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Abstract. In this article, we study the order and structure of the largest induced forests in
some families of graphs. First we prove a variation of the Delsarte-Hoffman ratio bound
for cocliques that gives an upper bound on the order of the largest induced forest in a graph.
Next we define a canonical induced forest to be a forest that is formed by adding a vertex
to a coclique and give several examples of graphs where the maximal forest is a canonical
induced forest. These examples are all distance-regular graphs with the property that the
Delsarte-Hoffman ratio bound for cocliques holds with equality. We conclude with some
examples of related graphs where there are induced forests that are larger than a canonical
forest.

1. Introduction

In this paper we study both the cardinality and structure of the largest sets of vertices
inducing forests in some distance-regular graphs. For a graph G, let τ(G) be the maximum
number of vertices inducing a forest in G. The quantity τ(G) is called the acyclic number
of G. Letting α(G) denote the independence number of G, the order of the largest coclique,
it is clear that for any non-empty graph, τ(G) ≥ α(G) + 1 as adding any vertex to an
independent set will induce a forest. The main results of this article are to give bounds on
τ(G) for certain distance-regular graphs and to identify graphs in which every maximum
induced forest can be obtained by adding a single vertex to an independent set.

A number of other graph parameters and special kinds of vertex subsets bear some re-
lationship to this acyclic number τ(G). An induced forest in a graph is complementary to
a set of vertices whose removal induces an acyclic graph and this is sometimes known as
a ‘decycling set’ of a graph, or a ‘feedback vertex set’. Recall that a graph is k-degenerate
if and only if every subgraph has a vertex of valency at most k. The notion of degeneracy
arises in colouring problems and in the study of ‘cores’ of graphs which is related to con-
nectivity properties of the graph. A graph is empty if and only if it is 0-degenerate, while
a graph is a non-empty forest if and only if it is 1-degenerate. Thus, the largest coclique in
a graph is the largest set of vertices that induce a 0-degenerate subgraph, while the largest
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induced forest can be thought of as the largest set of vertices inducing a 1-degenerate sub-
graph.

Alon, Kahn, and Seymour [2] showed that τ(G) ≥
∑

v∈V 2/(d(v)+1), where d(v) denotes
the valency of v. In fact, this is a special case of the general bound they prove for k-
degenerate induced subgraphs. In the case of a d-regular graph on n vertices, this implies
that τ(G) ≥ 2n/(d + 1). This bound is tight for a graph consisting of disjoint copies of
Kd+1. Bondy, Hopkins and Staton [8] showed that if d = 3 and G is connected (so that the
previous tight examples do not apply), then τ(G) ≥ 5n−2

8 (again, n is the number of vertices).
They also provided examples where their bound is tight. Further refinements have been
given for regular graphs of large girth [21, 22, 24]. Bau, Wormald, and Zhou [6] showed
that for random 3-regular graphs, asymptotically almost surely, τ(G) = n − ⌈(n + 2)/4⌉ =
⌊(3n − 2)/4⌋ and gave bounds for random r-regular graphs in general. Alon, Mubayi and
Thomas [4] gave bounds on τ(G) in terms of the independence number and the maximum
valency.

The largest induced forests and smallest decycling sets in specific families of graphs
have been well-studied in the literature, for example: planar graphs [1], bipartite graphs [3,
10], hypercubes [5, 14, 29] and binomial random graphs [23]. Related work has concerned
the largest induced trees [13, 15, 26, 27, 28] and the largest induced matchings [9, 11].

Let G = (V, E) be a graph and S be a coclique of G. As noted previously, for any
v ∈ V \ S , the set S ∪ {v} induces a forest, so that τ(G) ≥ α(G) + 1. We define forests
constructed in such a manner to be canonical.

Definition 1.1. Let G = (V, E) be a non-empty graph and let F ⊂ V induce a forest. A set
F is a canonical induced forest if there is a vertex v ∈ F such that F \ {v} is an independent
set.

We will refer to induced forests of maximum possible order as maximum induced
forests. Often we drop the word induced and refer to these as just a canonical forest in
G or maximum forests. We note that a canonical forest of order k in a graph G is a span-
ning subgraph of the complete multipartite graph K1, k−1, where k − 1 ≤ α(G); further, any
non-canonical induced forest is not such a subgraph, so this characterizes the canonical
forests.

In this article, we deal with the following problems:

(A) Find families of graphs with α(G) + 1 = τ(G), for every graph G in the family.
(B) Find families of graphs such that every maximum induced forest in a graph of the

family is canonical.

The family of complete graphs is an easy example of a family satisfying the conditions in
both (A) and (B). Another easy example is the family of complete bipartite graphs.

Another straight-forward example are the threshold graphs. A graph is a threshold
graph if it can be formed by starting with a single vertex and repeatedly either adding an
isolated vertex, or adding a dominating vertex to the graph. It is well-known that threshold
graphs are exactly the graphs that do not contain, as an induced subgraph, either path on
four vertices, P4, or a cycle on four vertices, C4 or two disjoint edges 2K2; thus the thresh-
old graphs are exactly the {P4,C4, 2K2}-free graphs (see [18]or [25] for a comprehensive
treatise of this topic).

Proposition 1.2. Let G be a threshold graph. Then α(G) + 1 = τ(G) and every maximum
induced forest in G is canonical.
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Proof. Any non-canonical forest in a graph must contain, as an induced subgraph, either
P4 or 2K2. If G is a threshold graph, then it is both P4-free and 2K2-free, then every
maximum induced forest is necessarily canonical. □

If G is a disconnected graph in which each component has at least two vertices (so no
component is an isolated vertex), then a forest can be constructed by taking a maximum
coclique and adding one vertex, not in the maximum coclique, from each component of
the graph. So in this case, the bound τ(G) ≥ α(G) + κ(G) holds, where κ(G) is the number
of components of G. Since our goal in this paper is to find graphs for which condition (A)
holds, we will only consider connected graphs.

The join of two graphs G and H is the graph formed by taking the disjoint union of G
and H and adding all edges with one vertex in G and the other in H. This new graph is
denoted by G ∨ H.

Proposition 1.3. If G and H are two graphs that satisfy both conditions (A) and (B), then
G ∨ H also satisfy both conditions (A) and (B).

Proof. First note that α(G ∨ H) = max{α(G), α(H)}.
If F is a forest in G ∨ H then F cannot have two vertices in G and two vertices in H, as

this would form a copy of C4 in F. Thus, either the vertices of F are all vertices of G, or
all vertices of H or F has exactly one vertex in G, or F has exactly one vertex in H.

Since condition (B) holds for both G and H, if either of the first two possibilities hold,
then F is canonical. If either of the last two possibilities hold then F has one vertex in G
(or H) and the vertices in H (respectively, G) must be a coclique, thus F is a canonical
forest.

Note that this means that

τ(G ∨ H) = max{α(G), α(H)} + 1 = α(G ∪ H) + 1,

so the graph G ∨ H satisfies both condition (A) and (B). □

The next natural step is to consider connected graphs which are neither P4-free nor
2K2-free, and are not the join of two smaller graph. We start looking at regular graphs.

The following result, known as the Delsarte-Hoffman ratio bound, is a spectral graph
theoretic method that has been used to bound the size of the maximum cocliques in many
families of regular graphs, refinements of this theorem can be used to characterize the
maximum cocliques in a graph (see [17] for examples).

Theorem 1.4. (see [19, Theorem 3.2]) Let G be a k-regular graph on n vertices and let λ
be the smallest eigenvalue of the adjacency matrix of G. Then

α(G) ≤
n(−λ)
k − λ

.

This result is an application of the Cauchy Interlacing Theorem (see [19, Theorem 2.1]).
Applying the same technique, we will show the following spectral upper bound for the
order of an induced forest in a regular graph.

Theorem 1.5. Let G be a k-regular graph on n vertices and let λ be the smallest eigenvalue
of the adjacency matrix of G. Then

τ(G) ≤
n(2 − λ) +

√
n2(2 − λ)2 − 8n(k − λ)
2(k − λ)

<
−nλ
k − λ

+
2n

k − λ
.
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Below is an edge-counting argument, which provides an alternative bound on the order
of an induced forest in a regular graph that is sometimes better than the spectral bound (see
discussion after Lemma 4.1).

Theorem 1.6. Let G be a k-regular graph on n vertices. Let f be the number of vertices
and c the number of connected components in an induced forest of G. Then

f ≤
nk − 2c
2k − 2

≤
nk − 2
2k − 2

.

The first summand of the right-hand side of the inequality in Theorem 1.5 is equal to the
Delsarte-Hoffman ratio bound on the independence number α(G). As we seek graphs G,
for which α(G)− τ(G) is “small”, it is natural to focus our investigations on regular graphs
for which the Delsarte-Hoffman bound is tight. Many distance-regular graphs satisfy the
tightness of the Delsarte-Hoffman bound, for instance the Kneser graph is one such graph.

Let G be a graph and F be a non-canonical forest in G. In Lemma 3.1, we show that
|F| ≤ 2 + η(G), where η(G) is the graph invariant defined in (1). If 2 + η(G) ≨ α(G) + 1,
then τ(G) = α(G)+1 and every maximum induced forest in G is canonical. This gives us a
method to prove a graph satisfies both conditions (A) and (B). Further, in the case that G is
a distance-regular graph for which the Delsarte-Hoffman ratio bound holds with equality,
both α(G) and η(G) can be determined from the intersection array of G. Thus our focus
is on such graphs and below is a list of five families of distance-regular graphs in which
every maximum induced forest is canonical.

Theorem 1.7. In the following graphs, every maximum induced forest is a canonical for-
est:

(1) the Kneser graph K(n, k), for every k ≥ 2 and n ≥ 2k3;
(2) the q-Kneser graph Kq(n, k), for k ≥ 2, n > 3k − 2 and q sufficiently large;
(3) the non-collinearity graph on points in a generalized quadrangle with parameters

(s, t) and s > 3;
(4) Xm,n = ⊗

mKn with m ≥ 2 and n > 2m(m − 1);
(5) the complement of the block graph of an orthogonal array with parameters m, n

with n > 1 + 2m(m − 1);

We were able to make a few refinements in some subfamilies of the graphs mentioned
in the above result. These can be found in Theorems 3.4, 3.6, and 3.9

These results can be found in Theorems 3.4, 3.6, and 3.9, along with a few refinementsThe theorems we
referenced in this
paragraph are the
refinements of Thm
1.7 in the SRG
case. I think we
should stick to the
previous (version
above in red) of
this paragraph.

in some subfamilies of the graphs.
We prove Theorems 1.5 and 1.6 in Section 2. In Section 3, we prove the results of

Theorem 1.7, characterizing induced forests in some other families of graphs. In Section 4,
we produce an infinite family of graphs with “large” maximum forests.

2. Upper bounds

We begin this section by proving Theorem 1.6.

Proof of Theorem 1.6. Let G = (V, E) be a k-regular graph on n vertices, and let F be an
induced forest of G with f vertices and c connected components.

Since it is a forest, F has f − c edges. Since each of the f vertices of F has k incident
edges and each of the f − c edges of F is counted twice in the valency of vertices of F,
there are f k − 2( f − c) = f (k − 2) + 2c edges of G that join vertices of F to vertices that
are not in F. In total, this makes f (k − 1) + c edges of G that are incident with at least one
vertex of F.
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Clearly, the number of edges of G that are incident with at least one vertex of F cannot
exceed the total number of edges of G, which by the Handshaking Lemma is nk/2. So

f (k − 1) + c ≤ nk/2.

Rearranging this inequality produces the given result, which is maximized when c = 1. □

We next work toward the proof of Theorem 1.5. Let G = (V, E) be a k-regular graph
on n vertices. Let k = λ1 ≥ λ2 · · · ≥ λn be the eigenvalues of its adjacency matrix. The
following result from [19] gives algebraic bounds for induced subgraphs. We include the
proof for completeness.

Theorem 2.1. [19, Theorem 3.5] Let G be a k-regular graph on n vertices and suppose
that G has an induced subgraph G′ with n′ vertices and m′ edges. Then

λ2 ≥
2m′n − k(n′)2

n′(n − n′)
≥ λn.

Proof. Consider the partition π = {G′, G′} of the vertex set. The corresponding quotient
matrix is ( 2m′

n′ k − 2m′
n′

n′k−2m′
n−n′ k − n′k−2m′

n−n′

)
.

The eigenvalues of this matrix are k and 2m′
n′ −

n′k−2m′
n−n′ =

2m′n−n′2k
n′(n−n′) . The result follows by

Cauchy’s Interlacing Theorem (see [19, Theorem 2.1]). □

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let G be a k-regular graph on n vertices with λn its least eigenvalue.
Let F be an induced forest of G with f vertices with c connected components. Since F has
exactly f − c edges and f vertices, using the above result, we have

2( f − c)n − k f 2

f (n − f )
≥ λn,

and thus
(k − λn) f 2 + n(λn − 2) f + 2cn ≤ 0.

As c ≥ 1, we have (k− λn) f 2 + n(λn − 2) f + 2n ≤ 0, and thus f ≤ n(2−λn)+
√

n2(2−λn)2−8n(k−λn)
2(k−λn) .

□

We now use Theorem 1.5 to find the acyclic number of a small graph.

Example 1. Consider the complement P′(9) of the Paley graph on 9 vertices. The vertex
set of this graph is the field F9 of size 9; and two elements a, b ∈ F9 are adjacent if and
only if a− b is not a quadratic residue in F9. We identify F9 � F3[x]/⟨x2 + 1⟩ and the set of
quadratic residues is S = {0, 1, 2, x, 2x}. The induced subgraph F3 ∪ {x + 1, x + 2} is a
path on 5 vertices, in P′(9). This construction implies that τ (P′(9)) ≥ 5. It is well-known
that P′(9) is a strongly-regular graph whose spectrum is (4, 1, −2). Using Theorem 1.5,
we have τ(P′(9)) < 6. We note that Theorem 1.6 gives us the same upper bound. Thus we
have τ(P′(9)) = 5.

We were not able to extend this to other Paley graphs. In Section 4, we present some
observations (on the acyclic number) stemming from computations on small order Paley
graphs.



6 K. GUNDERSON, K. MEAGHER, J. MORRIS, AND VENKATA RAGHU TEJ PANTANGI

3. Graphs whose maximum induced forests are canonical.

In this section, we characterize maximum induced forests in some families of regular
graphs. In particular, we will prove Theorem 1.7 using a counting method for each graph.

Let G be a regular graph. We recall that the order τ(G) of a maximum induced forest
satisfies τ(G) ≥ α(G) + 1. To show that every maximum induced forest in G is canonical,
it suffices to show that |F| < α(G) + 1 for every non-canonical induced forest F. Note that
an induced forest F in G is not canonical if and only if F contains either a copy of P4 or
a copy of 2K2 as an induced subgraph. We now find an upper bound on the order of an
induced forest F that does not contain either a P4 or a 2K2.

Given a pair (a, b) of adjacent vertices in G, by N(a, b), we denote the set of vertices in
G that are not adjacent to either of a or b; and by η(a, b), we denote |N(a, b)|. We denote
the maximum such value by

(1) η(G) = max {η(a, b) | a, b ∈ G and a ∼ b} .

Lemma 3.1. If F is a non-canonical forest in a graph G, then |F| ≤ 2 + 2η(G).

Proof. First assume that F contains a path on four vertices; call this subgraph P. Since
F is a forest, every v ∈ F \ P is adjacent to at most one vertex of P. Therefore, every
v ∈ F \ P is non-adjacent to at least one leaf and the neighbour of that leaf in P. Suppose
that P is made up of vertices {a, b, c, d} with a ∼ b, b ∼ c and c ∼ d. Then we see that
F ⊂ N(a, b) ∪ N(c, d) ∪ {b, c}, completing the proof in this case.

Next assume that F does not contain a path on four vertices but has an induced subgraph
Q that is isomorphic to 2K2. Let Q be made up of vertices {a, b, c, d} such that a ∼ b and
c ∼ d. Since F is a forest that does not contain a path on four vertices, every v ∈ F \ Q is
adjacent to at most one vertex of Q, so is non-adjacent to a pair of adjacent vertices of Q.
Thus we have F ⊆ N(a, b) ∪ N(c, d). □

This lemma is particularly applicable to strongly-regular graphs since the value of
η(α, β) is the same for all pairs (α, β) of adjacent vertices. We now recall that given
n, k, a, c ∈ N, a strongly-regular graph with parameters (n, k : a, c) is a k-regular graph
on n vertices such that (i) every pair of adjacent vertices have exactly a neighbours in
common; and (ii) every pair of non-adjacent vertices have exactly c neighbours in com-
mon. Using inclusion-exclusion on the parameters of a strongly-regular graph we see that
η(α, β) = n − 2k + a. Now Lemma 3.1 yields the following result.

Corollary 3.2. Let G be a strongly-regular graph with parameters (n, k : a, c). If

1 + 2(n − 2k + a) < α(G),

then every maximum induced forest is a canonical induced forest.

This corollary can be used to prove that for n ≥ 17 the maximum forests in K(n, 2) are
canonical (we omit this proof, since Theorem 3.4 gives a stronger result).

In the following subsections, we apply Lemma 3.1 to show that maximum induced
forests in some families of strongly-regular graphs must be canonical.

3.1. Kneser Graphs. In this section we consider the Kneser graphs K(n, k) with n ≥ 2k.
The graph K(2k, k) consists of exactly 1

2

(
2k
k

)
disjoint edges and is itself a forest, so we will

only consider n > 2k. It is well known from the Erdős-Ko-Rado Theorem [12] that the
order of a maximum coclique in K(n, k) is

(
n−1
k−1

)
and that the Delsarte-Hoffman ratio bound

holds with equality. Thus a canonical forest has order
(

n−1
k−1

)
+ 1. We will show for n large

relative to k that this is the largest possible induced forest.
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Theorem 3.3. For every k ≥ 2 and n ≥ 2k3, we have

τ(K(n, k)) =
(
n − 1
k − 1

)
+ 1.

Moreover, every maximum induced forest is a canonical induced forest.

Proof. Let γ and δ be a pair of adjacent vertices in K(n, k) (so γ and δ are any two disjoint
k-sets from [n]). Elementary counting arguments (overcounting sets whose intersection
with γ or δ has cardinality greater than 1) show that there are at most k2

(
n−2
k−2

)
k-subsets of

[n] intersecting both γ and δ. Thus in this case, we have η(K(n, k)) ≤ k2
(

n−2
k−2

)
.

By Lemma 3.1, if F is a non-canonical induced forest, then |F| ≤ 2 + 2k2
(

n−2
k−2

)
. In the

case n ≥ 2k3, we have

2 + 2k2
(
n − 2
k − 2

)
< 1 +

(
n − 1
k − 1

)
.

Therefore non-canonical induced forests are smaller than the canonical induced forests. □

We consider one special case of Kneser graphs, in which the same sort of counting can
be done more precisely.

Theorem 3.4. For n ≥ 5

τ(K(n, 2)) = max{n, 7}.

If n > 7, every maximum induced forest in K(n, 2) is canonical.

Proof. For any n, a canonical forest in K(n, 2) has order n. Further, τ(K(n, 2)) ≥ 7 for any
n ≥ 5, this is seen by taking the following vertex set:

{{1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}, {1, 5}} .

Recall that any non-canonical forest contains either a copy of P4 or a copy of 2K2.
Assume F is an induced forest in K(n, 2). If F contains a copy of P4, then the vertices of

this P4 must be the sets {a, b}, {c, d}, {a, e}, {b, c} for some a, b, c, d, e. Any other vertex in F
is adjacent to at most one of these vertices. There are only 5 vertices that are adjacent to at
most one vertex of the path, namely the elements of T := {{a, d}, {c, e}, {b, d}, {a, c}, {b, e}}.
Therefore any vertices of F that are not in the P4 must lie in T , and T itself induces a
5-cycle (in the order given above). Furthermore, every vertex of T except {a, c} is adjacent
to some vertex of the P4. If F were to contain at least four vertices of T then these vertices
would induce a second P4, and at least three of these vertices would have neighbours in the
first P4, leading to a cycle in F, a contradiction. Thus |F ∩ T | ≤ 3, and therefore |F| ≤ 7.

Similarly, if F contains a copy of 2K2, then the vertices of this subgraph must be the
sets {a, b}, {c, d}, {a, c}, {b, d} for some a, b, c, d. If F has no P4, then F cannot include any
vertex of the form {a, e}, {b, e}, {c, e}, or {d, e} (for any e < {a, b, c, d}). Since any vertex in
F must be nonadjacent to at least 2 of the vertices of the 2K2, this implies that the elements
of the 2-set defining the vertex must lie entirely in {a, b, c, d}, so there are only 2 other
vertices that can be added: {a, d} and {b, c}. So any such F contains at most 6 vertices.

Therefore any induced forest that is not canonical contains no more than 7 vertices and
the result follows. □
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3.2. q-Kneser Graphs. The next family we consider is the q-Kneser graphs. Let n, k be
positive integers with n ≥ 2k, and q be a power of a prime. The vertex set of the graph
Kq(n, k) is the set of all k-dimensional subspaces of Fn

q; two vertices are adjacent if and only
if they intersect trivially. It is well known that the cardinality of a coclique in this graph
is

(
n−1
k−1

)
q
, and that the Delsarte-Hoffman ratio bound holds with equality (see [16] or [17,

Chapter 9] for notation and details). The canonical induced forests have 1+
(

n−1
k−1

)
q

vertices.
We obtain the following characterization of maximum induced forests in q-Kneser graphs.

Theorem 3.5. For k ≥ 2, n > 3k − 2 and q sufficiently large, we have

τ(Kq(n, k)) =
(
n − 1
k − 1

)
q
+ 1.

Moreover, every maximum induced forest is canonical.

Proof. Let γ and δ be two adjacent vertices in K(n, k)q. If ω is a k-subspace intersecting
non-trivially with both γ and δ, then it contains a subspace of the form ⟨x⟩ + ⟨y⟩, where
x ∈ γ \ {0} and y ∈ δ \ {0}. A subspace of the form ⟨x⟩+ ⟨y⟩ can be chosen in

(
k
1

)2

q
ways. It is

a well known fact that there are
(

n−2
k−2

)
q

subspaces of dimension k, which contain a specific

2-dimensional subspace. Thus we have η(Kq(n, k)) ≤
(

k
1

)2

q

(
n−2
k−2

)
q
.

If F is a non-canonical induced forest, then by Lemma 3.1, we have

|F| ≤ 2 + 2
(
k
1

)2

q

(
n − 2
k − 2

)
q
.

We will now show that, provided n > 3k − 2 and q sufficiently large, this upper bound

is smaller than 1 +
(

n−1
k−1

)
q
. Since

(
n−1
k−1

)
q
=

(
n−1

1

)
q(

k−1
1

)
q

(
n−2
k−2

)
q
, we have

1 +
(
n − 1
k − 1

)
q
− 2 − 2

(
k
1

)2

q

(
n − 2
k − 2

)
q
=

(
n − 2
k − 2

)
q


(

n−1
1

)
q
− 2

(
k−1

1

)
q

(
k
1

)2

q(
k−1

1

)
q

 − 1.

Expanding the q-binomial coefficients gives that(
n − 1

1

)
q
− 2

(
k − 1

1

)
q

(
k
1

)2

q
=

qn−1 − 1
q − 1

− 2
(

qk−1 − 1
q − 1

) (
qk − 1
q − 1

)2

,

and, provided that n − 2 > 3k − 4, this is a monic polynomial of degree n − 2 and hence
positive for a sufficiently large q. So for n > 3k−2 and q sufficiently large, the order of any
forest is bounded above by 1 +

(
n−1
k−1

)
q
, and this bound is met by only canonical forests. □

As in the case of Kneser graphs, we consider the special case of strongly-regular q-
Kneser graphs with k = 2, in which the same sort of counting can be done more precisely.
In particular, the following result gives a complete characterization of maximum forests in
Kq(n, 2) provided n ≥ 4.

Theorem 3.6. For n ≥ 4

τ(Kq(n, 2)) = max


(
n − 1

1

)
q
+ 1, 8

 .
If (n, q) , (4, 2), then every maximum induced forest in K(n, 2) is canonical.
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Proof. Let F be a non-canonical forest in Kq(n, 2). Then F contains either a copy of P4 or
a copy of 2K2 as an induced subgraph.

First assume that F has four vertices {X,Y,V,W} inducing a path, with X ∼ Y , Y ∼ V ,
and V ∼ W. From the discussion prior to Lemma 3.1, we have F ⊂ N(X,Y) ∪ N(V,W) ∪
{Y,V}. As Kq(n, 2) is edge-transitive, the graph induced by N(X,Y) is isomorphic to the
graph induced by N(V,W). We now have |F| ≤ 2 + 2τ(N(V,W)), where τ(N(V,W)) is
the order of a maximum forest induced in the graph N(V,W). Similarly, if F has four
vertices {X,Y,V,W} inducing a disjoint union of two edges, with X ∼ Y and V ∼ W, then
|F| ≤ 2τ(N(V,W)). Therefore the order of a non-canonical forest is bounded above by
2 + 2τ(N(V,W)). We will now determine the structure of N(V,W).

As V and W are adjacent, V and W are disjoint 2-subpaces of Fn
q, and thus any U ∈

N(V,W) is completely determined by U ∩ V and U ∩W. Let P1(V) denote the set of one
dimensional subspaces of V , and let P1(W) denote the set of one dimensional subspaces of
W. Setting αU := U ∩ V and βU := U ∩ W, we note that the map U 7→ (αU , βU), is a
bijection between N(V,W) and P1(V) × P1(W). We also observe that (α, β) 7→ α ⊕ β is the
inverse of the above mentioned bijection. Thus given U1,U2 ∈ N(V,W), we have U1∩U2 ,
{0} if and only if, for i = 1, 2, there exist xi ∈ αUi , yi ∈ βUi , such that x1 + y1 = x2 + y2 , 0.
For i = 1, 2, we have αUi ⊂ V and βUi ⊂ W. Since, V ∩ W = {0}, given x1, x2 ∈ V ,
and y1, y2 ∈ W, we have x1 + y1 = x2 + y2 if and only if x1 = x2 and y1 = y2. We can
now conclude that U1,U2 ∈ N(V,W) intersect non-trivially if and only if either αU1 = αU2

or βU1 = βU2 . We can now conclude that given U1,U2 ∈ N(V,W), we have U1 ∼ U2 if
and only if αU1 , αU2 and βU1 , βU2 . Now, using |P1(V)| = |P1(W)| =

(
2
1

)
q
= q + 1,

we can conclude that the graph induced by N(V,W) is the two fold tensor product of the
complete graph Kq+1. We deal with these graphs in Subsection 3.4. Using the notation in
Subsection 3.4, we have N(V,W) � X2,q+1.

In Theorem 3.8 we will show, provided that q ≥ 3, we have τ(X2,q+1) = q+2. Therefore
if q ≥ 3, the order of a non-canonical forest is bounded above by 2+2τ(N(V,W)) = 2q+6.
The order of the largest canonical forest is α(Kq(n, 2))+1 =

(
n−1

1

)
q
+1. Elementary algebra

shows that
(

n−1
1

)
q
+ 1 > 2q + 6 for all n ≥ 4 and q ≥ 3. Therefore, provided q ≥ 3, every

maximum forest in Kq(n, 2) is canonical.
We now shift our attention to q = 2. If V,W are two adjacent vertices in K2(n, 2), then

we have seen that N(V,W) � X2,3 = K3 ⊗K3. The algebraic bound Theorem 1.5 shows that
τ(X2,3) < 6. We can check either by hand or computer that X2,3 has an induced path with 5
vertices, and therefore τ(X2,3) = 5. Thus the order of a non-canonical forest F is bounded
above by 2+2τ(N(V,W)) = 12. For n > 4, we have α(K2(n, 2))+1 = 2n−1 > 12. Therefore
provided n > 4, every maximum forest in K2(n, 2) is canonical.

We are now left with the case of K2(4, 2). With the help of a computer algebra system
( such as Sage [30]), we can show that τ(K2(4, 2)) = α(K2(4, 2)) + 1 = 8. It can also be
shown that there are paths on 8 vertices in K2(4, 2). Thus not all maximum forests are
canonical in this case.

□

3.3. Non-collinearity Graphs of Generalized Quadrangles. The next family we con-
sider is the family of non-collinearity graphs on generalized quadrangles. Let G be a gen-
eralized quadrangle with parameters s, t. Let XG let denote the graph whose vertices are
the points of G, in which two points are adjacent if and only if they are not collinear. It
is well known that XG is a strongly-regular graph with

{
s2t, −s, t

}
as the set of distinct

eigenvalues (see [17, Section 5.6]). By the Delsarte-Hoffman ratio bound for cocliques
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(Theorem 1.4),

α(XG) ≤
(s + 1)(st + 1)s

s2t + s
= s + 1.

The set of all points on a line form a coclique, so this bound is tight. We obtain the
following characterization of maximum induced forests in XG.

Theorem 3.7. Let G be a generalized quadrangle with parameters (s, t) and let XG be the
non-collinearity graph on points in G. Suppose that s > 3, then,

τ(XG) = s + 2.

Moreover, every maximum induced forest in XG is canonical.

Proof. Consider an induced forest F which contains a path P on 4 vertices as an induced
subgraph. Let {A, B, C, D} be the vertices inducing P, with A ∼ B, B ∼ C, and C ∼ D. As
F is a forest, any V ∈ F \P must be non-adjacent to at least three vertices in {A, B, C, D}.
Suppose V is non-adjacent to each vertex in {A,C,D}. In other words, V is collinear with
every point in {A,C,D}. Thus V must lie on both the lines

−−→
AC and

−−→
AD. This implies that

V = A, which is contrary to our assumption V ∈ F \ P. By the same argument, V cannot
be simultaneously non-adjacent to every vertex in {A, B,D}. Thus V must be adjacent to
one of A or D. If V is adjacent to A, then as F is a forest, V must be collinear to every
point in {B,C,D}. Similarly, if V is adjacent to D, then V must be collinear to every point
in {A, B,C}. As G is a generalized quadrangle, given a line L and a point P not on L, there
is a unique point on L, that is collinear with P. Let Q1 be the unique point on

−−→
BD that is

collinear with C, and let Q2 be the unique point on
−−→
AC that is collinear with B. We can

now conclude that F ⊆ {Q1, A, B, C, D, Q2}. We now claim that Q1 and Q2 are non-
collinear. Let us assume the contrary, then we see that {Q1, C, Q2} form a triangle (not in
the graph) in G. This is impossible as a generalized quadrangle cannot contain a triangle,
and therefore Q1 and Q2 are not collinear. Thus S := {Q1, A, B, C, D, Q2} induces a
cycle on 6 vertices. As F ⊂ {Q1, A, B, C, D, Q2} is a forest, we must have |F| ≤ 5.

Now consider an induced forest F that contains a copy of 2K2. Let {P,Q} and {R, S }
be two edges in distinct connected components of the forest. The points P,R,Q, S form
vertices of a quadrilateral in G. Suppose that |F| > 4, then any V ∈ F \ {P, R, Q, S } must
be non-adjacent to at least one point in both {P, Q} and {R, S }. Without loss of generality,
let V be non-adjacent with R and Q. We claim that V must be on the line

−−→
RQ. Assuming

the contrary implies the existence of the triangle VRQ in G, which is not possible as G
is a generalized quadrangle. Again since G is a generalized quadrangle, R is the unique
point on

−−→
RQ collinear with P; and Q is the unique point on

−−→
RQ collinear with S . Therefore

V ∈
−−→
RQ, must be simultaneously non-collinear with both P and S . Now the set {R, P,V, S }

induces a path on four vertices in F. By the argument in the above paragraph, existence of
such a path implies that |F| ≤ 5.

From the previous two paragraphs, we can conclude that the size of a non-canonical
forest is at most 5. Since when s > 3 any canonical forest has s + 2 ≥ 6 vertices, we have
shown that if s > 3, the only maximum forests in XG are the canonical ones. □

3.4. Tensor powers of complete graphs. We next consider a family of graphs in the
Hamming scheme. Consider the complete graph on n vertices, Kn. By Xm,n, we denote
the m-fold tensor product ⊗mKn. This is the mth graph in the Hamming Scheme H(m, n).
The vertex set can be considered as sequences of length m with entries from the additive
group Zn, with two sequences adjacent if and only if they differ at every coordinate. This
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is an (n − 1)m-regular graph whose smallest eigenvalue is −(n − 1)m−1. Application of the
Delsarte-Hoffman ratio bound (Theorem 1.4) shows that α(Xm,n) ≤ nm−1. This bound is
met by the subset of sequences whose first coordinate is 0.

If m = 1, then Xm,n = Kn and any maximum forest is an edge which is a canonical
maximum forest. Also, if n = 1 then Xm,n is simply K1, so trivially any maximum forest is
canonical.

We obtain the following characterization of maximum induced forests in Xm,n.

Theorem 3.8. Let m, n be positive integers with m ≥ 2 and n > 2m(m − 1). Then

τ(Xm,n) = nm−1 + 1,

and every maximum induced forest in Xm,n is canonical.

Proof. As before, we investigate the orders of non-canonical forests. A simple counting
argument shows that η ≤ m(m−1)nm−2 and therefore by Lemma 3.1 a non-canonical forest
has order at most 2 + 2m(m − 1)nm−2. Thus canonical forests are the largest, provided that

2 + 2m(m − 1)nm−2 < nm−1 + 1,

or, equivalently,
1 < nm−2(n − 2m(m − 1)).

If m ≥ 2, then the above equation holds whenever n > 2m(m − 1). □

As in the case of the q-Kneser graphs and the Kneser graphs, we consider the spe-
cial case of strongly regular tensor powers of complete graphs, in which the same sort of
counting can be done more precisely. In particular, the following result gives a complete
characterization of maximum forests in X2,n provided n ≥ 4.

Theorem 3.9. Given n ≥ 3, we have τ(X2,n) = max({5, n + 1}). Moreover when n ≥ 4,
every maximum induced forest is canonical.

Proof. Firstly, given an edge {A, B} of X2,n, we observe that |N(A, B)| = 2, where N(A, B)
is the set of vertices that are not adjacent to either A or B. Suppose that F is a forest, with
an induced subgraph P4 on the vertices {A, B,C,D} with A ∼ B, B ∼ C and C ∼ D. Then
from the discussion prior to Lemma 3.1, we know that F ⊂ N(A, B) ∪ N(C,D) ∪ {B,C}.
Suppose that X and Y are vertices such that N(A, B) = {D, X} and N(C,D) = {A,Y}.
Without loss of generality, we may assume that A = (a, b), B = (c, d), D = (a, d), and
C = (e, b), for some a, b, c, d, e ∈ Zn (not necessarily distinct) such that a , c, b , d,
a , e, and e , c. This forces X = (c, b) and Y = (e, d). Therefore X is adjacent to Y . Thus
N(A, B) ∪ N(C,D) ∪ {B,C} is a 6 cycle and |F| ≤ 5.

If F is a forest with an induced copy of 2K2, then a similar argument shows that |F| ≤ 5
(by adding a vertex that induces the same P5 that arises if we start with a P4 as above).
This completes the proof. □

3.5. Orthogonal Array Graphs. We finally consider a family of strongly-regular graphs
associated with orthogonal arrays. Let m and n be positive integers with m < n + 1. An
orthogonal array with parameters (m, n) is an m × n2 array with entries in Zn with the
property that every 2 × n2 array consists of all n2 possible ordered pairs from Zn. Given
an orthogonal array O with parameters (m, n), by XO, we denote the graph on the columns
of O, where two columns are adjacent if and only if there are no rows in which they have
the same entry. We note that the graph XO is the complement of the block graph of the
orthogonal array O. It is well known, see for example [17, Theorem 5.5.1], that this is a
strongly-regular graph with valency m(n − 1) and least eigenvalue m − n − 1. Application
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of the Delsarte-Hoffman ratio bound (Theorem 1.4) shows that α(XO) ≤ n. This bound is
met by the set of columns of O whose first entry is 1.

Theorem 3.10. Let m, n be positive integers with n > 1 + 2m(m − 1) and let O be an
orthogonal array with parameters (m, n). Then

τ(XO) = n + 1.

Moreover, every maximum induced forest in Xm,n is canonical.

Proof. We now apply Lemma 3.1 to characterize the maximum independent sets in XO. We
note that η(XO) is the number of common neighbours of two non-adjacent vertices in the
complement of XO. By [17, Theorem 5.5.1], we see that η(XO) = m(m−1). By Lemma 3.1,
if F is a non-canonical induced forest, we have |F| ≤ 2 + 2m(m − 1).

We can now conclude that if α(XO) + 1 = n + 1 > 2 + 2m(m − 1), then every maximum
induced forest is canonical. □

4. Kneser graphs with non-canonical maximum forests

As noted in Subsection 3.1, K(2k, k) is a forest, so all of these graphs have non-canonical
maximum forests. The logical next family of Kneser graphs to consider are the graphs
K(2k + 1, k), these graphs also have non-canonical maximum forests.

Lemma 4.1. If k > 3, the graph K(2k + 1, k) has a forest of order(
2k
k

)
+ 2k − 2.

hence the maximum forests are not canonical.

Proof. Let F1 be the set of all vertices in K(2k+1, k) that do not contain the element 2k+1;
F1 is a set of 1

2

(
2k
k

)
=

(
2k−1

k

)
disjoint edges.

For i = 1, . . . , 2k − 2, define xi = {i, i + 1, . . . , i + k − 3} with the entries taken modulo
2k−1. Define the set F2 of vertices of the form γi = xi ∪{2k, 2k+1} with i = 1, . . . , 2k−2.
Clearly F2 is a coclique and any vertex in F2 is adjacent to at most one vertex in any edge
of F1 (specifically, the vertex that does not contain 2k). Further, vertices γi and γ j, have
exactly one common neighbour in F1 if j = i + 1, and no common neighbours otherwise.

Thus F1 ∪ F2 forms a forest of order
(

2k
k

)
+ 2k − 2. □

The eigenvalue bound from Theorem 1.5 in this case is

τ(K(2k + 1, k)) <

(
2k+1

k

)(
k

k−1

)(
k+1

k

)
+

(
k

k−1

) + 2
(

2k+1
k

)(
k+1

k

)
+

(
k

k−1

) = k + 2
k

(
2k

k − 1

)
.

This bound is larger than the forest given in Lemma 4.1. We can do better using the
bound produced by Theorem 1.6, which is(

2k+1
k

)(
k+1

k

)
− 2

2
(

k+1
k

)
− 2

=
k + 1

2k

(
2k + 1

k

)
−

1
k
,

but this is still significantly larger than the forest our construction produces.
The final case to consider is K(7, 3), and in this case Theorem 1.6 tells us that an induced

forest has order at most
4
6

(
7
3

)
−

1
3
=

2(35) − 1
3

= 23
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which can be achieved by the forest consisting of all triples from {1, . . . , 6} along with
{1, 2, 7}, {1, 3, 7} and {2, 3, 7}.

5. FurtherWork

It would be interesting to have more examples of graphs G with α(G) very close to
τ(G). We suspect that a characterization of the graphs with τ(G) = α(G)+1 is unlikely, but
perhaps we can find properties of a graph that would imply these two values are close. In
a sense, any such graph would have large independent sets that are uniformly connected to
the vertices in its complement. Specifically, any two adjacent vertices outside of the large
independent set would have to be adjacent to at least one common vertex in the independent
set, and non-adjacent vertices to at least two. This may lead to some structure conditions
on a graph that imply that τ(G) = α(G) + 1. We also suspect that focusing the search on
strongly-regular graphs may produce more interesting examples.

All the examples of graphs we considered in this paper are graphs whose maximum
independent sets have been characterized. Maximum independent sets in Paley graph on
a square number vertices were characterized by Blokhuis [7]. We will now discuss some
computational results we obtained regarding induced forests in these graphs. Let q be a
power of an odd prime. Let Fq and Fq2 be a fields of cardinality q and q2, respectively. By
P(q2), we denote the Paley graph on q2 vertices. The vertex set for P(q2) is F2

q, and two
vertices are adjacent if and only if their difference is a quadratic residue in the Fq2 . It is
well-known that the Paley graph is self-complementary. In this regard, we could consider
the complement P′(q2) of P(q2). We do so because the maximum independent sets in the
complement have the following natural characterization.

Theorem 5.1. (Blokhuis [7]) Let q be a power of a prime and S be the set of non-zero
squares in Fq2 , then α(P′(q2)) = q. Further, the {sFq + e : s ∈ S and e ∈ Fq2 } is the set of
all cocliques of size q.

So the size of any canonical forest in P′(q2) is q + 1. We will now use Theorem 1.5
to obtain an upper bound on the acyclic number. P′(q2) is strongly-regular graph and its
spectrum is well known to be ( q2−1

2 ,
q−1

2 , −
q+1

2 ) (see [17, Section 5.8]). Using Theorem 1.5,
we have

τ(P(q2) <
q2(q2 + 5)

q2 + q
< q + 4

In Example 1, we concluded that τ(P′(9)) = 5. From the discussion above, the size of
a canonical forest in P′(9) is 4 and, in this case, maximum forests are not canonical. We
will now consider two more Paley graphs of small order.

Example 2. By Theorem 1.5, a forest in P′(25) cannot have more than 8 vertices. We have
F25 � F5[x]/⟨x2+ x+1⟩, and the set of quadratic residues is S = {0}∪{a, ax, a

(
x + 1

)
| a ∈

F∗5}. The induced subgraph F5 ∪ {x + 2, x + 4} is a forest (in fact, a tree) of order 7 formed
by adding two vertices to a maximum independent set. Since canonical forests have order
6, this cannot be a maximum forest. A computational search indicates that 7 is the order of
a maximum forest in this graph.

Example 3. Consider the complement of Paley graph on 49 vertices. Theorem 1.5 implies
a forest can have no more than 10 vertices. We have F49 � F7[x]/⟨x2 + 1⟩. The set
of quadratic residues is S = {0} ∪ {a, ax, a

(
x + 1

)
, a

(
x − 1

)
| a ∈ F∗7}. The induced

subgraph F7 ∪ {x + 2, x + 5} is a forest (in fact, a tree) of order 9 formed by adding two
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vertices to a maximum independent set. Again computations indicate that 9 is the order of
a maximum forest in this graph, and canonical forests have order 8.

In Examples 1- 3, maximum induced forests (which are, in fact, trees) were obtained
by adding two vertices to a maximum independent set. Using Blokhuis’s characterization
(Theorem 5.1) of maximum cocliques, we used Sage [30] to search if similar constructions
were possible in bigger Paley graphs. We checked for all prime powers 7 < q ≤ 67 that
adding two vertices to a maximum independent set in P′(q2), will not result in a forest.
(Of course, maximum forests need not contain maximum independent sets as they have in
these examples.) So the examples we found may be anomalies occurring for small values
of q. We make the following conjecture.

Conjecture 5.2. For q > 7 a prime power, τ(P(q2)) = q + 1.

Paley graphs on q vertices can be defined whenever q is a prime power with q ≡ 1
(mod 4). Let P′(q) denote the graph on the field Fq, in which two vertices are adjacent
if and only if their difference is not a quadratic residue in Fq. When q is an even power,
we conjectured above that τ(P′(q)) =

√
q + 1. It is natural to ask the question of what

happens when p is not an even power of a prime. Applying Theorem 1.5, we can show that
τ(P′(q)) <

√
q + 4. In this case, the order of the maximum independent sets is not known

in general, but it is bounded by
√

q, and can be significantly smaller. For instance, when q

is a prime, [20] shows that α(P′(q)) <
√

q
2
+1. From our computer searches it seems even

in this case τ(P′(q)) is close to
√

q, so sometimes the induced forests are much larger than
α(P′(q)). Further, τ(P′(q)) seems to be non-decreasing with q, which is not the case for the
size of an independent set, and close to the eigenvalue bound. This may just be the case for
small values of q, so more computational results would be helpful. A key missing result is
a construction of an induced forest of size close to

√
q. Forests are bipartite graphs, and

so existence of an induced forest of size
√

q in P′(q) implies the existence of independent
sets of size at least

√
q/2. When q is not an ever power of a prime, there are no known

constructions of such large independent sets in P′(q).
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