DIHEDRAL GROUPS OF ORDER 2p¢ OR 2pgr ARE DCI

JOY MORRIS

ABSTRACT. A group has the (D)CI ((Directed) Cayley Isomorphism) property, or more
commonly is a (D)CI group, if any two Cayley (di)graphs on the group are isomorphic via
a group automorphism. That is, G is a (D)CI group if whenever Cay(G, S) = Cay(G,T),
there is some § € Aut(G) such that S° = T. (For the CI property, we only require this to
be true if S and T are closed under inversion.)

Suppose p, g, r are distinct odd primes. We show that Dsp4, is a DCI group. We present
this result in the more general context of dihedral groups of squarefree order; some of our
results apply to any such group, and may be useful in future toward showing that all dihedral
groups of squarefree order are DCI groups.

1. INTRODUCTION

The Cayley Isomorphism (CI) and Directed Cayley Isomorphism problems for groups and
graphs are long-standing problems of interest to algebraic graph theorists. The standard
formulation for these problems and the basic tools used in proving them date back to [1].
Special cases of the problem (particularly for cyclic groups) had been studied prior to Babai’s
paper, but he presented them in a uniform context with helpful terminology and provided
tools that have been essential to much of the work that has followed.

Let G be a group and S C G. We define the Cayley (colour) (di)graph Cay(G,S) to be
the (colour) (di)graph whose vertices are the elements of G, with an arc from the vertex
g to the vertex sg if and only if s € S. For colour (di)graphs, each element of S has an
associated colour, and the arcs that arise using that element of s are given that colour. Note
that graph automorphisms coming from elements of G will be acting by multiplication on
the right. We will use exponents to denote the actions of group automorphisms and action
by conjugation, and write other permutation group actions on sets on the right but without
an exponent, as the details of our proofs would get very difficult to read in the exponents.

The Cayley (di)graph Cay(G, S) has the (D)CI ((Directed) Cayley Isomorphism) property,
or more commonly is a (D)CI graph, if whenever Cay(G,S) = Cay(G,T), there is some
§ € Aut(G) such that S° = T. For a Cayley colour (di)graph, both the isomorphism and the
group automorphism must preserve the colours that have been assigned to the elements of S
and T'. A group has the CI property if every Cayley graph on the group has the CI property.
It has the DCI property if every Cayley digraph on the group has the DCI property. It
has the CI® property if every Cayley colour digraph on the group has the DCI property
(this notation comes from the 2-closure of a group, which will arise later in this paper). If
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a group has the DCI property, then since every Cayley graph is also a digraph (each edge
is equivalent to a digon of arcs), it also has the CI property. Likewise, if it has the CI(?
property then it has the DCI property. Although our results in this paper and many of the
results we discuss in fact prove that groups are CI® groups, Cayley colour digraphs are not
much studied and this terminology is less common, so we will refer to the DCI property
and DCI groups throughout the remainder of this paper, except in stating Babai’s criterion.
Since we prove that Babai’s criterion holds, our result does in fact show that these dihedral
groups are CI® groups.

Much work by many authors has gone into the study of the (D)CI properties, and the
groups that can be CI groups are quite limited. In particular, if a group is (D)CI then so
is every subgroup (and every quotient). Given that whenever p is an odd prime, the cyclic
group Z, is not DCI, and elementary abelian p-groups of rank at least 2p + 3 are not DCI
groups, groups of squarefree order are a significant aspect of this problem. For cyclic groups,
the DCI problem was completely solved by Muzychuk [6, 7].

Theorem 1.1 (Muzychuk [6, 7]). A cyclic group is a DCI group if and only if its order is
either squarefree, or twice a squarefree number.

Our main result is the following.
Theorem 1.2. Suppose p,q,r are distinct odd primes. Then Dap, and Dapg, are DCI groups.

Although we are only able to complete the proof for 3 odd primes, we will set up our
notation and prove some of our results in the more general context in which the dihedral
group has order divisible by an arbitrary number of odd primes, in hopes that these results
may be useful in future to prove that dihedral groups with more prime factors also have the
DCI property.

It was shown in [4] that Dg, is a DCI group. The Dy, part of our theorem is a generali-
sation of that work.

In 2002, Dobson [3] worked on the CI problem for dihedral groups, and was able to
show that Dy, is a DCI group under some fairly strong conditions (this result is somewhat
obscured by technical definitions, but is Theorem 22). His result required that n be odd
and squarefree, and that ged(n,(n)) = 1. He also assumed that if n = p;---ps where
p1 < ... < ps are distinct odd primes, then for each 2 < i <'s, p; > 2p; -- - p;_1. However, he
used this final hypothesis only to ensure the existence of many G-invariant partitions (this
will be discussed further a bit later). With the new result Theorem 2.8 found in [5] to provide
such G-invariant partitions, this hypothesis can be dispensed with. In addition to explicitly
dispensing with the hypothesis that [5] shows to be unnecessary, our result dispenses with
Dobson’s hypothesis that ged(n, p(n)) = 1.

The main tool Babai provided in [1] is based on the automorphism group, and can be used
to determine whether or not a graph is a (D)CI graph. In fact, it can be used to understand
whether or not every Cayley colour (di)graph has the (D)CI property.

Lemma 1.3 (Babai, [1]). Let R be a finite group and let S C R. Then Cay(R,S) is
a DCI graph if and only if for any R < Aut(Cay(R,S)) with R' = R, there is some
§ € Aut(Cay(R, S)) such that (R')’ = R.

Note that (R')’ = 5~ R'S.



In order to use this concept most effectively to determine that a group has the CI property,
we require the concept of the 2-closure of a permutation group. This concept was studied in
some detail in the works of Wielandt [§].

Definition 1.4. Let G be a permutation group acting on a finite set 2. The 2-closure of G,
denoted G'?, is the smallest permutation group containing G that can be the automorphism
group of a digraph. More precisely,

G2 = {B € Sym(Q) : V(x,y) € Qz,Elgx,y € G with (z,9)8 = (z,9)9zy}-

This leads us to the following standard characterisation of CI®) groups based on Babai’s
result.

Lemma 1.5 (Standard, based on Babai). Let R be a finite group and let R, be the right-
regular representation of R in Sym(R). The groups R, and RT are conjugate in (R,, RF)®
for every m € Sym(R) if and only if R is a CI® group.

2. PRELIMINARIES: NOTATION AND G-INVARIANT PARTITIONS

For the purposes of this paper, R will be dihedral of squarefree order, say 2k, where k
is odd and squarefree. Any dihedral groups that could potentially have the DCI property
have this structure. Although the most natural generating set for R has two elements (one
of order k and the other of order 2), it will prove much easier to work with if we use one
generator for each prime divisor.

Notation 2.1. Henceforth in this paper, we use the following notation:

® pi,po,...,ps are distinct primes;

e R.={(p1,...,ps,T1), where |p;| = p; for each 1 <i < s, and || = 2;

o RT = (0y,...,04,72) with |o;| = p; for each 1 <1i < s, and |rp| = 2;

e both R, and R} are permutation groups acting regularly on the set {2 of cardinality
2p1 - ps;

o G= (R, RI).

Our goal will be to show that there is some 3 € G such that R™ = R,.

In this paper, we will sometimes simplify our notation with an abuse: suppose that we
can find some 3, € (R,, RT)® such that R™ = B;'R"B; has some desirable properties
and (R,, RT)® < (R,, R7)?). In this event, rather than writing R™ thenceforward, we
“replace” R] by this new group, and replace each generator in whatever standard generating
set we are using for R by the appropriate conjugate under ;. In effect, from this point
forward we behave as though R had been this new conjugate all along, since we know we
can reach this through conjugation in (R,, RZ{)@). We may do this repeatedly, with a (s, etc.
We will provide some additional justification that this abuse does not invalidate our proofs,
at the end of this section.

For the rest of this section we focus on G-invariant partitions, and show that after conju-
gating R™ by some element of G?) if necessary, the resulting G’ = (R,, RT) admits a sequence
of nested G-invariant partitions: one consisting of 2p; .1 - - - ps blocks of cardinality p; - - - p;
for every 1 <1 <'s. We also show some additional desirable properties that we may assume
our partitions have, describe circumstances under which we can reorder our primes while
maintaining all of our key hypotheses about partitions, and develop additional notation

based on all of this information.
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Definition 2.2. Given a transitive group G acting on the set €2, a partition B of 2 is G-
invariant if for every B € B and every g € G, Bg € B. Equivalently, Bg N B # () implies
that Bg = B.

If |B| = a and |B| = b for every B € B, we say that the partition B consists of a blocks of
cardinality b.

The G-invariant partition B is normal if its blocks are the orbits of a normal subgroup of

G.

There are some useful ways to understand G-invariant partitions. The next lemma is
well-known and easily follows from the definition of G-invariant partitions.

Lemma 2.3. Suppose that G is a transitive permutation group acting on the set Q. If B is a
G-invariant partition then given any y € ), the blocks of B are the collection {yH~ : v € G}
for some H < @G.

In the situation of regular actions, we get much more information.

Lemma 2.4. Suppose that G is a reqular permutation group acting on the set €. Then
the converse of Lemma 2.3 holds; that is, given any y € Q0 and any H < G, the collection
{yH~ : v € G} is a G-invariant partition.

Accordingly, for each z € Q, the block of B that contains z is zH if and only if z = yy for
some v € G such that Hy = vH. In particular, the blocks of B are the orbits of H if and
only if H 1 @G.

We identify some easy consequences of Lemma 2.4 that will be useful in the context of
this paper.

Lemma 2.5. Suppose that Hy < R, and Hy < R, using Notation 2.1. If for any fized x € (2
and for every o € R, there is some v € Rl such that xHioo = vHy3, then the collection
{zHyo: o € R,} is a G-invariant partition.

In fact, if Hi < R, 1s a cyclic subgroup of odd order in R,, then Hy has the same orbits
on ) as some Hy < RT if and only if the orbits of Hy form a G-invariant partition.

Proof. By Lemma 2.4, since Hy < R,, {tHija : « € R,} is an R,-invariant partition.
Likewise, {xHy/3 : f € R} is an RT-invariant partition. Since these partitions coincide, the
partition is invariant under both R, and R. As G = (R,, RT), it must be invariant under
G.

Since any cyclic subgroup of odd order in a dihedral group is normal, if H; is such a
subgroup then H; < R,. If Hy has the same orbits then due to the regular actions of R, and
R, we must have |Hy| = |H;| is odd, so Hj is cyclic and Hy < RT. Since the orbits of H;
and Hy coincide, by Lemma 2.4 these orbits form a G-invariant partition.

Conversely, if the orbits of H; form a G-invariant partition then they form a R]-invariant
partition. Since these orbits have cardinality | H;|, by Lemma 2.3 they must be the collection
{yHsp : B € RI'} for some Hy < RF, and furthermore |Hy| = |H;| is odd. The odd order

forces Hs to be a normal cyclic subgroup of R, so by Lemma 2.4 the blocks are the orbits
of HQ. U

It is always the case (and easy to see) that the intersection of blocks in two G-invariant
partitions, is a block of a G-invariant partition. In our situation with dihedral groups, we

can say something similar about combinations of blocks.
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Lemma 2.6. Using Notation 2.1, suppose that G has an invariant partition consisting of
2 blocks of cardinality py--- ps. Suppose also that C and D are G-invariant partitions with
blocks of cardinality a and b respectively. Then there is also a G-invariant partition with
blocks of cardinality lem(a,b). A block of this partition can be formed by fixzing C' € C and
taking the union of every D € D such that D N C # ().

Proof. Let F = {F}, F5} be the G-invariant partition with 2 blocks. If the blocks of either
C or D have even cardinality, take their intersections with F; and F5 to get G-invariant
partitions C' and D’ the cardinality of whose blocks is the largest odd divisor of the original
block cardinality. (Since | R, | is squarefree, the original cardinality was either odd or twice an
odd number, so taking the intersections with F} and Fy does accomplish this.) By Lemma 2.4
the blocks of C' and D’ are the orbits of some subgroup of the cyclic subgroup of index 2 in
R,, say {aq) and (o) where ag,as € R,.. By Lemma 2.5, we have (o) has the same orbits
as (71) and (ag) has the same orbits as (7,) for some 1,7, € RT.

Now again by Lemma 2.4, the orbits of («jas) (a normal subgroup of R,) are invariant
under R,, and the orbits of (7;72) are invariant under RT. Since the orbits of (a;) and (1)
coincide as do the orbits of (as) and (7s), the orbits of (a1, as) and (vy1,72) also coincide.
So these orbits are invariant under both R, and R} and therefore under GG. This completes
the proof if a and b were odd, since |(ay, a2)| = |ayas| = lem(a, b). If either a or b was even,
then the blocks of this partition are half the desired cardinality.

Without loss of generality, suppose a is even. Let x € 2. Then there is some 7 € R, such
that x7 is in the same block of C as . We claim that if £ is the G-invariant partition we just
found and z € E € &, then {(F U ET)g : g € G} is a G-invariant partition. Suppose that
g € Gand (FUET)N (EgU ETg) # (. Without loss of generality, since £ is G-invariant,
the only way we can have E U ET # EgU E7g is if either E = Eg and ET N ETg = 0, or
if E = FEtg and ET N Eg = (. In the former case, z € £ = Fg so since x7 is in the same
block of C as x and this block is fixed by g, we have x7 € ET N ETg, a contradiction. In the
latter case, x € £ = E1g and x7 is in the same block of C as x, and this block is fixed by
7g. Thus x77g = xg is in E7 and Eg, again a contradiction. This gives us blocks of twice
the previous cardinality, completing the proof. [l

Sometimes one partition is a refinement of another; this leads to a partial order on parti-
tions.

Definition 2.7. If B and C are both partitions of €2, we say that B < C if for every B € B,
there is some C' € C such that B C C'. In other words, B < C if each block of C is a union
of blocks of B.

If B <C but B # C then we can write B < C.

We now provide the new result of [5] that allows us to avoid making assumptions about the
relative sizes of the primes dividing the order of our dihedral group. Their result (Corollary
4.6 of their paper) is stated in a broader context. Extracting our statement from their paper
requires understanding that by their Definition 1.6, R,, includes dihedral groups of squarefree
order, and noting that in the situation of dihedral groups of squarefree order, the Sylow 2-
subgroups are isomorphic to Z,, and therefore have trivial automorphism group, so the set
of prime divisors of the order of this automorphism group is empty; this is 7(|Aut(R2)]|)

in their notation, so one of the hypotheses they require is automatically achieved in this
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context. Also since our groups have squarefree order, in their statement e = 1, and in their
notation (2n) is the number of prime divisors of our ||, which is s + 1.

Theorem 2.8 (Dobson, Muzychuk, Spiga, [5]). Let R, be a dihedral group of squarefree order
acting regularly on the set Q, and R another such group. Then there exists § € (R, RT)
such that the group (R,., R™) has a sequence of normal G-invariant partitions By < By <

- < Bgy1, where By = Q consists of singleton sets, and Bgi1 consists of a single block.
Additionally, Bs consists of 2 blocks of cardinality py - - - ps.

Notice that the number of these properly nested G-invariant partitions forces the cardi-
nality of the blocks of B; to be a prime multiple of the cardinality of the blocks of B;_; for
each 1 <1 < s+ 1. After relabeling the primes if necessary, we may conclude that B; consists
of 2p; 1 - - - ps blocks of cardinality p; - - - p;.

Since each B; consists of the orbits of a normal subgroup of G, it must consist of the
orbits of the unique (normal) subgroup of R, that has order p; - - - p;, and also of the unique
(normal) subgroup of RT that has order p; - - - p;.

Corollary 2.9. Let R, be a dihedral group of squarefree order acting reqularly on the set 1,
and RT another such group. Then there exists B € (R, RT) such that the group (R, R™®) has
a sequence of normal <RT,R§B)—mvariant partitions By < By < -+ < Bgy1, where By = €}
consists of singleton sets, and Bsi1 consists of a single block. Additionally, By consists of 2
blocks of cardinality py - - ps.

Furthermore, we may choose 3 so that for each 1 <1 <'s, if p; has order p; in R, and o;
has order p; in R, then for any fized block B of B;_1, there is some kg such that for every
j, B(a})) = B(p[").

Proof. The first paragraph of this statement is Theorem 2.8.

Take B, to be the 3 given by Theorem 2.8. Let G, be the subgroup of (R,, R™:) that
fixes each block of B, setwise. We will work by downward induction to define 5;_; and G;_4
from B; and G;, where ¢ € {1,...,s}, and G; fixes every block of B; setwise. Then we will
show that ' = - - - [y has the desired property.

With 8; and G; defined, let P, ; and P,; be Sylow p;-subgroups of G; that contain p; and
Bs-PBi
o

7

respectively. By Sylow’s Theorems, there is some (§;_; € G; such that Pf =Py,

SO aiﬁs"ﬂi‘l € Py;. Furthermore, since 3;,_; fixes every block of B; for i < j < s, we
have ajs"'ﬁi‘l = ajﬁsmﬁj’l in its action on the blocks of B;_;. Let G;_; be the subgroup of

(R,, R:Bs"'ﬁi‘l) that fixes every block of B;_; setwise.
When this has been completed, note that for any j, Jf has the same action as o7

on the blocks of B;_;.

For any i € {1,...,s}, and any fixed block B of B;_1, there is some block of B; that is
the union of {B"g :0<j<p; —1}. Now, P, is a p;-group acting with degree p; on this
set of p; blocks of B;_1, so must be acting as a cyclic group of order p;. Since it contains
(p:), we must have P,; = (p;) on this set. However, since P,; also contains (o7 "), we have
(67y = P.; = (p;). Thus there is some kp such that for every j, B(c? ) = B(pF#)i.

7

Replacing 5 by " achieves the result. O
6
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With this result, we are able to make some updates to our notation. The following notation
includes Notation 2.1 and more. To achieve the desired properties for the distinguished point
x, we may replace each o; by some power of itself if necessary.

Notation 2.10. Henceforth in this paper, we use the following notation:

® p1,p2,...,Ds are distinct primes;
o C, = </01> s ,P5> is cyclic, with |,01| = p; for each 1 <7 < s;
o CT = (0y,...,0) is cyclic, with |o;| = p; for each 1 <i < s;

e R. = (C,,7) where || =2 and a™ = a~! for every a € C,;
e R™ = (C™, 1) where |13] =2 and 7™ = v~ ! for every v € CT;
e both R, and R} are permutation groups acting regularly on the set (2 of cardinality

2p1- - ps;
e 1 € () is a predetermined point;

o G = (R, R);

e (G admits invariant partitions By < --- < B, such that By is the partition of €2 into
singletons, and for each 1 <1 < s:

— B, consists of 2p; 11 - - - ps blocks of cardinality p; - - - p;;

— B; consists of the orbits of (py, ..., p;), which are also the orbits of (o4, ..., 0;);

— the block of B;_; that contains xo; is the same as the block of B;_; that contains
xp;; and

— for any point y € Q lying in the block B of B;, there is some 1 < jp < p;, — 1
depending only on B, such that the block of B;_; that contains yo; is the same
as the block of B;_; that contains ypZB .

e For every y € Q and every 1 < ¢ < s, we use B;, to denote the block of B; that
contains the point y. If we have some other G-invariant partition denoted by some
script letter, then we use a roman version of that letter with the subscript y to denote
the block of that partition that contains y. For example, in C, we use C,.

In many situations, we may wish to work with a different ordering for the primes py, . .. ps.
As long as all of the properties of Notation 2.10 still hold, all of the results that follow still
apply to this reordering. It will be important to our proofs to understand when we can do
this; this is addressed in our next result. Essentially, this explains that whenever we have a
G-invariant partition, we can pull the prime divisors of its block cardinalities to the front of
our ordering, replacing some B; by this G-invariant partition.

Lemma 2.11. Using Notation 2.10, let C be a G-invariant partition such that C < Bs. Then
there is a permutation ¢ of {1,...,s} so that G admits invariant partitions Cy < -+ < Cg
with the following properties:

[ Co = BO and CS = Bs,'

e there is some t such that C; = C;

e for each 1 <i <'s, C; consists of 2p(it1y, -+ - Psp blocks of cardinality pi, - - - piy;

o for each 1 <i <'s, C; consists of the orbits of (piy, - .., pip), which are also the orbits
of (O1py -+, 0ip);

o for each 1 < i < s, the block of C;—y that contains xo;, is the same as the block of

Ci—1 that contains xp;,; and
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o for each 1 < i < s, for any point y € Q lying in the block C of C;, there is some
1 < jeo < pip, — 1 depending only on C, such that the block of C;_y that contains yo;,
1s the same as the block of C;_1 that contains yp{g.

In short, Notation 2.10 holds for this new ordering of our primes and this new corresponding
collection of nested partitions.

Proof. By Lemma 2.3, since C is R,-invariant, it consists of {tHvy : v € R,} for some
H < R,. Since by hypothesis C =< B,, we have H < () is cyclic and normal in R,, and
using Lemma 2.4, the orbits of H are the blocks of C. Likewise, since C < By is R -invariant,
its blocks are the orbits of some cyclic K < R].

Define iy, ..., 4; to be the values of {1, ..., s}, in ascending order, such that for 1 < j <t,
pi; lies in H. Now we define ¢ as follows. For 1 < j < {, define jo = i;. Fort < j < s,
define j to be the first value from {1, ..., s} that does not appear in {1¢,...,(j — 1)p}.

The first three points will follow immediately from the fourth together with the way we
have chosen 41, ..., so our first goal is to establish that for each 1 < j < s, if C; consists
of the orbits of (pi1,,. .., pje), that these are also the orbits of (o1, ...,0j,), and that these
partitions are G-invariant.

Suppose first that j < t¢. Observe that B, consists of the orbits of both (p1,. .., pj,) and
(01,...,0j,), and C consists of the orbits of both H and K. Therefore the intersection of
(p1,-..,pjp) with H is a cyclic subgroup of odd order in R, that must have the same orbits
as the intersection of (oy,...,0,) with K, which is a cyclic subgroup of odd order in R].
But these intersections are exactly (piy, ..., pj,) and (14, . .., 0j,). Thus the orbits of these
two groups coincide, so by Lemma 2.5 they form a G-invariant partition (which is C;).

Now suppose j > t. In this case, we apply Lemma 2.6 to C and By, where k is the (7 —t)th
value of {1,...,s}—{i1,...,4}. The resulting G-invariant partition has blocks of cardinality
D1y - - - Dj, that are the orbits of (pi,,. .., pj,) and also of (o1, ..., 0j,).

This establishes the first four bullet points.

If we can establish the final bullet point, then if necessary we can replace each o; by
some power of itself to ensure that the other (penultimate) bullet point is also true, so we
conclude our proof by establishing the final point. We know that the blocks of C;_; are the
orbits of (p1¢,...,pu-1)e) and of (o1e,...,03-1)¢), and that the blocks of C; are the orbits
of (pre, ..., piw) and of (o1, ...,04). Thus within any block C of C;, there are p; blocks of
C;_1, and these are moved in a p;.-cycle by both p;» and o;-. That these cycles lie in a single
group of order p;. is straightforward to show, using the structures of the blocks of C;_; and
C; as described above, and the fact that p;» and o+ lie in the same group of order p;» in
their actions on the blocks of B(;_1)» in any block of B;. O

Understanding Cayley graphs requires an understanding of regular group actions, and we
continue this section with a few notes on how this concept interacts with invariant partitions.

Definition 2.12. The action of the group G is regular in its action on the set € if for every
pair of elements y, z € (2, there is a unique v € G such that yy = z.

When the action of G is faithful and transitive, the following definition is equivalent:

Definition 2.13. The action of the faithful transitive group G is regular in its action on

the set 2 if every element of G that fixes a point of €2, fixes every point of €.
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However, if we consider the action of a group of permutations of €2 on the set of blocks of
some invariant partition B, this action may not be faithful (there may be a nontrivial kernel;
for example, if B = By, then p; and o7 are in the kernel). It may happen that every element
of GG that fixes one block of B fixes every block of B, but because the kernel of the action on
B is nontrivial, if B, B’ € B, g, € G with Bg; = B’, and g5 is a nontrivial element of G that
fixes every block of B, then Bg;g, = B’. Thus there are multiple elements of G that map B
to B’. To make this distinction, we use the following notation.

Notation 2.14. If G acts transitively on the set (), and B is a G-invariant partition of €2,
then Gz denotes the group of permutations of the blocks of B induced by the action of G
on these blocks.

These concepts lead to a definition that will be important to our understanding of the
group actions in this paper.

Definition 2.15. Let G be a permutation group acting transitively on the set €2, and let B
be a G-invariant partition of 2. We say that G is block-reqular on B if every element of G
that fixes some B € B fixes every B’ € B.

Thus, when we say that the action of GG is block-regular on B, we mean that although
Gp may have a nontrivial kernel (so that more than one element of G maps one block to
another), Gz would satisfy Definition 2.13 if faithfulness were not required.

We will frequently be working with subgroups of G' that fix an element of 2, or that fix
some subset of 2 (typically a block of a G-invariant partition) setwise. We use the standard
notation G, for the subgroup of GG that fixes z € Q. If Y C 2, then Gy denotes the setwise
stabiliser of Y in G.

Lemma 2.16. Use Notation 2.10. Suppose that for some 1 < i < s—1 the orbits of (p;) form
a G-invariant partition C, and that there is some o € C,. such that Ge, = Ge,,,, . Suppose

also that for some i < j < s, the orbits of (p;, p;) in Fy are invariant under (C,,CT). Then
the orbits of (p;, p;) are G-invariant.

Proof. By Lemma 2.5, it is sufficient to show that the orbits of (p;, p;) coincide with the
orbits of (o;,0;). Since the orbits of (p;,p;) in Fy are invariant under (C,,CT), they do
coincide with the orbits of (0;,0;) in Fy. Furthermore, since C is G-invariant, the orbits of
o; and p; coincide everywhere.

Let z € F; be arbitrary, and consider C,o;. We must show that C.o; = C’Zp? for some k.
Choose ay € C; such that C, = C,r 0a,- Then conjugation by a; gives GCMI = Gcmwl
G, . Since the orbits of (p;, p;) coincide with the orbits of (0;,0;) in Fi, there is some k
such that C’mlaj/)j’]C = Ciay, SO O'jp;k € Gcml = G¢,. Therefore C,o; = Zp;?, as desired,
completing the proof. O

Very often in this paper we will be considering a group that induces an action on some set
of prime cardinality p. It will be important to have a strong understanding of such actions.

Lemma 2.17. Suppose that a permutation group G fixes a set D of prime cardinality p
(setwise).
Then one of the following is true:

(1) G fizes every element of D;



(2) G acts transitively on the elements of D and has an element of order p that also acts
transitively on D; or
(3) there is some unique d € D such that for every g € G, dg = d.

Furthermore, if G < H and H also fires D setwise, and H s transitive on D, with p € H
acting transitively on D and H not doubly-transitive on D, then in case (8), g normalises p.

Proof. This is an easy consequence of a result by Burnside that every permutation group of
prime degree is either doubly transitive, or affine. If such a group is not transitive, then,
it normalises a cyclic group of order p and the action of any non-identity element is as
claimed. 0

The next result is also well-known, but important in this context.

Lemma 2.18. Let G be a group acting transitively on the set € and let B be a G-invariant
partition. Then B is also G® -invariant.

Proof. Let B € B and 8 € G®. It is sufficient to observe that for any u,v € B there is some
g € G such that uf,vB3 € Bg. This is immediate from the definition of 2-closure, since there
is some g € G such that (uf,v83) = (ug,vg). O

Note that whenever 3 € G®, we must have (R,, RF*)? < (R,, R")®). Since G? is a
supergroup of G' and therefore by Lemma 2.18 admits exactly the same invariant partitions
as (G, this means that after conjugation any previously invariant partition remains invariant.
In essence, if we have already conjugated some parts of R to make this group closer to R,,
any further conjugation can’t mess up things we’ve already straightened out. This is how
we can justify the abuse of notation we noted at the beginning of this section.

3. AN EQUIVALENCE RELATION AND ITS EQUIVALENCE CLASSES

In this section we are going to define an equivalence relation, prove that it is an equivalence
relation, and deduce some properties of the G-invariant partition formed by its equivalence
classes. We will end by introducing another partition that we will also use at times. We
begin by defining the relation.

Definition 3.1. Let G be a transitive permutation group acting on a set {2, and let B be a
G-invariant partition with blocks of prime cardinality that are the orbits of some semiregular
element p. For any point y use B, to denote the block of B that contains y.

We define the relation =z on the points of Q2 by y =p z if there is a sequence of points
Y1 =1,...,yr = z such that foreach 1 <: < k-1, B is not contained in any orbit of
Gy,

In order to work with this relation, it is convenient to have a shorthand terminology for a
sequence having the property we are looking for.

Yit+1

Definition 3.2. Suppose we have the relation =g defined in Definition 3.1. If yq, ...,y is
a sequence of points such that for each 1 <¢ <k —1, B, is not contained in any orbit of
G, then we say that yi, ...,y is an =g-chain from y; to ys.

The following useful result has a similar flavour to results that have appeared previously
in various forms such as Lemma 2 of [2], but the details are rather different. For any point

y € ), we use the standard notation G, to denote the subgroup of G that fixes the point y.
10



Lemma 3.3. Let =p be the relation defined in Definition 3.1. Then =g is an equivalence
relation on the points of ), and consequently its equivalence classes form a G-invariant
partition.

Proof. For any vy, clearly B, is not contained in any single orbit of G, so y; = y» = y is an
=p chain from y to y. Thus =g is reflexive.

For any y, z, we now show that if B, is not contained in an orbit of G,, then B, is not
contained in an orbit of G,. We will actually show the contrapositive, so suppose B, is
contained in an orbit of G; this means that the subgroup of G, that fixes B, setwise, is
transitive on B,. Since B, has prime cardinality, by Lemma 2.17 there must be an element
7 € G, that has order p and acts transitively on B,. Since 7 has order p all of its orbits
have length 1 or p, and since it fixes z and B, has cardinality p, v must fix every point of
B.. For any 1 < i < p — 1 there is some j such that yp=" = y4/ (where p is the element
from Definition 3.1 whose orbits form the blocks of B). Then +7p' € G, and 27/ p’ = zp', so

B, is contained in an orbit of G, as claimed. This implies that if y;, ...,y is an =p-chain

from y to z, then yg,...,y; is an =g-chain from 2 to y, so the relation =g is symmetric.
Finally, if y =g 2z and z =g u then there is an =g chain y;,...,y; from y to z and an

=p-chain zy,...,2z from z to u. Concatenating gives an =g-chain yy,...,yp = 21,..., 2

from y to u. Thus =g is transitive.
We have shown that this is an equivalence relation; since B is G-invariant it is easy to see
that the equivalence classes must be G-invariant. 0

The following result is a key concept that we will use often in this paper; we will need
it for the first time to prove one of the important properties we’ll need to know about our
partition.

Lemma 3.4. Use Notation 2.10. Suppose we know that for some y € 1, some i, some
a € C, whose order is not diwisible by p;, some 1 <t < p;, and whenever z = yo! for some
7 >0, we have

207 = zpla.

Then « is the identity, so for every j,

yol = ypy.
Proof. Note that by applying our hypothesis p; times, we obtain yo?" = y(pla)Pi. Since o;
has order p; we have yo!" = y. Since p; and o commute and p; has order p;, y(pia)? = yar:.
This implies that ya?* = y, but since p; does not divide the order of «, the orbit-stabiliser
theorem implies that no orbit of () can have length p;. Since p; is prime, the only way the

equation yaPi = y can be satisfied is if « is the identity. That yo; = ypfj for every j follows
immediately. 0

The next lemma establishes some useful properties of the G-invariant partitions we have
just produced.

Lemma 3.5. Use Notation 2.10. Let X be the G-invariant partition arising from the equiv-
alence classes of =g (note this requires that the blocks of B have prime cardinality). Then
the following hold:

(1) X = B.
11



(2)

(3)
Proof.

Suppose that the orbits of (p;, p;) form a G-invariant partition C with B < C < X,
and that o; commutes with p;. Then there is a constant ko such that o; = p?c on
any point in C.

Furthermore, for every X € X there is a constant kx such that o; = pf’x on any
point in X.
If the orbits of (p;) form a G-invariant partition C, then X > C.

(1) If y, z are in the same block of B then B, = B,. Since B, is not contained in
an orbit of G, we conclude that y =5 z. Thus X = B.
Fix C' € C, or if i = j then take C' € X'. Since the orbits of (p;, p;) are G-invariant
(whether or not ¢ = j), using Notation 2.10 there must be some k¢ such that o; ,oj_kc
fixes every block of B in C'. We will show that o; pj_kc fixes every point in C.

Let y,z € C C X € X, and let ¢ be such that yajp._kc = ypt. By definition of
=g, there is an =g-chain y;,...,y, from y to z. Let 1 < a < b— 1, and suppose that
yaajpj_kc = y,p¢ (this is true for @ = 1). Then ajpj_kcpi_é € Gy,, and B is not
contained in an orbit of G, .

By hypothesis 0; commutes with p;, so for every d we have

Ya+1

Yar104(030; " i) = Yag1 (005 p7 ).
This means that if
Yar1030; " 7" = Yar1pf
then
Yar104(0505 7 p7) = Yar1 P75
that is, ajp;kcpi_z acts as pf on B Since B
Gy,, we must have ¢ = 0, so

is not contained in an orbit of

Ya+1" Ya+1

ko ¢
Ya+10505 ~ = Ya+10;-

Inductively, we see that for every a we have yaﬂajpj_kc = Yas1pt. In particular,
zaj,oj_kc = zpt. Since z was an arbitrary element of C' and C' is a union of orbits of
(o), in particular this is true whenever z = yo?" for some m. Thus by Lemma 3.4,
pt is the identity, so yo; = yp?c. Since y was arbitrary, o; = p?c on any point in C.
Suppose y € Q and z € C,. After using (1), we may assume that C # B. Then y is
the unique element of C, N B,, and z is the unique element of Cy N B,. Since every
element of G, must fix C, setwise, any element of G, that fixes B, setwise must also
fix z, so B, does not lie in a single orbit of G,. Therefore y and z lie in the same
block of X.

O

There is another more straightforward equivalence relation whose equivalence classes pro-
duce a G-invariant partition. This is little more than an observation that has been made by
many others.

Lemma 3.6. Let G be a group acting transitively on the set 2. Define an equivalence
relation R on Q) by giwven z,y € Q, xRy iff G, = G,. Then the equivalence classes of R form
a G-invariant partition.

12



In fact, if Notation 2.10 applies, G, = G, and o € C, with xa =y, then the orbits of o
are G-invariant.

Proof. That R is an equivalence relation is clear since the relation is defined based on equality.
Let g € G and x,y € Q with 2Ry. Then h € G, if and only if ghg™* € G,, which is true
if and only if ghg™* € Gy, which is true if and only if h € G,,. So xgRyg. This proves the
first paragraph.

Suppose za = y with a € C, and G, = G,. Take two arbitrary elements in the same
a-orbit, say z and za® for some 7, and any g € G. We will show that (za')g = (zg9)a™, so
that zg and za'g are in the same a-orbit.

Conjugating G, by «a gives G, = Gy = Gpo = Gya = Gue2. Continuing inductively,
G, = G, for every j. In particular, G, = G,,i. Let h € G such that xh = 2. Then
conjugating by h gives G, = G.,i. Let ay € R, such that zg = zaq, so ga;' € G, = G.ui.
Then za‘ga; ' = za?, so

za'g = zaloy = 20 = zga™,
as desired. 0

Frequently when applying the relation above, we will be considering the action Gz of G on
the blocks of some G-invariant partition B. Although this technically defines a relation on
the blocks of B, again we often abuse notation by identifying this relation with the relation
it induces on the elements of €2, defined by xRy ift B,RB,,.

4. MORE PRELIMINARIES

In this section we prove some additional preliminary results that we will need to use in
our main proofs.

It is important to be aware that if we can find some 3 € G® such that O™ = C,, then
R™ = R,, since there is a unique regular dihedral group containing any semiregular cyclic
group of index 2. We show this in the following proposition.

Proposition 4.1. Suppose that Ry and Ry are reqular dihedral permutation groups acting
on a set ), whose index-2 semireqular cyclic subgroups C1 and Cy are equal. Then Ry = Rs.

Proof. Let o generate C'; = (5 acting semiregularly with two orbits on 2. Let 7 € Ry — (7,
and 7' € Ry — C} (so 7 and 7’ are reflections in the two groups). We will show that 7’ € Ry,
which is sufficient.

Let x € ). Note that the orbits of C partition 2 into two sets: xC4, and z7C;. Notice
also that we must have 27’ € 27C;. Let j be such that 27" = x70?. Then for any k,

k

(xo™)1' = 270" = w1707 7F = (x0*)T07.

So 7" has the same action as 707 on every element in the orbit of  under C}.

For any z € Q that is not in the orbit of x under C;, we have z = y7’ = yro’ for some y
that is in the orbit of  under C;. Since 7" and 707 are involutions, y = 27’ = 2707. So 7/
has the same action as 707 on every element of Q. Hence 7/ = 707 € Ry = (1, 0). O

Since we may at times choose an initial 5 that conjugates o; to p; for a specific ¢, it is
helpful to know what we can deduce about how p; interacts with other elements of G once

we know that o; = p;.
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Lemma 4.2. Use Notation 2.10. Suppose o; = p; and g € G. Then Fyg = Fy if and only if
g commutes with p;, while F1g = F5 if and only if g inverts p;.

Proof. We know that every element of C,. commutes with p;, and 71 inverts p;. Also, since
pi = 0y, every element of CT commutes with p;, and 7 inverts p;. Since g € G = (R,., RI),
we can write g as a word in py, 01, ..., ps, O, T1, To.

With any such representation of g, it is not hard to see that p; commutes with g if the
total number of appearances of 7 and 7, is even, and p; is inverted by g if the total number
of appearances of 73 and 7, is odd. Since every element of C, and C7 fixes Fj, while 7
and 7 exchange F; with Fy, we also have Fig = Fj if and only if the total number of
appearances of 71 and 7 is even, which happens if and only if g commutes with p;. Similarly
the total number of appearances of 7, and 7 is odd if and only if g inverts p; and equivalently
Flg = Fg. O

Recalling that one condition of Lemma 3.5(2) was that o; commutes with p;, the following
result provides conditions under which this is true.

Lemma 4.3. Use Notation 2.10. Let B be a G-invariant partition and let i,j be such that
oi, pi, 05 and p; fix every block of B. Suppose that for each B € B, there is some kg with
1 <kp <p; —1 such that o; = pr on every point of B.

Then o; commutes with p;.

Proof. Let y € Q. Then yo; € By, so if we let k;yl be the multiplicative inverse of kp, in Z,,

we have ) ) )
_ kBy _ kBy _ kBkay _
Yyopi = yojo; " =yo; " oj = yp; 0j = Ypio;.

O

Since our goal is to find 8 € G® such that R™ = R,, we will frequently need to prove that
a particular permutation we define does indeed lie in the 2-closure of G. Our next lemma
will allow us to do this without excessive repetition of calculations.

Lemma 4.4. Use Notation 2.10. Let 5 be a permutation on €2 that fixes Iy and Fy setwise,
and let u,v € Q. Suppose that exists a G-invariant partition D such that:

o there is some g € G such that (D, D,)B = (Dy, Dy)g; and
e D, lies in an orbit of G,.
Then there is some h € G such that (u,v)3 = (u,v)h.

Proof. Note that the intersections of blocks of B, with blocks of D forms a G-invariant
partition, and by Lemma 2.4, its blocks are orbits of some normal subgroup of C,.. We have
ug € D,f; since (3 fixes I and Fy setwise, there is some a € (). such that uga = uf and
a fixes every block of D setwise. Now since « fixes every block of D and D, = D,g, it
follows that vBa~—tg~! € D,. Since D, lies in an orbit of G, there is some g; € G, such
that vg; = vBa~lg™!, so vgiga = vB. We also have ugga = uga = uf. Taking h = g,ga
yields the desired conclusion. 0

In several circumstances, we will choose  to have the following action, and of course we
want to know what conjugation by 8 does to various elements of R .

Lemma 4.5. Use Notation 2.10. Fizy € Q and suppose that for some fived i,k and for

‘ , v \ ‘
every j, B acts on yo! as o; 7 p;?. Then whenever z = yp,” for some j, we have zof = zph.
14



Proof. Let £ be such that z = yp*. Then we have

20) = 270 = ypi' B 0y = yp'p; Mol = yol B

= yo! oy VI = yphtpl = 2pk.

O

We conclude our preliminaries by describing one situation in which we may complete the
proof immediately.

Proposition 4.6. Use Notation 2.10. Suppose that Fy is an orbit of G.. Then there is some
B € G? such that R™ = R,..

Proof. Note that the restrictions of C,. and C" to F} are regular cyclic groups of squarefree or-
der. By Theorem 1.1 cyclic groups of this order have the DCI property. Thus by Lemma 1.5,
there is some 3; € (C,, CT) such that C™ = C,, where we are considering only the action
of these groups on F;. We can similarly find a £ in the 2-closure of the restriction of these
actions to F5 such that C’]IB? = C, on F;,. Extend f; and (8, to permutations on {2 by having
B fix every point of Fy and (s fix every point of Fj.

We claim that 8 = 818, € G®. By our choices of 3; and 35, if y, z € F; withi € {1, 2} then
it is immediate that there is some g; € (C,., CT) such that y5 = yf; = yg; and 28 = z3; = zg;.
If y € Fiy and z € F5, then taking D = B, in Lemma 4.4 gives some g € G such that
(y,2)B = (y,2)g. Thus B € G@.

Finally to complete the proof we require R™% = R, for some B3 € G®?. If y € F; and
v € CT is a generator for C7, then y7” = yy* = ya, for some generator a; for C,, by the
choice of ;. Likewise, if y € F, then yy® = yy% = yay for some generator as for C,, by
the choice of 3,. Unfortunately, it may be the case that ay = of for some k # 1. If this
occurs, then we conjugate again by the map (3 which acts as the identity on Fi, and as 17
on Fy. If y € Fy then yv?% = ymimyProm = y1(7v?) "1, Since ym € Fy, 77 has the same
action as a; on it, so this is y7a~'7 = ya. The same reasoning we used above to show that
ﬁ = ﬁlﬂg S G(Q) shows 53 S G(2)

We now have C™7 = C, and by Proposition 4.1, this implies R™" = R,.. O

In the remaining sections, we will deal one at a time with the possibilities that G is block-
regular on By, or GG is block-regular on By, or G is block-regular on Bs. For the second and
third of these, we will need to assume s = 3. Note that when s < 3, the third of these must
always be true (F] is fixed setwise if and only if F; is fixed setwise).

5. G 1S BLOCK-REGULAR ON 5;

In this section we address the possibility that G is block-regular on B;. Since this is the
strongest of our possible hypotheses about the block-regularity of G, it is the only situation
in which we are able to complete the conjugation for every value of s.

We will be using some additional notation repeatedly from this point, so we introduce it
here although much of it will not be required until the next section.

Notation 5.1. The following partitions will arise in many of our proofs. See Lemma 3.3
and Lemma 3.6 in which it was proved that these partitions are GG-invariant.
e We use X to denote the G-invariant partition consisting of the equivalence classes of
=p,; and
15



e K={{ycQ:Gp,,=Gp,.}:2€Q}.
In addition, when there is a G-invariant partition C with blocks of cardinality ps,

e we use ) to denote the G-invariant partition consisting of the equivalence classes of
=c; and
o L={{yeQ:Ge, =G} :2€Q}.

In our first result, we show that we can always conjugate o1 to p; in this situation.

Lemma 5.2. Use Notation 2.10. Suppose that G is block-reqular on By. Then there is some
B e GP such that af =p.

Proof. Use X from Notation 5.1 also. For each block X € X', choose some representative
point y, with x being one of these representatives, choosing y € F) if possible. For each
representative y, define oy, 7, to be the unique elements of R, and R] (respectively) such
that za, = a7, = y. For every z € X,, define 23 = 27, 'a,. Note that since for every
representative y we have y8 = y and G is block-regular on By, 3 fixes every block of B;
setwise.

We claim that f € G, and that a’f = p1.

Suppose u,v € 2. If u,v € X, then taking g = yy_lay gives an element g € G such that
(u,v) = (u,v)g. If u and v are in different blocks of X', then B, lies in an orbit of G,.
Taking D = B; in Lemma 4.4 gives h € G such that (u,v)3 = (u,v)h. Thus 8 € G?.

For any u € X, since B; < X by Lemma 3.5(1), we have

B _ ., 3-1 S | -1, _ 1
uoy = uf 01 = ua, Y017, = ue, o1y

We have Xya; L= X,, so ua, L' = o for some v € X,. Noting that o; and p; have identical
actions on X, (using Lemma 3.5(2)), this gives

ua'f = V010 = VP10 = VOyP1 = UP].
Since u was arbitrary, this completes the proof that alﬁ = p1. 0

With this in hand, we can use one argument to conjugate any of the remaining generators
of CT.

Lemma 5.3. Use Notation 2.10. Fixi € {2,...,s}. Suppose that G is block-reqular on By
and that o, = pm for each 1 < m < i. Then there is some 3; € G such that aﬁ; = o, for
each 1 <m <.

Proof. Using Notation 2.10, we know that xo; = zp;a; for some o; € (p; : 1 < j <i—1).
Since G is block-regular on B, this means that o;p; 'a; ! fixes every block of By, so for every
B € By, Bo; = Bp;a;. Applying Lemma 3.4 to Gp,, we must have «; in the kernel of Gpg,,
SO Tip; ! fixes every block of B;. Also, oy = p; is centralised by o;.

Observe that the orbits of (p1, p;) form a G-invariant partition C;. This follows from Lemma 2.5
because as we have just observed, in Gp,, 0; and p; have the same action, so their orbits
coincide.

Use X from Notation 5.1. Since o, = p,, commutes with o; = p; for every 1 < m < i,
we conclude using Lemma 3.5(3) that X > B;_;.

If X > C;, then Lemma 3.5(2) tells us that for every C € C; there is a constant ke such

that o; = pr on any point of C. Since o;p; ! fixes every block of B;, we must have k¢ = 1
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for every C' € C;, and thus o; = p; already. So we may assume that X 7/ C;, from which it is
straightforward to deduce that for each X € X', Xo; # X.

For each block X € X, choose a representative point y € X, with x being one of these
representatives; if possible, choose y € Fj. Let 7, € R and o, € R, be such that za =
Ty =1y.

For each y € €, define Y, = {Xyaf :0 < j <p;—1}. For each Y, choose a representative
point z,, with « = z, and 2z, € I} whenever possible.

Define 3; as follows. Let z, be a representative for Y,. If z € szf with 0 < j <p;, —1,
then zf; = zo, /pl.

We show first that 3; € G®). Let u,v € Q. If v € X, then we have (u,v); = (u,v)a;jpg
for some fixed j. If v ¢ X, then By, lies in an orbit of G,. Note that §; fixes every block
of By setwise. Thus Lemma 4.4 produces some h € G such that (u,v)s; = (u,v)h. Thus
B; € G@.

Now since X > B;_; and on any block of X we have 3, = o, 7 p{ for some fixed j,
which commutes with o, = p,, whenever 1 < m < ¢ — 1, we have Jﬁj = 0,,. Also,
applying Lemma 4.5 with any choice of y and with £ = 1, we see that aiﬁ * = p;. This
completes the proof. O

We tie the results from this section together into one corollary to make it easier to use
later.

Corollary 5.4. Use Notation 2.10. Suppose that G is block-reqular on By. Then there is
some B € G® such that R™ = R,.

Proof. Lemma 5.2 shows that after conjugation by some element 3; of G® we have R™
has the element o;' = p;. We proceed to use Lemma 5.3 inductively, to show that once we

have o 1B — p; for every 1 < i < k < s, there exists fr11 € G® such that a,fjr"lﬂk“ = Pri1

and O';-Bl”ﬂk“ = p; for every 1 < i < k.

Finally, taking 8 = 3;--- 3,, we arrive at C™ = C,, and so by Proposition 4.1, R™ =
R,. O

6. G 1S BLOCK-REGULAR ON B3,

In this section, we consider what happens if G is block-regular on B,.
We begin with a result that is not specific to this section, but that we did not previously
require.

Lemma 6.1. Use Notation 2.10 and Notation 5.1 and suppose that the orbits of (ps) are
G-invariant so that Y and L are defined. Then Y = K, and X = L.

Proof. Suppose y and z are in the same block of K so that Gp, , = Gp,,. Then G, fixes
B, . setwise so C, cannot lie in a single orbit of G,. The other proof is similar. U

We first show that whenever X = By, we have a second G-invariant partition with blocks
of prime cardinality.

Lemma 6.2. Use Notation 2.10 and Notation 5.1. Suppose that X = By. Then the orbits

of {p2) form a G-invariant partition.
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Proof. Using Lemma 2.5, it is sufficient to show that the orbits of o, are the same as the
orbits of ps.

By Lemma 3.5(2) on any block X € X there is a constant kyx such that oy = ph¥
everywhere on X. In particular, since X = By,on any block B € B, there is some ky such
that o4 = p’fX everywhere on B. By Lemma 4.3, 05 commutes with p;.

This shows that the conditions of Lemma 3.5(2) are satisfied for i = 1, j = 2, and C = Bs.
Thus for any B € B, there is a constant kg such that oy = pr everywhere on B. Since B
was arbitrary, the orbits of (oy) coincide with the orbits of {ps). O

Lemma 6.3. Use Notation 2.10 and Notation 5.1. If X ¥ By then there is some 3 € G®
such that after replacing R™ by R™®, the new X has X = Bo.

Proof. From each orbit of (ps) on X, choose a single representative block of X. Define /3
to fix every point in each of these representative blocks. If X is a representative block and
Xoy = XpiX | then on Xo} define 3 to act as o, 'py™*".

By the Way we have defined 3, it fixes every block of B; (since X 7 Bs, each block of X
meets any block of By in at most one block of By).

Let u,v € Q. If v € X, then by the definition of 3, there is some i and some my, such
that (u,v)8 = (u,v)o5 ' py™". If v ¢ X, then By, lies in an orbit of G,. By Lemma 4.4 we
conclude that there is some h € G such that (u,v)8 = (u,v)h. Thus B € G®.

Taking ¢ = 2 and on the orbit of any representative block X taking k = my in Lemma 4.5
yields 07 = p™* on that orbit. Thus we have the orbits of (05) are the same as the orbits
of (p2), and therefore form a G-invariant partition C by Lemma 2.5.

By Lemma 3.5(3), X = C; since we also have X = By and B, is the smallest R,-invariant
partition that follows both B; and C in our partial order, we must have X > Bs. O

This is enough to allow us to complete the proof that Dy, is a CI®)-group; however, since
our goal is to deal with Dy, we will not provide a direct proof but instead will continue
with additional results that will be needed for these groups.

Unfortunately, from this point on, details get very complicated and it seems necessary to
restrict our attention to the case s = 3.

Lemma 6.4. Use Notation 2.10 with s = 3. Suppose for everyy € Fy and every k € {1,2, 3},
yor = ypk, and that there are constants i,j # 1 such that for every z € Fy, zo1 = zp],
209 = 2ph, and zos = zps. Then there is some € G® such that RT® = R,..

Proof. Since i — 1 € Z;, it has a multiplicative inverse, say 7. Likewise, j — 1 has a multi-
plicative inverse j' in Z; . For any z € Fy and any a € Z,,,b € Z,,, we have

i’ aj’(j—1) bi'(i—1 a
2orpr ) (oapy ) = 2p U ph N = peph

while for any y € Fy, (01p1 )% (9p5 1) =y. Thus By, lies in an orbit of G,,.

Let v € R be such that x7y = 2. Define f to fix every point of Fj, and for z € Fj,
28 = zym. Since zym = z and G is block-regular on Bsy, [ fixes every block of By. If
u,v € Fy then (u,v)s = (u,v); if u,v € Fy then (u,v)f = (u,v)yr. If u € Fy and v € F,
then by Lemma 4.4, there is some h € G such that (u,v)3 = (u,v)h. Thus 8 € G?®. For
k€ {1,2,3},if y € F) then yo} = yoy = ypx, while if z € F, then

za,f = ZT1YORYT1L = Z’/’10k_17'1.
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Since z1; € Fi, this is the same as 271,0,;17'1 = Zpk.
Thus C™ = C,, and Proposition 4.1 completes the proof. O

Lemma 6.5. Use Notation 2.10 with s = 3. Suppose that G is block-reqular on By, that the
orbits of (p2) form a G-invariant partition C, and that the orbits of either (p1, p3) or {(ps, p3)
form a G-invariant partition D. Then we can find 3 € G® such that R™ = R,.

Proof. By Lemma 2.11 we may exchange p; with ps if necessary, so without loss of gener-
ality let us assume that the orbits of (p;, p3) form a G-invariant partition. Note that the
intersection of any block of this partition with any block of B, is either empty, or a single
block of B;.

Use Notation 5.1. By Lemma 3.5(3), we have B1,C < X, so (as in the proof of Lemma 6.3),
By = X. For any y, z € F,, we have |C, N D,| = 1. Since D, must be fixed setwise by G,,
whenever C, is fixed setwise by an element of G, the point of intersection must be fixed.
Therefore C, cannot lie in an orbit of G, so y =¢ z. We conclude that By < Y,

There are now only two possibilities for : Y = Bs, or Y = {Q}. In either case, us-
ing Lemma 3.5(2), we have oy = ps on Fy, and there is some 4 such that o, = p on F,. In
the latter case, we also have : = 1 and oy = ps.

Since the orbits of (p1,ps) are G-invariant, they coincide with the orbits of (oy,03)
by Lemma 2.5. Thus the orbits of ps on the blocks of B; must coincide with the orbits
of o3 on these blocks, so for every B € B; there is some ap such that Bog = Bp3®. Since
by Notation 2.10 By 0305 "' = By, and G is block-regular on By, o3p; ' must fix every block
of By, so we must have ap = 1 for every B. Thus o3p; ' fixes every block of B;.

If i = 1 (in particular if Y = {Q}) then we have now shown that (C,., CT) is block-regular
on Bi, so by Proposition 4.1, so must G be. Now Corollary 5.4 completes the proof.

We may now assume that ) = Bs and i # 1. We consider two possibilities for the action
of o1: either o7 = p; on F; and there is some j such that o1 = p] on Fy, or there exist y, 2
with z € F, such that yo, = yp{1 and zoy = 20{2 and 7, # Jo.

Case 1. X = Bz. By Lemma 3.5(2) since zo; = xp; we have o1 = p; on Fi, and there is
some j such that oy = p{ on Fj.

Given y € €, let k be such that yosp; ' = yp¥, so that as3ps'pr* € Gy. Let yi,y2, ...,y
be any =g, -chain starting at y, and suppose inductively that osp3'p;* € Gy,. Since p;
commutes with o3 (by Lemma 4.3), the fact that B;,,, , does not lie in an orbit of G,,
implies that o3p;'p;" must fix every point of By, ,, so o3p5'p1" € G,,,,. Since X = B,
this implies that a3p;'p;" fixes every point of F,. Therefore o3 = p3p¥ everywhere on F,.
Now by Lemma 3.4, we must have k = 0. Thus o3 = p3 on [}, and since y was arbitrary,
everywhere.

If 5 =1 then (C,,CT) is block-regular on C, so by Proposition 4.1, G is also, and Corol-
lary 5.4 completes the proof. The remaining possibility is that 7 # 1. In this case, Lemma 6.4
completes the proof.

Case 2. X ¥ Bs. So each block of X meets each block of B3 in at most one block of Bs.
If the blocks of X have cardinality 2p;p, then fix £ such that z7p§ is in the same block of
X as x; otherwise, take ¢ = 0.

Define 3 to fix every point of By, and By ,71p5. Any other point z € Q has a unique
representation as yo§ for some 1 < a < ps — 1 and some y € By, U Bzﬂlpé. Using this
representation, define zf3 =1 zo5 “pj.
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Let u,v € Q. If v € X, then there is some a such that (u,v)5; = (u,v)o3%%. If v ¢ X,
then B, , lies in an orbit of G,. Observe that since 03p3_1 fixes every block of By, so does f3;.
Thus Lemma 4.4 gives us some h € G such that (u,v)B; = (u,v)h. So B, € GP.

Since X = By, there is some j such that for every y € By 715, yo1 = yp{. Also, for every
y € By, we have yo; = yp;. Take any z € Q, and let a be such that z = y'0§ for some
Y € By, UB — 2, 27p5. Note that there is some y € By, U B — 2, x7;p§ such that z = yp3.

Now

b1 _ —1 _ —a __a —a a __ a
201" = 2f3; 0151 = 2p5 050105 " py = yo1p;

and this is either ypp? (if y € Fy), or yp,ps (if y € F), which is either zp; (if z € F), or
zp) (if z € Fy).

The same calculations with oy show that o, = 9, which is p, on F} and ph on F.
Meanwhile, Lemma 4.5 shows that agl = p3 everywhere. We can now finish the proof as
before: if j = 1 then (C,, C™) is block-regular on C, so by Proposition 4.1, (R,, R™) is
also, and Corollary 5.4 produces a (35 that completes the proof. The remaining possibility is
that j # 1. In this case, Lemma 6.4 produces a (5 that completes the proof. U

Our first couple of results in this section effectively showed that we may assume that
X > By, and the same for ) when it exists. The remaining steps in our proof largely
amount to considering various possibilities for what X and ) can be. We start by dealing
with several possibilities involving the blocks of each being as small as possible: each has
blocks of cardinality pips or 2pips, and if both have blocks of cardinality 2p;ps then the
partitioms are equal.

Lemma 6.6. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on By and there is a G-invariant partition with blocks of cardinality po, so that Y is
defined. Suppose that X,Y = By and there is some G-invariant partition D with blocks of
cardinality 2p1ps such that X, =< D. Then there is some 3 € G? such that R™ = R,.

Proof. For 0 < k < ps — 1, for 2 € D,pk define 28 = zo3 " pk.

Let u,v € Q. If v € D, then there is some k such that (u,v)s = (u,v)o5"ps. If v & D,
then v ¢ X, and v ¢ Y, so both C, and By, lie in an orbit of G, (the same orbit since
v is in both). It is not hard to see that this forces By, to lie in this orbit of G,. Since
G is block-regular on By and by Notation 2.10 B, ,03 = DBs.ps, it is straightforward to
deduce that (8 fixes every block of By setwise. Using Lemma 4.4, this gives h € G such that
(u,v)B3 = (u,v)h. We conclude 3 € G2,

Note that since 3 acts as 03 ‘p} for every element of D,pi, the conditions of Lemma 4.5
are satisfied for every y € D,. We conclude that 035 = p3 everywhere.

Since X,Y = By, using Lemma 3.5(2) we conclude that for each B € B, there exist
constants ig, jp such that everywhere on B we have o; = p’iB and o9 = pJQ'B. In particular,

we have ip, , = jp,, = 1, and this is also true for af and 05 . Since a? = ps and ag commutes

with both 01/3 and 026 , this forces 016 = pp and 02’8 = po everywhere on Fj. Furthermore, on
F5 there is a single pair of constants ¢ and j such that 01/8 = p! and 02’8 = pj, everywhere on
F.

The orbits of p; and alﬂ coincide, as do the orbits of p3 and 05 , so by Lemma 2.5, the
orbits of {p1, ps) are invariant under (R,, R™). Now Lemma 6.5 gives us a 3’ € G® such
that R, = R:Bﬂ/, completing the proof. O
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Our next result deals with the next-smallest possibility: the cardinalities of the blocks of
both X and ) is 2pips, but the partitions need not be equal. For this result, we make an
additional assumption that either p; or p, commutes with every element of C7. We will set
aside for later the possibility that this hypothesis does not hold.

Lemma 6.7. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on Ba, that the orbits of (p2) form a G-invariant partition C, and that either py or
p2 is central in (C,., CT). Further suppose that the cardinality of the blocks of X and of Y is

2p1ps.
Then there is some B € G® such that Rfﬁ =R,.

Proof. Without loss of generality, since we can use Lemma 2.11 to exchange p; with py, we
may assume that p; is central in (C,, CT).

Let 7 € R, be such that 7 fixes Y, and let 7/ € R, be such that 7’ fixes X,. Note we can
choose 7/ so that 7/ = 7p4 for some £. Then

y= {Baupy U Byypph 1 0 <i < p3—1}
and X = {Bg,pi U By ,m'ph 1 0 < i < pg— 1} = {By,py U By xT,OH_Z 0<i<p3—1}
It £ =0 then Lemma 6.6 completes the proof, so we may assume 1 < £ < p3 — 1.

Define 8 as follows. If y € By ,p5 then y8 = yo; " p5. If 2 € 5N X, so that z € By LTPs

then define j; so that C’yﬂp{ = C, and k; so that C,o5"" Zp”ep’f = (,. This can be done

ki
since p; and o3 commute. Now zﬁ = 205 il

We claim first that 3 € G®. If v € By, then there exist i,a such that (u,v)5 =
(u, v)o3" pipf.

If v ¢ X, and v ¢ Y, then both B;, and C, lie in an orbit of G,; since v is in both of
these, it is not hard to see that Bs, lies in this orbit of G,,. Note that $ has been defined to
fix each block of B,. By Lemma 4.4, there is some h € G such that (u,v)8 = (u,v)h.

IfveY, and v ¢ X, then Wlthout loss of generahty u € By ph and v € By ,7pj for some
i. Now by definition of 3, we have uf = uo;'ps and By, = By 05" ph (since the action of
p1 fixes every block of By). Since v ¢ X, we have By, lies in an orbit of G, so by Lemma 4.4
there is some h € G such that (u,v)8 = (u,v)h.

Finally, if v € X, and v ¢ Y, then without loss of generality u € Bs,p4 and v € By xT,o’H
for some i. Now by definition of 3, we have C,8 = Cy,p; 7 and C, o5 TEpttt = C’Up1 ,
C,p = Cvpfji. Since v ¢ Y, we have C, lies in an orbit of G, so by Lemma 4.4 there is
some h € G such that (u,v)8 = (u,v)h. We conclude that 3 € G2

Now we show that for i € {1,3}, Uf = p; on Fy, and on F, there is some ¢; such that
of = phi, with £5 = 1.

Since p; is central in (C,, CT) (and in particular commutes with o3), we have o1 = p; on
Fi and 01 = pﬁl on F,. For y € F} then,

yB o1 = yp5 ohoroy py = ypstoiph = yps piph = ypi.
Likewise, for z € Fy,

-1 _ Ji— —i—0 i+l —i—f i+l ki—7i __ —f— i+l —0 4 i+l 21
23 015—201 ‘p3 oy ooy T sy =Yps UP3 —ypg P1P3s =YpPy-

Also, for y € Fy with y € By, ph, we have
—i—1 41 __ —t i+1

yB- 1035 =Yps 03‘7303 P3 = Yps Pz = Yps.
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And for z € F, with z € By, 7p™, we have

-1 o Ji—ki —i—l i+l —i—0—1 i+0+1 Kit1—Ji+1
2B 038 = zpy Vpg' oy 0303 P3 P1

L —i—l i+l kip1—ki—Fit1+di k
=Zp3 P3P = ZP3p1

We now explain why k; 11 — k; — j;01 + J; = 0. For 1 < ¢ < p3, define a; to be the value such
that for y € By ,p} we have Cyo;3 ' ps = C,p{*. Notice that j; = 2221 ap. Furthermore, when
z € X, so that z € BQ,prQH we must have C,o3 ' ps = C.p}*, and therefore k; = ZZZPZ ap,
where subscripts are calculated modulo p3. Thus,

i+1—ki—Jit1+Ji

kivi — ki — jis1 + i = aiy1 — ajp1 = 0.

So zoh = zps.

The orbits of p; and 0"18 coincide, as do the orbits of p; and 0—5 , so by Lemma 2.5, the
orbits of {p;, ps) are invariant under (R,, R™). Now Lemma 6.5 gives us a 3’ € G® such
that R, = R:Bﬂ/, completing the proof. O

We now switch to considering the other end of things, where the blocks of X and ) are
as large as possible. Our next result shows that if the orbits of G, include each block of B
in Fy other than B, ,, then it is not possible for both X and Y to consist of a single block.

Lemma 6.8. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on Bs, that the orbits of (ps) form a G-invariant partition C, and that X,Y > Bs.
Further suppose that every block of By in Fy other than B, lies in an orbit of G,.

If py > p1 then Y < {Q}; likewise, if p1 > po then X < {Q}.

Proof. By Lemma 2.11 we may exchange p; with p if necessary, so without loss of generality
let us assume that py > p; and deduce that Y < {Q}. Let z = xp3. Towards a contradiction,
suppose that ) = {Q}, so there is an =¢-chain from x to z. Since every block of By in F}
other than B, , lies in an orbit of G, the first entry in such a chain that lies outside of By,
must lie in F5. Suppose that u is this element. So there is some 2’ € B, , such that C,, does
not lie in an orbit of G,.

If C,, were to lie in an orbit of G, then there must be an element g € G, of order p
that acts transitively on C,, and therefore on the blocks of By in B, ,. Since g has order ps,
every orbit of g has length 1 or p,. In particular, since there are p; blocks of C in By, and
p2 > p1, g must fix each block of C in By,. Since g acts transitively on the blocks of B; in
B, ,, and fixes each block of C in B, setwise, it must act transitively on each block of C in
B, ,,. Conjugating by an appropriate element of R,, we conclude that C, lies in an orbit of
G, a contradiction. So (), does not lie in an orbit of G, and we may as well assume that
u immediately follows x in our chain.

By the same logic, the next entry in this chain, say y, must lie in F;. Furthermore, we may
as well assume that y ¢ By, or by the logic of the preceding paragraph we could skip u and
y in the chain and proceed immediately from z to the next entry. Now by hypothesis, C,
lies in an orbit of GG,. Therefore there is an element g € GG, of order py that acts transitively
on Cy. As before, since g has order py each of its orbits has length 1 or p,. Since G is
block-regular on Bs, g fixes each block of By setwise, so since there are p; < py blocks of C
in any block of B, each block of C must be fixed setwise by ¢. Consider the action of g on

Cy. Since g € G, and v immediately follows z in our =¢-chain, C,, cannot lie in an orbit of
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G, so it must be the case that ug = u. But then g € G, so that (), lies in an orbit of G,,.
This contradicts our choice of y to immediately follow u in our =¢-chain.
This shows that it is not possible to form an =¢-chain from z to z, so Y # {Q}. 0

Our next lemma is quite specific and technical but covers a case we will need in the
following result.

Lemma 6.9. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on By, that the orbits of (ps) form a G-invariant partition C, that X,Y »= Bs, and
that either py or py is central in (C,,CT). Further suppose that the cardinality of blocks of
IC is 2py or 2p1po, the cardinality of blocks of L is 2py or 2pips, if K € K and L € L then
|K N L| is not even, and if v € F, N K, and w € Fy N L, then every block of By other than
By, By, and By, lies in an orbit of G.

Then there is some 3 € G® such that R™® = R,.

Proof. Recall from Lemma 6.1 that ) = K and X = L. Since X,) = By, this forces the
blocks of both X and ) to have cardinality some multiple of 2p;ps. If both have blocks of
cardinality 2p;p, then Lemma 6.7 completes the proof. So at least one of them must have
blocks of cardinality a nontrivial multiple of 2p;py, which forces this partition to be {Q}.
Since the conditions on p; and p, are equivalent, we assume without loss of generality that
X = {Q}, and therefore that p; = oy is central in (C,, CT).

Note that since X = {Q2}, Lemma 6.8 implies that p; < p, and therefore that J < {Q}.
Since the blocks of ) have cardinality a multiple of 2p;ps that is not 2p;pops, their cardinality
must be 2p;ps.

Let 7 € R, be such that 7 fixes K, and let 7/ € R, be such that 7’ fixes L,. Siince the
blocks of K and £ are R,-invariant and G is block-regular on Bs, there must be G-invariant
partitions K" and £’ such that

KXK' ={BaupyUByarphy : 0 <i <pg—1} = {Byapy U Boops'm: 0 < i <pg—1}
and L X L' = {By,p4UBy,7'p:0<i<p3—1} = {BypyUByp3'm :0<i<py—1}
Furthermore, if ¢ is such that By ,7" = By ,7p4 = Bap; '™ then
L' = {ByypiUByp3'1:0<i<ps—1}.

By replacing p3 and o3 by an appropriate power if necessary, we may assume without loss of
generality that £ = 1. Importantly, if K € K has nonempty intersection with one of the two
blocks of By in a block of X', then it has nonempty intersection with both, and the same is
true for £ with respect to £'. Note also that ) = K'.

Let a be such that o3p;'p¢ € G¢,. We claim that either the orbits of (ps, p3) are G-
invariant, or there is some 2’ € F} such that o3p;'p¢ € G, but o3ps 1ot ¢ Gc,, . Since
o1 = pi1, the action of o3p3'p¢ is the same as the action of some power of p; on each block
of C in By, 7. If this power is 0, then by definition of £ the action of o3p5'p% must also fix
each block of C in Bg,xpge, since this is in the same block of £ as B, ,7. Repeating this
argument, after ps iterations we have either concluded that asp;'p? fixes every block of C,
or there is some a2’ € F such that o3p5 ! pi € Gc,, but o3ps 1p‘f ¢ Gc,, . In the former case,
a = 0 by Lemma 3.4 and the orbits of (ps, p3) are G-invariant. If this occurs, we complete
the proof using Lemma 6.5. So there must be some ' € F} such that o3p;'pd € Gc,, but

o3p3 Pt & Gc,, . Take g’ to be an appropriate power of o3p3 ' p¢ so that ¢’ has the same
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action as p; on the blocks of C in B, /7, and take g to be a conjugate of ¢’ such that g € G¢,
has the same action as p; on the blocks of C in By, 7.

Define 3 as follows. Let a; be such that on the blocks of C in By _,p4, p3'o% has the same
action as p{i. For y € K!p}, take yf = yps g% %¢pip, “.

We claim that 8 € G®. Let u,v € Q. If v € K/, then there is some 4 such that
(u,v)B = (u,v)p3'g% “tpip;. Ifv ¢ K! and v ¢ L/, then by hypothesis B, lies in an
orbit of G, and since [ fixes every block of B, Lemma 4.4 produces some h € G such that
(u,v)B = (u,v)h.

The remaining possibility is that v € L] but v & By,. Let i be such that u € By ,pi,
S0 v € By,7pi™. By definition of 3, C,8 = Cup3'g% %tpip;*. Now, Cyupz" lies in By,
and since 07 = p1, g € G, fixes every block of C 1n By ;. Thus C,5 = Cyup; “. Meanwhile,

C,f = Cypg gttt pit p “+  We have Cvp3 ‘ lies in By ,7, and g has the same action
as p; on the blocks of C in By,T, s0 Cpf = Cupi™ “p; " = Cop;®. Since Y = K’ we see
that v ¢ Y, so C, lies in an orbit of G,. Now Lemma 4.4 produces some h € G such that
(u,v)B = (u,v)h. This completes the proof that g € G®.

We now show that the orbits of {ps, p3) are invariant under (R,., R7?). We will use Lemma 2.16
with i = 2 and j = 3. Since C is invariant under G, it is also invariant under (R,, R™) us-
ing Lemma 2.18. The next condition holds with o = 717p%, by definition of £. We need only
show that the orbits of {py, p3) in F} are invariant under (C,, C™). Since p; = o, and the
orbits of o, are the blocks of C, which are the orbits of ps, it is sufficient to show that 05
fixes each orbit of (pg, p3) in Fy. Let y € Fy be arbitrary, say y € By ,p4. As calculated in
the previous paragraph for C,, we have C,~1 = Cyp{’, and by definition of a;, this is the
same as C,p; ‘0. Likewise, since C,37 103 € By p4 ", by definition of a;,; we have

CyB~ 03 = Cyfaapii*t = OB g0y gl
So we have
CyBlo38 = Cypstosos05 p5t = Cyps.
Thus o fixes each orbit of (py, ps).

Now with this new G we have a G-invariant partition with blocks of cardinality pops,
so Lemma 6.5 completes the proof. ([l

With the preceding results in hand, we are in position to deal with the case where the
cardinality of the blocks of at least one of X and ) is a multiple of p;pops.

Lemma 6.10. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on By, and that the orbits of {ps) form a G-invariant partition C.
Suppose that either ) = Bs or X = Bs. Then we can find f € G® such that R™ = R,.

Proof. By Lemma 2.11 we may exchange p; with ps if necessary, so without loss of generality
let us assume that X = Bs. By Lemma 3.5(2), o1 = p; on F, and there is some ¢ such that
o1 = p} on Fy. By Lemma 3.5(1) and (3), we have Y = Bs.

If there is a G-invariant partition with blocks of cardinality pops then Lemma 6.5 completes
the proof, so since the orbits of (py, p3) are an invariant partition under o7 and oy (as well
as under R,), we may assume that o3 does not treat these orbits as an invariant partition.
In other words (since C is a G-invariant partition), there exist Cy,Cy € C and a value j such

that Cy = Cya for some a € (p3) and agpglpl_j fixes C'; but not Csy. For some u € C}, let k
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be such that uosps ! py ko7 € G,. Since o5 commutes with p; (because o1 = p; on Fy and
o1 = p% on Fy, see Lemma 4.3), agpglpgkpl_j must act as a pj-cycle on the blocks of C in
the block B, € By that contains C5. Let g be some power of agpglpgkpl_j that has order pq;
note that g commutes with p;.

Since every non-transitive subgroup of a group of prime degree either fixes a single point
or fixes every point (see Lemma 2.17), and every orbit of g has length 1 or p;, it must be the
case that the po blocks of B in B, are either all fixed by g, or exactly one of them is fixed
by g.

If the intersection of some block of I with F} has cardinality p;ps then this generates a
G-invariant partition with blocks of cardinality p;p3, and Lemma 6.5 completes the proof.
So we may assume that every nonempty intersection of a block of K with F; must have
cardinality pi, p1ps, or p1paps; that is, it is a block of By, or a block of By, or Fj.

Suppose K = By. This means that every element of GG that fixes one block of B; in some
block of By must fix every block of B; in that block of By. In particular, g fixes every block
of By by block-regularity, so as we have just argued must fix at least one block of By in
each block of By, and therefore must fix every block of By. Let z € C5. We have g € G,
B .g = B, and g acts transitively on B, .. For any y € {2 we have B, ,g = B;, and since
g commutes with p; we either have g € G, fixes B, pointwise and is transitive on B; ., or
g is transitive on B, ,. Therefore every =g,-chain that starts at u consists entirely of points
that are fixes by g, so it is not possible to form an =g, -chain from u to z. Since we either
have u, z € F} or u, z € Fy, this contradicts our assumption that By < X.

We conclude that the G-invariant partition formed by taking intersections of blocks of IC
with blocks of B3, must be B;. This implies that the action of GG, cannot fix any block of B;
in F} other than B,, so by Lemma 2.17, G, must act transitively on the blocks of B; in any
block of By in Fj. Furthermore, there is at most one block of By in F5 for which G, does not
act transitively on the blocks of B; in this block.

Suppose that X = B;. Then there must be an =p,-chain from u to z. Furthermore, since
Fy and F5 are distinct blocks of X', every y; in this chain must lie in the same block of B3 as
u (and z), since y; =p, u.

Consider the blocks of L. If the cardinality of these is a multiple of ps, then there is
some o« € C, whose order is a multiple of p3 such that G¢, = G¢,. Since the order of
« is a multiple of p3 (and is square-free), there is some m such that o™ = p3. Therefore
Ge, = Geyps- Now by Lemma 3.6, the orbits of p3 on C are G-invariant, meaning the orbits
of {py, p3) are G-invariant. This is a G-invariant partition with blocks of cardinality pops,
so Lemma 6.5 completes the proof.

Otherwise, L, N F), is contained in By ,, so by Lemma 2.17, G,, is transitive on the blocks
of C in every block of By except By, in F, = F,. We cannot have z € B, ,, so in any =5,
chain y,...,y, from u to z there must be some y; that is not in By,. Let ¢ be the lowest
value such that y; ¢ Bs,,; that is, By, # Bs,. Conjugating by the element of R, that maps
u to y;—1 (note that this fixes every block of Bs), we see that G, , must be transitive on
the blocks of C in Bs,,. So there is an element of order p; in G,, , that acts as a p;-cycle
on the blocks of C in By ,,. Since this element has order p, its action on the blocks of B; in
B, ,, must fix at least one of these blocks setwise. Therefore this block of B; lies in an orbit
of Gy, ,. Since G, , is transitive on the blocks of By in By, all of By, lies in an orbit of
Gy, _,; in particular, B ,, lies in this orbit, a contradiction to the definition of an =g,-chain.
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This argument not only shows that X = {Q}; it also shows that every =g,-chain from u to
z must pass through the other block of Bs.

Since X = {2} we now have o; = p; from Lemma 3.5(2), and therefore p; is central in
(C,CT). Furthermore when we pass between vertices of F} and F; in an =g,-chain, we must
either pass between blocks of By that intersect the same block of IC, or between blocks of B,
that intersect the same block of £ (or both). This is because if y; and y; 4 are consecutive
in an =g -chain and B, , does not intersect K, then G, does not fix any block of B; in
By, setwise, so by Lemma 2.17 the subgroup of G, that fixes By, is transitive on the
blocks of By in By, . Similarly, if By,, , does not intersect L,, then the subgroup of G,,
that fixes B, , is transitive on the blocks of C in By, ,. So if By, , does not intersect
either K, or L,, then By, is contained in an orbit of G,,, a contradiction.

We showed above that L, N F,, C By,. It must therefore also be the case that L, N F,7 C
By, 7 for some 7 € R,.

If either K = By or £ < By, we may be able to pass via an =g,-chain from By, to the
unique block of By in F, 71 that has a nontrivial intersection with either K, or L,, but this
is the only block of B, in F, 7 that we can pass to, and from it we can only return to By,,.
This contradicts X = {Q}. Furthermore, this is also true if the unique block of F,m that
intersects K, and the unique block of F,m that intersects L, are equal. So it must be the
case that each block of IC has cardinality 2p; and each block of £ has cardinality either 2p,
or 2pips, and the cardinality of the intersection of K, and L, is either 1 or p;.

We conclude that every block of B, in Fj other than Bs, lies in an orbit of G. Also, if v
lies in F> N K, and w lies in F5 N L,, then every block of B, in F, other than By, and By ,,
lies in an orbit of G,. Now Lemma 6.9 completes the proof. O

Finally, we return to the situation where the cardinality of the blocks of both X and ) is
2p1p2, in order to deal with the situation where neither p; nor ps is central in (C,., CT).

Lemma 6.11. Use Notation 2.10 with s = 3, and Notation 5.1. Suppose that G is block-
reqular on By, that the orbits of py are G-invariant, that both X and Y have blocks of
cardinality 2p1ps but these do not coincide, and that neither py nor py is central in (C,., CT).
Then there is some 3 € G such that py is central in (C,, CT).

Proof. Since the blocks of X have cardinality 2p;p,, it must be the case that there is some
z € X, with z ¢ B, such that By, is not contained in an orbit of G,. Since the blocks of
X and Y do not coincide, z ¢ Y, so C, is contained in an orbit of G,. Thus for every i it
must be the case that B .p} is not contained in an orbit of G,. Consider the action of G,
on the blocks of C in By, (note that By, is fixed setwise by G, by the block-regularity of G
on B,). This is a group acting on a set of cardinality p;. It cannot be transitive since if it
were, By, and therefore B; , would lie in an orbit of G;. Thus by Lemma 2.17 it must fix
either a unique block, or every block, of C in B, ,. This implies that L, N By, # (). Similarly,
we can show that if z € Y, with z ¢ By, then K, N By, # 0.

Note that on any block of By, since o7 acts as some element of (p;) on any block of B; and C
is G-invariant, o acts as some fixed element of (p;) everywhere in this block of Bs. Similarly,
o9 acts as some fixed element of (ps) everywhere in this block of By. For 0 < i < p3 — 1,
let a; and b; be such that on By ,ph the action of o; is the same as the action of p}’, and
the action of o, is the same as the action of p%. Note that ag = by = 1 by our choice of z

in Notation 2.10.
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Similarly to several of our other proofs, let 7 € R, be such that Y, = B, , U B, ,7, and let
¢ be such that X, = By, U ngrpg.

Since Bs,ph is in the same block of YV as B, ,7p}, Cyrpi, does mot lie in an orbit of xpl,

so o, must have the same action on BQ,szé as pgi. Similarly, since Bzng is in the same
block of X as Bzxrpéfg, o1 must have the same action on ngrpéfg as pi'. In other words,
on Bg,mTpé, o1 has the same action as pcl”’e

Suppose that L, = X,. Then G, fixes every block of C in X,. This implies that a;,_, = a;,
and by repeating this argument (using conjugates of G,), a;_j, = a; for every j. a; =1 for
every j, so o1 = py, contradicting our hypothesis that p; is not central in (C,., CT). Similarly,
K, =Y, would imply o9 = py, again a contradiction. Thus, L, has cardinality 2p,, and K,
has cardinality 2p;.

We claim that for any i, there is an element of G that fixes each C p]l setwise and maps
B xpg to By pr , and also that there is an element of GG that fixes each Bme setwise and
maps C’ggp1 to Cpy 7% Note that the inverse of these elements does the same with b; replaced
by b; ' (the multlphcative inverse of b; in Z¢ ) and a; replaced by a; .

On By ,pk, o1 acts as p{* and oy acts as pg’“. On B27m7—p]3€+ , 01 acts as p* " = p* and
b
oy acts as py" . Let o, € RT be such that
_ k0 2Ue+0
1‘03’72 E=XTP3 = $P37P3 )
2he-+0 : Wetl) _
and consider the action of v, ,7p5"" on By pk. Since |7p3"| = 2 we have
%+l _ .k
$P3’Y2 kTP3 = IpP3.
Also,
—1 .—1 =
2%+l _ 2%+l _ .k —ia; ' —jbt okt
3303,0102’72 kT P3 = :Bpgal 72 ETP3 = TP37Y2,k01 op) TP3
_ .k —i —iby ke okl 2k+¢ —jby "orte _ 2kpr i gby "brge
= TP3Y2,kP1 P2 TP3 xpngg P Pz TP3 = $P3P1P2 :

This implies that if the result is true for b,,, then it is true for b1y, where subscripts are
calculated modulo ps3, so inductively it is true for every by.

Similarly, on By ,p%, o1 acts as pi* and oy acts as pg’“. On B, ,7p%, o1 acts as pi** and o9
acts as pg’“. Let v11 € R} be such that

k k k. 2k
LP3V1,k = TTP3 = LP3TP3

and consider the action of v, x7p2¥ on By .pk. Since |7p2¥| = 2 we have xphvy, ,7paF = xph.
Also,
ki 2%k k_iagt gbpt 2% k —iayt —jbet o
TP3P1P2VLETP3 = LP301 ° O " Y1LETP3 = TP371,k07 P! TP3
. ,1 _
. k —iay o —ia, Yap_ _ Ay tag—
= TP37V1,kP1 “py 7'/)3 = $p37103 P1 P2 7'/)3 = 3793,01 Pz

This implies that if the result is true for a_p,, then it is true for a_m,11)¢ where subscripts
are calculated modulo ps, so inductively it is true for every a,. This completes the proof of
our claim.

For each k, we can choose 2z, € By $7p3 such that z;, € K, ok and 2z, € L, At and since
the blocks of K have cardinality 2p; and the blocks of £ have cardmahty 2p2, this choice
is unique. Furthermore, if g € G, 1 and Bljl,ngp2g = Blvgcp;?f,o2 then By, g = By, and
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By kagg By kaz since B kaQ € K, phol and K is G-invariant. Similarly, if g € G, ok and

C, k+eplg C, k+2p1 then C.,,,9 = C.,,, and C’Zkalg Zk“p{

Define (3 as follows For y = xp’z;f,oil,o%, define yf = :UpSle p2 . Now for For z = zkpzip%,

define 2 = zkplla’c Zp;b :

We show now that 8 € G®. For (u,v) with v € By, this follows from the claim we
proved above. If v ¢ X, and v ¢ Y,, then G, is transitive on By ,; since 3 fixes each block of
Bs, Lemma 4.4 produces some h € G such that (u,v)5 = (u,v)h.

Suppose that v € X, but v ¢ By,. Then v ¢ Y,. Without loss of generality, assume

i2 J2

u € Fi, say u = x,03,0211,0121 Then since v € X, but v ¢ By, we have v = 2z, p?py. So
j2by, | . .
uB = zpkp lea’“ ,0%1 e and vf = szplfa’“ pj; **f. The claim we proved above implies (after
taking a conjugate of the inverse of one of the elements found there) that there is some

. . L1
element g € G that fixes each B, xp; setwise, and maps each C,xp7 to C, ;™ . So

k

ug = rpk p1 Al. Since G is block-regular on B, it must be the case that g fixes every block

of B;y. Since [ ﬁxes xplg € By, and by definition of 2,4, we have 2,4, € przg, so by the above

. .1

argument we get C.,, ,plg = Czka]la’“ . Thus C,g = C,p and C,g = C,[3. Since v ¢ Y, C,
lies in an orbit of G, so by Lemma 4.4 there is some h € G such that (u,v)5 = (u,v)h.

Finally, suppose that v € Y, but v ¢ By,. Then v ¢ X,. Without loss of generality,

assume u € Fi, say w = xpkpitpll. Then since v € Y, but v ¢ By, we have v = 22 pl2.

So uf = xpf pllla’c ,0%1 ¢ and v = zkp?ak ¢ pfbi The claim we proved above implies (after

taking a conjugate of the inverse of one of the elements found there) that there is some

. . g—1
element g € G that fixes each C, xp; setwise, and maps each By, xp5 to Bl’ngpéb’“ . So

ug = :vp3p’11 pél ¢ . Since G is block-regular on B, it must be the case that g fixes every
block of By. Since [ fixes w,o§ € Bj, and by definition of z; we have 2, € prk7 so by

. g —1
the above argument we get B ,, phg = Bl,zkp;b’“ . Thus By .9 = B0 and By ,9 = B1,0.
Since v ¢ X, By, lies in an orbit of G, so by Lemma 4.4 there is some h € G such that
(u,v)B = (u,v)h.
We have now shown that § € G®. Next we will show that o = po. Let y = zpkpip} € Fy.
Then
yos =yB oy = xp3p1 "o} a3 = wphpipd T

by definition of b;. And this is xp3p’1p; — ypy. Now let z = zpip} € Fy. Then

202,3 22571025_kallak ‘ kaa 5.

Since o has the same action on B, ,7p} as ,02 , this is

iak—g (J+1 )bk i g+l
Zkp1 B=zp1py " = zp2.

Thus after conjugating by 3, ps is central in (C,, C™?), completing the proof. O

Putting the preceding results together, we are able to complete the proof when s = 3 and
G is block-regular on the blocks of Bs.

Proposition 6.12. Use Notation 2.10 with s = 3. Suppose that the action of G is block-

regular on the blocks of By. Then there is some B € G such that RT® = R,
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Proof. Use Notation 5.1. After applying Lemma 6.3 and/or Lemma 6.2 if necessary, we may
assume that X > By, that C exists, and (possibly applying Lemma 6.3 after exchanging p;
and py using Lemma 2.11) that ) > Bs.

Since G is block-regular on B, for every z € F, the partition D, = {{(Bz,UB2.)p4} : 0 <
i < ps — 1} is G-invariant. Suppose that for some D, we have X', ) < D,. Then Lemma 6.6
completes the proof. This deals with the possibilities that the blocks of both X and ) have
cardinality pips, or that one has cardinality p;p, while the other has cardinality 2p,p., or
that both have cardinality 2p;ps and they coincide.

The remaining possibilities for X and ) are: the blocks of both have cardinality 2p;ps but
they do not coincide; or at least one of them has blocks whose cardinality is a multiple of
p1p2ps. In the latter case, Lemma 6.10 completes the proof.

If X and ) both have blocks of cardinality 2p;p, and either p; or p, is central in
(C,,CT) then Lemma 6.7 completes the proof. If neither p; nor ps is central in (C,, CF)
then Lemma 6.11 allows us to find a conjugate in which py is central. Now one of the
previous cases applies and we can complete the proof. 0

7. GG IS BLOCK-REGULAR ON B3

When s = 3 there are only two blocks of Bs, so G cannot help but be block-regular on Bj.
As in the situation where G was block-regular on Bs, the cases we need to consider largely
depend on the structure of X and Y (using Notation 5.1).

One preliminary result about D,,, will be important; we will apply this to the action of
G on the blocks of C.

Lemma 7.1. Use Notation 2.10 with s = 2. Suppose that o1 = p1, and that the orbits of
G 1 Fy have length ps. Then the orbits of G, in Fy are the orbits of py in F.

Proof. Since the orbits of G, in F; have length po, Proposition 4.1 together with Notation 2.10
implies that oo has the same action as p’2C on the blocks of B; in F3, for some 1 < k < py — 1.

For 0 < j < py — 1, define a; by o9p;'p; ™ fixes xpg(kfl) (this works because k — 1 is a
unit in Z7,). Note that since p; = o1 commutes with o3, we also have oap; ' p; “ fixes zphp}

(k=1) (

for every i. For 0 < j < py — 1, define b; by oqp; kpfbj fixes :Eﬁpg and as above, also

fixes x7 pé(kfl) pi for every 7). Our goal is to show that b; = 0 for every i. Note that since all
of our b;s are exponents of py, calculations are always being performed modulo p; although
we will often simply write equality for simplicity.

Let z = z7y, and define gy = o9p5 'p; . Then for every i,

i i(k—1) bi_1+-+bo—ia
Zg():ZPQ( )pl 1+--+bo 07

so this collection of py points is the orbit of z under G,.

Now consider the orbit of zpf~! under G, i1 Since conjugating G, by p¥~! produces

GZ‘

pht and translates its orbits, this must be

Z1y i(k=1) bi_1+-+bo—ia .
{(ng 1),02( 1)P1 pheT L 0 < <py—1}.
However, we can also calculate this orbit directly as we did the orbit of z under G,: taking
g1 = 02py p1 ", we have
k—1y Ji(k—1) bi+"'+b1*i(l1.

(zp5 Mgt = (zp5 Ny py
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In particular, since these orbits must be equal, by —ay = b; —ay; rearranging, by —by = a; —ag.
More generally, substituting

bi_1+---+bo—ia0:bi+---+bl—ia1

HltObl—i-+b0—(2+1)a0:bz+1++bl—(l+1)(11

yields b; — ag = b;11 — aq, and rearranging gives b;;; — b; = a1 — ag. Thus for every i,
bi = b(] + i(al - CL()).

Since we must have b,, = by, and the above calculation yields b,, = by + p2(a; — ao)
(mod po), we must have a; = ag. This implies that b; = by for every i. By definition of b;,
we now have oy = pk pl{O everywhere on F5. Now Lemma 3.4 tells us that pl{O is the identity;
that is, by = 0. This completes the proof. 0]

Using this, we can complete the proof in the case where G is not block-regular on Bs.

Proposition 7.2. Use Notation 2.10 with s = 3. Suppose that G is not block-reqular on the
blocks of By. Then there is some 3 € G such that RT® = R,.

Proof. We also use Notation 5.1. By Lemma 6.3 and /or Lemma 6.2, we may assume (possibly
after conjugation by some 3 € G?) that C and Y are defined, and that X, Y = B,.

Note that pi, p2, 01, 05 fix each block of By, and for y € Fy we have By o3 = By p3, while
for z € Iy we have By .03 = Bg7zp§ for some k. Since by Proposition 4.1 the action of C.,
completely determines the action of R,., if k = 1 then G is block-regular on By. So we must
have 1 < k < p3.

If X,V < Bs then every block of By in Fj lies in an orbit of G, as does every block of C
in I, so every block of By in F} lies in an orbit of G,. By applying o3p; "' this implies that
F5 is an orbit of G,. Now Proposition 4.6 completes the proof.

We may now assume without loss of generality that X, NF; # (). Since there exist 4, j such
that g = o3p3 pip} € G, so fixes X, setwise, we conclude that X, intersects nontrivially
with every block of By in Fy. Since X' > Bs, this means Fy C X, and therefore since {Q}
is the smallest R,-invariant partition that contains x and Fy, X = {Q}. By Lemma 3.5(2),
g1 = P1-

Since X = {Q}, there must exist =p,-chains that pass from F} to F,. Thus there must be
some z € F; such that B; , does not lie in an orbit of G,.

Suppose that the blocks of C in B, all lie in a single orbit of the action of G, on the
blocks of C. Then there is an element h € G, of order p; that fixes B, , setwise and acts as a
pi-cycle on the blocks of C in B; ,. Consider the action of h on the blocks of B; in By ,. Its
orbits must have length 1 or p;. Using Lemma 2.17, they either all have length 1, or there
is one orbit of length 1 and the rest have length p;. Since h does not fix any block of C in
B, ., if it fixes some block B € B, with B C B, , then B lies in an orbit of G,. Since By .
does not lie in an orbit of G, it follows that By ,h # B, ., so h fixes a unique block B . of
B: in By .. Note that by the action of h, B; . lies in an orbit of (5. Since B; , does not,
the blocks of By in B, , cannot lie in a single orbit of G, so by Lemma 2.17, every element
of G, must fix By .. Thus Gp,, = G, , and therefore K, = K.,. Applying g € G, to 2/,
we see that K, meets every block of 872 in F5. Since )Y = K by Lemma 6.1, this implies
Y ={Q}. By Lemma 3.5(2), 09 = ps. However, by Lemma 4.2, h commutes with py, which

contradicts what we determined about the action of h above (that it fixes B . setwise but
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does not fix By, although there is some b such that B, , = BLZ/pg. We conclude that the
blocks of C in B, , cannot all lie in a single orbit of the action of G, on the blocks of C.

Conjugating by various powers of g, we conclude that for every z € Fy, the blocks of C
in By, do not all lie in a single orbit of the action of G, on the blocks of C. Since o1 = p;
commutes with every element of GG, by Lemma 4.2, this implies that each orbit of GG, on the
blocks of C in F; has length ps.

Applying Lemma 7.1 to the action of G¢, we see that the orbits of GG, on the blocks of C in
F5 are the orbits of p3 in F5. Conjugating by 71 shows that the orbits of G, on the blocks
of C in Fj are the orbits of p3 in Fj. Together, these imply that the orbits of (py, p3) are
the same as the orbits of (09, 03), so these orbits form a G-invariant partition with blocks
of cardinality psps. Furthermore, po, p3, 02, and o3 all fix each of these orbits setwise, while
p1 = 01, so the action of G on this partition is block-regular. After reordering our primes as
P2, P3, p1 using Lemma 2.11, Proposition 6.12 completes the proof. U

Putting our results together gives our main theorem.

Proof of Theorem 1.2. After applying Corollary 2.9, we may use Notation 2.10 with s = 3.
Let 7 € 1,2,3 be as small as possible so that the action of G is block-regular on B;. If i =1
then Corollary 5.4 shows that there is some 3 € G® such that R™ = R,. If i = 2 then
we can reach the same conclusion from Proposition 6.12, and if ¢ = 3 then Proposition 7.2
yields this conclusion. In each case, Lemma 1.5 completes the proof.

Since every subgroup of a DCI-group is a DCI-group, it follows that the dihedral group of
order 2pq is a DCI-group. 0

While it may be possible to push these techniques farther, to prove the result is true for
4 or 5 distinct primes, it should be clear that these methods become increasingly complex
with more primes. I believe that a dihedral group of squarefree order that is a multiple of
an odd number of primes is likely to be a DCI group, but some new ideas will be needed if
this approach is ever to be successful in proving this.
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