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CAYLEY GRAPHS OF ORDER 16p ARE HAMILTONIAN

STEPHEN J. CURRAN, DAVE WITTE MORRIS, AND JOY MORRIS

Abstract. Suppose G is a finite group, such that |G| = 16p, where p is prime. We show
that if S is any generating set of G, then there is a hamiltonian cycle in the corresponding
Cayley graph Cay(G;S).

1. Introduction

This paper establishes one of the cases of Theorem 1.2(1) of [10]. Namely, several of the
main results of that paper combine to show:

Every connected Cayley graph on G has a hamiltonian cycle
if |G| = kp, where p is prime, 1 ≤ k < 32, and k /∈ {16, 24, 27, 30}.

(1.1)

We handle the first excluded case:

(1.2) Theorem. If |G| = 16p, where p is prime, then every connected Cayley graph on G
has a hamiltonian cycle.

(1.3) Remark. The cases k = 27 and k = 30 are covered in [5, 6], but it seems that the case
k = 24 will be more difficult.

Here is an outline of the paper:

1. Introduction
2. Preliminaries on hamiltonian cycles in Cayley graphs

2A. Factor Group Lemma
2B. Generator in a cyclic, normal subgroup
2C. Miscellaneous results

3. Groups without a normal Sylow p-subgroup
3A. Groups of order 48
3B. Groups of order 80
3C. Groups of order 112

4. Preliminaries on groups of order 16p
5. The case where G/G′ ∼= Z2 × Z2

6. The case where G/G′ ∼= Z4 × Z2

7. The case where G/G′ ∼= Z2 × Z2 × Z2
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2. Preliminaries on hamiltonian cycles in Cayley graphs

For ease of reference, we reproduce several useful results that provide hamiltonian cycles
in Cayley graphs.

Notation. For any group G, and any a, b ∈ G, we use:

(1) [a, b] to denote the commutator a−1b−1ab,
(2) ba to denote the conjugate a−1ba,
(3) G′ to denote the commutator subgroup [G,G] of G, and
(4) Φ(G) to denote the Frattini subgroup of G.

See [7, §5.1] for some basic properties of the Frattini subgroup (and its definition).

2A. Factor Group Lemma. The following elementary results are well known (and easy
to prove).

(2.1) Lemma (“Factor Group Lemma” [13, §2.2]). Suppose

• N is a cyclic, normal subgroup of G,
• (s1, s2, . . . , sm) is a hamiltonian cycle in Cay(G/N ;S), and
• the product s1s2 · · · sm generates N .

Then (s1, s2, . . . , sm)
|N | is a hamiltonian cycle in Cay(G;S).

(2.2) Corollary. Suppose

• N is a cyclic, normal subgroup of G, such that |N | is a prime power,
• 〈s−1t〉 = N for some s, t ∈ S ∪ S−1, and
• there is a hamiltonian cycle in Cay(G/N ;S) that uses at least one edge labelled s.

Then there is a hamiltonian cycle in Cay(G;S).

(2.3) Corollary. Suppose

• N is a cyclic, normal subgroup of G, such that |N | is a prime power,
• s ∈ S, with s2 ∈ N r Φ(N), and
• there is a hamiltonian cycle in Cay(G/N ;S) that uses at least one edge labelled s.

Then there is a hamiltonian cycle in Cay(G;S).

(2.4) Lemma ([10, Cor. 2.9]. Suppose

• S is a generating set of G,
• H is a subgroup of G, such that |H| is prime,
• the quotient multigraph H\Cay(G;S) has a hamiltonian cycle C, and
• C uses some double-edge of H\Cay(G;S).

Then there is a hamiltonian cycle in Cay(G;S).

2B. Generator in a cyclic, normal subgroup.

(2.5) Theorem (Alspach [1, Cor. 5.2]). Suppose

• s and t are elements of G, and
• G = 〈s〉⋉ 〈t〉.

Then Cay(G; s, t) has a hamiltonian cycle.

The following observation is well known:
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(2.6) Lemma [10, Lem. 2.27]. Let S generate G and let s ∈ S, such that 〈s〉 ⊳ G. If

• Cay
(

G/〈s〉;S
)

has a hamiltonian cycle, and
• either

(1) s ∈ Z(G), or
(2) |s| is prime,

then Cay(G;S) has a hamiltonian cycle.

Here is another similar result:

(2.7) Lemma. Suppose

• s ∈ S, with 〈s〉 ⊳ G,
• |s| is a divisor of pq, where p and q are distinct primes,
• sp ∈ Z(G),
• |G/〈s〉| is divisible by q, and
• Cay

(

G/〈s〉;S
)

has a hamiltonian cycle.

Then there is a hamiltonian cycle in Cay(G;S).

Proof. We may assume |s| = pq and s /∈ Z(G), for otherwise Lemma 2.6 applies. Let

• (s1, . . . , sm) be a hamiltonian cycle in Cay
(

G/〈s〉;S
)

,
• g = s1s2 · · · sm be its endpoint in G, and
• k = |s|/|g|.

Consider the walk

(s1, s
k−1, s2, s

k−1, . . . , sm, s
k−1).

Writing s = xw, where x is the q-part of s and w is the p-part of s, and noting that x ∈ Z(G)
(because xp = sp ∈ Z(G)), we see that the endpoint is

s1(xw)
k−1s2(xw)

k−1 · · · sm(xw)
k−1 = g x(k−1)m

∏

g′∈G/〈s〉

wg′ = g,(2.8)

since m = |G/〈s〉| is divisible by q, and 〈w〉 ∩ Z(G) = {e}.
Therefore, the walk

(s1, s
k−1, s2, s

k−1, . . . , sm, s
k−1)|g|

is closed. Also (using (2.8)), it is not difficult to see that the walk traverses all of the elements
of G. Therefore, it is a hamiltonian cycle in Cay(G;S).

2C. Miscellaneous results.

(2.9) Theorem (Marušič-Durnberger-Keating-Witte [9]). If G′ is a cyclic p-group, then ev-
ery connected Cayley graph on G has a hamiltonian cycle.

The proof in [12] yields the following result:

(2.10) Theorem [11, Cor. 3.3]. Suppose

• S is a generating set of G,
• N is a normal p-subgroup of G, and
• st−1 ∈ N , for all s, t ∈ S.

Then Cay(G;S) has a hamiltonian cycle.



4 S. J. CURRAN, D.W.MORRIS, AND J.MORRIS

The following observation is also known, but we do not know whether it is in the literature,
so we provide a proof. Because it is of independent interest, we prove a more general version
than we need.

(2.11) Lemma. Let S generate G, and let X be a subset of S. Assume:

• 〈X〉 is abelian (and nontrivial),
• for each g ∈ G, either g centralizes every element of 〈X〉, or g inverts every element
of 〈X〉,

• there is a hamiltonian cycle in Cay
(

〈X〉;X
)

, and
• there is a hamiltonian path in Cay(G/〈X〉;S).

Then there is a hamiltonian cycle in Cay(G;S).

Proof. Let

• [x0, x1, . . . , xm] be a hamiltonian cycle in Cay
(

〈X〉;X
)

,
• [g0, g1, . . . , gn] be a path in Cay(G;S) that is the lift of a hamiltonian path in
Cay

(

G/〈X〉;S
)

,

• C = Cay
(

Zm; {1}
)

be a cycle of length m,
• L be the path of length n with consecutive vertices 0, 1, . . . , n,
• f : V (C)× V (L) → G be defined by

f(i, j) = xi gj.

Note that:

• for 0 ≤ i < m and 0 ≤ j < n, we have

f(i, j)−1 · f(i, j + 1) =
(

xi gj
)−1(

xi gj+1

)

= g−1
j gj+1 ∈ S ∪ S−1,

because gj and gj+1 are adjacent vertices in Cay
(

G;S
)

, and

• for 0 ≤ i < m and 0 ≤ j ≤ n, and letting x = x−1
i xi+1 ∈ X ∪X−1, we have

f(i, j)−1 · f(i+ 1, j) =
(

xi gj
)−1(

xi+1 gj
)

= g−1
j xgj = x±1 ∈ X ∪X−1.

Thus, f is an isomorphism from the Cartesian product C×L onto a subgraph of Cay(G;S).
Since the two graphs have the same number of vertices, it is a spanning subgraph. Then,
since it is easy to see that C×L has a hamiltonian cycle [3, Corollary on p. 29], we conclude
that Cay(G;S) has a hamiltonian cycle.

(2.12) Remark. When we apply Corollary 2.2 or Corollary 2.3 to obtain a hamiltonian cycle
in Cay(G;S), and G has order 16p, the order of G/N is either 4p or 8p. Thus, (1.1) provides a
hamiltonian cycle in Cay(G/N ;S) with at least one edge labelled s. Similarly, (1.1) provides
a hamiltonian cycle in Cay(G/〈s〉;S) for Lemmas 2.6 and 2.7, and it provides a hamiltonian
path in Cay(G/〈X〉;S) for Lemma 2.11.

3. Groups without a normal Sylow p-subgroup

In this section, we prove Theorem 1.2 under the additional assumption that the Sylow
p-subgroups of G are not normal:

(3.1) Proposition. If |G| = 16p, where p is prime, and the Sylow p-subgroups of G are not
normal, then every connected Cayley graph on G has a hamiltonian cycle.

We first note that there are only three possibilities for the order of G:
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(3.2) Lemma. If |G| = 16p, where p is prime, and the Sylow p-subgroups of G are not
normal, then p ∈ {3, 5, 7}, so |G| ∈ {48, 80, 112}.

Proof. By Sylow’s Theorem [8, Thm. 15.7, p. 230], we know that the number of Sylow
p-subgroups is a divisor of 16, and is congruent to 1, modulo p. Since the only prime divisors
of 2− 1 = 1, 4− 1 = 3, 8− 1 = 7, and 16− 1 = 15 = 3× 5 are 3, 5, and 7, this implies there
is only one Sylow p-subgroup (which is normal) unless p ∈ {3, 5, 7}.

We now list the nine nonabelian groups of order 16, The list will be used repeatedly in the
remainder of the paper, because each of these nine groups arises as the Sylow 2-subgroup of
a group of order 16p.

(3.3) Proposition [2, §118, p. 146]. There are 9 nonabelian groups of order 16:

(1) 3 groups with Q/Q′ ∼= Z2 × Z2:

(a) D16 (“dihedral”),

(b) Q16 (“generalized quaternion”), and

(c) Z2 ⋉ Z8 = 〈x〉⋉ 〈y〉 with x−1yx = y3 (“semidihedral” or “quasidihedral”).

(2) 3 groups with Q/Q′ ∼= Z4 × Z2:

(a) Z2 ⋉ Z8 = 〈x〉⋉ 〈y〉 with x−1yx = y5,

(b) Z4 ⋉ Z4 = 〈x〉⋉ 〈y〉 with x−1yx = y−1, and

(c) Z4 ⋉ (Z2 × Z2) = 〈x〉⋉ 〈y, z〉 with x−1yx = yz and x−1zx = z.

(3) 3 groups with Q/Q′ ∼= Z2 × Z2 × Z2:

(a) D8 × Z2 = 〈f, t | f 2 = t4 = (ft)2 = e〉 × 〈z〉,

(b) Q8 × Z2, and

(c) Z2 ⋉ (Z2 × Z4) = 〈x〉⋉ 〈y, z〉 with x−1yx = yz2 and x−1zx = z.

The three possible orders of G are discussed individually, in Propositions 3.4, 3.5, and 3.8
below.

3A. Groups of order 48.

(3.4) Proposition [4]. If |G| = 48, and the Sylow 3-subgroups of G are not normal, then
every connected Cayley graph on G has a hamiltonian cycle.

Comments on the proof. A computer search can find hamiltonian cycles in all of these
Cayley graphs fairly quickly. Alternatively, a proof can be written by hand, but, unfortu-
nately, our presentation of this [4] is an unilluminating, 15-page case-by-case analysis, so we
omit the details.

It would be interesting to have a conceptual proof of Proposition 3.4, or, failing that, a
human-readable proof of only 2 or 3 pages.

3B. Groups of order 80.

(3.5) Proposition. If |G| = 80, and the Sylow 5-subgroups of G are not normal, then every
connected Cayley graph on G has a hamiltonian cycle.
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Proof. From Sylow’s Theorem (and the observation that 16 is the only nontrivial divisor
of 16 that is congruent to 1 modulo 5), we know there are 16 Sylow 5-subgroups. These
contain 16× 4 = 64 = |G| − 16 nonidentity elements of G, so the Sylow 2-subgroup must be
normal. Therefore G = Z5 ⋉ Q, where Q is the Sylow 2-subgroup. Since Z5 6⊳ G, we know
the action on Q is nontrivial.
We claim G is isomorphic to a semidirect product Z5 ⋉ (Z2)

4. If not, then Q is not
elementary abelian, so Q/Φ(Q) has order 2, 4, or 8. Since groups of order 2, 4, or 8 have no
automorphisms of order 5, this implies that Z5 acts trivially on Q/Φ(Q). Therefore Z5 acts
trivially on Q [7, Thm. 5.3.5]. This is a contradiction.
Now let S be a minimal generating set for G. Then S must contain an element x that

generates G/(Z2)
4. Then |x| = 5, so, by passing to a conjugate, we may assume 〈x〉 =

P . Also, since |x| = 5, we know that x acts on (Z2)
4 via a linear transformation whose

minimal polynomial is λ4+ λ3+ λ2+ λ+1. Therefore, with respect to any basis of the form
{v, vx, vx

2

, vx
3

},

x acts via multiplication on the right by the matrix A =









0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1









.

(This is “Rational Canonical Form.”)
Let s be another element of S. Then 〈x, s〉 has nontrivial intersection with (Z2)

4. Since
GLk(2) does not have any elements of order 5 when k < 4, we know that x acts irreducibly,
so this implies that 〈x, s〉 contains all of (Z2)

4. Therefore S = {x, s} (if S is minimal).
Obviously, s is of the form s = xiv, for some v ∈ (Z2)

4 and (by passing to the inverse if
necessary) we may assume 0 ≤ i ≤ 2. If i = 1, then x−1s ∈ (Z2)

4, so Theorem 2.10 applies.
Thus, we may assume i ∈ {0, 2}. So

S = {x, v} or S = {x, x2v},

and (by choosing an appropriate basis) v = (1, 0, 0, 0) ∈ (Z2)
4.

Case 1. Assume S = {x, v}. We claim that a hamiltonian cycle in Cay(G;S) is given by:

x4, v, x−2, v, x, v, (x2, v)3, (x, v)2, x−2, v, x, v, x−1, v, (x2, v)2, x−2, v, x, v, x2, v,

x−2, v, (x−1, v)2, x, v, x2, v, x−2, v, x−1, v, x, v, (x2, v)2, (x−1, v)3, x2, v, x, v.

To verify this, we list the vertices of the cycle, using a, b, c, and d to denote the generators
of (Z2)

4, where a = v, b = vx, c = bx = vx
2

, and d = cx = vx
3

. Then dx = vx
4

= abcd. The
hamiltonian cycle visits the vertices of Cay(G;S) in the order:

e, x, x2, x3, x4, bx4, bx3, bx2, bdx2, bdx3, bcdx3, bcdx4, bcd, abcd, abcdx, abcdx2, abcx2,

abcx3, abcx4, acx4, ac, c, cx, abdx, abd, abdx4, adx4, ad, d, dx4, bdx4, bd, bdx, acx, acx2,

acx3, ax3, ax2, ax, bcdx, bcdx2, bcx2, bcx3, bcx4, cx4, cx3, cx2, cdx2, cdx, abx, ab, b, bx,

acdx, acdx2, acdx3, adx3, adx2, adx, bcx, bc, abc, abcx, dx, dx2, dx3, cdx3, cdx4, cd,

acd, acdx4, abcdx4, abcdx3, abdx3, abdx2, abx2, abx3, abx4, ax4, a, e.

Case 2. Assume S = {x, x2v}. A hamiltonian cycle in the quotient multigraph P\Cay(G;S)
is given by:

x2v, x−1, (x2v)−1, x−4, x2v, x, (x2v)−1, x−1, (x2v)−1, x2, (x2v)2.
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Again we use the notation a = v, b = vx, c = vx
2

, and d = vx
3

to list the vertices in this
hamiltonian cycle:

P, Pa, Pabcd, P cd, P bc, Pab, P bcd, Pabc, P b, P c, Pad, Pabd, Pacd, Pac, P bd, Pd, P.

The edge from Pac to Pbd is a double edge, coming from both x and x2v, so Lemma 2.4
provides a hamiltonian cycle in Cay(G;S).

3C. Groups of order 112. Before finding a hamiltonian cycle in Cay(G;S), we prove two
results that determine the structure of G.

(3.6) Lemma. If G is any group of order 112, then G has a normal Sylow subgroup.

Proof by contradiction. Assume G has no normal Sylow subgroups, and let P be a Sylow
7-subgroup of G. Let N be a minimal normal subgroup of G. Since G is solvable (for
example, this follows from Burnside’s paqb Theorem [7, Thm. 4.3.3]), N is an elementary
abelian normal subgroup of G. Since P is not normal, we must have |N | = 2k for some k.

Case 1. Assume k 6= 3. We know k 6= 4, since the Sylow 2-subgroups are not normal,
so k ∈ {1, 2}. Furthermore, we know that the Sylow 2-subgroups of G/N are not normal.
Observe that |G/N | is either 28 or 56.
We claim that PN ⊳ G. If not, then the Sylow 7-subgroup of G/N is not normal, so

|G/N | = 56 and G/N has eight Sylow 7-subgroups. Thus, there are |G/N | − |QN/N | =
56 − 8 = 48 elements of order 7 in G/N . So G/N has only one Sylow 2-subgroup, which
must be normal. This contradicts the assumption that G has no normal Sylow subgroups.
Since |PN | = 7|N | ∈ {14, 28}, we know P is normal (hence characteristic) in PN , so

P ⊳ G. This contradicts the assumption that G has no normal Sylow subgroups.

Case 2. Assume k = 3. Then |G/(PN)| = 2, so PN ⊳ G. Since P does not centralize N
(otherwise P would be normal in G), it must act on N via a linear transformation of order 7.
Since there is no normal 7-complement, we know there is an element of G that normal-

izes P , but does not centralize it [7, Thm. 7.4.3]. So some element of G inverts P , which
means that every element of P is conjugate to its inverse.
However, if we let

• g be a generator of P ,
• A be the linear transformation induced by g on the vector space (Z2)

3, and
• f(λ) be the minimal polynomial of A,

then f(λ) is an irreducible polynomial of degree 3. Since 3 is odd, the roots of f(λ) cannot
come in pairs, so there is some root α of f(λ) (in an extension field), such that α−1 is not
a root of f(λ). Therefore g and g−1 do not have the same minimal polynomial, so g is not
conjugate to g−1 in GL3(2). This contradicts the conclusion of the preceding paragraph.

(3.7) Corollary. If |G| = 112, and G has no normal Sylow 7-subgroup, then

G ∼=
(

Z7 ⋉ (Z2)
3
)

× Z2,

where a generator of Z7 acts via multiplication on the right by the matrix

A =





0 1 0
0 0 1
1 1 0



 .
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Proof. Let P be a Sylow 7-subgroup of G. From Lemma 3.6, we know that G has a normal
Sylow 2-subgroup Q, so G = P ⋉ Q. Since P 6⊳ G, we know that P acts nontrivially on Q,
so it also acts nontrivially on Q/Φ(Q) [7, Thm. 5.3.5].

Case 1. Assume Φ(Q) is trivial. Then Q ∼= (Z2)
4, and a generator x of P acts by a linear

transformation. Since

|GL4(2)| = (24 − 1)(24 − 2)(24 − 22)(24 − 23)

is not divisible by 72, we know that all subgroups of order 7 in GL4(2) are conjugate, so the
semidirect product Z7 ⋉ (Z2)

4 is unique. Therefore G must be as described.

Case 2. Assume Φ(Q) is nontrivial. Since 7 ∤ 2i−1 for 1 ∈ {1, 2}, we must have |Q/Φ(Q)| =
23. (So Φ(Q) = Q′ has order 2.) Therefore, a generator x of P acts transitively on the
nonidentity elements of Q/Φ(Q).
If Q is nonabelian, then Q is one of the groups listed in Proposition 3.3(3), since Q/Q′ ∼=

(Z2)
3. In each of these groups, Φ(Q) is a proper subgroup of Z(Q). Thus Z(Q)/Φ(Q) is a

proper subspace of Q/Φ(Q); a contradiction.
Therefore Q is abelian. Then we see that every element of Q has order 2, for otherwise the

elements of order 2 in Q provide an invariant, proper subspace of Q/Φ(Q). This contradicts
the fact that Φ(Q) is nontrivial.

(3.8) Proposition. If |G| = 112, and the Sylow 7-subgroups are not normal, then every
connected Cayley graph on G has a hamiltonian cycle.

Proof. Corollary 3.7 provides an explicit description of G. Let

• x be a generator of P = Z7,
• v = (1, 0, 0) ∈ (Z2)

3, and
• z be a generator of Z(G) ∼= Z2.

Case 1. Assume #S = 2. Let s be an element of S that is not in Q. Replacing s by a
conjugate, we may assume s is either x or xz.
Since |x| = 7, we know that the minimal polynomial of x is a divisor of

λ6 + λ5 + λ4 + λ3 + λ2 + λ+ 1 = (λ3 + λ+ 1)(λ3 + λ2 + 1) (over Z2).

So the minimal polynomial of x is either λ3 + λ + 1 or λ3 + λ2 + 1. Since (as explained in
the proof of Lemma 3.6), the minimal polynomials of x and x−1 are not the same, we may
assume (by replacing x with x−1 if necessary) that the minimal polynomial of x is λ3+λ+1.
Then (for any basis of the form {v, vx, vx

2

}), x acts on (Z2)
3 via multiplication on the right

by the matrix A in the statement of Corollary 3.7. (This is “Rational Canonical Form.”)
Let t be the other element of S. We have t = xivzj for some i and j, where v = (1, 0, 0) ∈

(Z2)
3. We may assume i ∈ {0, 1, 2, 4} (by replacing t with its inverse if necessary). Consider

the basis {a, b, c} of (Z2)
3 where

a = v, b = vx, and c = bx = vx
2

.

Then G is given by

G =

〈

a, b, c, x, z

∣

∣

∣

∣

∣

a2 = b2 = c2 = x7 = z2 = e, ab = ac = az = a,
bc = bz = b, cz = c, ax = b, bx = c, cx = ab, xz = x

〉
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Let ψ : G→ G be the homomorphism defined by

ψ(a) = bc, ψ(b) = ac, ψ(c) = b, ψ(x) = abcxz, and ψ(z) = z.

One can show that the relations of the group are preserved by ψ and that ψ is onto. Thus
ψ is an automorphism of G that sends the pair (x4v, x) to (x, x2v); so we may assume i 6= 4.
Also, if i = 1, then Theorem 2.10 applies. Thus, the generating sets to consider are:

• S = {x, vz},
• S = {x, x2vz},
• S = {xz, v},
• S = {xz, vz},
• S = {xz, x2v},
• S = {xz, x2vz}.

In all cases, x acts on (Z2)
3 via multiplication on the right by the matrix A, with respect to

the basis {a, b, c}.

Subcase 1.1. Assume S = {x, vz}. A hamiltonian cycle in Cay(G/〈z〉;S) is given by:
(

x−1, vz, x, vz, x4, vz, x, vz, x2, vz, x−2, vz, x−3, vz, (x−4, vz)2,

x−3, vz, x, vz, x2, vz, x3, vz, x−2, vz, (x, vz)2, x−3, vz, x−1
)

To verify this, we list the vertices (according to a coset representative of 〈z〉) in the order
they are visited:

e, x6, bx6, b, ab, abx, abx2, abx3, abx4, x4, x5, cx5, cx6, c, ac, acx6,

acx5, ax5, ax4, ax3, ax2, bcx2, bcx, bc, bcx6, bcx5, bx5, bx4, bx3, bx2, bx, abcx,

abc, abcx6, abcx5, abx5, abx6, ax6, a, ax, cx, cx2, cx3, cx4, abcx4, abcx3, abcx2, x2,

x3, bcx3, bcx4, acx4, acx3, acx2, acx, x, e.

Since z is in the center of G, and the generator vz is used an odd number of times in
the hamiltonian cycle (specifically, 17 times), the endpoint in G is z, so the Factor Group
Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).

Subcase 1.2. Assume S = {x, x2vz}. A hamiltonian cycle in P\Cay(G;S) is:
(

x2vz, x−1, x2vz, x, (x2vz, x−1)2, (x2vz)−2, x, x2vz, x, (x2vz)3
)

.

It passes through the vertices of the quotient multigraph in the order:

P, Paz, Pacz, Pab, P bc, P cz, P bz, P b, Pa, Pz, Pabc, Pac, Pabz, P bcz, P c, Pabcz, P.

The edge between Pbz and Pb is a double edge, coming from both x2vz and (x2vz)−1, so
Lemma 2.4 provides a hamiltonian cycle in Cay(G;S).

Subcase 1.3. Assume S = {xz, v}. A hamiltonian cycle in P\Cay(G;S) is:
(

xz, v, (xz)4, v, xz, v, (xz)−1, v, xz, v, (xz)2, v
)

.

It passes through the vertices of the quotient multigraph in the order:

P, Pz, Paz, P b, P cz, Pab, P bcz, Pabcz, Pac, P c, P bz, Pabz, P bc, Pabc, Pacz, Pa, P.
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The edge between P and Pz is a double edge, coming from both xz and (xz)−1, so Lemma 2.4
provides a hamiltonian cycle in Cay(G;S).

Subcase 1.4. Assume S = {xz, vz}. A hamiltonian cycle in P\Cay(G;S) is:
(

xz, vz, (xz)2, vz, (xz)−1, vz, (xz)−2, vz, ((xz)−1, vz)3
)

.

It passes through the vertices of the quotient multigraph in the order:

P, Pz, Pa, P bz, P c, Pacz, Pabc, P bcz, Pab, P cz, Pac, Pabcz, P bc, Pabz, P b, Paz, P.

The edge between P and Pz is a double edge, coming from both xz and (xz)−1.

Subcase 1.5. Assume S = {xz, x2v}. A hamiltonian cycle in P\Cay(G;S) is:
(

xz, x2v, (xz)2, (x2v, xz)2, (xz)2, x2v, xz, x2v, (xz)−2, (x2v)−1
)

.

It passes through the vertices of the quotient multigraph in the order:

P, Pz, Paz, P b, P cz, Pabcz, Pac, Pab, P bcz, Pabc, Pacz, Pabz, P bc, P c, P bz, Pa, P.

The edge between P and Pz is a double edge, coming from both xz and (xz)−1, so Lemma 2.4
provides a hamiltonian cycle in Cay(G;S).

Subcase 1.6. Assume S = {xz, x2vz}. A hamiltonian cycle in P\Cay(G;S) is:
(

(xz, x2vz)5, (xz)5, (x2vz)−1
)

.

It passes through the vertices of the quotient multigraph in the order:

P, Pz, Pa, P bz, P b, P cz, Pabc, Pacz, Pab, P bcz, P c, Pabz, P bc, Pabcz, Pac, Paz, P.

The edge between P and Pz is a double edge, coming from both xz and (xz)−1, so Lemma 2.4
provides a hamiltonian cycle in Cay(G;S).

Case 2. Assume #S > 2. Every minimal generating set of G/Z(G) ∼= Z7 ⋉ (Z2)
3 has only

2 elements, so there exist s, t ∈ S, such that 〈s, t〉 = 〈x, v〉. We may assume s = x. And we
have t = xiv.
Since 〈s, t〉 has index 2 in G, we must have #S = 3; let u be the third element of S, so

u = xjwz with w ∈ (Z2)
3.

• Since 〈x, xjwz〉 = 〈s, u〉 6= G, we must have w = e. So u = xjz.
• Then we must have j = 0, for otherwise 〈u〉 = 〈x, z〉 ∋ x = s, which contradicts the
fact that S is a minimal generating set.

But then u = z ∈ Z(G), so Lemma 2.6(1) and Remark 2.12 apply.

4. Preliminaries on groups of order 16p

Because of Proposition 3.1, we henceforth

assume that the Sylow p-subgroups of G are normal.

Notation. Throughout the remainder of this paper:

• G is a group of order 16p, where p is an odd prime,
• P ∼= Zp is a Sylow p-subgroup of G (and P ⊳ G),
• Q is a Sylow 2-subgroup of G, so |Q| = 16, and
• S is a minimal generating set of G.

We wish to show Cay(G;S) has a hamiltonian cycle.

We know P ∼= Zp, and the possibilities for Q are given in Proposition 3.3.
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(4.1) Lemma. We may assume:

(1) G = Q⋉ P ,
(2) Q is nonabelian, and acts nontrivially on P ,
(3) G′ = Q′ × P is cyclic,

Proof. (1) Since P ⊳ G, G = QP , and Q ∩ P = {e}, we have G ∼= Q⋉ P .
(2, 3) Since the automorphism group of P ∼= Zp is abelian, we know Q′ centralizes P . So

(1) implies that Q′ ≤ G′ ≤ Q′ × P . Since all of the groups in Proposition 3.3 have a cyclic
commutator subgroup, we know Q′ is cyclic. Also, by Theorem 2.9, we may assume G′ is
not a cyclic subgroup of prime-power order. Thus, we may assume G′ 6= Q′ and G′ 6= P .
So G′ = Q′ × P (and Q′ 6= {e}, so Q is nonabelian). Since Q′ and P are both cyclic, this
implies G′ is cyclic. Furthermore, since P ⊂ G′, we know that G 6∼= Q × P , so the action
of Q on P is nontrivial.

The following corollary shows there are three possibilities for G/G′; each of these possi-
bilities will be considered individually, in Sections 5, 6 and 7, respectively.

(4.2) Corollary. We may assume G/G′ is isomorphic to either Z2 × Z2, Z4 × Z2, or Z2 ×
Z2 × Z2.

Proof. Since G = QP and G′ = Q′P (see Lemma 4.1), we have G/G′ ∼= Q/Q′. Then the
desired conclusion follows from inspection of Proposition 3.3.

(4.3) Corollary. We may assume

(1) Q′ ⊳ G,
(2) Q′ ≤ Φ(G), and
(3) S is a minimal generating set of G/Q′.

Proof. (1) From Lemma 4.1(3), we know thatQ′ is normalized by P (indeed, it is centralized
by P ). Then, since it is also normalized by Q, it is normalized by PQ = G.
(2) Let M be a maximal subgroup of G.

• If M contains P , then M/P is a maximal subgroup of G/P , so M/P contains
Φ(G/P ) = Φ(Q)P/P ≥ Q′P/P , so M ≥ Q′.

• If M does not contain P , then M is a 2-group, so the maximality implies it is a
Sylow 2-subgroup of G. Every Sylow 2-subgroup (such as M) contains every normal
2-subgroup (such as Q′), so M ≥ Q′.

Thus, every maximal subgroup of G contains Q′, so Q′ ≤ Φ(G).
(3) Since S is a minimal generating set of G, this follows from (2).

(4.4) Corollary. If G = 〈a, b〉 is 2-generated, then G′ = 〈[a, b]〉.

Proof. By Lemma 4.1(3), G′ is cyclic. Since every subgroup of a cyclic, normal subgroup
is normal, we know 〈[a, b]〉 ⊳ G. Since 〈a, b〉 = G, and a commutes with b in G/〈[a, b]〉, we
know G/〈[a, b]〉 is abelian, so G′ ⊂ 〈[a, b]〉. The opposite inclusion is obvious.

5. The case where G/G′ ∼= Z2 × Z2

(5.1) Proposition. Assume |G| = 16p. If G/G′ ∼= Z2×Z2, then Cay(G;S) has a hamilton-
ian cycle.
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Proof. We proceed via case-by-case analysis.

Case 1. Assume #S = 2. Write S = {a, b}. Then (a−1, b−1, a, b) is a hamiltonian cycle in
Cay(G/G′;S) whose endpoint in G is a−1b−1ab = [a, b]. This generates G′ (see Corollary 4.4),
so the Factor Group Lemma (2.1) applies.

Case 2. Assume #S ≥ 3. Since |G/Q′| = 4p is a product of only 3 primes, Corollary 4.3(3)
implies #S ≤ 3. Therefore #S = 3; write

S = {a, b, c}.

Subcase 2.1. Assume |c| is divisible by p. Since |G/Q′| is a product of only 3 primes,
and P is the unique subgroup of order p in G, the minimality of S (and Corollary 4.3(3))
implies

• the image of 〈c〉 in G/Q′ has order p, and
• the image of 〈a, b〉 in G/Q′ has order 4.

Thus, b has order 2 in G/Q′, so b either centralizes P or inverts it: let ǫ ∈ {±1}, such that
wb = wǫ for all w ∈ P . Since Q′ is a cyclic group of order 4, its only automorphisms are the
identity automorphism and the one that inverts every element in Q′. Let ǫ′ ∈ {±1}, such
that ub = uǫ

′

for all u ∈ Q′. Write c = uw for some u ∈ Q′ and w ∈ P . Then

cb = uǫ
′

wǫ = cǫuǫ
′−ǫ ∈ cǫΦ(Q′), since ǫ′ − ǫ ∈ {0,±2}.

Now
(a−1, c−(p−1), b−1, cε(p−1), a, c−(p−1), b, cε(p−1))

is a hamiltonian cycle in Cay
(

G/Q′;S
)

whose endpoint in G/Φ(Q′) is

a−1c−(p−1)b−1cε(p−1)ac−(p−1)bcε(p−1) = a−1b−1ab = [a, b],

which generates Q′ (see Corollary 4.4). So the Factor Group Lemma (2.1) provides a hamil-
tonian cycle in Cay(G;S).

Subcase 2.2. Assume no element of S has order divisible by p. This implies that
every element of S is a 2-element. Also, since Q/Q′ is a Sylow 2-subgroup of G/Q′, and
Q/Q′ ∼= G/G′ ∼= Z2 × Z2, we know that G/Q′ has no elements of order 4. Therefore

every element of S has order 2 in G/Q′.

So we may assume every element of S has order 2 in G/Φ(Q′), for otherwise Corollary 2.3
and Remark 2.12 apply with N = Q′. Then we may assume

every element of S has order 2,

for otherwise Corollary 2.3 and Remark 2.12 apply with N = Φ(Q′).
Since G/P ∼= Q is a 2-generated 2-group, we know that all of its minimal generating sets

have the same cardinality, so some 2-element subset of S generates G/P . Since two elements
of order 2 always generate a dihedral group, we conclude that

Q ∼= D16 = 〈f, t|f 2 = t8 = (ft)2 = e〉.

Subsubcase 2.2.1. Assume no element of S centralizes P . Let S be the image of S in

G/Q′ ∼= (Z2 × Z2)⋉ Zp
∼= D4p.

From Corollary 4.3(3), we see that S is a minimal generating set of D4p. Also, by the
assumption of this subsubcase, we know that every element of S is a reflection; let f ∈ S.



CAYLEY GRAPHS OF ORDER 16p ARE HAMILTONIAN 13

There are only two proper subgroups of D4p that properly contain 〈f〉 (because Z2 and Zp

are the only nontrivial proper subgroups of the group Z2p of rotations), so we may assume
S = {f, fx, fy}, where x and y are rotations of order 2 and p in D4p, respectively. Then

〈fx, fy〉 = D4p, which contradicts the minimality of S.

Subsubcase 2.2.2. Assume S contains an element that centralizes P . Each element
of S must map to a reflection in G/P ∼= Q ∼= D16 (since the elements of S all have order 2 in
both G/P and G/(Q′P )). Then, by the assumption of this subsubcase, we know that some
reflection centralizes P . Because Q acts nontrivially on P , we have

G = 〈f, t, w | f 2 = t8 = wp = e, ftf = t−1, fwf = w, t−1wt = w−1〉.

From the assumption of this subsubcase, we may assume f ∈ S. By the minimality of S, we
must have 〈f, s〉 = Q, for some s ∈ S (after replacing Q by a conjugate). Since all elements
of S ∩Q are reflections, we may assume s = ft. To generate G (and map to a reflection in
G/P ), the final element of S must be of the form ftiwj, with p ∤ j. By replacing w with wj,
we may assume j = 1. So the final element of S is ftiw. Since all elements of S have order 2
in G, it must be the case that ti inverts w, so i is odd. So

S is of the form {f, ft, ftiw}, with i odd.

By Corollary 4.3(1), we know Q′ ⊳G. Observe that the image of f is central in G/Q′, and
ftiw ≡ ftw (mod Q′) (because Q′ = 〈t2〉 and i is odd), so

Cay(G/Q′;S) ∼= Cay
(

〈ft, ftiw〉/Q′; {ft, ftiw}
)

× Cay
(

〈f〉; {f}
)

∼= C2p ×K2

is a prism, which has the natural hamiltonian cycle
(

(ft, ftiw)p#, f
)2
. The endpoint in G

is
(

(

(ft)(ftiw)
)p
(ftiw)−1f

)2

=
(

(ti−1w)pw−1t−i
)2

=
(

t(i−1)p−iw−1
)2

= t2(i−1)p−2i.

Since i is odd, the exponent of t is congruent to 2 modulo 4, so the endpoint generates
〈t2〉 = Q′. Thus, the Factor Group Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).

6. The case where G/G′ ∼= Z4 × Z2

(6.1) Proposition. Assume |G| = 16p. If G/G′ ∼= Z4×Z2, then Cay(G;S) has a hamilton-
ian cycle.

Proof. We proceed via case-by-case analysis.

Case 1. Assume #S = 2. Let

• S = {a, b}, with a of order 4 in G/G′, and
• k ∈ Z with ga = gk for g ∈ G′.

Then (a−3, b−1, a3, b) is a hamiltonian cycle in G/G′, and its endpoint in G is

[a3, b] = [a, b]a
2

[a, b]a[a, b] = [a, b]k
2

[a, b]k[a, b] = [a, b]k
2+k+1.

By Corollary 4.4, this generates G′ unless gcd(k2 + k + 1, |G′|) > 1. Since |G′| = 2p, and
k2 + k + 1 is always odd, this generates G′ unless k2 + k + 1 ≡ 0 (mod p), which implies
k3 ≡ 1 (mod p). This means that a3 centralizes P . But a4 ∈ G′ ≤ CG(P ), so this implies
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that a centralizes P : therefore k ≡ 1 (mod p). Since k2 + k + 1 ≡ 0 (mod p), we conclude
that

p = 3 and a centralizes P .

From Lemma 4.1(2) (and the fact that a centralizes P ), we know that

b does not centralize P .

Since G′ = Q′P is cyclic of order 6, we know G′ has only two automorphisms; namely, the
identity automorphism and the automorphism that inverts G′. Thus xb = x−1 for all x ∈ G′.
If b has order 4 in G/G′, then the hamiltonian cycle (b−3, a−1, b3, a) in Cay(G/G′;S) has
endpoint

[b3, a] = [b, a]b
2

[b, a]b[b, a] = [b, a][b, a]−1[b, a] = [b, a]

in G, which generates G′. Thus Cay(G;S) has a hamiltonian cycle by the Factor Group
Lemma (2.1). So we may assume that b has order 2 in G/G′. Write b = qw for some q ∈ Q
and w ∈ P , where q−1wq = w−1. Then b2 = q2wqw = q2. Hence, the order of b is not
divisible by p, so b is a 2-element. Thus, we may assume (after replacing Q by a conjugate)
that b ∈ Q. Thus, the order of b in G/Q′ is 2. So we may assume |b| = 2, for otherwise
Corollary 2.3 and Remark 2.12 apply.
Since b ∈ Q, and 〈a, b〉 = G, we know a /∈ Q. Since a centralizes P , this implies that |a| is

divisible by p (i.e., 3). But |a| is also a multiple of 4 (its order in G/G′). So |a| is divisible
by 12. Since |G| = 16p = 48 (and G is not cyclic), this implies |a| is either 12 or 24. If
|a| = 24, then G = 〈b〉⋉ 〈a〉, so Theorem 2.5 applies. So we may assume |a| = 12.
Now, of the 3 groups listed in Proposition 3.3(2),

• group (2a) has no generating set without an element of order 8, and
• group (2b) has no 2-element generating set with an element of order 2.

So Q must be group (2c), and we may assume a = xw (by relabeling the elements of Q).
Since 〈a, b〉 = G, we know 〈x, b〉 = Q, so (since |b| = 2), we may assume b = y (by further

relabeling the elements of Q). Note that, since z ∈ Z(G), we know z centralizes both a
and b.
LetN = 〈a2〉 = 〈x2, w〉, and consider the hamiltonian cycle

(

(b, a)4#, a−1
)

in Cay(G/N ;S),
which passes through the vertices in the following order:

N,Ny,Nxyz,Nxz,Nz,Nyz,Nxy,Nx,N.

Its endpoint in G is
(ba)4a−2 = (yxw)4a−2 = e · a−2 = a−2,

which generates 〈a2〉 = N . So the Factor Group Lemma (2.1) provides a hamiltonian cycle
in Cay(G;S).

Case 2. Assume #S > 2. Since G/G′ ∼= Z4×Z2, there exists a 2-element subset {a, b} of S
that generates G/P . Since {a, b} ( S, and S is minimal, we have P 6⊂ 〈a, b〉. Therefore, by
passing to a conjugate, we may assume 〈a, b〉 = Q.
Let c be a third element of S (so c /∈ Q). Then 〈a, b, c〉 properly contains Q. But Q is

a maximal subgroup of G (since |G/Q| = p is prime), so this implies 〈a, b, c〉 = G. So the
minimality of S implies S = {a, b, c}.

Claim. We may assume, for each s ∈ S, that either s2 ∈ P , or sP ∈ Φ(Q)P , or s acts
on P via an automorphism of order 4. Suppose there exists s ∈ S that has none of the three
properties. Since #S > 2 and sP /∈ Φ(Q)P , we know p ∤ |s|, so (up to conjugacy) s ∈ Q.



CAYLEY GRAPHS OF ORDER 16p ARE HAMILTONIAN 15

Then, since Q/Z(Q) ∼= Z2 × Z2, we have s2 ∈ Z(Q), so 〈s2〉 ⊳ Q. Also, since s does not act
on P by an automorphism of order 4, we know s2 centralizes P . Therefore s2 ∈ Z(G), so
〈s2〉 ⊳ G, so Corollary 2.3 and Remark 2.12 apply.

Subcase 2.1. Assume Q ∼= Z4 ⋉Z4 = 〈x〉⋉ 〈y〉. Since some element of S must generate
G/(〈y〉P ), we may assume x ∈ S (after replacing Q by a conjugate). That is, we may assume
a = x.
Observe that x2 6∈ P and xP 6∈ Φ(Q)P . Thus, the Claim tells us that x acts on P via

an automorphism of order 4. Hence, Q/CQ(P ) ∼= Z4. Therefore, CQ(P ) is a cyclic normal
subgroup of Q with a cyclic quotient, so we may assume CQ(P ) = 〈y〉.
Since Q has no 2-element generating set that contains an element of order 2, we know

|b| > 2, so, from the Claim, we know that b generates Q/CQ(P ) = Q/〈y〉, so b ≡ a±1

(mod 〈y〉); assume (by replacing b with its inverse if necessary) that ba ∈ 〈y〉. Then, since
〈a, b〉 = Q, we must have 〈ba〉 = 〈y〉 ⊳G. Then, since |y| = 4, Corollary 2.2 and Remark 2.12
apply.

Subcase 2.2. Assume c /∈ Φ(Q)P . Since Q does not centralize P , we may assume b does
not centralize P . Write c = wu for some w ∈ P and u ∈ Q. Since c 6∈ Q, we have w 6= e.
Since b does not centralize P , we have (w−1)b 6= w−1. Thus

[b, c] = (u−1)b(w−1)bwu = (u−1)bu((w−1)bw)u,

where (u−1)bu ∈ Q, ((w−1)bw)u ∈ P , and ((w−1)bw)u 6= e. Hence, [b, c] 6∈ Q′ and [b, c] ∈
G′ = Q′ × P . Thus the order of [b, c] is a divisor of |G′| = 2p, but not a divisor of |Q′| = 2.
Hence, p divides the order of [b, c] and we must have P ⊂ 〈[b, c]〉. If c ∈ {a, ab}Φ(Q)P ,
then 〈b, c〉 = G which contradicts the minimality of S. Thus c ∈ bΦ(Q)P . (But we may
assume c /∈ b±1P , for otherwise Corollary 2.2 and Remark 2.12 apply.) Since c 6∈ aΦ(Q)P ,
the argument of the preceding paragraph (by interchanging a and b) implies that a must
centralize P . That is, a ∈ CQ(P ). Therefore, the Claim implies |a| = 2. In summary, we
know:

• |a| = 2, and a centralizes P ,
• b does not centralize P , and
• c ∈ bΦ(Q)P , but c /∈ b±1P .

Subsubcase 2.2.1. Assume Q ∼= Z2 ⋉ Z8 = 〈x〉 ⋉ 〈y〉. Since |a| = 2, we may assume
a = x. Then we must have |b| = 8, so we may assume b = y. Then Φ(Q) = 〈b2〉, so
c ∈ {b3, b5}P . By replacing c with its inverse, we may assume c ∈ b5P . Then

S = {a, b, c} with a = x, b = y, and c = y5w, where w generates P .

Also, from the above properties of a and b, we know x centralizes P , but y acts on P via an
automorphism of order 4.
Consider the hamiltonian cycle

(b2, c−1, b2, c, b−1, a, b−7, a)

in Cay(G/P ;S), which passes through the vertices of the graph in the order:

P, Py, Py2, P y5, P y6, P y7, P y4, P y3, Pxy7, Pxy6, Pxy5, Pxy4, Pxy3, Pxy2, Pxy, Px, P.

Note that, since the action of y on P has order 4, we know that y2 inverts w, so the endpoint
in G is

b2c−1b2cb−1ab−7a = y2(w−1y−5)y2(y5w)y−1xy−7x = y2w−1y2wy−1xyx = w2,
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which generates P = 〈w〉. By the Factor Group Lemma (2.1), we have a hamiltonian cycle
in Cay(G;S).

Subsubcase 2.2.2. Assume Q ∼= Z4 ⋉ (Z2 × Z2) = 〈x〉 ⋉ 〈y, z〉. Since |a| = 2, we
may assume a = y. Then we may assume b = x. Since Φ(Q) = 〈b2, z〉, we must have
c ∈ {bz, b−1z}P . By replacing c with its inverse, we may assume c ∈ bzP . Then

S = {x, y, xzw}, where w generates P .

And y centralizes P , but x acts on P via an automorphism of order 4.
Let k ∈ Zp, such that x−1wx = wk. Since the action of x on P has order 4, we have

2 ≤ k ≤ p− 2. Consider the hamiltonian cycle

(xzw, x3, y, x2, xzw, x3, xzw, y, x−3)

in Cay(G/P ;S) that passes through the vertices of this graph in the order:

P, Pxz, Px2z, Px3z, Pz, Pyz, Pxy, Px2yz, Px3yz, Py, Pxyz, Px2y, Px3y, Px3, Px2, Px, P.

The endpoint of this cycle in G is

(xzw)(x3yx3zw)(x4zw)(yx−3) = (xzw)(x2yw)(zw)(xyz)

= x4y2z4w−kwkwk = wk.

Since k is coprime to p (recall 2 ≤ k ≤ p− 2), this generates P = 〈w〉. By the Factor Group
Lemma (2.1), we have a hamiltonian cycle in Cay(G;S).

Subcase 2.3. Assume c ∈ Φ(Q)P . We may assume c /∈ G′, for otherwise Lemma 2.7
applies.

Subsubcase 2.3.1. Assume Q ∼= Z2 ⋉ Z8 = 〈x〉 ⋉ 〈y〉. Up to automorphism, any
2-element generating set of Q is of the form {xyi, y}. Since xy4 has order 2, it may be
replaced with x (if i ∈ {3, 4, 5}). This implies that we may assume −2 ≤ i ≤ 2. Then, since
we may replace y with y−1, we may assume 0 ≤ i ≤ 2. However, xy2 has order 4, but its
square is in Q′, so it cannot act on P by an automorphism of order 4; therefore, the Claim
implies it is not in S. So i ∈ {0, 1}.
Since Φ(Q) = 〈y2〉 and Q′ = 〈y4〉, we must have c ∈ {y2, y6}P ; replacing c with c−1, we

may assume c ∈ y2P . Thus, either

S = {x, y, y2w} or S = {xy, y, y2w}, where 〈w〉 = P .

Also:

• x either centralizes P or inverts it, and
• y acts on P by an automorphism of order 4.

Let ǫ ∈ {±1}, such that x−1wx = wǫ, and let k ∈ Zp, such that y−1wy = wk. Since the
action of y on P has order 4, we have 2 ≤ k ≤ p− 2. Let N = 〈y4, P 〉 = 〈y4w〉 ∼= Z2p.
For the first generating set,

(y2w, y−1, y2w, x, y−3, x)

is a hamiltonian cycle in Cay(G/N ;S) that passes through the vertices of this graph in the
order:

N,Ny2, Ny,Ny3, Nxy3, Nxy2, Nxy,Nx,N.
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The endpoint of this cycle in G is

y2wywxy−3x = y2wywy = y2wy2wk = y4wk−1.

Since k − 1 is coprime to p (recall 2 ≤ k ≤ p − 2), and y4 has order 2, this generates
N = 〈y4w〉. So the Factor Group Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).
For the second generating set,

(

xy, y−1, y2w, y, (xy)−1, y−1, y2w, y
)

is a hamiltonian cycle in Cay(G/N ;S) that passes through the vertices of this graph in the
order:

N,Nxy,Nx,Nxy2, Nxy3, Ny2, Ny,Ny3, N.

The endpoint of this cycle in G is

xy2wx−1ywy = xy2x−1wǫy2wk = y4wk−ǫ

(with ǫ ∈ {±1} depending on whether x centralizes or inverts P .) Since k − 1 and k+ 1 are
coprime to p (recall 2 ≤ k ≤ p − 2) and y4 has order 2, this generates N = 〈y4w〉. So the
Factor Group Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).

Subsubcase 2.3.2. Assume Q ∼= Z4 ⋉ (Z2 ×Z2). Up to automorphism, any 2-element
generating set of Q is of the form {x, xiy}. Of course, by replacing x with x−1, we may
assume 0 ≤ i ≤ 2. Also, since x2y has order 2, it may be replaced with y; so we may assume
i ∈ {0, 1}.
Since Φ(Q) = 〈x2, z〉 and Q′ = 〈z〉, we must have c ∈ {x2, x2z}P . Thus, letting w be a

generator of P , either:

S = {x, y, x2w} or S = {x, xy, x2w}, or S = {x, y, x2zw}, or S = {x, xy, x2zw}.

Also:

• x acts on P by an automorphism of order 4 (so x2 inverts P ),
• y either centralizes P or inverts it, and
• z centralizes P .

Let k ∈ Zp, such that x−1wx = wk. Since the action of x on P has order 4, we have
2 ≤ k ≤ p− 2. Let N = 〈z, P 〉. Since z centralizes P , the order of z is 2, and the order of
w is p, we have N = 〈zw〉 ∼= Z2p.
For the first generating set,

(

x2w, x−1, x2w, y, x−3, y
)

is a hamiltonian cycle in Cay(G/N ;S) that passes through the vertices of this graph in the
order:

N,Nx2, Nx,Nx3, Nx3y,Nx2y,Nxy,Ny,N.

Similarly, replacing each instance of x2w with x2zw yields a hamiltonian cycle in Cay(G/N ;S)
for the third generating set that passes through the vertices of this graph in the same order
as the hamiltonian cycle for the first generating set. Since z is in the center of G and z
appears exactly twice in the list of edges, the endpoints of these cycles in G are the same
and they are given by

x2wxwyxy = x2wxwxz = x2wx2wkz = x4wk−1z = wk−1z.

Since k−1 is coprime to p, and z has order 2, this generates N = 〈wz〉. So the Factor Group
Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).
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For the second generating set,
(

x2w, x, x2w, xy, x3, (xy)−1
)

is a hamiltonian cycle in Cay(G/N ;S) that passes through the vertices of this graph in the
order:

N,Nx2, Nx3, Nx,Nx2y,Nx3y,Ny,Nxy,N.

Similarly, replacing each instance of x2w with x2zw yields a hamiltonian cycle in Cay(G/N ;S)
for the fourth generating set that passes through the vertices in the same order as the hamil-
tonian cycle for the second generating set. Since z is in the center of G and z appears exactly
twice in the list of edges, the endpoints of each cycle are the same and is given by

x2wx3wxyx3y−1x−1 = x2wx3wxyx2yz = x2wx3wx3z = x2wx2w−kz = w−(k+1)z.

Since z has order 2 and −(k + 1) is coprime to p (recall 2 ≤ k ≤ p − 2), this generates
N = 〈wz〉. So the Factor Group Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).

7. The case where G/G′ ∼= Z2 × Z2 × Z2

(7.1) Proposition. Assume |G| = 16p. If G/G′ ∼= Z2 × Z2 × Z2, then Cay(G;S) has a
hamiltonian cycle.

Proof. We proceed via case-by-case analysis.

Case 1. Assume #S = 3. Write S = {a, b, c}. Since G/G′ ∼= Z2 × Z2 ×Z2, it is easy to see
that the sequence

(a, b, a, c, a, b, a, c)

is a hamiltonian cycle in Cay(G/G′;S). Also, since every nontrivial element of G/G′ has
order 2, we know s−1 ≡ s (mod G′), for every s ∈ S, so, for any choice of i1, . . . , i8 ∈ {±1},

(ai1 , bi2 , ai3 , ci4, ai5 , bi6 , ai7 , ci8) is a hamiltonian cycle in Cay(G/G′;S).(7.2)

Now:

• If |a| = 2p, then a has order 2 in G/P , but not in G, so Corollary 2.3 and Remark 2.12
apply.

• If |a| = 4p, then a2 generates G′. Since 〈a〉/G′ is normal in G/G′ ∼= (Z2)
3, we have

〈a〉 ⊳ G. Choose β, γ ∈ {±1} such that

xb = xβ and xc = xγ , for all x ∈ 〈a〉.

Then, letting ik = 1 for k /∈ {1, 3, 5}, the endpoint of the path (7.2) in G is

ai1bai3cai5bac = ai1aβi3aβγi5 g ∈ G′ = 〈a2〉, where g = bcbac.

Since each of i1, i3, i5 can be ±1 independently, the endpoints that can be obtained
in this way are:

a−3g, a−1g, ag, a3g.

Since 〈a2〉 ∼= Z2p, and at least one of any 4 consecutive integers is relatively prime
to 2p, it must be the case that at least one of these endpoints generates 〈a2〉 = G′.
So the Factor Group Lemma (2.1) applies.
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Thus, we may assume no element of S has order divisible by p. Therefore s2 ∈ Q′ for every
s ∈ S. So we may assume

every element of S has order 2

for otherwise Corollary 2.3 and Remark 2.12 apply.
Let

g′ = abacabac = [a, b] bc [a, b] bc

be the endpoint of the path (7.2) in G.

(7.3) Observation. For future reference, we note:

(1) Since Q8 is not generated by elements of order 2, we knowQ is not the group described
in (3b) of Proposition 3.3.

(2) Suppose Q is the group described in (3c) of Proposition 3.3. Let S be the image of S
in Q. It is not difficult to see that xyz is the only element of order 2 that is of the
form xiyjz. Thus, we must have xyz±1 ∈ S, and the other two elements of S must
be in 〈x, y〉. Since all elements of S have order 2 (and |xy| = 4), we conclude that S
is of the form

S = { xz2i, yz2j, xyz±1 }.

Up to automorphism (replacing x with xz2i, replacing y with yz2j , and, if necessary,
replacing z with z−1), we have

S = { x, y, xyz } (if Q = Z2 ⋉ (Z2 × Z4)).(7.4)

Subcase 1.1. Assume [b, c] generates G′. Since b and c both have order 2, they generate a
dihedral group. Since G′ = 〈(bc)2〉 has order 2p, we know 〈bc〉 has order 4p and 〈b, c〉 ∼= D8p.
Thus b and c both invert 〈bc〉 and G′.
Therefore bc centralizes G′, so g′ = [a, b]2[b, c]. So the Factor Group Lemma (2.1) applies

unless P ⊂ 〈[a, b]〉 (which implies that a inverts P ), and

[b, c] ≡ [a, b]−2 (mod Q′).(7.5)

Replacing Q by a conjugate, we may assume b ∈ Q. Write a = aw and c = cw′ with a, c ∈ Q
and w,w′ ∈ P . Since a and c both invert P , we know a and c both invert P .
We have

[b, c] = (bc)2 = (bcw′)2 = (bc)2(w′)2

and

[a, b] = (ab)2 = (awb)2 = (ab)2w−2 (since a and b invert P ),

so (7.5) tells us that

w′ = w2.(7.6)

Subsubcase 1.1.1. Assume [a, b] generates G′. We may interchange a and c, so the
preceding calculations tell us that w = (w′)2 = (w2)2 = w4, so we must have p = 3.

Subsubsubcase 1.1.1.1. Assume Q is as described in Proposition 3.3(3c). From
(7.4) and (7.6), we see that

S = {xw, y, xyzw−1}, where P = 〈w〉.
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Let N = 〈xy〉 = {e, xy, z2, xyz2} be the cyclic group of order 4 generated by xy. Observe
that N ⊳G and that Cay(G/N ;S) is graph isomorphic to Cay(D12; {R,F}), where {R,F} is
the natural generating set for D12, under the vertex identification φ : G/N → D12 given by

φ(N(xwy)k) = R2k,

φ(N(xwy)k(xw)) = R2k+1,

φ(N(xwy)k(xyzw−1)) = R2kF, and

φ(N(xwy)k(xw)(xyzw−1)) = R2k+1F,

for any integer k. The natural hamiltonian cycle (R5, F )2 in Cay(D12; {R,F}) corresponds
to the hamiltonian cycle

((xw, y)3#, xyzw−1, (y, xw)3#, xyzw−1)

in Cay(G/N ;S). The endpoint in G is

(xwy)3(y−1)(xyzw−1)(yxw)3(xw)−1(xyzw−1) = (xyz2)(y)(xyzw−1)(xy)(w−1x)(xyzw−1)

= (xyz2)(xz−1w−1)(xy)(yzw)

= (yz−1w−1)(xzw) = xyz2 = (xy)−1,

which generates 〈xy〉 = N . Thus, the Factor Group Lemma (2.1) provides a hamiltonian
cycle in Cay(G;S).

Subsubsubcase 1.1.1.2. Assume Q = D8×Z2 = 〈f, t〉×Z2. Since [a, b] is nontrivial,
we may assume a = f and b = ft. Because 〈b, c〉 is a dihedral group and S is minimal, we
must have c = ftiz, for some integer i. Since [b, c] = (bc)2 = (ftftiz)2 = t2i−2 is nontrivial,
i must be even. We may replace z with t2z since the order of t2z is 2 and t2z ∈ Z(Q). Thus
we may assume c = fz. Then, from (7.6), we see that

S = {fw, ft, fzw−1},

where f inverts w, whereas t and z centralize w (and w is a generator of P ).
Let N = 〈tz〉 = {e, tz, t2, t3z} be the cyclic group of order 4 generated by tz. Observe that

N ⊳G and that Cay(G/N ;S) is graph isomorphic to Cay(D12; {R,F}), where {R,F} is the
natural generating set for D12, under the vertex identification φ : G/N → D12 given by

φ(N((ft)(fzw−1))k) = R2k,

φ(N((ft)(fzw−1))k(ft)) = R2k+1,

φ(N((ft)(fzw−1))k(fw)) = R2kF, and

φ(N((ft)(fzw−1))k(ft)(fw)) = R2k+1F,

for any integer k. The natural hamiltonian cycle (R5, F )2 in Cay(D12; {R,F}) corresponds
to the hamiltonian cycle

((ft, fzw−1)3#, fw, (fzw−1, f t)3#, fw)

in Cay(G/N ;S). The endpoint in G is

(ftfzw−1)3(fzw−1)−1(fw)(fzw−1ft)3(ft)−1(fw) = (tz)(wz−1f−1)(fw)(t3z)(t−1f−1)(fw)

= (tz)(wz−1w)(t3z)(t−1w)

= (tw2)(t2zw) = t3z = (tz)−1,
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which generates 〈tz〉 = N . Thus, the Factor Group Lemma (2.1) provides a hamiltonian
cycle in Cay(G;S).

Subsubcase 1.1.2. Assume [a, b] does not generate G′. Because we could interchange
b and c, we may assume [a, c] also does not generate G′. Since

[a, c] = (ac)2 = (aw cw2)2 = (a cw)2 = (a c)2w2,

and w2 generates P , this implies that a commutes with c. By the same argument, a commutes
with b. So a is in the center of Q. Therefore Q = 〈b, c〉 × 〈a〉. Looking at the list of groups
in Proposition 3.3(3) (and recalling that a, b, and c all have order 2), we conclude that
Q = D8 × Z2. Furthermore, we have a = z, and 〈b, c〉 = D8, so we may assume

S = {zw, f, ftw2}

where f and z invert w, and t centralizes w (and w is the generator of P ).
Let N = Q′ = 〈t2〉 = {e, t2}. Observe that the graph Cay(G/N ;S) is isomorphic to

Cay(Z2 ⋉ Z4p; {X, Y }), where {X, Y } is the natural generating set for Z2 ⋉ Z4p given by

Z2 ⋉ Z4p = 〈X, Y |X2 = Y 4p = 1, X−1Y X = Y 2p−1〉.

This graph isomorphism is given by the vertex identification φ : G/N → Z2 ⋉ Z4p where

φ(N(fftw2)k) = Y 2k,

φ(N(fftw2)kf) = Y 2k+1,

φ(N(fftw2)k(zw)) = Y 2kX, and

φ(N(fftw2)k(f)(zw)) = Y 2k+1X,

for any integer k. The hamiltonian cycle (Y 2p−1, X)4 in Cay(Z2 ⋉ Z4p; {X, Y }) corresponds
to the hamiltonian cycle

((f, ftw2)p#, zw, (ftw2, f)p#, zw)2

in Cay(G/N ;S). The endpoint in G is
(

(fftw2)p(ftw2)−1(zw)(ftw2f)p(f)−1(zw)
)2

=
(

(tp)(w−2t−1f−1)(zw)(t−p)(f−1)(zw)
)2

=
(

(ft−p+1w2)(zw)(ftp)(zw)
)2

= (t2p−1)2 = t2,

which generates 〈t2〉 = N . Thus, the Factor Group Lemma (2.1) provides a hamiltonian
cycle in Cay(G;S).

Subcase 1.2. Assume there do not exist s, t ∈ S, such that 〈[s, t]〉 = G′. Then, since

〈[a, b], [a, c], [b, c]〉 = G′ = Q′ × P,

we may assume 〈[a, b]〉 = P and 〈[b, c]〉 = Q′.
Furthermore, we may assume bc inverts G′, for otherwise it centralizes G′, in which case,

g′ = [a, b]2[b, c], so g′ generates G′, so the Factor Group Lemma (2.1) applies.

Subsubcase 1.2.1. Assume Q = D8 × Z2. Since 〈b, c〉 is dihedral and Q′ = 〈[b, c]〉 =
〈(bc)2〉 has order 2, it must be the case that ab has order 4 and 〈b, c〉 ∼= D8. So we may
assume b = f and c = ft.
Write a = aw with a ∈ Q and w ∈ P . Since a and b have order 2, we know they generate

a dihedral group, so a and b both invert P , but c centralizes P (since bc inverts G′).
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Since [a, b] ∈ P projects trivially into Q, we know a commutes with b = f , so a ∈ 〈f, t2〉z.
However, since t2z is in the center of Q, there is no harm in replacing z with t2z, so we may
assume a ∈ 〈f〉z. Thus, there are only two generating sets to consider:

S = {zw, f, ft} or S = {fzw, f, ft} .

In each case, assume the first two generators invert P , and the third generator central-
izes P . (Thus, in both cases, f and t invert P . However, z inverts P in the first case, but
z centralizes P in the second case.)

The cycle
(

(ft, f)4#, a
)2

in each of these generating sets (so in the first, a = zw, and
in the second, a = fzw), is a hamiltonian cycle in Cay(G/P ;S), and its endpoint in G is
(

(ftf)4f−1a
)2

= (fa)2. In the first case, the endpoint (fa)2 is (fzw)2 = f 2z2w2 = w2, while
in the second case, it is (ffzw)2 = (zw)2 = w2. Since w2 certainly generates P , the Factor
Group Lemma (2.1) provides a hamiltonian cycle in Cay(G;S).

Subsubcase 1.2.2. Assume Q 6= D8 × Z2. We will show that this case cannot occur.
From (7.4), it is easy to see that no two elements of S commute. So the image of [a, b] in Q
is nontrivial, which contradicts the fact that 〈[a, b]〉 = P .

Case 2. Assume #S > 3. Since G/P ∼= Q is a 3-generated 2-group, there is a 3-element
subset {a, b, c} of S that generates G/P . The minimality of S implies 〈a, b, c〉 6= G, so
|〈a, b, c〉| = 16. Thus, we may assume 〈a, b, c〉 = Q.
Since a, b, and c all have order 2 in Q/Q′, they also have order 2 in G/Q′. So we may

assume
a, b, and c all have order 2

for otherwise Corollary 2.3 and Remark 2.12 apply.
Let s be the 4th element of S. We may assume s /∈ G′, for otherwise Lemma 2.11 and

Remark 2.12 apply with X = {s}.
Let s = wq where w generates P and q ∈ Q. If c centralizes P , we have

[c, s] = c−1(wq)−1cq = (q−1)c(w−1)cwq = (q−1)cw−1wq = (q−1)cq = [c, q] ∈ Q′.

Since
G′ = Q′ × P = 〈[a, b], [a, c], [b, c], [a, s], [b, s], [c, s]〉

and Q′ = 〈[a, b], [a, c], [b, c]〉, we may assume P ⊂ 〈[c, s]〉. Thus [c, s] 6∈ Q′ and c inverts P .
Therefore, P ⊂ 〈[c, s]〉 ⊂ 〈c, s〉.
We claim that s ∈ cG′. If not, then the image of 〈c, s〉 in G/G′ has order 4, so we may

assume {a, c, s} generates G/G′ ∼= Q/Q′ = Q/Φ(Q). But this implies that {a, c, s} generates
G/P ∼= Q. Since we also know that P ⊂ 〈c, s〉 ⊂ 〈a, c, s〉, we conclude that 〈a, c, s〉 = G.
This contradicts the minimality of S.
We may assume s /∈ cP , for otherwise Corollary 2.2 and Remark 2.12 apply. Let u be a

generator of Q′ ∼= Z2. Then s ∈ cG′ = cQ′P = {c, cu}P . Since s 6∈ c P and s 6∈ Q, we have
s = cuw for some generator w of P ∼= Zp. Let γ = uw. Then s = cγ and

〈γ〉 = 〈uw〉 = 〈u〉〈w〉 = Q′P = G′.

Since [c, s] generates P , we see that c inverts P .
We claim that both a and b centralize P . If not, we may assume a inverts P . Then

P ⊂ 〈[a, s]〉 ⊂ 〈a, s〉. Since {a, b, s} and {a, b, c} have the same image in G/G′ ∼= Q/Q′ =
Q/Φ(Q), we know {a, b, s} generates G/G′. This implies that {a, b, s} generates G/P ∼= Q.
Hence, {a, b, s} generates G, contradicting the minimality of S.
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Now, since G/G′ ∼= Z2 × Z2 × Z2 (and s ≡ c (mod G′)), it is easy to see that all three of
the following sequences are hamiltonian cycles in Cay(G/G′;S):

(a, c, b, c, a, c, b, c), (a, c, b, c, a, c, b, s), (a, c, b, s, a, c, b, s).

Let g = acbcacbc be the endpoint (in G) if the first cycle. Then the endpoints of the other
two cycles are:

gc−1s = g γ and acbsacbs = acb(cγ)acb(cγ) = g γ2.

Now g ∈ Q′ = 〈γp〉, and |γ| = 2p. Now, it is easy to see that if m is a multiple of p,
then either m+ 1 or m+ 2 is relatively prime to 2p. Therefore, either g γ or g γ2 generates
〈γ〉 = G′, so the Factor Group Lemma (2.1) applies.
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