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Affine transformations of finite vector spaces with large orders or
few cycles
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Abstract

Let V be a d-dimensional vector space over a field of prime order p. We classify the affine
transformations of V of order at least pd/4, and apply this classification to determine the finite
primitive permutation groups of affine type, and of degree n, that contain a permutation of order
at least n/4. Using this result we obtain a classification of finite primitive permutation groups
of affine type containing a permutation with at most four cycles.

1. Introduction

That permutations of a set of size n can have order as great as e(1+o(1))(n logn)1/2 was shown
by Edmund Landau [17, 18] in 1903. However many of these large ordered permutations do
not belong to proper primitive subgroups of Sym(n) or Alt(n). Indeed, in [8] it was shown
that the primitive permutation groups on n points having a nonabelian socle, and containing
a permutation of order at least n/4, are very restricted, with the natural actions of alternating
groups Alt(r) on subsets, and projective groups PSLr(q) on points or hyperplanes playing a
special role: the socle of each such group is Alt(r)` or PSLr(q)

` acting on `-tuples of subsets,
points or hyperplanes. The case of primitive groups with an abelian socle was not treated in [8].
These primitive groups are groups of affine transformations of finite vector spaces, where the
point set is the vector space itself.

The first aim of this paper is to determine the affine transformations of a vector space of
size n which have order at least n/4, and the affine primitive groups in which they lie. Each
affine transformation g of a finite vector space V has the form g = tvh, with tv : x 7→ x+ v a
translation, for some v ∈ V , and with h ∈ GL(V ), where tv is performed first followed by h.

Theorem 1.1. Let V be a d-dimensional vector space over a field Fp of prime order p, and
let g = tvh be an affine transformation of V with order at least pd/4. Then g and h appear in
one of the Tables 2, 3, 4.

Remark 1. We note that each of the examples g in Tables 2, 3, 4 have order at least pd/4
when p is odd. This is clear from the expressions for the orders of the elements in the tables.
However there are a few instances where this is not the case when p = 2, so Theorem 1.1 is
not in fact an ‘if and only if’ statement for p = 2. For example in line 12 of Table 3, when
(d, d1, d2, d3, d4) = (12, 2, 2, 3, 5), the element order is |g| = (22 − 1)(23 − 1)(25 − 1) = 651 <
2d/4 = 1024.
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Theorem 1.2 in conjunction with the results in [8] gives a complete classification of all finite
primitive groups of degree n containing elements of order at least n/4. The group of affine
transformations of V is denoted AGL(V ) and is called the affine general linear group of V . It is
a semidirect product T ·GL(V ), where T is the group of translations and GL(V ) is the group of
invertible linear transformations of V . Finite primitive groups of affine type are the subgroups
of AGL(V ), for some V , of the form G = T ·G0, where G0 = G ∩GL(V ) acts irreducibly on
V . For V = Fdp with d = 1, each transitive subgroup of AGL(V ) contains translations of order
p, so all such groups are examples. Theorem 1.2 classifies the examples with d ≥ 2.

Theorem 1.2. Let G = T ·G0 ≤ AGL(V ) be an affine primitive group on V of degree pd,
where p is prime and d ≥ 2. If G contains a permutation g of order at least pd/4, then one of
the following holds for G0:
(1) SLd/r(p

r) ≤ G0 ≤ ΓLd/r(p
r) for some r | d with 1 ≤ r < d;

(2) G0 ≤ ΓL1(pd) with [GL1(pd) : G0 ∩GL1(pd)] ≤ 3;
(3) G0 ≤ GLd/r(p) wr Sym(r) for some r | d with 1 < r ≤ d, and additionally, one of:

(i) p = 2, and d = r ≤ 5, or d = 2r ≤ 6, or d ≥ 3r and 4r2 − 21r ≤ d,
(ii) p = 3, and d = r ≤ 3, or r = 2,
(iii) p ≥ 5 and d = r = 2;

(4) p = 2 and d ≤ 6, or p = 3 and d ≤ 4, or d = 2 and p ≤ 13, and G0 is in Table 1.

Remark 2. We note that in case (3) the image of g in Sym(r) is trivial in most cases. We
prove this in Lemma 5.1 where we also find the exact values where g has a possibly non-trivial
image in Sym(r). Case (3) (i) does not always occur; a necessary condition for existence is for
such a group to contain an element in one of the lines 7–18 of Table 3, or d ≤ 5. The function
4r2 − 21r in case (3) (i) is not the best possible lower bound of d and for a refined version we
refer to Remark 4.

Since the order of a permutation is equal to the least common multiple of the cycle lengths
in its disjoint cycle representation, permutations with a bounded number of cycles have orders
which grow at least linearly with the degree n: if a permutation has c cycles, then one of its
cycles has length at least n/c, and hence its order is at least n/c. Of course the converse is
not true: permutations with order at least n/4 can have as many as 3n/4 cycles of length
1. We apply our classification of affine transformations of order at least n/4 to determine all
affine transformations which have at most 4 cycles, as well as the affine primitive groups which
contain such elements.

Theorem 1.3. Let V be a d-dimensional vector space over a field Fp of prime order p, and
let g = tvh be an affine transformation of V with at most four cycles in its action on V . Then
g appears in one of the Tables 5, 6, 7.

Theorem 1.4. Let G = T ·G0 ≤ AGL(V ) be an affine primitive group on V of degree pd,
where p is prime and d ≥ 2. If G contains a permutation with at most four cycles, then one of
the following holds:
(1) SLd/r(p

r) ≤ G0 ≤ ΓLd/r(p
r) where r divides d and 1 ≤ r ≤ d. Moreover, G0 contains sid/r,

where 1 ≤ i ≤ 3 and sd/r denotes a Singer cycle in GLd/r(p
r);

(2) G0 ≤ GLd/r wr Sym(r) for some r | d with r > 1 and
(i) p = 2 and r = 2, or d = r ≤ 5, or (d, r) = (6, 3),

(ii) p = 3 and d = r ≤ 3,
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(iii) p ≥ 5 and d = r = 2;
(3) G0 is contained in one of the rows of Table 1 with a ‘y’ in the fourth column.

Bamberg and Penttila [4] have obtained a very detailed classification of the groups satisfying
part (1). The classification in Theorem 1.4 could be refined taking into account the results of [4].

In [9], we build on these results to classify all finite primitive groups containing elements with
at most four cycles. These results have various applications; in particular to normal coverings
of a group and to the study of monodromy groups of Siegel functions. We refer the reader to [9]
for more details and also to [21], where the finite primitive groups that contain a permutation
with at most two cycles are classified.

The choice of “pd/4” in Theorems 1.1 and 1.2 and of “four” in Theorems 1.3 and 1.4 is to
some extent arbitrary. On the one hand it allows a list of exceptions that is not too cumbersome
to use and, on the other hand, it will be strong enough to determine in the forthcoming paper [5]
the first sharp bound on the normal covering number of Sym(n).

d p G0 G contains a permutation with
at most four cycles?

4 2 Alt(5) or Sym(5) y
4 2 Alt(6) or Sym(6) ∼= Sp4(2) y
4 2 Alt(7) y
6 2 Sp6(2) y

6 2 Sym(8) ∼= GO+
6 (2) or GO−6 (2) y

6 2 Sym(7) y
6 2 3×GL3(2) y
6 2 Sym(3)×GL3(2) y
3 3 Ω3(3) ∼= Alt(4) or Ω3(3)× 2 ∼= Alt(4)× 2 y
3 3 SO3(3) ∼= Sym(4) (two such groups) y
3 3 GO3(3) ∼= Sym(4)× 2 y
4 3 8.Alt(5) or 8. Sym(5) y
4 3 CSp4(3) n

4 3 GO+
4 (3) or GO−4 (3) n

4 3 GL2(3) : (3× Sym(3)) n
4 3 ((2×Q8) : 2) : 5 : 4 n
4 3 GL2(3) : Sym(4) n
4 3 2.PGL2(9) n
4 3 21+4.Alt(5) : 2 n
4 3 (SA16 : 2) : 3 n
4 3 (SA16 : 2) : 6 (two such groups) n
4 3 Q8. Sym(3) : 4 n
4 3 GL(2, 3) : D8 n
2 5 SL2(3) : 2 y
2 5 SL2(3) : 4 y
2 5 Sym(3) y
2 5 D12 y
2 7 SL2(3) y
2 7 3× SL2(3) y
2 7 3× SL2(3).2 = 3× 2. Sym(4) y
2 7 D16 y
2 11 5×GL2(3) y
2 11 5× SL2(5) y
2 13 SL2(3) : 4 or 3× SL2(3) : 4 y

Table 1. Primitive groups in Theorems 1.2(4) and 1.4(3)
.
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Line d p Conditions h |g| |g| vs. |h|

1 ≥ 1 – 1 ≤ i ≤ 3 sid (pd − 1)/i |g| = |h|
and i | pd − 1

2 ≥ 2 – 1 ≤ i ≤ 3 J1 ⊕ sid−1 (pd − p)/i |g| = p|h|
and i | pd−1 − 1

3 1 – J1 p |g| = p|h|

Table 2. Arbitrary p

Line p d Conditions h |g| |g| vs. |h|

1 3 ≥ 3 J1 ⊕ sd−1 3d−1 − 1 |g| = |h|
2 3 ≥ 3 t = 2, (d1, d2) = 1 sd1 ⊕ sd2

1
2

(3d1 − 1)(3d2 − 1) |g| = |h|
3 3 ≥ 4 i = 1, 2 (s1 ⊗ J2)⊕ sid−2 3(3d−2 − 1) |g| = |h|

d odd if i = 2
4 3 ≥ 4 J2 ⊕ sd−2 3(3d−2 − 1) |g| = |h|
5 3 ≥ 4 h′ ∈ GLd−1(p) as h in J1 ⊕ h′ 3|h′| |g| = p|h|

lines 1, 2
6 3 ≥ 5 J3 ⊕ sd−3 9(3d−3 − 1) |g| = p|h|

7 2 ≥ 3 t ≥ 2, d1 = 1 with
⊕

j sdj
∏

(2dj − 1) |g| = |h|
d2, . . . , dt ≥ 2 coprime

8 2 ≥ 5 t ≥ 2, with
⊕

j sdj
∏

(2dj − 1) |g| = |h|
dj ≥ 2 coprime

9 2 ≥ 4 d1 = 4, and for j ≥ 2 (s2 ⊗ J2)⊕
⊕

j≥2 sdj 6
∏

(2dj − 1) |g| = |h|
dj ≥ 3 odd and coprime

10 2 ≥ 5 d1 = 3, and for j ≥ 2 J3 ⊕
⊕

j≥2 sdj 4
∏

(2dj − 1) |g| = |h|
dj ≥ 2 and coprime

11 2 ≥ 4 t ≥ 2, and for j ≥ 2 J2 ⊕
⊕

j≥2 sdj 2
∏

(2dj − 1) |g| = |h|
dj ≥ 2 and coprime

12 2 ≥ 5 t ≥ 2, dj ≥ 2 and coprime
⊕

j sdj
1
3

∏
(2dj − 1) |g| = |h|

except (d1, d2) = 2
13 2 ≥ 5 t ≥ 2, d1 ≥ 4 even, s3d1 ⊕

⊕
j≥2 sdj

1
3

∏
(2dj − 1) |g| = |h|

dj ≥ 2 and coprime
14 2 ≥ 4 h′ ∈ GLd−1(2) as h J1 ⊕ h′ 2|h′| |g| = p|h|

in lines 7, 8, 12, 13
15 2 ≥ 5 h′ ∈ GLd−2(2) as h J2 ⊕ h′ 4|h′| |g| = p|h|

in lines 7, 8, 12, 13
16 2 ≥ 5 h′ ∈ GLd−4(2) as h in J4 ⊕ h′ 8|h′| |g| = p|h|

line 8 or in Table 2 line 1
17 2 ≥ 4 i = 1, 3 J2 ⊕ sid−2 4(2d−2 − 1)/i |g| = p|h|

Table 3. Other infinite families p = 2, 3

Remark 3.
(a) The notation used in Tables 2–7 is explained in Notation 1.
(b) The elements in Table 4, line 11, with h = J1 ⊕ s32 also occur in Table 2, line 2 with

(p, d, i) = (2, 3, 3).
(c) The elements in Table 4, line 8, with h = J2 ⊕ s32 also occur in Table 3, line 18 with

(d, i) = (4, 3).
(d) Not all Singer cycles sa in GLa(p) are conjugate. Thus a line containing Singer cycles or

their powers may represent several conjugacy classes of examples.
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Line p d Conditions h |g| |g| vs. |h|

1 ≥ 3 2 1 ≤ i ≤ 3 si1 ⊗ J2 p(p− 1)/i |g| = |h|
and i | p− 1

2 3 4 s2 ⊗ J2 24 |g| = |h|
3 2, 3 p Jp p2 |g| = p|h|
4 2 2, 3, 4, 5 Jd 2, 4, 4, 8 |g| = |h|
5 2 3 J2 ⊕ J1 = J2 ⊕ s1 2 |g| = |h|
6 2 4 J3 ⊕ J1 4 |g| = |h|
7 2 4 J4 8 |g| = p|h|
8 2 4 J2 ⊕ J2 4 |g| = p|h|
9 2 4 J2 ⊕ J1 ⊕ J1 4 |g| = p|h|
10 2 3 J2 ⊕ J1 = J2 ⊕ s1 4 |g| = p|h|
11 2 3 J1 ⊕ J1 ⊕ J1 2 |g| = p|h|

Table 4. Sporadic cases

2. Notation and preliminary observations

Given a positive integer d and a prime p, we denote by V the d-dimensional vector space
of row vectors over the field Fp of size p, and choose a basis {e1, . . . , ed}. As in Section 1 we
represent an element g ∈ AGL(V ) uniquely as g = tvh with tv : x 7→ x+ v a translation, for
some v ∈ V , and with h ∈ GL(V ) (where tv is performed first). We first seek conditions on v
and h so that g has order at least n/4 = pd/4 and then, using these results as a starting point,
we find conditions so that g has at most 4 cycles in its action on V (including the zero vector).
We let |g| denote the order of the element g.

We use the following notation and information.

Notation 1.
(a) We denote by I the identity element of GL(V ). For each r ≥ 1 and h ∈ GL(V ) define h(r)

by

h(r) = I + h+ . . .+ hr−1. (2.1)

(b) For v′ ∈ V and g = tvh, the g-cycle containing v′ consists precisely of the vectors

{v′hr−1 + vh(r)− v | r ≥ 1}.

(c) For 1 ≤ j ≤ d, let sj denote a generator of a Singer cycle in GLj(p) (an element of order
pj − 1), and let Jj denote the cyclic unipotent element of GLj(p) acting on 〈e1, . . . , ej〉
sending ei to ei + ei+1 for i < j and fixing ej . We suppress the parameter p as it will be
clear from the context. For convenience we also let J0 denote the identity on the zero vector
space.
If we write, for example, h = Jj ⊕ Ji we will mean that h acts as Jj on 〈e1, . . . , ej〉, and as
Ji on 〈ej+1, . . . , ej+i〉 in the sense of mapping ej+s to ej+s+1 for 1 ≤ s < i and fixing ej+i.

(d) In Table 3, wherever the notation dj is used, we have 1 ≤ j ≤ t, and
∑t
j=1 dj = d.

(e) Whenever hj ∈ GL(V ) is indecomposable (where V has dimension dj) and we write hj =
sjuj(= ujsj), this indicates the Jordan decomposition with uj unipotent and sj semisimple.
Since hj is indecomposable, V = ⊕mj

i=1Wi is a sum of mj pairwise isomorphic irreducible
Fp〈sj〉-submodules of dimension d′j = dj/mj . If we have h instead of hj , we omit the
subscript j throughout this notation.
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We start by recalling [8, Lemma 2.2]. (Here logp(x) denotes the logarithm of x to the base
p and dxe denotes the least integer k satisfying x ≤ k.)

Lemma 2.1. Let u be a unipotent element of GLd(p
f ) where p is prime and f ≥ 1. Then

|u| ≤ pdlogp(d)e and equality holds if and only if the Jordan decomposition of u has a block of
size b such that dlogp(d)e = dlogp(b)e.

If g = tvh ∈ AGLd(p), then |g| is either |h| or p|h|, and Lemma 2.2 explains which one holds.

Lemma 2.2. Let h ∈ GL(V ) of order k and let h(k) be as in (2.1). Then

(a) (vh(k))h = vh(k), for every v ∈ V ;
(b) g = tvh has order pk if and only if vh(k) 6= 0, and in this case gk = tvh(k);
(c) the following are equivalent:

(i) there exists v such that tvh has order pk;
(ii) h(k) 6= 0;

(iii) the minimal polynomial mh(x) of h is of the form (x− 1)(k)pf(x) for some polynomial
f(x) coprime to x− 1, where (k)p denotes the p-part of k.

Proof. Observe that the element h(k) defined in (2.1) can also be written as h(k) = I +
h−1 + . . .+ h−k+1, and that gk = (tvh)k = tu, where u = v + vh−1 + . . .+ vh−k+1 = vh(k).
Also h(k)(I − h) = I − hk = 0 and so u = vh(k) = vh(k)h = (vh(k))h = uh, proving (a). Since
gk = tu, |g| = pk if and only if u 6= 0, proving (b).

Now we prove part (c). Suppose that (i) holds and let v ∈ V be such that |tvh| = pk. Then by
part (b), we have vh(k) 6= 0 and hence h(k) 6= 0, so (ii) holds. Next suppose that (ii) holds and
let v ∈ V be such that vh(k) 6= 0. Since h(k) 6= 0, mh(x) does not divide xk−1 + xk−2 + . . .+ 1,
but since h has order k, mh(x) divides xk − 1. Write k = (k)pm and observe that

xk − 1 = (xm − 1)(k)p = (x− 1)(k)p(xm−1 + . . .+ x+ 1)(k)p

= (x− 1)(k)p

 ∏
λ 6=1,λm=1

(x− λ)

(k)p

.

Since mh(x) does not divide (xk − 1)/(x− 1), we see that mh(x) = (x− 1)(k)pf(x), where f(x)
divides (xm−1 + . . .+ x+ 1)(k)p , and hence is coprime to x− 1, proving (iii).

Finally suppose that (iii) holds with mh(x) = (x− 1)(k)pf(x) for some polynomial f(x)
coprime to x− 1. Since, as we showed above, x− 1 has multiplicity (k)p in xk − 1, the
polynomial mh(x) does not divide `(x) = (xk − 1)/(x− 1). Hence `(h), which equals h(k),
is not the zero map, and so there exists v ∈ V such that vh(k) 6= 0. By part (b), tvh has order
pk, and (i) holds.

We give a useful corollary for the case where g = tvh has order p|h|.

Corollary 2.3. If g = tvh has order p|h| = pk, then h is conjugate to J(k)p ⊕ h′ for some
h′ ∈ GLd−(k)p(p).

Proof. Suppose |g| = p|h| and write k = |h|. By Lemma 2.2(c), (x− 1)(k)p divides mh(x).
It follows that there exists v ∈ V such that the Fp〈h〉-submodule generated by v is cyclic
of dimension (k)p, and h induces J(k)p on it. By Lemma 2.1, we have |J(k)p | = (k)p. Since
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(x− 1)(k)p+1 does not divide mh(x), the map h does not involve J(k)p+1 by Lemma 2.1, and
hence by [12, Theorem 8.2], h is conjugate to J(k)p ⊕ h′ for some h′ ∈ GLd−(k)p(p).

Lemma 2.4. Let g = tvh ∈ AGL(V ) and let U be the (x− 1)-primary component of the
Fp〈h〉-module V . Then g is conjugate to tuh for some u ∈ U . In particular, if h is fixed point
free on V \ {0}, then g is conjugate to h ∈ GL(V ).

Proof. Let V = U ⊕W be an h-invariant decomposition (so W is the direct sum of the other
primary components, if any). Then h|W is fixed point free, so also (h−1)|W is fixed point free and
in particular (I − h−1)|W is nonsingular. Observe that from Lemma 2.2(a) we have vh(k) ∈
U . Now v = u+ w, for some u ∈ U and w ∈W , and vh(k) = (u+ w)h(k) = uh(k) + wh(k)
with uh(k) ∈ U and wh(k) ∈W . Thus wh(k) = vh(k)− uh(k) ∈ U ∩W , so wh(k) = 0. Since
(I − h−1)|W is nonsingular, there exists w′ ∈W such that w = w′ − w′h−1, and hence we have

t−1w′ (tvh)tw′ = tv−w′(htw′h
−1)h = tv−w′+w′h−1h = tv−wh = tuh.

Note that if h is fixed point free (that is, U = 0), then we have u = 0 and therefore g is conjugate
to h ∈ GL(V ).

Notation 1 (extended).
(f) We add to our Notation 1 the subspaces U and W as defined in the statement and in

the proof of Lemma 2.4, and define the integer a by the equation

|U | = pa.

Since conjugate permutations have the same order and the same cycle structure we may,
because of Lemma 2.4, assume from now on that v ∈ U .

(g) For a finite group G, we write meo(G) = max{|g| | g ∈ G} for the maximal order of the
elements of G. Given two natural numbers n and m, we write (n,m) for the greatest
common divisor of n and m.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Suppose that g = tvh in AGL(V ) = AGLd(p) has order |g| ≥ n/4.
We shall prove that g and h appear in one of the lines of Tables 2, 3 or 4. Several times in
the proof we use the facts that meo(GLd(p)) = pd − 1 and meo(SLd(p)) = (pd − 1)/(p− 1). A
proof of these facts can be deduced, for example, from [8, Corollary 2.7] and for odd p from [13,
Table A.1].

The case |g| = |h|. First we assume that |g| = |h|. We use the notation in Section 2 and we
suppose that |h| ≥ pd/4. Write V = V1 ⊕ V ′, where V1, V

′ are h-invariant and h1 = h|V1
is

indecomposable; let h′ = h|V ′ (possibly V ′ = 0) so that h = h1 ⊕ h′, and let k = dim(V1).

Case |g| = |h|, p ≥ 5. We have hp−1 = hp−11 ⊕ (h′)p−1, and hp−11 , (h′)p−1 have determinant 1.
If V ′ 6= 0, then

|hp−1| ≤ meo(SLk(p))meo(SLd−k(p)) ≤ (pk − 1)(pd−k − 1)

(p− 1)2
<

pd

(p− 1)2
.

Hence |h| < pd/(p− 1) ≤ pd/4, which is a contradiction since p ≥ 5. Hence V ′ = 0 and h = h1
is indecomposable.

If h is irreducible then h = sid for some i with i | |sd|. As |sd| = pd − 1, we have 1 ≤ i ≤ 3,
as described in line 1 of Table 2. Suppose then that h is not irreducible. Let h = su. Since h is
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not irreducible, m ≥ 2 and u 6= 1. If d′ = 1, then by Lemma 2.1 we get

|h| ≤ (p− 1)pdlogp(d)e.

If d ≥ 6, this gives no examples since (p− 1)pdlogp(d)e ≤ (p− 1)dp < pd/4. If d ≤ 5 then, since
p ≥ 5, dlogp(d)e = 1 and a direct calculation shows that (p− 1)p is less than pd/4 unless m =
d = 2, which yields the example in line 1 of Table 4. Now assume that both m, d′ ≥ 2. Then h
has a conjugate lying in the subgroup GLm(pd

′
). Under this conjugation, s becomes a scalar

matrix in GLm(pd
′
) and u becomes a unipotent element of GLm(pd

′
). Applying Lemma 2.1,

we have

|h| ≤ (pd
′
− 1)pdlogp(m)e

and dlogp(m)e ≤ m− 1 (see the proof of [8, Lemma 2.4]). Therefore, noting that d′ +m ≤
d′m = d for integers d′,m ≥ 2, we get

|h| ≤ pd
′
pm−1 = pd

′+m−1 ≤ pd
′m−1 < pd/4

so there are no further examples when p ≥ 5.

Case |g| = |h|, p = 3. Arguing in the same way as in the first paragraph of “Case p ≥ 5” we
obtain that V is not a direct sum of three non-zero Fp〈h〉-submodules. First suppose that h is
indecomposable. If h is semisimple then it is irreducible and so h = sid with i ≤ 3 as in line 1
of Table 2. Suppose now that h is not semisimple and let h = su. Then m ≥ 2 and

|h| ≤ (3d
′
− 1)3dlog3(m)e.

A direct calculation shows that this is less than 3d/4 unless (d′,m) = (1, 2) or (2, 2); these cases
yield the examples in lines 1 and 2 of Table 4.

Finally suppose that V = V1 ⊕ V2 and h = h1 ⊕ h2 with hi = h|Vi
indecomposable and di =

dim(Vi) for i = 1, 2. If h is semisimple then h1 and h2 are contained in Singer cycles. In this
case if (d1, d2) ≥ 2 then

|h| ≤ lcm{3d1 − 1, 3d2 − 1} = (3d1 − 1)(3d2 − 1)/(3(d1,d2) − 1) < 3d/4.

So (d1, d2) = 1 and we have the examples in lines 1 and 2 of Table 3 (the condition d ≥ 3 follows
from a calculation). Now assume that h is not semisimple. Then, replacing h1 by h2 if necessary,
we may assume that h1 = u1s1 with V1 andm1 ≥ 2. Since meo(GLd−d1(3)) = 3d−d1 − 1 we have

|h| ≤ |h1| · |h2| ≤ (3d
′
1 − 1)3dlog3(m1)emeo(GLd−d1(3)) = (3d

′
1 − 1)3dlog3(m1)e(3d−d1 − 1).

Now a direct calculation shows that this is less than 3d/4 unless (m1, d
′
1) = (2, 1), (2, 2). In the

second case, h1 ∈ 〈s2 ⊗ J2〉 and so |h2| ≤ |h21||h22| ≤ 12 meo(SLd−4(3)). But [13] implies that
meo(SLd−4(3)) = (3d−4 − 1)/2, and hence |h| ≤ 12(3d−4 − 1). However, since d = 4 + d2 ≥ 5,
we have 12(3d−4 − 1) < 3d/4. Thus (m1, d

′
1) = (2, 1) and h1 ∈ 〈s1 ⊗ J2〉. If h2 is semisimple

then it is contained in a Singer cycle, giving the examples in lines 3 (if |h1| = 6) and 4 (if
|h1| = 3) of Table 3 (the conditions d ≥ 4 and d odd, when i = 2, follow from a calculation;
note that i = 2, d = 3 gives h = (s1 ⊗ J2)⊕ J1 of order 6 < 33/4). If h2 is not semisimple, then
h2 = u2s2 and m2 ≥ 2. We have

|h| ≤ |h1| · |h2| ≤ 6(3d
′
2 − 1)3dlog3(m2)e < 3d/4

except for d′2 = 1 and m2 = 2. In this exceptional case, |h2| divides 6 and, as h1 ∈ 〈s1 ⊗ J2〉,
we have |h| ≤ 6 < 3d/4. Therefore there are no further examples when p = 3.

Case |g| = |h|, p = 2. Suppose that V = V1 ⊕ . . .⊕ Vt and h = h1 ⊕ . . .⊕ ht, where the Vi are
h-invariant with dim(Vi) = di, and each hi = h|Vi

is indecomposable. Also let hi = siui. First
suppose that t = 1. If h is semisimple then it is contained in a Singer cycle giving the examples
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in line 1 of Table 2. Suppose now that u1 6= 1, so that m1 ≥ 2. Then

|h| ≤ (2d
′
1 − 1)2dlog2(m1)e,

which is less than 2d/4 unless (d′1,m1) = (1, 2), (1, 3), (1, 4), (1, 5), (2, 2); thus we have the
examples in line 4 of Table 4 and line 9 of Table 3 (by taking d = 4).

So we may assume t ≥ 2. Observe that if d = 2, then h = h1 = h2 = 1 as in line 1 of Table 2
(by taking i = 3). Thus we may suppose that d ≥ 3. If h is semisimple, then each hi is irreducible
and |h| ≤ lcm{2di − 1 | i = 1, . . . , t}. If (dj , dk) ≥ 3 for some distinct j and k, then

|h| ≤ lcm{2di − 1 | i = 1, . . . , t} ≤

(
t∏
i=1

(2di − 1)

)
/(2dj − 1, 2dk − 1) < 2d/7,

which is a contradiction. If there are at least three even di, then

|h| ≤ lcm{2di − 1 | i = 1, . . . , t} ≤

(
t∏
i=1

(2di − 1)

)
/(22 − 1)2 < 2d/9,

again a contradiction. Moreover, as d ≥ 3, if the fixed point subspace of h has dimension at
least 2 (so at least two of the di equal 1), then |h| ≤ meo(GLd−2(2)) = 2d−2 − 1 < 2d/4. Thus
d ≥ 3, at most one di can be 1, at most 2 of the di are even, and (dj , dk) ≤ 2 for distinct
j, k. Observe further that if di = 1 and if (dj , dk) = 2 for some distinct j and k, then |h| ≤
(2d−1 − 1)/3 < 2d−2: this shows that if di = 1 for some i, then (dj , dk) = 1 for distinct j and
k. The only such examples (with t ≥ 2) are listed in lines 7, 8, 12, 13 of Table 3. (Observe that
in line 13 we have d1 ≥ 4 because s32 = 1 fixes a subspace of dimension 2.)

Suppose now that h is not semisimple. Then we may assume that d1 is maximal such that
h1 = s1u1 is non-semisimple, and that m1 ≥ 2. Now

|h| ≤ |h1||h2| ≤ (2d
′
1 − 1)2dlog2(m1)emeo(GLd−d1(2)) = (2d

′
1 − 1)2dlog2(m1)e(2d−d1 − 1)

and a direct calculation shows that this is less than 2d/4 unless (m1, d
′
1) = (2, 1), (3, 1) or

(2, 2) (note that (m1, d
′
1) ∈ {(2, 1), (3, 1), (4, 1), (5, 1), (2, 2)} if d1 ≤ 5 from our work above).

We consider each possibility for (m1, d
′
1).

If (m1, d
′
1) = (2, 2), then h1 = s2 ⊗ J2, |h1| = 6 and h = h1 ⊕ h′. Clearly h′ must have odd

order for otherwise |h| = lcm{6, |h′|} ≤ 3|h′| < 3 · 2d−4 < 2d/4. It follows that h′ is semisimple
with irreducible blocks of dimensions d2, . . . , dt. Note that if one of the di (i ≥ 2) is even, then
2di ≡ 1 (mod 3) and we have

|h| ≤ lcm{6, 2dj − 1 | j = 2, . . . , t} ≤ 6 · 2d−4/3 < 2d/4.

Hence each di is odd for i ≥ 2. If two of the di have a common factor > 1, then similarly, we
have

|h| ≤ lcm{6, 2di − 1 | i = 2, . . . , t} ≤ 6 · 2d−4/3 < 2d/4.

Therefore the di must be pairwise coprime. A similar calculation shows that none of the di = 1,
and that each of the hi (i ≥ 2) is sdi (and not a proper power). Thus we have the examples in
line 9 of Table 3.

If (m1, d
′
1) = (3, 1), then h1 = J3 and |h1| = 4. As in the previous case, h = h1 ⊕ h′ and h′

must have odd order. So h′ is semisimple with irreducible blocks of dimensions d2, . . . , dt, and
the same arguments show that the di are pairwise coprime. If each di ≥ 2 then we have the
examples in line 10 of Table 3. If some di = 1 then t = 2 and we have the example in line 6 of
Table 4.

It remains to consider the case (m1, d
′
1) = (2, 1), where h1 = J2 of order 2. As before, h =

h1 ⊕ h′ where h′ is semisimple, and the usual arguments give us the examples in line 11 of
Table 3 and line 5 of Table 4.
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The case |g| = p|h|. We have now classified the examples with |g| = |h|. Henceforth we assume
that |g| = p|h|. By Lemma 2.2, the power (x− 1)(k)p divides mh(x), where k = |h|. If d = 1,
then h = 1 and we have the examples in line 3 of Table 2. For the rest of the proof we assume
then d ≥ 2.

Case |g| = p|h|, p ≥ 5. First suppose that h is semisimple. We seek conditions on h for which
|h| ≥ pd−1/4. In this case, x− 1 | mh(x) and so we can write h = J1 ⊕ h′ where h′ ∈ GLd−1(p)
is semisimple. (Recall that d− 1 ≥ 1.) By our previous work, the only semisimple elements
h′ ∈ GLd−1(p) of order at least pd−1/4 appear in line 1 of Table 2; thus the only examples of h
occur in line 2 of Table 2. If h is not semisimple then by Corollary 2.3 we have h = J(k)p ⊕ h′,
and (k)p ≥ 5. In particular,

|h| ≤ (k)p meo(GLd−(k)p(p)) = (k)p(p
d−(k)p − 1) < pd−1/4

in all cases since (k)p ≥ 5. So there are no further examples when p ≥ 5.

Case |g| = p|h|, p = 3. If h is semisimple then by Corollary 2.3 we can write h = J1 ⊕ h′ with
h′ ∈ GLd−1(3) of order at least 3d−1/4. Therefore h′ is contained in line 1 of Table 2 or lines 1, 2
of Table 3; so h is as in line 2 of Table 2 or line 5 of Table 3. If h is not semisimple then, by
Corollary 2.3, h is of the form J(k)3 ⊕ h′ (with k ≥ 3). If h = J(k)3 , then |h| = (k)3 = d so
|g| = 3d and 3d/4 > 3d for d ≥ 5, so h = J3 (line 3 of Table 4). Otherwise, d > (k)3 and

|h| ≤ (k)3(3d−(k)3 − 1),

which is less than 3d−1/4 unless (k)3 = 3 and d ≥ 5. So we may assume that h = J3 ⊕ h′ where
h′ ∈ GLd−3(3). Now if 3 divides |h′| then |h| = |h′| ≤ meo(GLd−3(3)) = 3d−3 − 1 < 3d−1/4,
which is a contradiction. So h′ is semisimple and therefore appears in line 1 of Table 2 or
lines 1, 2 of Table 3. However it is clear that |h| < 3d−1/4 if h′ is as in lines 1, 2 of Table 3: so
the only additional examples are in line 6 of Table 3.

Case |g| = p|h|, p = 2. Again we first suppose that h is semisimple so that h = J1 ⊕ h′ and
|h′| ≥ 2d−1/4; that is, h′ is one of the semisimple examples in line 1 of Table 2 or lines 7, 8, 12
or 13 of Table 3; thus the only such examples are in line 2 of Table 2, or in line 11 of Table 4
(arising from h′ as in line 1 of Table 2 with d = 2 and i = 3), or in line 14 of Table 3. Now
suppose that h is not semisimple; so by Corollary 2.3, h = J(k)2 ⊕ h′ (with k ≥ 2). If h = J(k)2 ,
then |h| = (k)2 = d so |g| = 2d and 2d/4 > 2d for d ≥ 6, so h = J2 or J4 (lines 3 and 7 of
Table 4). Otherwise, d > (k)2 and

|h| ≤ (k)2(2d−(k)2 − 1),

which is less than 2d−1/4 unless (k)2 = 2 or 4. Suppose first that (k)2 = 2. Then h = J2 ⊕ h′,
with h′ ∈ GLd−2(2). If h′ is semisimple then |h| = 2|h′| and |h′| ≥ 2d−2/4, so as in the previous
paragraph, h′ is a semisimple element as in line 1 of Table 2, or lines 7, 8, 12 or 13 of Table 3:
hence h is one of the examples in lines 15, 17 of Table 3 or lines 9, 10 of Table 4. If h′ is
not semisimple then |h| = |h′|, which is at least 2d−1/4 if and only if h′ ∈ GLd−2(2) is a non
semisimple element of this order; by our previous work, this only occurs if d = 4 and h′ = J2
(note that h′ cannot be J3 from line 4 of Table 4 since we are assuming (k)2 = 2, but k = |h| = 4
if h = J2 ⊕ J3); thus we have line 8 of Table 4. Suppose now that (k)2 = 4 so that h = J4 ⊕ h′.
If h′ is not semisimple then |h| ≤ 2|h′| and 2|h′| is at least 2d−1/4; this holds if and only if
h′ ∈ GLd−4(2) is a non semisimple element of order at least 2d−3. There are therefore no such
elements and we conclude that h′ is semisimple and |h| = 4|h′|. Now |h| ≥ 2d−1/4 if and only
if |h′| ≥ 2d−4/2 and the only such examples h′ occur in line 1 of Table 2 (with i = 1 and
d− 4 ≥ 2) and line 8 of Table 3; thus we have the examples in line 16 of Table 3.
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4. Classification of elements with at most four cycles

We now refine the list of affine transformations of order at least n/4 to determine those
elements that have at most 4 cycles in V . Recall the notation from Section 2, especially for
g = tvh, V, U,W, p

a = |U |, and assume that g has at most four cycles in V . By Lemma 2.4 we
may assume that v ∈ U . We start with some further observations.

4.1. Invariant subsets of V

For each h-invariant subspace V ′ of V , the subspace U + V ′ is a g-invariant subset of V
(recall that the subspace U is defined in Notation 1(f)). In fact, for u′ + v′ ∈ U + V ′, we have
(u′ + v′)g = (u′ + v′)tvh = (v + u′)h+ v′h ∈ U + V ′. In particular, taking V ′ = 0, we see that
U is g-invariant.

4.2. Three claims

Claim 1: Suppose that V 6= U , and let W ′ be a nontrivial h-invariant subspace of W . Suppose
that g has t cycles in U and that h has r cycles in W ′. Then

(a) t · r ≤ 4 with t ≥ 1, r ≥ 2;
(b) if t ≥ 2, then t = r = 2, W ′ = W , and h|W is transitive on W \ {0}; so h = h|U ⊕ sd−a.

Proof of Claim 1. Since v ∈ U , it follows that U ⊕W ′ is g-invariant. Let w ∈W ′ and x ∈ U .
By Notation 1(b), the g-cycle containing x+ w, where x ∈ U,w ∈W ′, consists precisely of the
vectors xhi + vh(i+ 1)− v + whi = xg

i

+ wh
i

, for i ≥ 0 (the equality can be easily proved by
induction on i). This g-cycle is contained in x〈g〉 + w〈h〉 = {xgi + wh

j | for all i, j}. It follows
that there are at least tr cycles of g in U ⊕W ′. Since g has at most 4 cycles, this implies part
(a), and, if t ≥ 2, then t = r = 2, W ′ = W , and 〈h〉 is transitive on the non-zero vectors of W ′.

Claim 2: Let |h|U | = pc, |g| = pδk where δ = 0, 1, and let g have t cycles in U . Then

pa ≤ t|g|U | = tpc+δ ≤
{
tpδ = t if a = 0, that is, if U = 0

tpδ+dlogp(a)e if a > 0, that is, if U 6= 0.
(4.1)

The subspace U is a single g-cycle if and only if either (i) a = c = δ = 0 and h|U = J0, or (ii)
δ = 1, h|U = Ja , and a = 1 or (a, p) = (2, 2).

Proof of Claim 2. Since g has t ≤ 4 cycles in U , we have pa = |U | ≤ t|g|U |. If a = 0 then
c = 0, h|U = J0, and |g|U | = pδ = 1. Thus if a = 0 then the inequality (4.1) holds, U is a single
g-cycle, and the conditions (i) hold. We may therefore assume that a ≥ 1. Then, by Lemma 2.1,
|g|U | = pδ |h|U | ≤ pδ+dlogp(a)e with equality if and only if h|U involves a cyclic matrix Jb such
that dlogp(b)e = dlogp(a)e. In particular (4.1) holds.

Suppose U is a single g-cycle. Then (4.1) holds with t = 1, and hence pa ≤ pδ+dlogp(a)e, that is,
a ≤ δ + dlogp(a)e. It follows from a computation, since a ≥ 1, that δ = 1 and either 1 ≤ a ≤ 2,

or (a, p) = (3, 2). If a > 1, then from the inequalities pa ≤ pc+1 ≤ p1+dlogp(a)e in (4.1), we obtain
c = a− 1, that is, |h|U | = pa−1. Therefore, by Corollary 2.3, h|U involves J(k)p . In particular if
(a, p) = (3, 2) then (k)p ≥ pc = 4 but h|U does not involve J4 because U has dimension 3 only.
Similarly if a = 2 and p is odd, then (k)p ≥ pc = p, but h|U does not involve Jp because U has
dimension 2 only. So a = 1 or (a, p) = (2, 2), and in either case, h|U = Ja so part (ii) holds.

Conversely if δ = 1 and h|U = Ja with either a = 1 or (a, p) = (2, 2), then |h|U | = pa−1 and
so |g|U | = pa = |U | so that U must form a single g-cycle.
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Line d # cycles g |g| Cycle lengths

1 – i + 1 sid |h| 1, and i of length pd−1
i

(1 ≤ i ≤ 3 and i | pd − 1)
2 2 3 s1 ⊗ J2 |h| 1, p− 1, p(p− 1)
3 1 1 te1 p|h| p

4 ≥ 2 i + 1 te1 (J1 ⊕ sid−1) p|h| p, and i of length
p(pd−1−1)

i
(1 ≤ i ≤ 3 and i | pd−1 − 1)

Table 5. At most 4-cycles, arbitrary p

Line d # cycles g |g| Cycle lengths

1 ≥ 3 4 sa1 ⊕ sa2 |h| 1, 2a1 − 1, 2a2 − 1,
(a1, a2) = 1, d = a1 + a2 (2a1 − 1)(2a2 − 1)

2 ≥ 3 4 J1 ⊕ sd−1 |h| 1, 1, 2d−1 − 1, 2d−1 − 1
3 ≥ 5 4 te1 (J3 ⊕ sd−3) |h| 4, 4, 2d−1 − 4, 2d−1 − 4
4 ≥ 4 4 te1 (J1 ⊕ J1 ⊕ sd−2) p|h| 2, 2, 2d−1 − 2, 2d−1 − 2

5 ≥ 4 i + 1 ∈ {2, 4} te1 (J2 ⊕ sid−2) p|h| 4, and i of length 2d−4
i

d even if i = 3
6 ≥ 5 4 te1 (J2 ⊕ J1 ⊕ sd−3) p|h| 4, 4, 2d−1 − 4, 2d−1 − 4
7 ≥ 6 4 te1 (Ja ⊕ sa1 ⊕ sa2 ) p|h| 2a, 2a(2a1 − 1), 2a(2a2 − 1),

1 ≤ a ≤ 2 ≤ a1 < a2 2a(2a1 − 1)(2a2 − 1)
(a1, a2) = 1

8 ≥ 6 4 te1 (J4 ⊕ sd−4) p|h| 8, 8, 2d−1 − 8, 2d−1 − 8

Table 6. At most 4-cycles, other infinite families (p = 2)

Claim 3: Suppose that there exist h-irreducible submodules W1,W2 of W , such that |Wi| = pai

with 0 < a1 ≤ a2 and W1 ∩W2 = 0. Then V = U ⊕W1 ⊕W2, p = 2, (a1, a2) = 1, 0 ≤ a ≤ 2 ≤
a1 < a2, d ≥ 5, and h = Ja ⊕ sa1 ⊕ sa2 for some Singer cycles sa1 , sa2 . These elements have
exactly four cycles and arise as examples in lines 1 (if a = 0), and 7 (if a > 0, with v = e1) of
Table 6.

Proof of Claim 3. The subspace V ′ = U ⊕W1 ⊕W2 ≤ V is g-invariant, and we have the
following nonempty g-invariant subsets: U, (U ⊕Wi) \ U (for i = 1, 2), and V ′ \ ((U ⊕W1) ∪
(U ⊕W2)), of sizes pa, pa(pai − 1) (for i = 1, 2), and pa(pa1 − 1)(pa2 − 1). Since g has at most
four cycles, it follows that V ′ = V and 〈g〉 acts transitively on each of these subsets.

Observe that if (pa1 − 1, pa2 − 1) = `, then g induces at least ` cycles on V \ ((U ⊕W1) ∪
(U ⊕W2)). Thus pa1 − 1 and pa2 − 1 are coprime, and hence p = 2 and (a1, a2) = 1. Also
transitivity of h on Wi \ {0} implies that h|Wi is a Singer cycle sai , and by Claim 2, h|U = Ja
and a ≤ 2. Since (a1, a2) = 1 we have a1 < a2 and since h|W1

6= 1 (because W1 6= 0 and the
1-eigenspace of h is contained in U), we have a1 ≥ 2. Thus d = a+ a1 + a2 ≥ 5 + a, and the
elements are the examples with 4 cycles in lines 1, 7 of Table 6 (if a ≥ 1 we note that g has a
conjugate of the form g = te1h).

4.3. Four cycles: proof of Theorem 1.3

Proof of Theorem 1.3. Let g = tvh ∈ AGLd(p) with at most four cycles in its action on V .
Such an element g must appear in Table 2, 3, or 4. We consider each possibility on a line-by-line
basis. As before we use Notation 1. Firstly, we suppose that |g| = |h|.

If g is as in line 1 of Table 2, then we may assume that g = h and we have the examples in
line 1 of Table 5. Similarly line 1 of Table 4 gives rise to line 2 of Table 5 and line 2 of Table 7. In
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Line d p # cycles g |g| Cycle lengths

1 2 2, 3 p te1 p|h| p of length p
2 2 3 3 te1J2 |h| 3, 3, 3
3 3 2 2 te1J3 |h| 4, 4
4 3 2 4 te3 (J2 ⊕ J1) |h| 2, 2, 2, 2
5 3 2 4 J3 |h| 1, 1, 2, 4
6 4 2 4 te1 (J3 ⊕ J1) |h| 4, 4, 4, 4
7 4 2 4 s2 ⊗ J2 |h| 1, 3, 6, 6
8 5 2 4 te1J5 |h| 8, 8, 8, 8
9 2 2 1 te1J2 p|h| 4
10 3 2 4 te1 p|h| 2, 2, 2, 2
11 3 2 2 te1 (J2 ⊕ J1) p|h| 4, 4
12 3 3 3 te1J3 p|h| 9, 9, 9
13 4 2 4 te1 (J2 ⊕ J2) or te1 (J2 ⊕ J1 ⊕ J1) p|h| 4, 4, 4, 4
14 4 2 2 te1J4 p|h| 8, 8
15 5 2 4 te1 (J4 ⊕ J1) p|h| 8, 8, 8, 8

Table 7. At most 4-cycles, sporadic cases

line 1 of Table 3 we have U = 〈e1〉 and we may assume that v ∈ U . But if v 6= 0 then |g| = p|h|;
so we may assume g = h (recall that p = 3 for this line). But then g has 3 cycles on U and
therefore has more than 4 cycles in total by Claim 1. In line 2 of Table 3 g = h = sd1 ⊕ sd−d1 ,
but Claim 3 implies that p = 2, whereas we have p = 3. Suppose that g is as in line 3 of Table 3.
Then by Lemma 2.4, g = h = (s1 ⊗ J2)⊕ sid−2, since h is fixed point free on V , and V has a
g-module decomposition W1 ⊕W2, where dimW1 = 2 and g has 3 cycles on W1; but there must
also be at least one cycle on W2 \ {0} and on V \ (W1 ∪W2); so these elements do not provide
examples. Next, for g as in line 4 of Table 3, conjugating by a suitable tv′ , we may assume that
v ∈ 〈e1〉. So g = tae1(J2 ⊕ sd−2) has cycle lengths on U equal to 1, 1, 1, 3, 3 (if a = 0), or 3, 3, 3
(if a = ±1), contradicting Claim 1. In line 2 of Table 4, again by Lemma 2.4, we have g = h and
direct calculation shows that the cycle lengths are 24, 24, 24, 8, 1. In line 7 of Table 3, again we
may assume v = 0 and Claim 3 shows that t = 2 and we have the examples in line 2 of Table 6.
In line 8 of Table 3, U = 0 so, by Lemma 2.4, g = h and Claim 3 yields the examples in line 1
of Table 6. (Observe that Claim 3 immediately gives that the elements in lines 12 and 13 of
Table 3 give rise to no examples.) In line 9 of Table 3, we have g = h by Lemma 2.4; in this case
s2 ⊗ J2 has cycle lengths 1, 3, 6, 6 on a 4-dimensional subspace W1 and so the only examples
occur when d = 4; see line 7 of Table 7. In line 10 of Table 3, by conjugating by a suitable tv′ we
may assume that v = 0 or v = e1. Direct calculation shows that (within U) these two cases give
cycle lengths 1, 1, 2, 4 and 4, 4 respectively. Clearly the first case cannot occur (since d ≥ 5). In
the second case, Claim 1 implies g = te1(J3 ⊕ sd−3) as in line 3 of Table 6.Similarly in line 11
of Table 3, v = 0 or v = e1, but in the latter case we have |g| = 2|h|. Thus v = 0, but then g
has cycle lengths 1, 1, 2 on U contradicting Claim 1. In line 4 of Table 4 we have h = Jd, and
conjugating by a suitable tv′ , we may assume that v ∈ 〈e1〉. Recalling that we have |g| = |h|,
we may assume g = J2 (line 2 of Table 5), J3 (line 5 of Table 7), te1J3 (line 3 of Table 7), J4
(cycle lengths 1, 1, 2, 4, 4, 4), J5 (cycle lengths 1,1,2,4,4,4,8,8) or te1J5 (line 8 of Table 7). In
line 5 of Table 4, h = J2 ⊕ J1 and conjugating by a suitable tv′ we may assume that v ∈ 〈e1, e3〉
and there are four possibilities for v. A computation shows that only the choices v = 0 and
v = e3 give |g| = |h|; now another direct calculation shows that we only have an example when
v = e3; see line 4 of Table 7. In line 6 of Table 4, Claim 1 implies g = te1(J3 ⊕ J1) as in line 6
of Table 7. This completes the analysis of the case |g| = |h|.

Henceforth, we shall assume that |g| = p|h|. First suppose that g is as in line 2 of Table 2.
Then either d = 2 and p = 2, 3, which gives the examples in line 1 of Table 7; or (p, d, i) =
(2, 3, 3), as in line 10 of Table 7 (these are the possibilities that have sid−1 = 1); or else we have
the examples in line 4 of Table 5 (when sid−1 6= 1). If g is as in line 3 of Table 2 then g = te1 as
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in line 3 of Table 5. If g is in line 5 of Table 3 then p = 3 and either g = te1(J1 ⊕ J1 ⊕ sd−2),
and g has three cycles on U contradicting Claim 1, or g = te1(J1 ⊕ sd1 ⊕ sd2) with (d1, d2) = 1,
and these examples do not occur by Claim 3 since p = 3. Next, if g is in line 6 of Table 3, then
a direct calculation shows that g has cycle lengths 9, 9, 9 on U and so there are no examples by
Claim 1. Next, suppose that g is as in lines 14, 15 of Table 3. Using the notation in Table 3, we
have either d1 = 1 or d1 ≥ 2. In the former case, g = te1(J1 ⊕ J1 ⊕ h′′) or g = te1(J2 ⊕ J1 ⊕ h′′)
and Claim 1 implies that h′′ is a Singer cycle; see lines 4, 6 of Table 6. In the latter case, we
apply Claim 3 to deduce that g must be as in line 7 of Table 6. Now suppose that g is as
in line 16 of Table 3 so g = te1(J4 ⊕ h′); if h′ = sid−4 then we have the examples in line 15 of
Table 7 (when h′ = 1) and line 8 of Table 6 (when h′ 6= 1. Here, observe that i = 1 by Claim 1,
and h′ cannot be as in line 8 of Table 3 by Claim 3). If g is as in lines 8, 9 of Table 4 then
vh(2) 6= 0, hence v generates a cyclic h-submodule of order 22 and we may assume that v = e1.
A direct calculation gives us the examples in line 13 of Table 7. Direct calculation shows that
lines 7, 3, 11 of Table 4 give rise to the examples in lines 14, 9, 12, 10 of Table 7 respectively.
Similarly line 17 of Table 3 and line 10 of Table 4 give the examples in line 5 of Table 6 and
line 11 of Table 7 respectively.

5. Maximal subgroups of GLd(p) containing elements of large order

Let g = tvh ∈ AGL(V ) have order at least |V |/4 = pd/4, so g is as in one of the lines of
Tables 2, 3, or 4. In this section we determine which kinds of primitive subgroups of AGL(V )
contain at least one such element. Each primitive subgroup of AGL(V ) is a semidirect product
G = TH where T is the group of translations of V and H ≤ GL(V ) is irreducible on V . It
is convenient to use Aschbacher’s description in [1] of the maximal subgroups H of GL(V )
not containing SL(V ) (as exploited, for example in [2, 11]). Thus we consider this problem
class by class, for maximal subgroups in the various Aschbacher classes C2, . . . , C9. We discover
that subgroups in many Aschbacher classes seldom contain elements of sufficiently large order.
First we consider Aschbacher class C2: here the subgroups are stabilizers GLd/r(p) wr Sym(r)
of decompositions V = ⊕ri=1Vi, for some divisor r of d with r > 1.

Lemma 5.1. Let d ≥ 3 and let r be a divisor of d with r > 1. Let G = TH be a subgroup
of AGLd(p) with H in the Aschbacher class C2 of type GLd/r(p) wr Sym(r), and suppose that
G contains an element g = tvh with |g| ≥ pd/4. Then p ∈ {2, 3}.

If p = 3, then either r = 2 < d, or d = r = 3. Moreover, the image of h in H/GLd/r(p)
r ∼=

Sym(r) is non-trivial only when d = r = 3.
If p = 2, then either d/r ≥ 3, or d = r ≤ 5, or d = 2r ≤ 6. For d/r ≥ 3, the image of h in

Sym(r) is trivial, and moreover, 4r2 − 21r ≤ d.

Proof. Since |g| ≥ pd/4, by Theorem 1.1, the element h is as in Tables 2, 3, or 4. Moreover,
|h| ≥ |g|/|tv| ≥ pd−1/4. In the proof of this lemma we repeatedly use both of these observations
on h.

By an inspection of Table 2 it is clear that h = sid and h = J1 ⊕ sid−1 (with 1 ≤ i ≤ 3) are
not contained in a C2 subgroup when d ≥ 3. Therefore, since d ≥ 3, h is as in one of the lines
of Table 3, or 4, and in particular, p ∈ {2, 3}.

Assume that p = 3. Observe that, for every even d, h = J1 ⊕ sd1 ⊕ sd2 with d2 = d1 + 1 = d/2
(as in line 5 of Table 3) lies in GLd/2(3) wr Sym(2). Now assume that r ≥ 3: we show that only
r = d = 3 is possible. For d ≥ 8, the descriptions of h in Tables 3 or 4 and a case-by-case
analysis immediately eliminates C2-subgroups not of type GLd/2(3) wr Sym(2). For 3 ≤ d ≤ 7,
there are maximal C2-subgroups only when r = d, or when (d, r) = (6, 3). A direct calculation
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eliminates the possibility GL2(3) wr Sym(3) (the maximal element order of GL2(3) wr Sym(3)
is 48, and |h| ≥ 36−1/4 > 48, a contradiction). Thus 3 ≤ r = d ≤ 7. Another direct calculation
shows that T · (GL1(3) wr Sym(d)) contains elements g = tvh of order at least 3d/4 only when
d = 3.

It remains to show that the image of h in H/GLd/2(3)2 is trivial when r = 2. Suppose that
h = (h1, h2)(12), with h1, h2 ∈ GLd/2(3). Observe that h2 = (h1h2, h2h1) and that (h1h2)h1 =
h2h1. Therefore |h| = 2|h1h2| ≤ 2 meo(GLd/2(3)) ≤ 2(3d/2 − 1). Since |h| has order at least
3d−1/4, we get 3d−1/4 ≤ 2(3d/2 − 1), which has a solution only for d = 4. Finally a computation
in T · (GL2(3) wr Sym(2)) shows that there is no element tvh of order ≥ 34/4 with h having
non-trivial image in Sym(2).

Assume that p = 2. Write m = d/r. We consider separately the cases m = 1 and m = 2.
From [20, Theorem 2], we see that

log(meo(Sym(x))) ≤
√
x log(x)

(
1 +

log(log(x))− 0.975

2 log(x)

)
for x ≥ 3, where log indicates the natural logarithm. For simplicity denote by f(x) the
exponential of the function on the right hand side of this inequality. For m = 1, we have
H = Sym(d). Now |h| ≥ 2d−3 and hence 2d−3 ≤ f(d). A computation shows that this inequality
is satisfied only when d ≤ 9. Now for these small values of d, by computing the exact value of
meo(Sym(d)) we see with another computation that d ≤ 5.

Now we consider m = 2, that is, H = GL2(2) wr Sym(d/2). As |GL2(2)| = 6, we get 2d−3 ≤
|h| ≤ meo(GL2(2) wr Sym(d/2)) ≤ 6f(d/2) and a computation shows that this happens only
for d ≤ 8. Now for these small values of d we see with another explicit computation that d ≤ 6.

For the rest of the proof we assume that m ≥ 3. We start by showing that h ∈ H has trivial
image in H/GLm(2)r. We write h = (h1, h2, . . . , hr)σ where hi ∈ GLm(2) and σ ∈ Sym(r).
We argue by contradiction and we assume that σ 6= 1. Suppose that σ has a cycle of length
`. If ` = r then without loss of generality, we may assume that σ = (12 . . . r). Now an easy
computation shows that (12 . . . r)(h1, h2, . . . , hr) = (h2, h3, . . . , hr, h1)(12 . . . r). It follows that

hr = (h1, h2, . . . , hr)σ(h1, h2, . . . , hr)σ . . . (h1, h2, . . . , hr)σ

= (h1h2 . . . hr, h2h3 . . . hrh1, . . . , hrh1 . . . hr−1).

But

h1h2 . . . hr = h1(h2 . . . hrh1)h−11

and similarly we see that all of the entries of hr above are conjugate. In particular, they have the
same order and since p = 2 we have |h| ≤ rmeo(GLm(2)) = r(2m − 1) < 2m+r−1. If ` = r ≥ 3
then, since m ≥ 3, this is less than 2d−3. So the only possibility not eliminated yet in this case
is ` = r = 2, and hence σ is a transposition.

Next suppose that ` < r. Then h ∈ (GLm(2) wr Sym(`))× (GLm(2) wr Sym(r − `)), which
is isomorphic to a subgroup of (GLm(2) wr Sym(`))×GLd−m`(2). Using ` ≤ 2`−1, the same
calculation as above shows that |h| ≤ `(2m − 1)(2rm−m` − 1) < 2rm+m+`−m`−1, and this is
at most 2d−1/4 = 2mr−3 when m, ` ≥ 3. Therefore all of the cycles of σ must have length
at most 2. If σ has at least two 2-cycles then h can be embedded in (GLm(2) wr Sym(2))×
(GLm(2) wr Sym(2))×GLd−4m(2) and the same argument shows that |h| < 2d−3. It follows
that σ is a transposition.

When σ is a transposition, up to reordering we may assume that σ = (12). Now h =
(h1, . . . , hr)(12) and h2 = (h1h2, h2h1, h3, . . . , hr). Since h1h2 and h2h1 are conjugate, we
get |h| ≤ 2(meo(GLm(2)))r−1 = 2(2m − 1)r−1 < 2d−m+1. As |h| ≥ 2d−3, we obtain d− 3 <
d−m+ 1, which gives m < 4. Thus m = 3. With this information we can now refine our
computations. In fact, for m = 3, the group GL3(2) has exponent 84 and hence GL3(2)r also
has exponent 84. Thus |h| ≤ 2 · 84 = 168. As |h| ≥ 2d−3 = 23r−3, we have 168 ≥ 23r−3, which
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is satisfied only for r ≤ 3. For r = 3, it can be easily checked with a computer that the elements
of (GL3(2) wr Sym(2))×GL3(2) have order at most 56. As 56 < 64 = 2d−3, this case does not
arise. For r = 2, it is a computation to verify that the maximal order of an element g = tvh of
the affine group T · (GL3(2) wr Sym(2)), with h = (h1, h2)(12), is 14. As 14 < 16 = 26−2, the
case r = 2 does not arise either.

It remains to prove that 4r2 − 21r ≤ d. From the previous paragraphs, we have h =
h1 ⊕ . . .⊕ hr, with h1, . . . , hr ∈ GLm(2). Recall that |h| = lcm{|hi| | i ∈ {1, . . . , r}} ≥ 2d−3. If
|hi|, |hj |, |hk| ≤ 2m−1 for some distinct indices i, j and k, then |h| ≤ 23(m−1)(2m − 1)r−3 <
2d−3, a contradiction. This shows at most two entries of h have order ≤ 2m−1. Up to reordering
we may assume that |hj | > 2m−1, for every j ≥ 3, and an inspection of Tables 2, 3, or 4
reveals that hj is as in line 1 of Table 2 with i = 1, or as in line 8 of Table 3, for each j ≥ 3.
If hj = hk = sm for some distinct indices j and k, then lcm(|hj |, |hk|) = 2m − 1 and hence
|h| ≤ (2m − 1)r−1 < 2d−m ≤ 2d−3. This shows that there exists at most one index with hj as
in line 1 of Table 2. Therefore, up to reordering, we may assume that hj is as in line 8 of
Table 3 for each j ≥ 4.

For i ∈ {4, . . . , r} write hi = sdi,1 ⊕ . . .⊕ sdi,ti , with di,1, . . . , di,ti ≥ 2 pairwise coprime and
ti ≥ 2. Suppose that di,j , di′,j′ , di′′,j′′ are even, for some i, j, i′, j′, i′′, j′′ with i, i′ and i′′ pairwise
distinct. Then gcd(|hi|, |hi′ |, |hi′′ |) ≥ 3 and hence, arguing as above, |h| ≤ (2m − 1)r/32 < 2d−3.
So, up to reordering, we may assume that di,j is odd for every i ≥ 6 and for every 1 ≤ j ≤ ti.

Repeating the argument in the previous paragraph, we see that (up to the usual reordering)
di,j 6= 3 for every i ≥ 7 and for every 1 ≤ j ≤ ti. Now, if di,j = di′,j′ for some distinct i and i′

with i, i′ ≥ 7, then we have gcd(|hi|, |hj |) ≥ 25 − 1 = 31 and a computation shows that |h| ≤
(2m − 1)r/31 < 2d−3, which is a contradiction. Therefore the numbers di,j , with 7 ≤ i ≤ r and
1 ≤ j ≤ ti, are pairwise coprime, odd and not equal to 3. Since ti ≥ 2, we have at least 2(r − 6)
such integers in {1, . . . ,m}. Since the number of odd numbers greater than 3 in {1, . . . ,m} is
≤ (m− 3)/2, we get 2(r − 6) ≤ (m− 3)/2, which gives the desired result.

Remark 4. The lower bound on d (as as function of r) when p = 2 given in Lemma 5.1
can be improved, as follows:

2(r − 5) ≤ d/r

log(d/r)

(
1 +

3

2 log(d/r)

)
.

This is essentially a consequence of the last paragraph of the proof of Lemma 5.1, which shows
that in the interval {1, . . . , d/r} there are at least 2(r − 6) distinct pairwise coprime numbers
greater than 3, odd, and coprime to 3. Therefore, there must be at least 2(r − 5) distinct
primes in {1, . . . , d/r}, and so 2(r − 5) ≤ π(d/r), where as usual π(x) is the function counting
the number of primes ≤ x. Now π(x) ≤ x/ log(x)(1 + 3/(2 log(x))) by [22, Theorem 1].

In fact, we will now show (assuming the truth of the extended Goldbach conjecture, explained
below,) that this improved bound is close to having the correct order of magnitude. Let π2(n)
represent the number of ordered pairs of primes (p, q) with p < q and n = p+ q. Suppose
that d′ is large and even and r = π2(d′), then if d = d′r there is a g ∈ GLd/r(2) wr Sym(r)
with |g| ≥ 2d/4 = 2d−2. By the definition of π2, there exist (p1, q1), . . . (pr, qr) pairs of primes
with pi < qi and pi + qi = d′ = d/r. Clearly, the primes {pi, qi | 1 ≤ i ≤ r} are all distinct, and
hence the numbers in {2pi − 1, 2qi − 1 | 1 ≤ i ≤ r} are pairwise coprime (since (2a − 1, 2b −
1) = 2(a,b) − 1). Let g = (h1, . . . , hr), where hi = spi ⊕ sqi . Then

|g| =
r∏
i=1

(2pi − 1)(2qi − 1) = 2d
r∏
i=1

(
1− 1

2pi

)(
1− 1

2qi

)
.
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Observe that pi > 2 since d′ is even. So this gives |g| > 2dε2, where

ε =

∞∏
i=3

(
1− 1

2i

)
.

It is not hard to compute that ε2 ∼ 0.59 so that |g| > 2d−2.
Now, the extended Goldbach conjecture claims that for n large and even, there is a constant

C (given in the conjecture) such that

π2(n) ≥ C n

(log(n))2
.

When r = π2(d′) = π2(d/r), this gives

r ≥ C d/r

(log(d/r))2
.

This shows, as claimed, that (assuming the extended Goldbach conjecture) there exist d and r
for which some g ∈ GLd/r(2) wr Sym(r) has |g| > 2d/4 and d and r come close (asymptotically)
to meeting the improved bound given in the first paragraph of this remark.

Lemma 5.2. If H is a maximal subgroup of GLd(p) of type C4 containing an element h of
order at least pd−1/4, then d = 6, p ∈ {2, 3} and H = GL2(p)⊗GL3(p). Moreover GL2(p)⊗
GL3(p) contains elements of order at least p6/4 if and only if p = 2.

Proof. By [16, Table 3.5A and (4.4.10)], H = GLd1(p)⊗GLd2(p) where 2 ≤ d1 < d2 and
d = d1d2. It follows that

|h| ≤ meo(H) ≤ (pd1 − 1)(pd2 − 1) < pd1+d2

and the last quantity is greater than pd−1/4 if and only if (d1, d2) = (2, 3), or p ∈ {2, 3} and
(d1, d2) = (2, 4).

For (d1, d2) = (2, 4) and p ∈ {2, 3}, a direct computation shows that meo(H) ≤ p7/4 (in fact,
meo(H) = 30 when p = 2, and 240 when p = 3). Hence we may assume that (d1, d2) = (2, 3);
that is, H = GL2(p)⊗GL3(p), and d = 6.

Assume p ≥ 5 and write h = h1 ⊗ h2 with h1 ∈ GL2(p) and h2 ∈ GL3(p). If |h1| ≤ (p2 − 1)/4
or |h2| ≤ (p3 − 1)/4, then |h| ≤ |h1||h2| ≤ (p2 − 1)(p3 − 1)/4 < p5/4, a contradiction. Thus we
may assume that |h1| > (p2 − 1)/4 and |h2| > (p3 − 1)/4. Since |h1| and |h2| are both integers
and since p ≥ 5, we must have |h1| ≥ p2/4 and |h2| ≥ p3/4. From Tables 2, 3 and 4 we have
h1 = si2 and h2 = sj3 (with 1 ≤ i, j ≤ 3), and a quick computation gives |h| = |h1 ⊗ h2| < p5/4,
which is a contradiction.

Finally, two straightforward computations show that meo(GL2(2)⊗GL3(2)) = 21 > 26/4
and meo(GL2(3)⊗GL3(3)) = 104 < 36/4.

Lemma 5.3. If H is a maximal subgroup of GLd(p) of type C6, then p ≥ 5.

Proof. When p = 2, we note that there are no C6-subgroups of GLd(2). For the conditions in
Table 3.5.A of [16] would require that d = rm for some prime r 6= 2 and that p ≡ 1 (mod r),
which is not possible when p = 2. If p = 3 then the conditions in Table 3.5.A of [16] imply
that either r = 2, d = 2m and p ≡ 1 (mod 4), or r ≥ 5 and p ≡ 1 (mod r). Clearly, neither
condition holds.
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Lemma 5.4. If H is a maximal subgroup of GLd(p) of type C7, where p = 2, 3, then H does
not contain an element of order at least pd−1/4.

Proof. By [16, (4.7.6)], H = GLm(p) wr Sym(t) where d = mt, t ≥ 2 and m ≥ 3. If p = 2,
it follows that

meo(H) ≤ (2m − 1)t meo(Sym(t)) < 2mt+t

since meo(Sym(t)) ≤ 2t for all t (see, for instance, [20, Theorem 2]). The last quantity is
at most 2d−3 if and only if mt+ t ≤ mt − 3. It is easily verified that this is the case unless
(m, t) = (3, 2). But a direct computation for (m, t) = (3, 2) shows that meo(H) = 28, which is
less than 26. A similar calculation shows that there are no examples when p = 3.

Lemma 5.5. If d ≥ 3 and H is a maximal subgroup of GLd(p) of type C8 and contains an
element h as in Tables 2, 3, or 4, then H = CSp4(2), CSp4(3), CSp6(2) or GO+

4 (3) or GO3(3).

Proof. Note that |h| ≥ pd−1/4. First observe that since p is prime, there are no C8-subgroups
of unitary type. Now suppose that H is of symplectic type. In particular, d is even. By [8,
Lemma 2.10], we have

pd−1/4 ≤ |h| ≤ meo(H) ≤ pd/2+1;

we seek conditions on p and d for which pd/2+1 ≥ pd−1/4 or equivalently 4pd/2+1 ≥ pd−1.
Assume that p ≥ 5. We have

4pd/2+1 < pd/2+2

and pd/2+2 ≤ pd−1 if and only if d ≥ 6. Thus d = 4. By Tables 2, 3, 4 either h = si4 or J1 ⊕ si3,
with 1 ≤ i ≤ 3. In the first case, h acts irreducibly on V and hence lies in a maximal torus of
CSp4(p) of order (p− 1)(p2 + 1). Thus (p4 − 1)/3 ≤ |h| ≤ (p− 1)(p2 + 1), which is easily seen
to be false. In the second case, h acts irreducibly on a 3-dimensional subspace of V , however
CSp4(p) does not contain such elements.

Assume that p = 3. Then

4pd/2+1 < pd/2+3

and pd/2+3 ≤ pd−1 if and only if d ≥ 8. A direct calculation shows that meo(CSp6(3)) = 56 <
35/4 and meo(CSp4(3)) = 24 ≥ 34/4, in fact CSp4(3) is one of the groups in the statement of
this lemma.

Assume that p = 2. Then pd/2+1 < pd−1/4 if and only if d/2 + 1 < d− 3 if and only if d >
8. Direct calculation yields that meo(CSp8(2)) = 30 < 25, but meo(CSp6(2)) = 15 ≥ 23 and
meo(CSp4(2)) = 6 > 23/4. So if H is of symplectic type then all of the examples are listed in
the Lemma.

Now suppose H is of orthogonal type, that is, H = GOε
d(p)Z where Z is the subgroup of

GLd(p) of scalar matrices. Observe that by [16, Table 3.5A, Column IV], p is odd because H
is maximal.

Assume that p ≥ 5. By Tables 2, 3, 4 since d ≥ 3 we have two possibilities for h: either
h = sid or h = J1 ⊕ sid−1, with 1 ≤ i ≤ 3. In the first case, h acts irreducibly on V and hence
(by considering the structure of the maximal tori of H) d is even and h lies in a maximal torus
of order (p− 1)(pd/2 + 1). Thus (pd − 1)/3 ≤ |h| ≤ (p− 1)(pd/2 + 1), which is easily seen to be
false for every d ≥ 3. In the second case, h acts irreducibly on a subspace of V of dimension
d− 1 and fixes a non-zero vector of V . By considering the structure of the maximal tori of H,
we get that d is odd and that h lies in a maximal torus of order ≤ (p− 1)(p(d−1)/2 + 1). Thus
(pd−1 − 1)/3 ≤ |h| ≤ (p− 1)(p(d−1)/2 + 1), which is easily seen to be false for every odd d ≥ 5.
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Therefore d = 3 and H = GO3(p)Z. A computation shows that the matrix h = J1 ⊕ si2 lies in
GO3(p)Z only if h lies in GO3(p). Therefore, h has order at most p+ 1. Thus (p2 − 1)/3 ≤
|h| ≤ p+ 1, a contradiction.

Assume that p = 3. Now from [8, Corollary 2.12] we see that meo(GOε
d(3)) ≤ 3d/2+1; a direct

calculation shows that this is less than 3d−1/4 unless d ≤ 6. Now it is straightforward to check
that the only groups of orthogonal type containing elements in Tables 2, 3, 4 are those listed
in the lemma.

Lemma 5.6. Let d ≥ 3, let p ∈ {2, 3} and let H be a subgroup of type C9 with H maximal
in SLd(p) or maximal in GLd(p). If H contains an element h with |h| ≥ pd−1/4, then p = 2 and
(H, d) = (Alt(6), 3) or (Alt(7), 4), or p = 3 and (H, d) = (2.M11, 5).

Proof. We use the “bar notation” to denote the natural projection of GLd(p) onto PGLd(p).
Observe that H is an almost simple group containing an element of order ≥ pd−1/(4(p− 1)).
Let H0 be the socle of H. By [19, Corollary 4.3], if H ∈ C9 then either
(i) |H| < p2d+4; or

(ii) d = (m− 1)m/2 and H0 = PSLm(p); or
(iii) d = 27, 16 or 11 and H0 = E6(p), PΩ+

10(p) or M24 respectively.
Note that the alternating groups Alt(n) acting on their deleted permutation modules of
dimensions n− 1 or n− 2 do not arise since such groups are contained in an orthogonal or
symplectic group and so do not give rise to maximal C9-subgroups [19, p. 440-441]. Suppose
that (iii) holds. It is easy to check with [7] that for H0 = E6(2), PΩ+

10(2) and M24, the group
Aut(H0) does not contain an element of order at least 2d−1/4. If p = 3, then using [13,
Table A.7], we have

meo(Aut(E6(p))) ≤ |Out(E6(p))|meo(E6(p)) = 2(3, p− 1)
(p+ 1)(p5 − 1)

(3, p− 1)
<

p27−1

(4(p− 1))
.

Similarly, using [13, Table A.5], if p = 3, then

meo(Aut(PΩ+
10(p))) ≤ |Out(PΩ+

10(p))|meo(PΩ+
10(p)) ≤ 2(p− 1, 4)

(p4 + 1)(p+ 1)

(p− 1, 4)
<

p16−1

4(p− 1)
.

Suppose that (ii) holds. Observe that m ≥ 3 because H0 must be simple. Moreover, for
m = 3, we have d = 3 = m and hence SLd(p) ≤ H, which is a contradiction. For m = 4, we have
d = 6 and the embedding of PSL4(p) into PSLd(p) described in [19, Section 4] is determined
by the action of PSL4(p) on the wedge product ∧2W , where W is the natural 4-dimensional
module of PSL4(p). However, this is exactly the embedding that determines the isomorphism
PSL4(p) ∼= PΩ+

6 (p). Therefore, since we are assuming that H ∈ C9, we must also have m 6= 4.
Thus m ≥ 5. From [8, Table 3], for (m, p) 6= (3, 2), we have meo(H) ≤ meo(Aut(H0)) = (pm −
1)/(p− 1). Now a computation shows that the inequality (pm − 1)/(p− 1) ≥ pd−1/(4(p− 1))
is never satisfied.

Now suppose that (i) holds. Assume that d ≥ 10 and p = 2. In particular, H = H and H
contains an element of order ≥ 2d−1/4 = 2d−3. We claim that there are no examples here.
For suppose that H0 = PSLm(q), for some m and for some prime power q. From [8, Table 3]
we have meo(H) ≤ (qm − 1)/(q − 1) or (m, q) ∈ {(2, 4), (3, 2)}. If meo(H) ≤ (qm − 1)/(q − 1)
then 2d−3 ≤ (qm − 1)/(q − 1), while 22d+4 > |H| > 1

2(m,q−1)q
m2−1 (see [6, Proposition 3.9(i)]

for example). A direct calculation shows that these bounds cannot both hold when d ≥ 10.
If (m, q) = (2, 4) or (3, 2) and d ≥ 10 then it is clear that H cannot contain an element of
order at least 2d−3. Similarly we take each possible simple group of Lie type in turn and
direct calculation shows that the analogous bounds cannot hold when d ≥ 10. We use the
bounds on meo(H) from [8, Table 5]. For example if H0 = 2F4(q), where q = 2f , then we
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have q26/2 < |H| < 22d+4 but meo(H) ≤ 16f(q2
√

2q3 + q +
√

2q + 1) and so 16f(q2
√

2q3 +
q +
√

2q + 1) ≥ 2d−3. If d ≥ 10 then these bounds can only hold when d = 11 and q = 2 but
it is straightforward to check in [7] that in this case meo(H) ≤ 20 < 2d−3. As a final example,
if H0 = 2B2(q) where q = 2f ≥ 8, then we have meo(H) ≤ f(q +

√
2q + 1) so we have the

bounds f(q +
√

2q + 1) ≥ 2d−3, q5/2 ≤ |H| < 22d+4, and d ≥ 10. Direct calculation finds that
these bounds are only satisfied when f = 5 and d = 10, but then we can check in magma that
meo(Aut(2B2(25))) = 41 < 210−3. If H0 = Alt(m) (m ≥ 5), then we have 2d−3 ≤ meo(H) <

e3/2
√
m log(m) by [17, 20]. We also have m!/2 < |H| < 22d+4 and a direct calculation shows

that these bounds can only hold if d ≤ 16. But if 10 ≤ d ≤ 16 then the bounds imply m ≤ 14
and we can obtain a much sharper upper bound on meo(H) by calculating the explicit value of
meo(Aut(Alt(m))) in magma. Further direct calculation then shows that these stronger bounds
cannot hold when d ≥ 10. We note that if H is a sporadic group, then [7] tells us that we have
2d−3 ≥ meo(H) for d ≥ 10.

Assume that d ≥ 10 and p = 3. We carry out the same analysis as for p = 2 and d ≥ 10 and
we see that no example arises.

Assume that d ≤ 9. Using the tables in Kleidman’s thesis [15], the only C9 subgroups
in GLd(2) with d ≤ 9 are Alt(6) ≤ GL3(2), Alt(7) ≤ GL4(2) and PGL3(4).2 ≤ GL9(2). But
meo(Aut(PSL3(4))) = 21 < 26 and so we are left with the two examples in the lemma. The
only C9 subgroups in PGLd(3) with d ≤ 9 have (H0, d) = (M11, 5), (PSL2(11), 6), (PSL3(3), 6)
and (PSL3(9), 9). Calculating meo(Aut(H0)) precisely in magma in each case yields that this is
less than 3d−1/8 unless (H0, d) = (M11, 5) and this case is listed in the lemma.

Remark 5. The reader may have noticed that the lemmas in this section consider the
Aschbacher classes C2, C4, C6, C7, C8, and C9. Since G0 = G ∩GL(V ) acts irreducibly on V ,
type C1 cannot arise. The elements in C5 are stabilizers of subfields of Fp, however, since |Fp|
is prime, there is no proper subfield and hence C5 is empty. The groups of type C3 will be
considered in our proof of Theorem 1.2, and will give rise to some examples. When G0 is
contained in a C3-subgroup, note that elements of C3 are stabilizers of extension fields of Fp
of prime index, that is, subgroups isomorphic to GLa(pb) o Cb with d = ab and b prime. In
particular, if h lies in one of these groups we see that the dimensions of an indecomposable
decomposition of hb can be grouped together so that the dimension of every group is a multiple
of b. A tedious inspection of Tables 2, 3, and 4 eliminates most of the cases.

6. Proofs of Theorems 1.2 and 1.4

Proof of Theorem 1.2. Write g = tvh, with tv ∈ T and h ∈ G0, and observe that g and h are
in Tables 2, 3, or 4. In particular |h| ≥ pd−1/4. If G0 ≥ SLd(p) then part (1) of the statement
holds, so we assume that G0 6≥ SLd(p). We divide the proof into various cases.

Case d = 2. For p ≤ 13, we use magma to verify that the only examples occur in Theorem 1.2.
So we may assume that p ≥ 17; in particular, h = si2, or J1 ⊕ si1 or si1 ⊗ J2, for some 1 ≤ i ≤ 3.
Let Z = Z(GL2(p)) and consider PGL2(p) = GL2(p)/Z. We note that in all three cases, |hZ| ≥
(p− 1)/3. Now G0Z/Z is a (not necessarily proper) subgroup of a group M , where either M
is a maximal subgroup of PGL2(p) (not equal to PSL2(p)) or M is a maximal subgroup of
PSL2(p). The maximal subgroups of PGL2(p) for p odd are described in [14, Corollary 2.3]
(we use the terminology introduced in [14, Section 2]), and the maximal subgroups of PSL2(p)
were determined by Dickson (see [23, Chapter 3, Section 6]). Thus G0Z/Z is contained in one
of the following groups M :
(i) a dihedral group of order 2(p− 1) (setwise stabilizer of a pair of points),
(ii) a dihedral group of order 2(p+ 1) (setwise stabilizer of a pair of imaginary points),
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(iii) a reducible subgroup of order p(p− 1) (point stabilizer),
(iv) Sym(4), Alt(4), or Alt(5).

Since G0 is irreducible, M cannot be of type (iii). If M is of type (iv), then (p− 1)/3 ≤ |h| ≤
max{meo(Sym(4)),meo(Alt(4)),meo(Alt(5))} = 5, which is a contradiction since p ≥ 17. If M
is of type (i), then G0 ≤ GL1(p) wr Sym(2) and part (3)(iii) of Theorem 1.2 holds. Suppose
finally that M is of type (ii). Then G0 ≤ ΓL1(p2) and, in order to conclude that part (2) of
Theorem 1.2 holds, we need to show that [GL1(p2) : G0 ∩GL1(p2)] ≤ 3. Observe that |G0| is
coprime to p and hence h = si2 or h = J1 ⊕ si1. In the first case [GL1(p2) : G0 ∩GL1(p2)] ≤
[GL1(p2) : GL1(p2) ∩ 〈si2〉] ≤ i ≤ 3. In the second case h = J1 ⊕ si1 fixes a non-zero vector and,
as every non-identity element of GL1(p2) acts fixed point freely on V \ {0}, we have 〈h〉 ∩
GL1(p2) = 1. Since |ΓL1(p2) : GL1(p2)| = 2, we must have |h| ≤ 2, contradicting the facts that
|h| ≥ (p− 1)/3 and p ≥ 17.

Case d ≥ 3 and p ≥ 5. We have that g = sid or te1(J1 ⊕ sid−1) (with 1 ≤ i ≤ 3) by
Tables 2, 3, 4. If (d, p) 6= (6, 5), (7, 5), then [10, Lemma 2.1 and Theorem 2.2] imply that
h ∈ GLd(p) is either contained in a C3- or a C8-subgroup, or h is contained in one of the C9-
subgroups listed in [10, Table 1]. Analysing the possibilities in [10, Table 1], we see that either
d = 9 and G0 normalises SL3(p2), or G0 is contained in a C3-subgroup, or G0 is contained
in a C8-subgroup. In the third case, Lemma 5.5 shows that none of these subgroups contain
elements of the required order.

Suppose next that d = 9 and that G0 normalises SL3(p2). This possibility is elimi-
nated since the image of G0 in PGLd(p) is almost simple and hence meo(G0) ≤ (p−
1) meo(Aut(PSL3(p2))) = (p6 − 1)/(p+ 1), which is less than p8/4. If (d, p) = (6, 5), (7, 5) then
we can check in magma that G0 must be contained in a C3 subgroup in this case as well.

For d ≥ 3, only the elements of the form sid are contained in C3 subgroups and (in this case)
we can use [11] and [2] to show that the only possibility for G0 is either to be as in (1), or as
in (2) (here, the condition [GL1(pd) : G0 ∩GL1(pd)] ≤ 3 follows from 1 ≤ i ≤ 3).

Case 3 ≤ d ≤ 8 and p = 2, or 3 ≤ d ≤ 7 and p = 3. Here we can check the primitive groups
of affine type in the libraries stored in magma. We list the possibilities in Table 1.

Case d ≥ 8 and p = 3. By Tables 2, 3, 4, we may assume that either h = J1 ⊕ sd/2 ⊕ sd/2−1,
or some power of h has order a primitive prime divisor of 3e − 1 with e > d/2. Applying
Aschbacher’s theorem, we see that G0 ≤ GLd(3) must be contained in a subgroup of type Ci
for some i = 1, . . . , 9. Since d ≥ 8, Lemmas 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and Remark 5 imply that
either G is as in (3)(ii), or G0 is contained in a C3-subgroup. In the latter case, Tables 2, 3, 4
imply that g = sid. Now we can use [11] and [2] to show that G is as in (1) or (2). We note
that all of these subgroups contain elements from Tables 2, 3, 4.

Case d ≥ 9 and p = 2. Again we apply Aschbacher’s theorem together with Lem-
mas 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and Remark 5. Since d ≥ 9, we find that the only possibilities
are that G is as in (3)(i), or G0 is contained in a C3-subgroup. In the latter case, Tables 2, 3, 4
imply that g = sa ⊕ sb with (a, b) = 2 and G0 ≤ GLd/2(4) : 2 = ΓLd/2(4), or g = sid. Using [2]
we find that G is as in (1) or (2) when g = sid.

Next suppose then g = sa ⊕ sb and G0 ≤ ΓLd/2(4). We claim that the only possibility is
that G0 contains SLd/2(4) as in case (1). We argue by contradiction and we suppose that G0

does not contain SLd/2(4). Observe that since g has odd order, we have g ∈ G0 ∩GLd/2(4).
Since g ∈ G0 ∩GLd/2(4), the element g, when viewed as an element of GLd/2(4), is of the form
sa/2 ⊕ sb/2 (and (a/2, b/2) = 1). Without loss of generality, suppose that a/2 > b/2. Let ` be
the largest divisor of 4a/2 − 1 that is relatively prime to 4m − 1 for every 1 ≤ m < a/2. By [10,
Lemma 2.1 (c)] and the comments that precede that lemma, we see that either ` > a+ 1, or
a/2 ∈ {3, 6}. Observe that when a/2 = 3 we must have (d, a, b) = (10, 6, 4) (because (a, b) =
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2 and d ≥ 9), and when a/2 = 6 we must have (d, a, b) ∈ {(14, 12, 2), (22, 12, 10)} (because
(a, b) = 2).

Now we deal with the three possibilities (d, a, b) ∈ {(10, 6, 4), (14, 12, 4), (22, 12, 10)}. Here
g ∈ G0 ≤ GLd/2(4) and some power of g has order a+ 1, a primitive prime divisor of 4a/2 − 1.
We can check easily in magma that if G0 ≤ GL5(4) is irreducible and contains g = s6 ⊕ s4, then
G0 contains SL5(4). So we may assume that (d, a, b) 6= (10, 6, 4). Now an analysis (using [11])
shows that if (d, a, b) = (22, 12, 10), (14, 12, 2), then the only irreducible G0 containing g must
contain SLd/2(4) as in case (1) (the analysis in our two cases is straightforward since, in the
notation of [11], we have r = 13, e = 6, r = 2e+ 1, and d = 7 or 11, and so there are very few
possibilities for G0).

It remains to consider the case that ` > a+ 1, where ` is the largest divisor of 4a/2 − 1
coprime to 4m − 1 for every 1 ≤ m < a/2. Now a power of g has order `, and [10, Theorem 2.2]
applied to this power of g implies that the irreducible subgroup G0 ∩GLd/2(4) of GLd/2(4)

(i) contains SLd/2(4) (but we are assuming this is not the case), or
(ii) is contained in GUd/2(2), GSpd/2(4), or GOε

d/2(4), or
(iii) preserves an extension field structure (but this is not the case since (a/2, b/2) = 1), or
(iv) normalizes GLd/2(2), or
(v) normalizes one of the nine subgroups listed in [10, Table 1].

In particular, G0 ∩GLd/2(4) satisfies either (ii), (iv) or (v). Using d ≥ 9 and (a/2, b/2) = 1,
an immediate check of [10, Table 1] reveals that no example arises in our case. A calculation
shows that GUd/2(2), GSpd/2(4), and GOε

d/2(4) do not contain elements of order |g| = (4a/2 −
1)(4b/2 − 1)/3 (see [8] for example) so G0 ∩GLd/2(4) does not satisfy (ii) either. Similarly, if
G0 satisfies (iv), then G0 cannot contain elements of order as large as |g|.

Thus we have shown in all cases that G0 satisfies one of the conditions (1)–(4) in the
statement of Theorem 1.2.

Proof of Theorem 1.4. Since G contains an element g = tvh with at most four cycles on
V , we have |g| ≥ pd/4 and hence G and G0 appear in Theorem 1.2. The examples in (2) of
Theorem 1.2 contain elements of the form sid (for 1 ≤ i ≤ 3), and these elements have at most
four cycles; thus we have the examples in (1) of Theorem 1.4 with r = d. Now suppose that G
is as in (1) of Theorem 1.2. When d ≤ 8 and p = 2, or d ≤ 7 and p = 3, or d = 2 and p ≤ 13
we check in magma that the only examples appear in Theorem 1.4. So we suppose that d and
p do not satisfy these bounds.

First suppose that r = 1. If p = 2 thenG0 = GLd(2) as in (1) of Theorem 1.4. If p = 3 thenG0

contains SLd(3), which contains s2d as in (1) of Theorem 1.4. If p ≥ 5 then Tables 5, 6, 7 imply
that h = s1 ⊗ J2 (and d = 2) or h = sid or h = J1 ⊕ sid−1 (for i = 1, 2, 3). Since G0 contains
SLd(p) and h, and since det(h) has multiplicative order (p− 1), (p− 1)/2 or (p− 1)/3, it
follows that G0 contains sid as in (1) of Theorem 1.4.

Now suppose that r ≥ 2. The analysis in the proof of Theorem 1.2 implies that (under
our restrictions on d and p) if g ∈ G then g = sid, or p = 2 with g = sa ⊕ sb, (a, b) = 2 and
(therefore) r = 2. But if p = r = 2 then G0 contains SLd/2(4), which contains sid. Thus G
satisfies (1) of Theorem 1.4 in all cases of (1) of Theorem 1.2.

We verify using magma that the only groups in (4) of Theorem 1.2 that admit a permutation
with at most four cycles are those indicated with a “y” in Table 1.

Finally, suppose that G and G0 are as in (3) of Theorem 1.2. Assume that p = 2. Thus
G0 ≤ GLd/r(2) wr Sym(r) for some divisor r of d with r > 1. If d/r ≤ 2, then from Lemma 5.1
we have either d = r ≤ 5 or d = 2r ≤ 6. It is a computation to show that in each of these cases
G contains an element with at most four cycles. So now suppose that d/r ≥ 3. Now Lemma 5.1
implies that h ∈ GLd/r(2)r. For d > 9, with a direct inspection of Tables 5, 6, 7, we see that h is
the sum of at most three indecomposable summands and hence r ≤ 3. Moreover, a more careful
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inspection shows that in each case h has an indecomposable summand acting irreducibly on a
subspace of V of dimension ≥ d/2. Clearly this shows that r = 2. (Observe that the case r = 2
does arise from line 7 of Table 6 with a = 1, a1 = d/2− 1 and a2 = d/2.) The cases d ≤ 8 can
be easily dealt with the help of a computer.

Assume that p = 3. Thus G0 ≤ GLd/r(3) wr Sym(r) for some divisor r of d with r > 1. If
d = r, then Lemma 5.1 implies that d = r ≤ 3. Now a computation shows that in each of
these cases G contains an element with at most four cycles. So now suppose that d > r,
and Lemma 5.1 implies that r = 2. A computation shows that T · (GL2(3) wr Sym(2)) has
no element with at most four cycles and hence we may assume that d 6= 4. Now Lemma 5.1
implies that h ∈ GLd/2(3)2. Since d ≥ 6, a direct inspection of Tables 5, 6, 7 implies that h
has an indecomposable summand acting irreducibly on a subspace of V of dimension ≥ d− 1,
which is clearly a contradiction.

Finally suppose that p ≥ 5. In this case the element J1 ⊕ sd is always contained in
GL1(p) wr Sym(2).
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