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Abstract

We determine two new infinite families of Cayley graphs that admit colour-preserving
automorphisms that do not come from the group action. By definition, this means that
these Cayley graphs fail to have the CCA (Cayley Colour Automorphism) property, and the
corresponding infinite families of groups also fail to have the CCA property. The families
of groups consist of the direct product of any dihedral group of order 2n where n ≥ 3 is
odd, with either itself, or the cyclic group of order n. In particular, this family of examples
includes the smallest non-CCA group that does not fit into any previous family of known
non-CCA groups.

Keywords: Cayley graphs, automorphisms, colour preserving, CCA
Math. Subj. Class.: 05C25

1 Introduction
All groups and graphs in this paper are finite. All of our graphs are simple, undirected, and
have no loops.

A Cayley graph of G with respect to C (a subset of G\{e}) is the graph Cay(G,C)
whose vertices are the elements of G, with an edge from g to gc if and only if g ∈ G, c ∈
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C. The set C is known as the connection set of Cay(G,C). This connection set gives
a natural colouring of the edges where we colour the edge from g to gc (which is the
same as the edge from gc to g) with a colour associated to {c, c−1}. A colour-preserving
automorphism of Cay(G,C) is a permutation of the vertices that preserves edges and non-
edges as well as edge colour. A Cayley graphCay(G,C) is said to have the Cayley Colour
Automorphism (CCA) property if every colour-preserving automorphism of the graph is
an affine function on G. The group G is said to be CCA if every connected Cayley graph
of G is CCA.

The study of this property has only come up recently in history. In 2012, M. Con-
der, T. Pizanski and A. Žitnik [1] proposed a question about the permutations of circulant
graphs that preserve a certain edge colouring that the second author [9] answered. The
second author showed that for any connected Cayley graph on the cyclic group Cn, all
colour-preserving automorphisms that fix the identity are automorphisms of Cn. In 2014,
A. Hujdurović, K. Kutnar, D. W. Morris, and J. Morris [4] extended the original ques-
tion by looking at Cayley graphs, using the natural edge colouring described. In early
2017, L. Morgan, J. Morris and G. Verret [7, 8] gave new results for finite simple groups
and Sylow cyclic groups that generalized results produced by E. Dobson, A. Hujdurović,
K. Kutnar, and J. Morris in [2]. The problem of determining colour-preserving and colour-
permuting automorphisms for directed Cayley graphs has already been studied and is well
understood: see for example [10], where the authors showed that for a connected Cayley
digraph, every colour-preserving automorphism is a left-translation by some element of the
group.

In his M.Sc. thesis, the first author produced code using GAP [3] and Sage [5] that
determines whether or not a group or graph has the CCA property, and ran this code on all
groups of order up to 200 (excluding orders 128 and 192). With this data in hand, a logical
step was to look for theoretical methods to explain some of the small non-CCA groups that
were not previously understood, and if possible to find new infinite families of non-CCA
groups using this method.

In this paper, we use results from [8] to show that whenever n ≥ 3, the groups
Cn × D2n and D2n × D2n are non-CCA groups. Section 2 contains some basic back-
ground, definitions, and notation, along with the statements of the results we need from [8].
Section 3 provides proofs of our main results.

2 Background
The following notation is used for the remainder of this paper. We use Cn to represent the
cyclic group of order n, and D2n (for n ≥ 3) to represent the dihedral group of order 2n.
We also have Q8 as the quaternion group of order 8.

The notation Γ = (V (Γ), E(Γ)) represents a graph of finite order, consisting of a set
V = V (Γ) of vertices and a set E = E(Γ) ⊆ {{u, v} | u, v ∈ V } of edges. The set of
vertices that are adjacent to a vertex v, denoted Γ(v), is called the neighbourhood of v. We
use L(Γ) to indicate the line graph of the graph Γ, and S(Γ) is the subdivision graph of the
graph Γ.

If G acts on a graph Γ and S ⊆ V (Γ) is fixed setwise under the action of G, then
GS is the restriction of the action of G to S. We use Gv to denote the stabiliser subgroup
(elements of G that fix v).

Definition 2.1. [4, Definition. 2.6] For an abelian group A of even order and an involution
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y ∈ A, the corresponding generalized dicyclic group is

Dic(A, y) = 〈x,A | x2 = y, x−1ax = a−1,∀a ∈ A〉.

Definition 2.2. [4, Definition. 5.1] The generalized dihedral group over an abelian group
A is the group

Dih(A) = 〈σ,A | σ2 = e, σaσ = a−1,∀a ∈ A〉

Definition 2.3 ([8, Definition 4.5]). LetB be a permutation group andG a regular subgroup
of B. Let A0 be the colour-preserving automorphism group of the complete Cayley colour
graph KG = Cay(G,G \ {e}), and let Ĝ be the subgroup of A0 consisting of all left
translations by elements of G. We say that (G,B) is a complete colour pair if B is a
subgroup of A0 and G is one of the following:

• G is abelian but not an elementary abelian 2-group, and A0 ∼= Dih(G).

• G ∼= Dic(A, y) but not of the form Q8 × Cn2 and A0 = Ĝ o 〈σ〉, where σ is the
permutation that fixes A pointwise and maps every element of the coset Ax to its
inverse.

• G ∼= Q8 × Cn2 and A0 = 〈Ĝ, σi, σj , σk〉, where σα is the permutation of Q8 × Cn2
that inverts every element of {±α} × Cn2 and fixes every other element.

The importance of Definition 2.3 comes from the fact that if (G,B) is a complete
colour pair, then in each case we have a colour-preserving automorphism of KG that is not
an element of Ĝ.

An arc is an orientation for an edge in a graph. So the edge {u, v} admits two possible
orientations: (u, v), or (v, u).

Definition 2.4. Let Γ be a graph andG a permutation group acting on the vertices of Γ. We
say that Γ is a G-arc-regular graph if for each pair of arcs e1 = (u, v) and e2 = (w, x)
(each an oriented edge from E(Γ)), there exists a unique element of G that maps u to w
and v to x, so that it maps the chosen orientation for e1 to the chosen orientation for e2.

Notation 2.5. For the remainder of this paper we use the following notation. Consider
the complete bipartite graph Kn,n. We define ρ1 to be a cyclic permutation on one of
the bipartition sets, and ρ2 be a cyclic permutation on the other bipartition set, with τ
an involution that commutes with ρ1ρ2 and switches the bipartition sets. Let σ1 be an
involution acting on the first bipartition set that inverts ρ1, and σ2 an involution acting on
the second bipartition set that inverts ρ2.

We label the edges of S(Kn,n) as follows. Use v to denote the unique vertex in the
second bipartition set of Kn,n that is fixed under the action of σ2. Now in S(Kn,n) label
the edge from τ(v) to the vertex subdividing {v, τ(v)} with the identity element e of G,
and label each other edge by the unique element of G that maps the edge e to that edge.
This produces a labeling that shows us that L(S(Kn,n)) is a Cayley graph on G. From this
it is straightforward to observe that the connection set C (which consists of all neighbours
of e) is {τ} ∪ {ρi2 : 1 ≤ i ≤ n− 1}.

Corollary 2.6 ([8, Corollary 4.10]). Let Γ be a connected G-arc-regular graph. If H is a
group of automorphisms of Γ such that:
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• G ≤ H , and

• (G
Γ(v)
v , H

Γ(v)
v ) is a complete colour pair for every vertex v of Γ,

then H is a colour-preserving group of automorphisms of L(S(Γ)) viewed as a Cayley
graph on G.

The real point of this corollary is that if we show that some element of H is not an
affine function, then this implies that L(S(Γ)) is a non-CCA graph, and so G is a non-
CCA group. The fact that (G

Γ(v)
v , H

Γ(v)
v ) is a complete colour pair is what allows us to

produce the desired non-affine element of H .

3 Main Results
In our main result, we show that Kn,n is a (connected) Cn × D2n-arc-regular graph and
therefore if we take Γ = Kn,n,G = Cn×D2n, andH = D2n oC2 then all of the conditions
of Corollary 2.6 are satisfied. For clarity, we are using D2n o C2 to denote the semidirect
product (D2n×D2n)oC2, where the C2 is acting on the coordinates in the direct product.
Hence D2n o C2 is a colour-preserving group of automorphisms of L(S(Kn,n)). With this
we find an element in D2n o C2, a colour-preserving automorphism, that is a non-affine
function to show that L(S(Kn,n)) is non-CCA. The proof is not particularly difficult; the
difficulty of this result lies in finding an arc-regular graph and corresponding permutation
groups to which we can apply Corollary 2.6.

Theorem 3.1. The graph L(S(Kn,n)) viewed as a Cayley graph on Cn×D2n is non-CCA
whenever n ≥ 3 is odd.

Specifically, if G = 〈ρ1, ρ2, τ〉 and C = {τ} ∪ {ρi2 : 1 ≤ i ≤ n − 1}, then σ2 is a
non-affine colour-preserving automorphism of Cay(G,C).

Proof. We use Notation 2.5 and the labelling that is given in the paragraph following that
notation to view L(S(Γ)) as a Cayley graph on G. Observe that G = 〈ρ1, ρ2, τ〉 =
〈ρ1ρ2, ρ1ρ

−1
2 , τ〉 ∼= Cn × D2n since n is odd so that 〈ρ2

2〉 = 〈ρ2〉. Notice that G acts
regularly on the arcs of Kn,n, so that Kn,n is G-arc-regular.

Consider now the group H = 〈ρ1, ρ2, τ, σ1, σ2〉 ∼= D2n o C2 where each copy of D2n

acts independently on one of the bipartition sets of Kn,n, and the C2 (generated by τ )
exchanges the coordinates. The first copy of D2n is generated by ρ1 and σ1. The second
copy is generated by ρ2 and σ2. It is clear that G ≤ H since ρ1, ρ2, τ ∈ H .

Let v be an arbitrary vertex of the second bipartition set. The neighbours of v are all
the elements of the first bipartition set. We notice that GΓ(v)

v is the subgroup of G that fixes
v and its action is restricted to the bipartition set that v is not in. We see that ρ1 is the cyclic
permutation of Γ(v). Since G = 〈ρ1, ρ2, τ〉, it is not hard to observe that GΓ(v)

v = 〈ρ1〉 ∼=
Cn. Similarily since H = 〈ρ1, ρ2, τ, σ1, σ2〉 we have that HΓ(v)

v = 〈ρ1, σ1〉 ∼= D2n. Thus
we only need to show that (Cn, D2n) is a complete colour pair.

We can see (Cn, D2n) is a complete colour pair using Definition 2.3. Let A0 be the
colour-preserving automorphism group for the Cayley graph K

G
Γ(v)
v

. We know that A0 =

D2n = Dih(Cn) and thus since Cn is abelian and is not an elementary abelian 2-group
(n ≥ 3), all the properties of the first possibility for a complete colour pair are met. (In this
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case, B = D2n = A0.) We thus conclude (using Corollary 2.6) that every element of H is
a colour-preserving automorphism of L(S(Kn,n)) viewed as a Cayley graph on G.

It remains to show that some element of H is not affine. We claim that σ2 (acting on
G as an automorphism of the Cayley graph) is such an element. In order to prove this,
we show that σ−1

2 τσ2 is not an element of G. Let v be the unique vertex in the second
bipartition set that is fixed by σ2. Clearly, σ−1

2 τσ2 = σ2τσ2 maps the arc (v, τ(v)) to the
arc (τ(v), v), since σ2 fixes both v and τ(v). SinceG is acting arc-regularly, it has a unique
element that maps (v, τ(v)) to the arc (τ(v), v), and we know that this element is τ . So if
σ2 normalisesG, we must have σ2τσ2 = τ . It is straightforward to verify that this is not the
case. For example, τρ2(v) = τρ1ρ2(v) = ρ1ρ2τ(v) = ρ1τ(v) (the first equality follows
from the fact that ρ1 fixes the bipartition set that contains v; the second equality from the
fact that τ and ρ1ρ2 commute, and the third from the fact that ρ2 fixes the bipartition set
that does not contain v). However, σ2τσ2ρ2(v) = τσ2ρ2(v) = τρ−1

2 σ2(v) = τρ−1
2 (v) (the

first equality follows because σ2 fixes the bipartition set that does not contain v; the second
because 〈σ2, ρ2〉 ∼= D2n, so σ2 inverts ρ2; and the third because σ2 fixes v). However, since
n ≥ 3, τρ−1

2 (v) is not the same as τρ2(v), because the order of ρ2 is n. Thus, σ2 ∈ H
does not normalise G, as claimed.

Corollary 3.2. The group Cn ×D2n is non-CCA whenever n ≥ 3 is odd.

We use the above result to show that D2n ×D2n is not CCA whenever n ≥ 3 is odd.

Proposition 3.3. The group D2n ×D2n is non-CCA whenever n ≥ 3 is odd.

Proof. LetG = 〈ρ1, ρ2, τ〉where these permutations are as defined in Notation 2.5. Define
H = 〈G, γ〉, where γ is an involution that commutes with τ and with ρ−1

1 ρ2, and inverts
ρ1ρ2. Notice that this implies H ∼= D2n ×D2n.

By Theorem 3.1, if G = 〈ρ1, ρ2, τ〉 and C = {τ} ∪ {ρi2 : 1 ≤ i ≤ n − 1}, then σ2

is a non-affine automorphism of Cay(G,C) (in its action on G as an automorphism of this
Cayley graph). We use this to produce a non-affine colour-preserving automorphism ϕ on
Γ = Cay(H,C ∪ {γ}).

Define ϕ by ϕ(g) = σ2(g), and ϕ(gγ) = σ2(g)γ for every g ∈ G. We first show that
ϕ is colour-preserving on Γ.

Consider any edge e of Γ. If both endpoints of e are in G then ϕ(e) = σ2(e) and since
σ2 preserves colours, so does ϕ.

If one endpoint of e is in G and the other is not, then it must be the case that e is
coloured γ, and its endpoints are g and gγ for some g ∈ G. Furthermore, by definition of
ϕ we have ϕ(gγ) = ϕ(g)γ, so there is an edge between ϕ(g) and ϕ(gγ), and its colour is
γ. Thus ϕ also preserves the colour of any such edge.

The final case to consider is if both endpoints of e are in Gγ. Suppose the endpoints
of e are ρi11 ρ

i2
2 τ

f1γ and ρj11 ρ
j2
2 τ

f2γ, where 0 ≤ i1, i2, j1, j2 ≤ n− 1, and 0 ≤ f1, f2 ≤ 1.
Since there is an edge between these vertices, we must have γτf1ρj1−ii1 ρj2−i22 τf2γ ∈ C
(recall that γ and τ are both involutions). Note that ρa1ρ

b
2 = (ρ1ρ2)(a+b)/2(ρ−1

1 ρ2)(b−a)/2;
we want to use this because we know that γ commutes with τ and with ρ−1

1 ρ2 but inverts
ρ1ρ2. So we have

γτf1(ρ1ρ2)(j1+j2−i1−i2)/2(ρ−1
1 ρ2)(j2+i1−i2−j1)/2τf2γ = τf1(ρ1ρ2)(i1+i2−j1−j2)/2(ρ−1

1 ρ2)(j2+i1−i2−j1)/2τf2

= τf1ρi2−j21 ρi1−j12 τf2 ∈ C.

Since we know the elements of C, this implies one of three possibilities:
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• the element is τ , so that i2 = j2 and i1 = j1, and {f1, f2} = {0, 1};

• f1 = f2 = 0 and the element is ρj2 for some 1 ≤ j ≤ n − 1, so i2 = j2, and
j = i1 − j1); or

• f1 = f2 = 1 and the element is ρj2 for some 1 ≤ j ≤ n − 1, so (using the above
equation and the fact that τ commutes with ρ1ρ2 and inverts ρ−1

1 ρ2) i1 = j1, and
j = j2 − i2.

We now need to understand the images of the endpoints of e under ϕ. Recall from
the labelling established immediately following Notation 2.5 that we choose the vertex v
to be the unique vertex in the second bipartition set that is fixed by σ2, and in S(Kn,n)
we label the edge from τ(v) to the vertex subdividing {v, τ(v)} with the identity element
of G. This means that the edge from ρi11 τ(v) to the vertex subdividing {ρi11 τ(v), ρi22 (v)}
will be the image of the edge labelled with the identity under the action of ρi11 ρ

i2
2 , so is

labelled ρi11 ρ
i2
2 . Similarly, since the edge from v to the vertex subdividing {v, τ(v)} has the

label τ , the edge from ρi22 (v) to the vertex subdividing {ρi11 τ(v), ρi22 (v)} will be labelled
ρi11 ρ

i2
2 τ . This is the other “half” of the same subdivided edge from Kn,n. It should now be

apparent that σ2(ρi11 ρ
i2
2 ) = ρi11 ρ

−i2
2 and therefore σ2(ρi11 ρ

i2
2 τ) = ρi11 ρ

−i2
2 τ (the other half

of the same subdivided edge from Kn,n). Thus, the images of the endpoints of e under ϕ
are ρi11 ρ

−i2
2 τf1γ and ρj11 ρ

−j2
2 τf2γ.

Now using similar calculations to those above, the colour of the edge between these
images is

τf1ρj2−i21 ρi1−j12 τf2

(together with its inverse). Taking the three possibilities identified above in turn, if i1 = j1,
i2 = j2, and {f1, f2} = {0, 1} then this colour is τ as before, so ϕ has preserved the
colour. If f1 = f2 = 0, i2 = j2, and the colour of e was {ρj2, ρ

−j
2 } where j = i1− j1, then

the colour of this edge is also {ρj2, ρ
−j
2 }. Finally, if f1 = f2 = 1, i1 = j1, and the colour

of e was {ρj2, ρ
−j
2 } where j = j2 − i2, then the colour of this edge is {ρj2, ρ

−j
2 }. So in all

cases the colour of e is preserved under the action of ϕ. This completes the proof that ϕ is
colour-preserving.

Since Cay(H,C) has two connected components (onG andGγ), any colour-preserving
automorphism of Γ must preserve these components. Therefore, if ϕ is affine then its re-
striction to G (which is σ2) would have to be affine on G. By Theorem 3.1 this is not the
case. Thus, ϕ is a colour-preserving automorphism of Γ that is not affine, and therefore Γ
and H are not CCA.
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