsame as$R| =0
since a matrix with a column of zeros can never reduceds the column never changes. Thus
[F |- [Fg [IRT| = |Fu|-+- [Fp|[R| = [F1--- FpR| = [A].
As a consequence,

Any rule for determinants that holds for rows holds also folumns.
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The area of the parallelogram determined(lhy20) and (3,40) is the same as that
determined by(1,3) and(20,40) — it doesn’t matter whether the vectors are written as rows or
columns.

def((ATB)~1)T] = (detA-detB) L.

88. Additivity and the Laplace Expansion
la...an—1(b+c¢)| =|ag...an-1b| +|a1...an—1c| where the vectors are column
vectors. By permuting and transposing, a similar resuldér any row or column.

Proof (for addition on last column): Apply the same row operations simultaneously to all three
matrices reducing them to upper triangular form. Note E{@t+ ¢) = Eb+ Ec so the last column

of the first matrix continues to be the sum of the last colunitiseother two. Ifr4, ..., rh_1, bj, and

r, ..., 'n—1, ¢, are the diagonal entries for the second and third matrix the .., rn_1, bl,+c;

are the diagonal entries for the first matrix. Both sides efafuation equak - - -rn_1(b},+¢},).

This result is fairly obvious geometrically by shearimg- c into b andc. See Figure 3.
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The method used in the example can be extended. We expand&debgrminant using additivity
on the first column. The second equality is via column mujtigbs and equality holds even if
a=0,d=0o0rg= 0. The third equality is obtained via permute ops. The lagabty holds since
each matrix can be reduced to upper triangular form and ttra &s in the previous matrices do
not change the product of diagonal elements.
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The method above, called Laplace expansion, extends ¢asilyy n matrices. By permuting and
transposing it extends to any row or column.

GivenA square, lef\; be the matrix obtained by deleting thh row and
j-th column ofA. A;j is called the j-th minor matrixand its determinant is called thgth minor.
+

Consider the sigri—1)"*1. These form a checkerboard pattern . Theij-th

S+
e

cofactoris ¢ij = (—1)"*) detAjj. Consider its product withy;:
(=1)aj detA,

Then deA is the sum of these terms over any one row or column. For theradegte case of 1 by
1 matrices it is simply tha;1 entry.

Although the formula has a certain elegance and theorets=tliness it is an awful
formula for computations. For example, a random numeri@diyl10 determinant takes about 330
multiplications or divisions via the row operation methbdf over 36 million multiplications via
the Laplace expansion!
Some people use it to define the determinant, but it is alsaldwaifthis purpose because it is very
difficult to motivate, and totally detached from geometrdaow reductions. It’s only saving grace
is that no divisions are required to compute it, and so it camded in situations where division
could be a problem, for example, if you restrict the numbeiset integers — even then, however,
row operations can be used by first introducing the “field afions”.

Use Laplace expansion on rows or columns with a lot of zeros:
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There is a determinant function and the axioms for deterntghare not
self contradictory. Namely, Laplace expansion down thé ¢otumn satisfies the axioms.

Proof:  The axioms hold for 1 by 1 matrices where @gtis defined as. The add axiom is
not applicable. The multiply axiom is true becausg dgt= ca= cdet(a). The identity axiom is
trivially true.

Next we suppose the theorem is true for 1 by n— 1 matrices and show it holds for by n
matrices. This proof technique is calledluction We only consider thea = 3 case because the
general case is very similar but notationally messy. Soraeghat there is a determinant function
for 2 by 2 matrices. Then all the properties we have provedouthis point hold for 2 by 2
matrices. We need to show that 3 by 3 determinants defined piat& expansion down the first
column satisfy the axioms.

Identity Axiom:




Multiply Axiom: Without loss of generality consider the “rtiply the first row byk” case. The
second equality follows by the multiply property for 2 by Zefeninants.
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Add axiom: Consider the case of adding the second to the &érgt ~or the second equality
use additivity on the middle determinant and subtract tle®se row from the first in the last
determinant. For the last equality notice the second andialeterminants cancel.
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§9. Cramer's Rule
Write A= [a;...an). If Ais invertible, then the solution tAx = b is given by

a...b...
lag...a...an|
: 12 X1\ _ (3 113 12 .
Thesolutlonfor<4 5)(X2>_(6)hast—‘4 6 / 4 5‘—(6

12)/(5—8). However, Cramer’s rule is an inefficient method for findildusions.

Proof of Cramer’'s Rule: If Ax=Dbthenxja;+---+Xpahn=Db. So|ay...b...ap|=|az... (a1 +
---+Xnan) - .. an|. Subtracix; times the first column from thieth column. Repeat for all columns
except for tha-th obtaining

lag...(%&)...an| =X%laz...q...an|.

§10. Adj formula

The matrixA hasij-th elementyj. By definition thecofactormatrix is CofactofA) havingij-th el-
ementij = (—1)'*) detAj. Theadjugateor (classical) adjointnatrix is Adj(A) = (CofactofA))T.
Its ij-th element igljj = cj;.



A= ( i 3), CofactofA) = < _(g _;>, Adj(A) = < _i _t;).

AAdj(A) = (detA)l
Proof:  Theii-th element on the left i§ ; ajdji = ¥ jaijg; but the latter is dgA) by Laplace
expansion on theth row of A. For off-diagonall -elements, which we must show are zero, on the
left we gety ; aj¢;j which amounts to a Laplace expansion onltftle row of the matrix obtained
from A by duplicating thei-th row of A in the |-th row. Since this matrix has equal rows its
determinant is zero.

This formula can be used to computel, but it is inefficient.

811. Integral Matrices

If Ais integral, then dei is an integer.
Proof: Row operations do not help here. Instead note that Laplagansion will involve just
integers.

If Ais integral and has an integral inverse, thenAdet+1.
Proof: |A~!| =1/|A| so|A| is an integer whose reciprocal is an integer. The only sutelgers
are+1.

If Aisintegral and ded = +1 thenA~1 is integral.
Proof: By the previous theoremAdj(A) = (+1)I, so A=t = £Adj(A). Each entrycj =
(—1)""J|A;j| of Adj(A) is integral by the first proposition above.

812. Miscellaneous

If a linear transformation witlm by n standard matriA is applied on an object with
signedn-volumeV, then the signed-volume of the resulting object is dét) - V.

Proof: By slicing the object into a number ofparallelepipeds whosevolume approximates
that of the object, it suffices to show the result for the cdsesinglen-parallelepiped whose sides
are given byb1,...by. ThenV = |bs...by| = |B|. Then-parallelepiped obtained by applyingy
has side#\by, ... Ab, and volumgAb; ... Ab,| = |AB| = |A||B| = |A]V.

The volume of then-parallelepiped irR™ with sides determined by the columnsmby n matrix
Ais \/detATA). For example, the area of a parallelogram with sifle®,4) and (2,4,6) can
be found this way. Prove this by extending tidox for A to anm-box for [A|P] by adjoining
perpendicular unit vectors (which forR) and using previous results.

The sign of a permutation - i1, 2 iy, ..., n— iy, Where{1,2,....,n} = {i1,i2,...,in}, is
defined to beg,e,...q,|. This amounts td—1)° wheresis the number of permutations needed
to rearrange the columns es...e,. The signis 1 ifand only i&,,8,,..., &, is righthanded.

The permanentof a matrix is defined in the same way as Laplace expansiorpéxke signs
(—1)"*) are dropped. It would appear there is no good geometricaretation for permanents.
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