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Abstract. In this paper, we prove that directed cyclic hamiltonian cycle systems of the
complete symmetric digraph, K∗

n, exist if and only if n ≡ 2 (mod 4) and n 6= 2pα with
p prime and α ≥ 1. We also show that directed cyclic hamiltonian cycle systems of the
complete symmetric digraph minus a set of n/2 vertex-independent digons, (Kn− I)∗, exist
if and only if n ≡ 0 (mod 4).

1. Introduction

Throughout this paper, Kn will denote the complete graph on n vertices, and Cm will
denote the m-cycle (v1, v2, . . . , vm). An m-cycle system of a graph G is a set C of m-cycles
in G whose edges partition the edge set of G. An m-cycle system is called hamiltonian if
m = |V (G)|. Finally, I will denote a 1-factor (that is, a perfect matching) in a complete
graph on an even number of vertices.

Several obvious necessary conditions for an m-cycle system C of a graph G to exist are
immediate: m ≤ |V (G)|, the degrees of the vertices of G must be even, and m must divide
the number of edges in G. A survey on cycle systems is given in [16] and necessary and
sufficient conditions for the existence of an m-cycle system of Kn and Kn − I were given in
[1, 19] where it was shown that a m-cycle system of Kn or Kn−I exists if and only if n ≥ m,
every vertex of Kn or Kn − I has even degree, and m divides the number of edges in Kn or
Kn − I, respectively.

Let ρ denote the permutation (0 1 . . . n − 1), so 〈ρ〉 = Zn. An m-cycle system C of a
graph G with vertex set Zn is called cyclic if, for every m-cycle C = (v1, v2, . . . , vm) in C, the
m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is also in C. An n-cycle system C of a graph G with
vertex set Zn is called a cyclic hamiltonian cycle system. Finding necessary and sufficient
conditions for cyclic m-cycle systems of Kn is an interesting problem and has attracted
much attention (see, for example, [6, 7, 8, 9, 11, 12, 14, 15, 17, 21]). The obvious necessary
conditions for a cyclic m-cycle system of Kn are the same as for an m-cycle system of Kn;
that is, n ≥ m ≥ 3, n is odd (so that the degree of every vertex is even), and m must divide
the number of edges in Kn. However, these conditions are no longer necessarily sufficient.
For example, it is not difficult to see that there is no cyclic decomposition of K15 into 15-
cycles. Also, if p is an odd prime and α ≥ 2, then Kpα cannot be decomposed cyclically into
pα-cycles [9]. In [9], it is shown that a cyclic hamiltonian cycle system of Kn exists if and
only if n 6= 15 and n 6∈ {pα | p is an odd prime and α ≥ 2}.
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These questions can be extended to the case when n is even by considering the graph
Kn − I. In [13], the hamiltonian case is considered where it is shown that Kn − I has a
cyclic hamiltonian cycle system if and only if n ≡ 2, 4 (mod 8) and n 6= 2pα with p prime
and α ≥ 1.

For a graph G, let G∗ denote the digraph obtained from G by replacing every edge {u, v}
of G with the arcs uv and vu. Thus, K∗

n denotes the complete symmetric digraph, that is, the
digraph with n vertices and all possible arcs, and for n even, (Kn− I)∗ denotes the complete
symmetric digraph on n vertices with a set of n/2 vertex-independent digons removed.

A directed m-cycle system of a digraph G is a set C of directed m-cycles in G whose arcs
partition the arc set of G. A directed m-cycle system is called hamiltonian if m = |V (G)|.
The necessary conditions for a directed m-cycle system of K∗

n are that 2 ≤ m ≤ n and
m | n(n − 1). In [3], it is shown that these necessary conditions are sufficient if m ∈
{10, 12, 14}. In [5], it is shown that the necessary conditions are sufficient if m ∈ {4, 6, 8, 16}
and (n, m) 6= (4, 4), (6, 6). The problem is further resolved in [5] for m even and a divisor of
n − 1. In [20], it is shown that K∗

n can be decomposed into directed hamiltonian cycles if
n is even and n 6= 4, 6. In [4] the case when m = 3 is completely settled and some results
are given for other odd lengths. In [2], it is shown that for positive integers m and n, with
2 ≤ m ≤ n, the digraph K∗

n can be decomposed into directed cycles of length m if and only
if m divides the number of arcs in K∗

n and (n,m) 6= (4, 4), (6, 3), (6, 6).
A directed m-cycle system C of a digraph G with vertex set Zn is cyclic if, for every directed

m-cycle C = (v1, v2, . . . , vm) in C, the directed m-cycle ρ(C) = (ρ(v1), ρ(v2), . . . , ρ(vm)) is
also in C. A directed n-cycle system C of a graph G with vertex set Zn is called a directed
cyclic hamiltonian cycle system. Although necessary and sufficient conditions for directed
hamiltonian cycle systems are known [20], the constructions given in [20] are not cyclic.
Thus, in this paper, we investigate directed cyclic hamiltonian cycle systems and prove the
following result.

Theorem 1.1. Let n ≥ 2 be an integer.

(a) For n odd, there exists a directed cyclic hamiltonian cycle system of K∗
n if and only

if n 6= 15 and n 6= pα where p is an odd prime and α ≥ 2.
(b) There exists a directed cyclic hamiltonian cycle system of K∗

n if and only if n ≡
2 (mod 4) and n 6= 2pα where p is an odd prime and α ≥ 1.

(c) There exists a directed cyclic hamiltonian cycle system of (Kn − I)∗ if and only if
n ≡ 0 (mod 4).

Our methods involve circulant digraphs and difference constructions. In Section 2, we give
some basic definitions and lemmas while the proof of Theorem 1.1 is given in Sections 3, 4,
and 5. Section 3 deals with the decomposition of K∗

n when n is odd, Section 4 deals with the
decomposition of K∗

n when n ≡ 2 (mod 4), and Section 5 deals with the decomposition of
(Kn − I)∗ when n ≡ 0 (mod 4). In Lemma 4.1, we show that if there is a cyclic hamiltonian
cycle system of K∗

n, then n ≡ 2 (mod 4) and n 6= 2pα where p is an odd prime and α ≥ 1.
Lemma 4.2 provides the existence of a directed hamiltonian cycle system of K∗

n when n ≡
2 (mod 4) and n 6= 2pα for some odd prime p and α ≥ 1. Lemma 5.1 provides the existence
of a directed hamiltonian cycle system of (Kn − I)∗ in the case that n ≡ 0 (mod 4), as well
as non-existence when n ≡ 2 (mod 4). Theorem 1.1 then follows.
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2. Preliminaries

The proof of Theorem 1.1 uses circulant digraphs, which we now define. The circulant

digraph
−→
X (n; S) is defined to be that digraph whose vertices are the elements of Zn, with

an arc from vertex g to vertex h if and only if h = g + s for some s ∈ S. We call S the
connection set, and we may write −s for n− s when n is understood. For a set S of integers,
the notation ±S will denote the set {±s | s ∈ S}.

Notice that in order for a digraph G to admit a directed cyclic m-cycle system, G must
be a circulant digraph, so circulant digraphs provide a natural setting in which to construct
directed cyclic m-cycle systems.

The digraph K∗
n is a circulant digraph, since K∗

n =
−→
X (n; {1, 2, . . . , n − 1}). For n even,

(Kn−I)∗ is also a circulant digraph, since (Kn−I)∗ =
−→
X (n; {1, 2, . . . , n−1}\{n/2}) (so the

arcs of I are of the form (i, i+n/2) for i = 0, 1, . . . , n−1). In fact, if n = a′b and gcd(a′, b) = 1,
then we can view Zn as Za′ × Zb, using the group isomorphism φ : Zn → Za′ × Zb defined
by φ(k) = (k (mod a′), k (mod b)). We can therefore relabel both the vertices and the arc
lengths of the circulant digraphs, using ordered pairs from Za′ ×Zb, rather than elements of
Zn, by identifying elements of Zn with their images under φ. This will prove to be a very
useful tool in our results. Throughout Section 3, as n is even, we will use the isomorphism
φ with a′ = 2a for some a, and b odd.

Let H be a subdigraph of a circulant digraph
−→
X (n; S). For a fixed set of arc lengths S ′,

the notation `(H) will denote the set of arc lengths belonging to H, that is,

`(H) = {s ∈ S ′ | {g, g + s} ∈ E(H) for some g ∈ Zn}.

Many properties of `(H) are independent of the choice of S ′; in particular, neither of the
two lemmas in this section depends on the choice of S ′. The proofs of these two lemmas are
omitted as they follow directly from the proofs of the corresponding lemmas given in [13] for
the undirected case.

Let C be a directed m-cycle in
−→
X (n; S) and recall that the permutation ρ, which generates

Zn, has the property that ρ(C) ∈ C whenever C ∈ C. We can therefore consider the action
of Zn as a permutation group acting on the elements of C. Viewing matters this way, the
length of the orbit of C (under the action of Zn) can be defined as the least positive integer k
such that ρk(C) = C. Observe that such a k exists since ρ has finite order; furthermore, the
well-known orbit-stabilizer theorem (see, for example [10, Theorem 1.4A(iii)]) tells us that k
divides n. Thus, if G is a digraph with a directed cyclic m-cycle system C with C ∈ C in an
orbit of length k, then it must be that k divides n = |V (G)| and that ρ(C), ρ2(C), . . . , ρk−1(C)
are distinct m-cycles in C, where ρ = (0 1 · · · n− 1).

Lemma 2.1. Let C be a directed cyclic m-cycle system of a digraph G of order n. If C ∈ C
is in an orbit of length k, then |`(C)| = mk/n. Furthermore, if ` ∈ `(C), then C has n/k
arcs of length `.

In the case that m = n, Lemma 2.1 implies that a cycle in an orbit of length k has exactly
k distinct arc lengths. More generally, Lemma 2.1 also implies that n/k must divide m;
therefore, we have that (n/k) | gcd(m, n).
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Lemma 2.2. Let C be a directed n-cycle in a digraph G with V (G) = Zn. If C is in an
orbit of length k > 1, then for each ` ∈ `(C), we have that k - `.

Let X be a set of directed m-cycles in a digraph G with vertex set Zn such that C =
{ρi(C) | C ∈ X, i = 0, 1, . . . , n − 1} is a directed m-cycle system of G. Then X is called
a starter set for C and the directed m-cycles in X are called starter cycles. Clearly, every
directed cyclic m-cycle system C of a digraph G has a starter set X as we may always let
X = C. A starter set X is called a minimum starter set if C ∈ X implies ρi(C) 6∈ X for
1 ≤ i ≤ n − 1. Observe that if X is a minimum starter set for a directed cyclic m-cycle

system C of the digraph
−→
X (n; S) and S is a set of arc lengths, then it must be that the

collection of sets {`(C) | C ∈ X} forms a partition of S.
When we explicitly construct individual cycles, which will only occur in the cases where

n is even, the strategy we will adopt is as follows. We will choose integers a and b so that
n = 2ab with b odd and gcd(a, b) = 1. We view K∗

n or (Kn − I)∗ (as appropriate) as a
circulant digraph labelled by the elements of Z2a × Zb. Let

S ′ = {(i, j) | 0 ≤ i ≤ 2a− 1, 0 ≤ j ≤ b− 1} \ {(0, 0)},

if n ≡ 2(mod 4), or

S ′ = {(i, j) | 0 ≤ i ≤ 2a− 1, 0 ≤ j ≤ b− 1} \ {(0, 0), (a, 0)},

if n ≡ 0(mod 4). Observe that |S ′| = 2ab−1 = n−1 if n ≡ 2(mod 4), and |S ′| = 2ab−2 = n−2

if n ≡ 0(mod 4). Thus
−→
X (n; S ′) = K∗

n when n ≡ 2(mod 4) and
−→
X (n; S ′) = (Kn − I)∗ when

n ≡ 0(mod 4).
Let ρ̂ = φρφ−1 and note that

ρ̂ = ((0, 0) (1, 1) (2, 2) · · · (2a− 1, b− 1))

generates Z2a × Zb, that is, 〈ρ̂〉 = Z2a × Zb. Let C be a directed m-cycle system of K∗
n or

(Kn− I)∗, where the vertices have been labelled by the elements of Z2a×Zb such that C ∈ C
implies ρ̂(C) ∈ C. Then, clearly {φ−1(C) | C ∈ C} is a directed cyclic m-cycle system of K∗

n

or (Kn − I)∗, whichever is appropriate.

Next observe that if (e, f) ∈ S ′ has gcd(e, 2a) = 1 and gcd(f, b) = 1, then
−→
X (n; {φ−1((e, f))}),

the subdigraph consisting of the arcs of length φ−1 ((e, f)), forms a directed n-cycle C with
the property that ρ(C) = C. Let

T = {(i, j) ∈ S ′ | gcd(i, 2a) > 1 or gcd(j, b) > 1}.

To find a directed cyclic hamiltonian cycle system of K∗
n or (Kn− I)∗, it suffices to find a set

X of directed n-cycles such that {`(C) | C ∈ X} contains every element of T exactly once.
Then the collection

C = {φ−1(C), ρ(φ−1(C)), . . . , ρn−1(φ−1(C)) | C ∈ X}∪{
−→
X
(
n; {φ−1((e, f))}

)
| (e, f) ∈ S ′\T}

is a directed cyclic hamiltonian cycle system of K∗
n or (Kn − I)∗, again whichever is appro-

priate.
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3. The case when n is odd

In this section, we prove Theorem 1.1 (a). The proof of the following lemma is similar to
the proof of Lemma 3.1 from [13] and the “only if” part of the proof of Theorem 1.1 of [9].

Lemma 3.1. For an odd integer n ≥ 3, if there exists a cyclic hamiltonian cycle system of
K∗

n, then n 6= 15 and n 6= pα where p is an odd prime and α ≥ 2.

Proof. Suppose first that K∗
15 =

−→
X (15; {1, 2, . . . , 14}) has a directed cyclic hamiltonian cycle

system C. Let X be a minimum starter set for C. Let C ∈ X be in an orbit of length
k with 3i ∈ `(C). Then Lemma 2.2 gives k 6= 3. Also k 6= 1, since the arcs of length
3i form three disjoint directed cycles of length 5. Since k | 15 and we have a total of 14
arc lengths available, it must be that k = 5. Hence, Lemma 2.1 gives |`(C)| = 5. Suppose
`(C) = {3, 6, 9, 12, `}. Since C is in an orbit of length 5, we have 3+6+9+12+` ≡ 0 (mod 5)
giving ` ≡ 0 (mod 5). Then k | `, contradicting Lemma 2.2. Therefore not all of the arc
lengths 3, 6, 9, and 12 can belong to the same cycle in X. Hence there must exist at least two
distinct cycles C1 and C2 in X in distinct orbits of length 5 with {3, 6, 9, 12} ⊆ `(C1)∪`(C2),
and the above remarks give |`(C1) ∪ `(C2)| = 10. In a similar fashion, there must exist two
distinct cycles C3 and C4 in X in distinct orbits of length 3 with {5, 10} ⊆ `(C3)∪ `(C4) and
|`(C3) ∪ `(C4)| = 6. Hence, |{`(C) | C ∈ X}| ≥ 16, producing a contradiction. Therefore
K∗

15 has no directed cyclic hamiltonian cycle system.
It remains to show that n 6= pα where p is an odd prime and α ≥ 2. Suppose, to the

contrary, that n = pα for some odd prime p and α ≥ 2. Choose C ∈ X with pα−1 ∈ `(C).
Suppose that C is in an orbit of length k. Then k | pα, and since K∗

n has pα(pα− 1) arcs and
each cycle of C has pα arcs, we must have |C| = pα− 1. It therefore follows that 1 ≤ k < pα.
Hence, k | pα−1, and by Lemma 2.2, we must have k = 1. But if k = 1, then `(C) = {pα−1}
and since

−→
X (pα; {pα−1}) consists of pα−1 p-cycles, we have a contradiction. Therefore, n 6= pα

where p is an odd prime and α ≥ 2. �

To complete the proof of Theorem 1.1 (a), we need only remind the reader that a cyclic
hamiltonian cycle system C of Kn is constructed in [9] for n odd and n 6∈ {15, pα | α ≥ 2}.
Now, C ′ = {

−→
C ,
←−
C | C ∈ C} is a directed cyclic hamiltonian cycle system for K∗

n, where
−→
C

and
←−
C are the directed cycles obtained by orienting C in each direction.

4. The case when n ≡ 2 (mod 4)

In this section, we prove Theorem 1.1 (b). We begin by determining the admissible values
of n in Lemma 4.1. Next, for those admissible values of n, we construct directed cyclic
hamiltonian cycle systems of K∗

n, in Lemma 4.2.

Lemma 4.1. For an even integer n ≥ 4, if there exists a directed cyclic hamiltonian cycle
system of K∗

n, then n ≡ 2 (mod 4) and n 6= 2pα where p is odd prime and α ≥ 1.

Proof. This proof is analogous to the proof of Lemma 3.1 from [13]. Suppose K∗
n =
−→
X (n; {1, 2, . . . , n−

1}) has a directed cyclic hamiltonian cycle system C. Let X be a minimum starter set for C
and let C ∈ X. Then, as in the proof of Lemma 3.1 of [13], `(C) must have an even number
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of even arc lengths, hence forcing an even number of even integers in the set {1, 2, . . . , n−1}.
Thus n ≡ 2 (mod 4).

It remains to show that n 6= 2pα where p is prime and α ≥ 1. Suppose, to the contrary,
that n = 2pα for some prime p and α ≥ 1. Choose C ∈ X with 2pα−1 ∈ `(C). Suppose
that C is in an orbit of length k. Then (as previously noted) k | 2pα, and since K∗

n has
2pα(2pα− 1) arcs and each cycle of C has 2pα arcs, we must have |C| = 2pα− 1. It therefore
follows that 1 ≤ k < 2pα. Hence, k | 2pα−1, and by Lemma 2.2, we must have k = 1. But if

k = 1, then `(C) = {2pα−1} and since
−→
X (2pα; {2pα−1}) consists of 2pα−1 p-cycles, we have a

contradiction. Therefore, n 6= 2pα where p is prime and α ≥ 1. �

Before proceeding, let Φ denote the Euler-phi function, that is, for a positive integer a,
Φ(a) denotes the number of integers n with 1 ≤ n ≤ a and gcd(n, a) = 1. For a positive
integer a, Φ(a) is easily computed from the prime factorization of a. Let a = pk1

1 pk2
2 · · · pkt

t

where p1, p2, . . . , pt are distinct primes and k1, k2, . . . , kt are positive integers. Then

Φ(a) =
t∏

i=1

pki−1
i (pi − 1).

Lemma 4.2. For n ≡ 2 (mod 4) and n 6= 2pα where p is an odd prime and α ≥ 1, the
digraph K∗

n has a directed cyclic hamiltonian cycle system.

Proof. Suppose that n ≡ 2 (mod 4) with n 6= 2pα where p is an odd prime and α ≥ 1, say
n = 4q + 2 for some positive integer q. If q = 0, then K∗

2 is a directed hamiltonian cycle.
Thus, we may assume that n ≥ 6. Let 2q + 1 = pk1

1 pk2
2 · · · pkr

r , where p1, p2, . . . , pr are all
distinct primes with p1 < p2 < . . . < pr. Notice that since n 6= 2pα, we have r ≥ 2.

Let a = pk1
1 , and b = (2q + 1)/a; observe that gcd(a, b) = 1. Notice also that since p1 is

the smallest odd prime divisor of n, gcd(3, b) = 1. The set

S ′ = {(i, j) | 0 ≤ i ≤ 2a− 1, 0 ≤ j ≤ b− 1} \ {(0, 0)}

has the property that φ−1(S ′) = {1, 2, . . . , n − 1}, so we can think of the elements of S ′ as
the arc lengths of the relabelled digraph.

Let d1, d2, . . . , dt denote the integers with 1 ≤ dj < 2a and gcd(dj, 2a) > 1 and let
e1, e2, . . . , e2a−1−t denote the integers in the set {1, 2, . . . , 2a − 1} \ {d1, d2, . . . , dt}. Hence
gcd(ei, 2a) = 1 for 1 ≤ i ≤ 2a − 1 − t. Since gcd(dj, 2a) > 1 gives gcd(2a − dj, 2a) > 1, it
follows that t is odd. Also, we assume d1 < d2 < . . . < dt, and e1 < e2 < . . . < e2a−1−t so
that e1 = 1.

We need to show that 2(2a − 1 − t) ≥ t + 1. First, Φ(2a) is the number of integers k
with 1 ≤ k ≤ 2a and gcd(k, 2a) = 1. Thus, 2a− 1− Φ(2a) is the number of integers ` with
1 ≤ ` < 2a and gcd(`, 2a) > 1. Hence t = 2a− 1− Φ(2a). Substituting t = 2a− 1− Φ(2a)
into 2(2a− 1− t) ≥ t + 1, we obtain the inequality Φ(2a) ≥ 2a/3. Since a = pk1

1 and p1 ≥ 3,
we have Φ(2a) ≥ 2a/3. Hence 2(2a− 1− t) ≥ t + 1.

We will deal separately with the cases b ≡ 1 (mod 4) and b ≡ 3 (mod 4).

Case 1. Let b ≡ 1 (mod 4).
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Then b = 4m + 1 for some positive integer m. Define the walks P and P ′ by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, m), (0,−m),

(a, m + 1), (0,−(m + 1)), (a, m + 2), (0,−(m + 2)), . . . , (a, 2m), (a + 1,−2m), (a + 2, 0),

and

P ′ : (0, 0), (0,−1), (0, 1), (0,−2), (0, 2), . . . , (0,−m), (0, m),

(a,−(m + 1)), (0, m + 1), (a,−(m + 2)), (0, m + 2), . . . , (a,−2m), (0, 2m), (e1, 0).

For both P and P ′, note that the vertices, except for the first and the last, are distinct
modulo b, while the first and the last vertices are distinct modulo 2a. Therefore, P and
P ′ are paths. Next, the arc lengths of P , in the order they are encountered, are (0, 1),
(0,−2), . . . , (0,−2m), (a,−2m), (a, 2m−1), . . . , (a,−2), (1, 1), (1, 2m), while the arc lengths
of P ′, in the order they are encountered, are (0,−1), (0, 2), . . . , (0, 2m), (a, 2m), (a,−(2m−
1)), . . . , (a,−1), (e1,−2m).

Let
C = P ∪ ρ̂b(P ) ∪ ρ̂2b(P ) ∪ · · · ρ̂(2a−1)b(P ),

and let
C ′ = P ′ ∪ ρ̂b(P ′) ∪ ρ̂2b(P ′) ∪ · · · ρ̂(2a−1)b(P ′).

Since the last vertex of P is (a + 2, 0), the last vertex of P ′ is (e1, 0), and gcd(a + 2, 2a) =
gcd(e1, 2a) = 1 (since a is odd), we have that C and C ′ are directed n-cycles in orbits of
length b. Furthermore,

`(C) = {(0, 1), (0,−2), . . . , (0,−2m), (a,−2m), (a, 2m− 1), . . . , (a,−2), (e1, 1), (e1, 2m)}
(since e1 = 1), and

`(C ′) = {(0,−1), (0, 2), . . . , (0, 2m), (a, 2m), (a,−(m− 1)), . . . , (a,−1), (e1,−2m)}.
Now, define the walks Pi as follows for i = 1, 2, . . . , (t− 1)/2 (recall that t is odd):

Pi : (0, 0), (di, 1), (2di,−1), (3di, 2), (4di,−2), . . . , (2mdi,−m),

((2m− 1)di, m + 1), ((2m− 2)di,−(m + 1)), . . . , (di, 2m), (0,−2m), (ei+1, 0),

and

P ′
i : (0, 0), (di,−1), (2di, 1), (3di,−2), (4di, 2), . . . , (2mdi, m),

((2m− 1)di,−(m + 1)), ((2m− 2)di, m + 1), . . . , (di,−2m), (0, 2m), (ei+1, 0).

For i = 1, 2, . . . , (t− 1)/2, the vertices of Pi, except for the first and the last, are distinct
modulo b, while the first and the last vertices are distinct modulo 2a; the same is true for
P ′

i . Therefore, Pi and P ′
i are paths. Next, the arc lengths of Pi, in the order they are en-

countered, are (di, 1), (di,−2), . . . , (di,−2m), (−di,−2m), . . . , (−di, 1), (ei+1, 2m). Similarly,
the arc lengths of P ′

i , in the order they are encountered, are (di,−1), (di, 2), . . . , (di, 2m),
(−di, 2m), . . . , (−di,−1), (ei+1,−2m). Let

Ci = Pi ∪ ρ̂b(Pi) ∪ ρ̂2b(Pi) ∪ · · · ρ̂(2a−1)b(Pi)

and
C ′

i = P ′
i ∪ ρ̂b(P ′

i ) ∪ ρ̂2b(P ′
i ) ∪ · · · ρ̂(2a−1)b(P ′

i ).
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Since the last vertex (ei+1, 0) of both Pi and P ′
i has the property that gcd(ei+1, 2a) = 1, we

have that Ci and C ′
i are directed n-cycles in orbits of length b. Furthermore,

`(Ci) = {(di, 1), (di,−2), . . . , (di,−2m), (−di,−2m), . . . , (−di, 1), (ei+1, 2m)},
and

`(C ′
i) = {(di,−1), (di, 2), . . . , (di, 2m), (−di, 2m), . . . , (−di,−1), (ei+1,−2m)}.

Since d1 < d2 < . . . < dt and gcd(di, 2a) = gcd(2a − di, 2a), we have {d(t+3)/2, . . . , dt} =
{−d1, . . . ,−d(t−1)/2}. Thus all arc lengths of the form (di, j), for 1 ≤ i ≤ t and 1 ≤ j ≤ b− 1
are used.

Define the set A = `(C) ∪ `(C ′) ∪ `(C1) ∪ `(C ′
1) ∪ · · · ∪ `(C(t−1)/2) ∪ `(C ′

(t−1)/2). Now, A

contains t + 1 elements from the set {(ei, 2m), (ei, 2m + 1) | 1 ≤ i ≤ 2a − 1 − t} (recall
−2m ≡ 2m + 1 (mod b)). Also,

|{(ei, 2m), (ei, 2m + 1) | 1 ≤ i ≤ 2a− 1− t}| = 2(2a− 1− t).

Since we have seen previously that 2(2a− 1− t) ≥ t + 1, it follows that |A| = (t + 1)b.
Let c1, c2, . . . , cx denote the integers with 1 ≤ cj < b and gcd(cj, b) > 1 for 1 ≤ j ≤ x. Fix j

with 1 ≤ j ≤ x and for i = 1, 2, . . . , 2a−1−t, consider the walk Pi,j : (0, 0), (ei, cj), (2ei, b−1).
Clearly, Pi,j is a path and the arc lengths of Pi,j, in the order they are encountered, are
(ei, cj), (ei, b− 1− cj). (It is possible that b− 1− cj = c′j for some j 6= j′ with 1 ≤ j, j′ ≤ x;
if so, we include only one of Pi,j and Pi,j′ among our paths.) Since gcd((b− 1)/2, b) = 1, it
follows that cj 6= b− 1− cj for each j with 1 ≤ j ≤ x. Hence |`(Pi,j)| = 2. Let

Ci,j = Pi,j ∪ ρ̂2(Pi,j) ∪ ρ̂4(Pi,j) ∪ ρ̂6(Pi,j) ∪ · · · ρ̂2ab−2(Pi,j).

Since gcd(ei, a) = 1, it follows that Ci,j is a directed n-cycle in an orbit of length 2 and

`(Ci,j) = {(ei, cj), (ei, b− 1− cj)}.
Define the set

B =
⋃

1 ≤ i ≤ 2a − 1 − t

1 ≤ j ≤ x

`(Ci,j),

so that
B = {(ei, cj)(ei, b− 1− cj) | 1 ≤ i ≤ 2a− 1− t, 1 ≤ j ≤ x}.

We want A∩B = ∅. Suppose, to the contrary, A∩B 6= ∅. For 1 ≤ j ≤ x, since gcd(cj, b) > 1,
we have cj 6= 1, cj 6= b − 2, cj 6= 2m, and cj 6= 2m + 1. Thus, if A ∩ B 6= ∅, it must be the
case that b− 1− ck = 2m + 1 for some k with 1 ≤ k ≤ x. Hence ck = 2m− 1 = (b− 3)/2.
But since gcd(3, b) = 1, we have gcd(ck, b) = 1, producing a contradiction. Thus A∩B = ∅.

Finally, consider the path P ′′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . . , (a, 0), (0, 1) and let

C ′′ = P ′′ ∪ ρ̂2a(P ′′) ∪ ρ̂4a(P ′′) ∪ · · · ∪ ρ̂2a(b−1)(P ′).

Since gcd(1, b) = 1, we have that C ′′ is a directed n-cycle in an orbit of length 2a and

`(C ′′) = {(1, 0), (−2, 0), . . . , (2a− 1, 0), (a, 1)}.
Notice that (a, 1) was not used as an arc length in P (or in any of the other previously-defined
paths), nor was any arc length of the form (k, 0), so (A ∪B) ∩ `(C ′′) = ∅.
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Let T = S ′ \ (A ∪B ∪ `(C ′)) and let (e, f) ∈ T . Then, it must be that gcd(e, 2a) = 1 and
gcd(f, b) = 1. Thus,

X = {φ−1(C), φ−1(C ′), φ−1(C ′′)} ∪ {φ−1(Ci), φ
−1(C ′

i) | 1 ≤ i ≤ (t− 1)/2}
∪ {φ−1(Ci,j) | 1 ≤ i ≤ 2a− 1− t, 1 ≤ j ≤ x}
∪ {
−→
X (n; {φ−1((e, f))}) | (e, f) ∈ T}

is a minimum starter set for for a directed cyclic hamiltonian cycle system of K∗
n.

Case 2. Let b ≡ 3 (mod 4).
Most of this case is very similar to Case 1, with minor adjustments to notation, since

we now have b = 4m + 3 for some integer m. There are a few more significant differences,
however. Specifically, one arc in each of P and P ′ must be changed in order to create a
directed hamiltonian cycle. In order to accommodate this change, the directed cycles C1

and C ′
1 are replaced by a number of directed cycles in orbits of length 2.

We begin with the paths P and P ′, defined as follows:

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, m + 1),

(a,−(m + 1)), (0, m + 2), (a,−(m + 2)), . . . , (0, 2m + 1), (−1,−(2m + 1)), (1, 0),

and

P ′ : (0, 0), (0,−1), (0, 1), (0,−2), (0, 2), . . . , (0,−(m + 1)),

(a, (m + 1)), (0,−(m + 2)), (a, (m + 2)), . . . , (0,−(2m + 1)), (a, 2m + 1), (a + 2, 0).

As before, it is straightforward to verify that P and P ′ are paths, and that since gcd(a +
2, 2a) = 1, we can create cycles C and C ′ from these paths, as in Case 1. We have

`(C) = {(0, 1), (0,−2), . . . , (0, 2m + 1), (a, 2m + 1), (a,−2m), . . . , (a, 2), (−1, 1), (2, 2m + 1)},

and

`(C ′) = {(0,−1), (0, 2), . . . , (0,−(2m+1)), (a,−(2m+1)), (a, 2m), . . . , (a,−1), (2,−(2m+1))}.

In the next step, recall that d1 = 2, and the arc lengths (2, 2m + 1) and (2,−(2m + 1))
have already been used in C and C ′, above. We therefore omit the cycles that are analogous
to C1 and C ′

1 from Case 1, but our new cycles C1, . . . , C(t−3)/2), C ′
1, . . . , C

′
(t−3)/2 are analogous

to the cycles C2, . . . , C(t−1)/2, C ′
2, . . . , C

′
(t−1)/2 from Case 1. Define the walks Pi as follows,

for i = 1, 2, . . . , (t− 3)/2:

Pi : (0, 0), (di+1, 1), (2di+1,−1), (3di+1, 2), (4di+1,−2), . . . , ((2m + 1)di+1, m + 1),

(2mdi+1,−(m + 1)), ((2m− 1)di+1, m + 2), . . . , (di+1, 2m + 1), (0,−(2m + 1)), (ei+1, 0),

and

P ′
i : (0, 0), (di+1,−1), (2di+1, 1), (3di+1,−2), (4di+1, 2), . . . , ((2m + 1)di+1,−(m + 1)),

(2mdi+1, m + 1), ((2m− 1)di+1,−(m + 2)), . . . , (di+1,−(2m + 1)), (0, 2m + 1), (ei+1, 0).
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As before, it is straightforward to verify that these are paths, and that appropriate rota-
tions will transform them into cycles C1, . . . , C(t−3)/2 and C ′

1, . . . , C
′
(t−3)/2 with

`(Ci) = {(di+1, 1), (di+1,−2), . . . , (di+1, 2m + 1),

(−di+1, 2m + 1), . . . , (−di+1, 1), (ei+1, 2m + 1)},
and

`(C ′
i) = {(di+1,−1), (di+1, 2), . . . , (di+1,−(2m + 1)),

(−di+1,−(2m + 1)), . . . , (−di+1,−1), (ei+1,−(2m + 1))}.
As in Case 1, we have now used all arc lengths of the form (di, j), for 2 ≤ i ≤ t − 1 and
1 ≤ j ≤ b− 1.

Define the set A = `(C)∪ `(C ′)∪ `(C1)∪ `(C ′
1)∪ · · · ∪ `(C(t−3)/2)∪ `(C ′

(t−3)/2). This time,

A contains t− 1 elements from the set {(ei, 2m + 1), (ei, 2m + 2) | 1 ≤ i ≤ 2a− 1− t} (recall
−(2m + 1) ≡ 2m + 2 (mod b)). As before,

|{(ei, 2m + 1), (ei, 2m + 2) | 1 ≤ i ≤ 2a− 1− t}| = 2(2a− 1− t).

Since we have seen previously that 2(2a− 1− t) ≥ t + 1, it follows that |A| = (t− 1)b.
Define c1, c2, . . . , cx, the walks Pi,j, and the cycles Ci,j exactly as in Case 1 so that `(Ci,j) =
{(ei, cj), (ei, b− 1− cj)} for 1 ≤ i ≤ 2a− 1− t and 1 ≤ j ≤ x.

We now deal with the arc lengths (2, j) and (−2, j) for 1 ≤ j ≤ x, as follows. For
1 ≤ j ≤ m, define the paths P ′

1,j by

P ′
1,j : (0, 0), (2, j), (4, 2m + 1).

Clearly, P ′
1,j is a path and the arc lengths of P ′

1,j, in the order they are encountered, are
(2, j), (2, 2m + 1− j). Similarly, for m + 1 ≤ j ≤ 2m, define the paths P ′

1,j by

P ′
1,j : (0, 0), (2, m + 2 + j), (4,−(2m + 1)).

Again, each P ′
1,j is a path, and the arc lengths of P ′

1,j, in the order they are encountered, are
(2, m + 2 + j), (2, m− j). Let

C ′
1,j = P ′

1,j ∪ ρ̂2(P ′
1,j) ∪ ρ̂4(P ′

1,j) ∪ ρ̂6(P ′
1,j) ∪ · · · ρ̂2ab−2(P ′

1,j).

Since gcd(4, 2a) = 2, it follows that each C ′
1,j is a directed n-cycle in an orbit of length 2 and

`(C ′
1,j) = {(2, j), (2, 2m + 1− j)} for 1 ≤ j ≤ m, and

`(C ′
1,j) = {(2, m + 2 + j), (2, m− j)} for m + 1 ≤ j ≤ 2m.

This uses all of the remaining arc lengths whose first coordinate is 2, except (2, 0).
Let

P ′
2,1 : (0, 0), (−2, 1), (−4,−2m).

For 2 ≤ j ≤ 2m + 1, let
P ′

2,j : (0, 0), (−2, j), (−4, 1).

These are clearly paths, and for 1 ≤ j ≤ 2m + 1, we form C ′
2,j in the usual manner from

P ′
2,j. As b − 2m = 2m + 3 = (b + 3)/2 and gcd(3, b) = 1, C ′

2,1 is a cycle; it is easy
to see that C ′

2,j is a cycle, since gcd(2a − 4, 2a) = 2 for 2 ≤ j ≤ 2m + 1. Note that
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`(C ′
2,1) = {(−2, 1), (−2,−(2m+1))} and `(C ′

2,j) = {(−2, j), (−2, 1− j)} for 2 ≤ j ≤ 2m+1.
This uses all of the arc lengths whose first coordinate is −2, except (−2, 0).

Define the set

B =

 ⋃
1 ≤ i ≤ 2a − 1 − t

1 ≤ j ≤ x

`(Ci,j)

 ∪
( ⋃

1≤j≤2m

`(C ′
1,j)

)
∪

( ⋃
1≤j≤2m+1

`(C ′
2,j)

)
.

We want A ∩ B = ∅. Now, if A ∩ B 6= ∅, then since gcd(cj, b) > 1 for every each j
with 1 ≤ j ≤ x, we have cj 6= 2m + 1 and cj 6= 2m + 2. Thus it must be the case that
b − 1 − ck = 2m + 2 for some k with 1 ≤ k ≤ x (the arc length (−1, 1) cannot appear
in B because of the bounds on ck). However, in this case ck = 2m = (b − 3)/2. But, as
previously observed, gcd(3, b) = 1, so we have gcd(ck, b) = 1, producing a contradiction.
Thus A ∩B = ∅.

Finally, define P ′′ and C ′′ precisely as in Case 1. Again, C ′′ is a directed n-cycle in an
orbit of length 2a and

`(C ′′) = {(1, 0), (−2, 0), . . . , (2a− 1, 0), (a, 1)}.

Notice that the arc length (a, 1) had not been previously used in any path nor was any arc
length of the form (k, 0) so (A ∪B) ∩ `(C ′′) = ∅.

Let T = S ′ \ (A ∪ B ∪ `(C ′)) and let (e, f) ∈ T . Then once again, it must be that
gcd(e, 2a) = 1 and gcd(f, b) = 1. Thus,

X = {φ−1(C), φ−1(C ′), φ−1(C ′′)} ∪ {φ−1(Ci), φ
−1(C ′

i) | 1 ≤ i ≤ (t− 3)/2}
∪ {φ−1(Ci,j) | 1 ≤ i ≤ 2a− 1− t, 1 ≤ j ≤ x}
∪ {φ−1(C ′

1,j) | 1 ≤ j ≤ 2m} ∪ {φ−1(C ′
2,j) | 1 ≤ j ≤ 2m + 1}

∪ {
−→
X (n; {φ−1((e, f))}) | (e, f) ∈ T}

is a minimum starter set for for a directed cyclic hamiltonian cycle system of K∗
n. �

Theorem 1.1 (b) now follows from Lemmas 4.1 and 4.2.

5. The case when n ≡ 0 (mod 4)

In this section, we prove Theorem 1.1 (c). Recall that for n even, if a directed cyclic
hamiltonian cycle system of K∗

n exists, then the set of arc lengths {1, 2, . . . , n − 1} must
contain an even number of even integers. Thus it must be that n ≡ 2 (mod 4). In the case
that n ≡ 0 (mod 4), we can obtain an even number of even arc lengths by removing the arcs
of length n/2 so that in this case, we find a directed cyclic hamiltonian cycle decomposition
of (Kn− I)∗. The following lemma completely characterises when (Kn− I)∗ admits a cyclic
hamiltonian cycle system.

Lemma 5.1. For n ≥ 4, the digraph (Kn−I)∗ has a directed cyclic hamiltonian cycle system
if and only if n ≡ 0 (mod 4).
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Proof. As in the first paragraph of the proof of Lemma 4.1, the requirement that there be

an even number of even arc lengths in
−→
X (n; {1, 2, . . . , n− 1} \ {n/2}) forces n ≡ 0 (mod 4).

Suppose first that n ≡ 4 (mod 8). By [13], there exists a cyclic hamiltonian cycle system

C of Kn − I. Then C ′ = {
−→
C ,
←−
C | C ∈ C} is a directed cyclic hamiltonian cycle system

for (Kn − I)∗, where
−→
C and

←−
C are the directed cycles obtained from orienting C in each

direction.
Now suppose that n ≡ 0 (mod 8), say n = 2αa for some integer α ≥ 3 and odd in-

teger a. We begin with the case that a = 1; that is, n = 2α. Then (Kn − I)∗ =
−→
X (n;±{1, 2, . . . , (2α−1 − 1)}). Let m = 2α−2. Define the path P by

P : 0, 1,−1, 3,−3, . . . ,−(m− 1), m,−(m + 2), m + 2, . . . ,−(2m− 2), 2m− 2, 2m.

Note that the vertices of P , except for the first and the last, are distinct modulo 2m.
Therefore, P is a path. The arc lengths of P , in the order they are encountered, are
1,−2, 4,−6, . . . ,−(2m − 2), 2m − 1, 2m − 2,−(2m − 4), . . . ,−4, 2. These are all distinct
modulo n, and include all of the permissible even arc lengths.

Let C = P ∪ ρ2m(P ). It is straightforward to verify that C is a cycle in an orbit of length
2m. Furthermore,

`(C) = ±{2, 4, . . . , (2m− 2)} ∪ {1, 2m− 1}.
Let T = ±{1, 2, . . . , (2m− 1)} \ `(C). For any t ∈ T , we have that gcd(t, n) = 1 since t is

odd. Thus
−→
X (n; {t}) is a directed hamiltonian cycle in (Kn − I)∗. Hence,

X = {C} ∪ {
−→
X (n; {t}) | t ∈ T}

is a minimum starter set for for a directed cyclic hamiltonian cycle system of (Kn − I)∗.
We now assume that a > 1. Since a is odd, we have a = 2q + 1 for some integer q.

Now, Zn
∼= Z2α × Z2q+1 and thus we will use φ to relabel the vertices of (Kn − I)∗ =

−→
X (n;±{1, 2, . . . , (n− 2)/2}) with the elements of Z2α × Z2q+1. The set

S ′ = {(0, j), (2α−1, j) | 1 ≤ j ≤ 2q} ∪ {(i, j) | 1 ≤ i ≤ 2α − 1 with i 6= 2α−1, 0 ≤ j ≤ 2q}

has the property that φ−1(S ′) = ±{1, 2, . . . , (n− 2)/2)}. Thus we can think of the elements
of S ′ as the arc lengths of the relabelled graph. If q is even, say q = 2m for some positive
integer m, define the walks P and P ′, by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, m), (0,−m),

(2α−1, m + 1), (0,−(m + 1)), (2α−1, m + 2), (0,−(m + 2)), . . . , (2α−1, q), (0,−q), (−1, 0),

and

P ′ : (0, 0), (0,−1), (0, 1), (0,−2), (0, 2), . . . , (0,−m), (0, m),

(2α−1,−(m + 1)), (0, m + 1), (2α−1,−(m + 2)), (0, m + 2), . . . , (2α−1,−q), (0, q), (−1, 0).

Note that the vertices of P and P ′, except for the first and the last, are distinct mod-
ulo 2q + 1 while the first and the last vertices are distinct modulo 2α. Therefore, P
and P ′ are paths. Next, the arc lengths of P , in the order they are encountered, are
(0, 1), (0,−2), (0, 3), (0,−4), . . . , (0,−q), (2α−1,−q), (2α−1, q − 1), . . . , (2α−1, 1), (−1, q) while



DIRECTED CYCLIC HAMILTONIAN CYCLE SYSTEMS OF K∗
n 13

the arc lengths of P ′, in the order they are encountered are (0,−1), (0, 2), (0,−3), (0, 4), . . . , (0, q),
(2α−1, q), (2α−1,−(q − 1)), . . . , (2α−1,−1), (−1,−q).

If q is odd, say q = 2m + 1 for some positive integer m, define the walks P and P ′ by

P : (0, 0), (0, 1), (0,−1), (0, 2), (0,−2), . . . , (0, m), (0,−m), (0, m + 1),

(2α−1,−(m + 1)), (0, m + 2), (2α−1,−(m + 2)), . . . , (0, q), (2α−1,−q), (2α−1 − 1, 0),

and

P ′ : (0, 0), (0,−1), (0, 1), (0,−2), (0, 2), . . . , (0,−m), (0, m), (0,−(m + 1)),

(2α−1, m + 1), (0,−(m + 2)), (2α−1, m + 2), . . . , (0,−q), (2α−1, q), (2α−1 − 1, 0).

Note that the vertices of P and P ′, except for the first and the last, are distinct mod-
ulo 2q + 1 while the first and the last vertices are distinct modulo 2α. Therefore, P
and P ′ are paths. Next, the arc lengths of P , in the order they are encountered, are
(0, 1), (0,−2), (0, 3), (0,−4), . . . , (0, q), (2α−1, q), (2α−1,−(q − 1)), . . . , (2α−1, 1), (−1, q) while
the arc lengths of P ′, in the order they are encountered are (0,−1), (0, 2), (0,−3), (0, 4), . . . , (0,−q),
(2α−1,−q), (2α−1, q − 1), . . . , (2α−1,−1), (−1,−q).

Let
C = P ∪ ρ̂2q+1(P ) ∪ ρ̂4q+2(P ) ∪ · · · ∪ ρ̂(2α−1)(2q+1)(P )

and
C ′ = P ′ ∪ ρ̂2q+1(P ′) ∪ ρ̂4q+2(P ′) ∪ · · · ∪ ρ̂(2α−1)(2q+1)(P ′).

Then, clearly C and C ′ are directed n-cycles in orbits of length 2q + 1 with

`(C) ∪ `(C ′) = {(0, j), (0,−j), (2α−1, j), (2α−1,−j) | 1 ≤ j ≤ q} ∪ {(−1, q), (−1,−q)}.
For each i with 1 ≤ i ≤ 2α−3, define the walks Pi and P ′

i by

Pi : (0, 0), (2i, 1), (0,−1), (2i, 2), (0,−2), . . . , (2i, q), (0,−q), (2i− 1, 0),

and

P ′
i : (0, 0), (2i,−1), (0, 1), (2i,−2), (0, 2), . . . , (2i,−q), (0, q), (2i− 1, 0).

For each i with 2α−3 + 1 ≤ i ≤ 2α−2 − 1, define the walks Pi and P ′
i exactly as above, but

with the final vertex changed to (2i + 1, 0).
Again, note that the vertices of Pi and P ′

i , except for the first and the last, are dis-
tinct modulo 2q + 1 while the first and the last vertices are distinct modulo 2α. There-
fore, Pi and P ′

i are paths. For each i with 1 ≤ i ≤ 2α−3 and q even, the arc lengths of
Pi, in the order they are encountered, are (2i, 1), (−2i,−2), (2i, 3), (−2i,−4), . . . , (−2i,−q),
(2i,−q), (−2i, q − 1), . . . , (−2i, 1), (2i + 1, q) with the final length replaced by (2i − 1, q)
if 2α−3 + 1 ≤ i ≤ 2α−2 − 1. For each i with 1 ≤ i ≤ 2α−3 and q odd, the arc lengths
of Pi, in the order they are encountered, are (2i, 1), (−2i,−2), (2i, 3), (−2i,−4), . . . , (2i, q),
(−2i, q), (2i,−(q − 1)), . . . , (−2i, 1), (2i + 1, q), with the final length replaced by (2i − 1, q)
if 2α−3 + 1 ≤ i ≤ 2α−2 − 1. For each i with 1 ≤ i ≤ 2α−3 and q even, the arc lengths of
P ′

i , in the order they are encountered, are (2i,−1), (−2i, 2), (2i,−3), (−2i, 4), . . . , (−2i, q),
(2i, q), (−2i,−(q−1)), . . . , (−2i,−1), (2i+1,−q), with the final length replaced by (2i−1,−q)
if 2α−3 + 1 ≤ i ≤ 2α−2 − 1. For each i with 1 ≤ i ≤ 2α−3 and q odd, the arc lengths of
P ′

i , in the order they are encountered, are (2i,−1), (−2i, 2), (2i,−3), (−2i, 4), . . . , (2i,−q),
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(−2i,−q), (2i, q − 1), . . . , (−2i,−1), (2i + 1,−q) if q is odd and 1 ≤ i ≤ 2α−3, with the final
length replaced by (2i− 1,−q) if 2α−3 + 1 ≤ i ≤ 2α−2 − 1.

For each i with 1 ≤ i ≤ 2α−2 − 1, let

Ci = Pi ∪ ρ̂2q+1(Pi) ∪ ρ̂4q+2(Pi) ∪ · · · ∪ ρ̂(2α−1)(2q+1)(Pi)

and

C ′
i = P ′

i ∪ ρ̂2q+1(P ′
i ) ∪ ρ̂4q+2(P ′

i ) ∪ · · · ∪ ρ̂(2α−1)(2q+1)(P ′
i ).

Then, clearly Ci and C ′
i are directed n-cycles in orbits of length 2q + 1 with

`(Ci) ∪ `(C ′
i) = {(2i, j), (2i,−j), (−2i, j), (−2i,−j) | 1 ≤ j ≤ q} ∪ {(2i + 1, q), (2i + 1,−q)},

for 1 ≤ i ≤ 2α−3, and

`(Ci) ∪ `(C ′
i) = {(2i, j), (2i,−j), (−2i, j), (−2i,−j) | 1 ≤ j ≤ q} ∪ {(2i− 1, q), (2i− 1,−q)},

for 2α−3 + 1 ≤ i ≤ 2α−2 − 1. Let A = `(C) ∪ `(C ′) ∪ `(C1) ∪ `(C ′
1) ∪ `(C2) ∪ `(C ′

2) ∪ · · · ∪
`(C2α−2−1) ∪ `(C ′

2α−2−1) so that

A = {(2i, j) | 0 ≤ i ≤ 2α−1 − 1, 1 ≤ j ≤ 2q} ∪ {(−1, q), (−1, q + 1)}
∪ {(2i− 1, q), (2i− 1, q + 1) | 1 ≤ i ≤ 2α−2} \ {(2α−2 + 1, q), (2α−2 + 1, q + 1)}.

Now, let d1, . . . , dt denote the integers with 0 < dj < 2q and gcd(dj, 2q + 1) > 1. Note
that if t > 1, then q ≥ 4. If dj′ = 2q− dj for some j, j′ with 1 ≤ j, j′ ≤ t, then omit dj′ from
{d1, d2, . . . , dt}. For each i with 0 ≤ i ≤ 2α−1− 1 and for each j with 1 ≤ j ≤ t, consider the
walk Pi,j : (0, 0), (2i + 1, dj), (4i + 2, 2q). Clearly, Pi,j is a path and the arc lengths of Pi,j, in
the order they are encountered, are (2i + 1, dj), (2i + 1, 2q − dj). Let

Ci,j = Pi,j ∪ ρ̂2(Pi,j) ∪ ρ̂4(Pi,j) ∪ ρ̂6(Pi,j) ∪ · · · ρ̂2α−1(2q+1)(Pi,j).

Then Ci,j is a directed n-cycle in an orbit of length 2 and

`(Ci,j) = {(2i + 1, dj), (2i + 1, 2q − dj)}.

Note also that if j 6= k with 1 ≤ j, k ≤ t, then `(Ci,j) ∩ `(Ci,k) = ∅.
Define the set

B =
⋃

0 ≤ i ≤ 2α−1 − 1

1 ≤ j ≤ t

`(Ci,j).

We want A ∩B = ∅. If so, we are done, and note that

B = {(2i + 1, dj), (2i + 1, 2q − dj) | 0 ≤ i ≤ 2α−1 − 1, 1 ≤ j ≤ t}.

Otherwise, if A ∩ B 6= ∅, then since gcd(dj, 2q + 1) > 1 for each j with 1 ≤ j ≤ t, it follows
that dj 6= q and dj 6= q + 1. Thus, if A ∩ B 6= ∅, then it must be that 2q − dk = q + 1
for some k with 1 ≤ k ≤ t. This implies that dk = q − 1. Therefore, in this case, for
i = 0, 1, . . . , 2α−2−1, redefine Pi,k : (0, 0), (2i+1, dk), (4i+2, q) and for i = 2α−2, . . . , 2α−1−1,
redefine Pi,k = (0, 0), (2i + 1, dk), (4i + 2, 2q). Create the cycle Ci,k as before. Observe that
`(Ci,k) = {(2i+1, dk), (2i+1, 1)} for 0 ≤ i ≤ 2α−2−1 and `(Ci,k) = {(2i+1, dk), (2i+1, q+1)}
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for 2α−2 ≤ i ≤ 2α−1 − 1. Also Ci,k will be a directed n-cycle in an orbit of length 2. In this
case, we have

B = {(2i + 1, dj), (2i + 1, 2q − dj) | 0 ≤ i ≤ 2α−1 − 1, 1 ≤ j 6= k ≤ t}
∪ {(2i + 1, q − 1), (2i + 1, 1) | 0 ≤ i ≤ 2α−2 − 1}
∪ {(2i + 1, q − 1), (2i + 1, q + 1) | 2α−2 ≤ i ≤ 2α−1 − 1}

Therefore, A ∩B = ∅.
Finally, consider the path

P ′′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), (3, 0), (−3, 0), . . . , (−2α−2 + 1, 0), (2α−2, 0),

(−2α−1 + 1, 2q − 1), (2α−1, 2q − 1), (−2α−1 + 2, 2q − 1), (2α−1 − 1, 2q − 1), (−2α−1 + 3, 2q − 1),

(2α−1 − 2, 2q − 1), . . . , (2α−2 + 1, 2q − 1), (0, 2q)

and let

C ′′ = P ∪ ρ̂2α

(P ) ∪ ρ̂2·2α

(P ) ∪ ρ̂3·2α

(P ) ∪ · · · ρ̂2q·2α

(P ).

Since gcd(2q− 1, 2q + 1) = 1, it follows that C ′′ is a directed n-cycle in an orbit of length 2α

and

`(C ′′) = {(1, 0), (−2, 0), (3, 0), (−4, 0), . . . , (2α−1 − 1, 0), (2α−2 + 1, 2q − 1),

(−1, 0), (2, 0), (−3, 0), . . . , (−2α−1 + 1, 0), (−2α−2 − 1, 1)}.

Now, `(C ′′)∩A = ∅ since every (c, d) ∈ A has d ≥ 1, and (2α−2+1, 2q−1), (−2α−2−1, 1) 6∈
A. Similarly, `(C ′′) ∩ B = ∅ since every (c, d) ∈ B has d ≥ 1 and q ≥ 4 implies that
(2α−2 + 1, 2q− 1), (−2α−2− 1, 1) 6∈ B. Thus, let T = S ′ \ (A∪B ∪ `(C ′′)) and let (e, f) ∈ T .
Then it must be that e is odd and gcd(f, 2q + 1) = 1. Therefore,

X = {φ−1(C), φ−1(C ′), φ−1(C ′′)}
∪ {φ−1(C1), φ

−1(C ′
1), φ

−1(C2), φ
−1(C ′

2), . . . , φ
−1(C2α−2−1), φ

−1(C ′
2α−2−1)}

∪ {φ−1(Ci,j) | 1 ≤ i ≤ 2α−1 − 1, 1 ≤ j ≤ t}
∪ {
−→
X (n; {φ−1((e, f))}) | (e, f) ∈ T}

is a minimum start set for a directed cyclic hamiltonian cycle system of (Kn − I)∗. �

Theorem 1.1 (c) now follows from Lemma 5.1.
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