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Abstract. We show that if n = 7k/i with i ∈ {1, 2, 3} then the cop number of the
generalised Petersen graph GP (n, k) is 4, with some small previously-known exceptions.
It was previously proved by Ball et al. (2015) that the cop number of any generalised
Petersen graph is at most 4. The results in this paper explain all of the known generalised
Petersen graphs that actually have cop number 4 but were not previously explained by
Morris et al. in a recent preprint, and places them in the context of infinite families. (More
precisely, the preprint by Morris et al. explains all known generalised Petersen graphs with
cop number 4 and girth 8, while this paper explains those that have girth 7.)

1. Introduction

Cops and robbers is a game that can be played on any graph. There are two players:
one playing the cops and the other playing the robber. The two players take turns, with
the cop going first. On their first turns, each player chooses a vertex on which to place
each of their pieces. On all subsequent turns, they may move any or all of their pieces to
any neighbouring vertex. The object of the game for the cops is to capture the robber by
landing on the same vertex as them. The object for the robber is to avoid being captured
forever.

This game first appears in [5] and [6], and has been studied extensively on many families
of graphs (see [3] as an excellent reference).

We are interested in studying this game only on the well-known family of generalised
Petersen graphs. The generalised Petersen graph GP (n, k) is a graph on 2n vertices whose
vertex set is the union of A = {a0, . . . , an−1} and B = {b0, . . . , bn−1}. The edges have one
of three possible forms:

• {ai, ai+1};
• {ai, bi}; and
• {bi, bi+k},

where subscripts are calculated modulo n. This family generalises the Petersen graph,
which is GP (5, 2). We require n ≥ 5, and k < n/2. This ensures that the graphs are cubic,
and avoids some isomorphic copies of graphs.
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The girth of a generalised Petersen graph is at most 8, and is well-understood from the
parameters n and k (see [2, Theorem 5]). Up to isomorphisms, a generalised Petersen
graph has girth 7 if and only if its parameters satisfy one of the following conditions:

• n = 7k/i where i ∈ {1, 2, 3};
• k = 4;
• n = 2k + 3; or
• n = 3k ± 2.

In [1], Ball et al. showed that the cop number of every generalised Petersen graph is
at most 4. They also provided a list of all generalised Petersen graphs with n ≤ 40 that
attain this bound. (Minor corrections to this list were included in [4], which also proved
that every generalised Petersen graph of girth 8 that appears on this list falls into an
infinite class of generalised Petersen graphs of girth 8 that have cop number 4.) Almost
all graphs on this list have girth 8, but there are three graphs of girth 7 on the list:

• GP (28, 8);
• GP (35, 10); and
• GP (35, 15).

Notably, all of these graphs have parameters of the form n = 7k/2 or n = 7k/3. In this
paper, we show that with the exception of the generalised Petersen graph with n < 42
that do not appear above, every generalised Petersen graph whose parameters have the
form n = 7k/i where i ∈ {1, 2, 3} has cop number 4. Thus, in light of the results of [4],
we show that all known generalised Petersen graphs with cop number 4 are included in
infinite families that have this property.

The neighbourhood (up to distance 4) of an arbitrary vertex ai ∈ A is shown in Figure 1,
while that for an arbitrary vertex bi ∈ B is shown in Figure 2. Note that at distance
4, some vertices may be the same as others; we have used paired copies of a shape on
the corresponding nodes to indicate the vertices that are in fact a single vertex. In our
results, we will assume that either n ≥ 42, or (n, k) ∈ {(28, 8), (35, 10), (35, 15)}. Careful
calculations (left to the reader) verify that this assumption avoids any additional vertices
at distance 4 being the same as each other. This will be of critical importance in our
proofs.

2. Main result

We begin by defining what it means for a robber to be trapped.

Definition 2.1. The cops have trapped the robber if there is a cop on or adjacent to each
vi (i ∈ {1, 2, 3}), where v1, v2, and v3 are the neighbours of the vertex the robber is on (no
matter whose turn it is), or if at least one cop is adjacent to the robber on the cops’ turn.

Observe that if the cops have trapped the robber, then the robber will be caught on
the cops’ next move if the robber moves, or within the next two cop moves if the robber
passes, and this is the only configuration for which this is true.

We now introduce the labelling system used throughout the rest of this paper and all the
proofs within. We assume throughout that the game is being played with 3 cops, C1, C2,
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Figure 1. The vertices within distance 4 of ai, in our families of graphs.
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Figure 2. The vertices within distance 4 of bi, in our families of graphs.
The dotted lines represent an edge between bi+3k and bi−3k.
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and C3. We will use r to denote the vertex the robber starts on. Label the three vertices
adjacent to r with v1, v2, and v3. When we mention a “branch” from vi (i ∈ {1, 2, 3}), we
are referring to vi and all of the other 7 vertices along any paths from the robber’s vertex
to the vertices at distance 4 from the robber, using only a fixed one of vi’s neighbours
(excluding r from our count). All of this is illustrated in Figure 3.

We now outline the three cases included in [4] as the only possible sets of configurations
for the robber to be in, relative to the positions of the three cops. They are as follows:

• Case 1. For at least one vertex vi (i ∈ {1, 2, 3}), vi has no cop on one of its
branches, and no cop within distance 2 of the robber on the other branch.

• Case 2. For every cop Ci (i ∈ {1, 2, 3}), Ci is not within distance 2 of the robber.
3



Figure 3. This figure shows our basic notation. In the illustration, r is a
vertex in A. The two branches from v1 are circled.

r

v1
v2

v3

• Case 3. For every vertex vi (i ∈ {1, 2, 3}), vi either has at least one cop on its
branches who is at distance 2 or less from the robber (which is true for at least one
vertex), or has at least one cop on each of its branches.

Now that we have stated our three cases, we will explain why these cases cover all of the
possibilities. Suppose we have a set-up that does not conform to Case 2. This means that
there is at least one cop who is at distance 2 or less from the robber. This cop is on vi
(i ∈ {1, 2, 3}), or one of its adjacent vertices (other than r). If the situation also does not
satisfy the assumptions of Case 3, then there must be at least one vertex (say vj, where
j ∈ {1, 2, 3} and j 6= i) that has no cop on one of its branches, and the closest cop through
vj is at distance 3 or more from the robber. This means that Case 1 applies to vertex vj.

We will now prove our first lemma, which will be used in our main lemma.

Lemma 2.2. Suppose that n = 7k/i where i ∈ {1, 2, 3}, and either n ≥ 42 or (n, k) ∈
{(28, 8), (35, 10), (35, 15)}. If we play cops and robbers with 3 cops on GP (n, k), then the
only way for the configuration of the robber with respect to the cops to fall into Case 3 is
if the robber is trapped.

Proof. To prove this lemma, we will use a case analysis on the possible configurations
within Case 3, and show why each is impossible unless the robber is trapped. Our proof
holds regardless of whether the robber is on a vertex in A or a vertex in B. We assume
that both the cop and robber players use their moves optimally.

We now move to our case analysis.

Case A. For exactly one vertex vi (i ∈ {1, 2, 3}), vi satisfies the conditions of
Case 3 by having at least one cop on its branches who is at distance 2 or less
from the robber.

In order for our situation to fall under Case A, vi satisfies the conditions of Case 3
already, but there are two other vertices, vj and vk (where {i, j, k} = {1, 2, 3}), that still
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need to satisfy these conditions. This means that each of vj and vk requires both of its
branches to be covered by cops. There is no way for two cops to cover all four branches,
unless those two cops are directly on vj and vk, which does not fall under Case A. This
means that it is impossible for a configuration of cops and robber on our graphs to fall
under Case A. �

Case B. For exactly two vertices vi and vj (i, j ∈ {1, 2, 3}), vi and vj satisfy
the conditions of Case 3 by each having at least one cop on its branches who
is at distance 2 or less from the robber.

Assuming our scenario meets the parameters of Case B, there is only one vertex vk
(where {i, j, k} = {1, 2, 3}) which does not yet satisfy the conditions of Case 3. This final
vertex is required to have at least one cop on each of its branches. Since two of the three
cops have already been placed, we only have one cop left. No vk has a vertex that is a part
of both of its branches, other than vk itself, which cannot have a cop on it because of the
conditions of Case B. �

Case C. For every vertex vi (i ∈ {1, 2, 3}), vi satisfies the conditions of Case 3
by having at least one cop on its branches who is at distance 2 or less from the
robber.

In order for the parameters of Case C to be met, there must be a cop on each of v1, v2,
and v3, or the adjacent vertices (excluding r, of course). In this case, the robber is trapped.
� �

We now prove our main lemma, which will be used inductively in the proof of our
theorem.

Lemma 2.3. Suppose that n = 7k/i where i ∈ {1, 2, 3}, and either n ≥ 42 or (n, k) ∈
{(28, 8), (35, 10), (35, 15)}. If we play cops and robbers on GP (n, k) with three cops, then
unless the robber starts their turn trapped, they always have a legal move so that they cannot
be trapped by the cops on the cops’ turn.

Proof. To prove this lemma, we will use a case analysis of the current positions of the cops
compared to that of the robber (on the robber’s turn). We will use the techniques from
[4] to prove this lemma. We assume that the three cops have not yet trapped the robber.
We also assume that both the cop and robber players use their moves optimally. We will
go on to prove that unless the robber starts their turn trapped, they always have a legal
move so that the robber cannot be trapped at the end of the cops’ turn.

In Lemma 2.2, we proved that Case 3 cannot apply to our graphs. This means that we
need only prove this lemma under the assumption that the scenario falls into Case 1 or
Case 2. These proofs are below.

Case 1. For at least one vertex vi (i ∈ {1, 2, 3}), vi has no cop on one of its
branches, and no cop within distance 2 of the robber on the other branch.

Let us assume that the vertex satisfying the requirements of this case is v1 (the other
cases are similar). Equally, let us assume that the left branch is the one with no cop. This
situation is shown in Figure 4. Since there is no cop within distance 2 of the robber on
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Figure 4. The vertices that we assume do not have cops on them in Case 1
are circled. The illustration shows this when r ∈ A.
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Figure 5. The vertices that cannot have cops on them in Case 2 are circled.
The illustration shows this when r ∈ A.
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vertex v1, the robber can go to v1 safely. No cop can catch the robber on this move, since
no cop can be within distance 1 of v1 at the start of this turn. Since there are no cops on
the left branch from v1, there are no cops within distance 4 of the robber in that direction
before the robber’s move, so even after the cops’ turn there cannot be a cop within distance
2 of the robber in that direction. Therefore, the robber is not trapped at the end of the
cops’ turn. �

Case 2. For every cop Ci (i ∈ {1, 2, 3}), Ci is not within distance 2 of the
robber.

Figure 5 illustrates this case. In this scenario, the robber can move to any of the three
vertices adjacent to their position (v1, v2, or v3). Let’s have the robber choose v1. Since
no cops were within distance 2 of the robber at the beginning, once the robber has moved,
they cannot be within distance 1 of the robber, so cannot catch the robber. Furthermore,
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Figure 6. The circles in this figure show the ideal positions for the cops at
the beginning of the game, when w ∈ A.
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since no cop was on vertex v1, v2, v3, or any of their neighbours, after the cops’ move no
cop is on r or any of its neighbours (and r is a neighbour of the robber’s new position).
This means that the robber is not trapped. �

We have now proven that the robber cannot be trapped at the end of the cops’ turn if
they did not start their turn trapped. �

This allows us to prove our main result.

Theorem 2.4. Suppose that n = 7k/i where i ∈ {1, 2, 3}, and n ≥ 42 or (n, k) ∈
{(28, 8), (35, 10), (35, 15)}. Then the cop number of the graph GP (n, k) is 4.

Proof. We begin by showing that there is always a vertex the robber can choose for their
first move, so that they do not begin the game trapped.

Let w be an arbitrary vertex with neighbours v1, v2, and v3. Recall that for the robber
to be trapped, there must be cops on each of its neighbours or their adjacent vertices, or
there must be at least one cop directly adjacent to the robber. In order to maximise the
cops’ chances of having trapped the robber, a cop should be placed on each of v1, v2, and v3
or their adjacent vertices. Without loss of generality, let us assume that Ci (i ∈ {1, 2, 3})
is on vi or an adjacent vertex.

Suppose momentarily that all three cops choose to go on vertices adjacent to w. Under
this scenario, should the robber go on any vertex adjacent to a cop, they will be trapped.
This gives us 10 vertices where the robber cannot go without being trapped (including
those with cops already on them).

Now, suppose that all three cops choose to go on vertices at distance 2 from w. In this
set-up, in addition to the robber being trapped if they are adjacent to a cop, they will also
be trapped if they go on w, since there are cops adjacent to v1, v2, and v3. Therefore, in
this case, there are 13 different vertices where the robber cannot go without being trapped.

This means that our second set of positions, as shown in Figure 6, are the ideal choices
for the cops when there are only three of them, and if they go in the ideal positions, they
can still only ensure that the robber will be trapped if placed on one of 13 different vertices.
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Since n ≥ 28, our graph has at least 56 vertices, and the robber still has many choices that
do not leave them trapped, meaning that the robber will not start trapped.

Combining this with the results of Lemma 2.3, we conclude that the robber never has
to become trapped, so c(G) > 3.

By [1], if G is a generalised Petersen graph, then c(G) ≤ 4, so c(G) = 4. �
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