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Abstract. A finite group G is a DCI-group if, whenever S and S′ are
subsets of G with the Cayley graphs Cay(G,S) and Cay(G,S′) isomor-
phic, there exists an automorphism ϕ of G with ϕ(S) = S′. It is a
CI-group if this condition holds under the restricted assumption that
S = S−1. We extend these definitions to infinite groups, and make two
closely-related definitions: an infinite group is a strongly (D)CIf -group
if the same condition holds under the restricted assumption that S is
finite; and an infinite group is a (D)CIf -group if the same condition
holds whenever S is both finite and generates G.

We prove that an infinite (D)CI-group must be a torsion group that
is not locally-finite. We find infinite families of groups that are (D)CIf -
groups but not strongly (D)CIf -groups, and that are strongly (D)CIf -
groups but not (D)CI-groups. We discuss which of these properties are
inherited by subgroups. Finally, we completely characterise the locally-
finite DCI-graphs on Zn. We suggest several open problems related to
these ideas, including the question of whether or not any infinite (D)CI-
group exists.

1. Introduction

Although there has been considerable work done on the Cayley Isomor-
phism problem for finite groups and graphs, little attention has been paid
to its extension to the infinite case.

Definition 1.1. A Cayley (di)graph Γ = Cay(G;S) is a (D)CI-graph if
whenever φ : Γ → Γ′ is an isomorphism, with Γ′ = Cay(G;S′), there is a
group automorphism α of G with α(S) = S′ (so that α can be viewed as a
graph isomorphism).

Notice that since Aut(Γ) = Aut(Γ) (where Γ denotes the complement of
Γ) and any isomorphism from Γ to Γ′ is also an isomorphism from Γ to Γ′, a
graph is a (D)CI-graph if and only if its complement is also a (D)CI-graph.
Since at least one of Γ and Γ must be connected, the problem of determining
(D)CI-graphs can be reduced to the connected case.

This definition extends to a definition for groups.

Definition 1.2. A group G is a (D)CI-group if every Cayley (di)graph on
G is a (D)CI-graph.
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These definitions (in the undirected case) as well as the following equiv-
alent condition for a graph to be a (D)CI-graph, first appeared in work by

Babai [3], extending a research problem posed by Àdàm for cyclic groups
[1]. There has been a large body of work on this topic, and Li published a
survey paper [11] outlining many of the results.

Theorem 1.3. [3] A Cayley (di)graph Γ on the group G is a (D)CI-graph
if and only if any two regular copies of G in Aut(Γ) are conjugate.

In the infinite case, it is natural to consider locally-finite (di)graphs: that
is, (di)graphs whose valency is finite. When studying Cayley (di)graphs, this
means that the set S is finite. However, restricting our consideration to this
case complicates matters, as the complement of a locally-finite (di)graph
is not locally-finite. For this reason, the standard argument made above
that reduces the finite problem to the case of connected (di)graphs, does
not apply to infinite (di)graphs that are locally-finite. In other words, if
one wishes to study this problem in the context of locally-finite (infinite)
(di)graphs, it is necessary to consider disconnected as well as connected
(di)graphs.

For this reason, we give two new definitions. In the case of finite (di)graphs,
both of these definitions coincide with the definition of a (D)CI-group, but
in the infinite case they do not, and are themselves (we believe) worthy of
study as natural generalisations of finite (D)CI-groups.

Definition 1.4. A finitely-generated group G is a (D)CIf -group if every
connected locally-finite Cayley (di)graph on G is a (D)CI-graph.

Note that it is not possible to have a connected locally-finite Cayley
(di)graph on a group that is not finitely-generated, so the requirement that
the group be finitely-generated only serves to avoid a situation where all
non-finitely-generated groups are vacuously CIf -groups.

Definition 1.5. A group G is a strongly (D)CIf -group if every locally-finite
Cayley (di)graph on G is a (D)CI-graph.

It should be apparent from these definitions that

(D)CI-group⇒ strongly (D)CIf -group

and if we restrict our attention to finitely-generated groups,

strongly (D)CIf -group⇒ (D)CIf -group.

In this paper we will construct examples of groups that are (D)CIf -groups
but not strongly (D)CIf -groups (despite being finitely generated) and groups
that are strongly (D)CIf -groups but not (D)CI-groups, so these definitions
are interesting. We further study these classes, particularly in the case of
infinite abelian groups, including a complete characterisation of the locally-
finite graphs on Zn that are (D)CI-graphs. We also prove that no infinite
abelian group is a (D)CI-group, and that any (D)CI-group must be a torsion
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group that is not locally finite. We leave open the question of whether or
not any infinite (D)CI-groups exist.

In the only prior work that we are aware of on the CI problem for infi-
nite graphs, Ryabchenko [19] uses the standard definition (the same one we
gave above) for a CI-group, and claims to have proven that every finitely-
generated free abelian group is a CI-group. It is clear from his proofs that
what he in fact shows is that Z is a strongly CIf -group, and Zn is a CIf -
group. We will restate the results he actually proves in that paper using our
terminology, as well as pointing out several consequences of his proofs that
he did not mention. We also show that Zn is not a strongly (D)CIf -group
if n > 1. Ryabchenko cites a paper by Chuesheva as the main motivation
for his paper, but the journal is obscure and the url he provides no longer
exists, so we were not able to obtain a copy of this paper. Löh has published
a paper [13] on the related question of when a graph can be represented as
a Cayley graph on more than one finitely-generated infinite abelian group.

We will proceed from the strongest property to the weakest. In Section 2,
we will consider infinite (D)CI-groups, and prove that various large families
of infinite groups cannot be (D)CI-groups; specifically, we show that any
infinite CI-group must be a torsion group that is not locally finite. (Since
every DCI-group is a CI-group, this result carries over to the directed case.)
In Section 3, we consider strongly CIf -groups. We construct an infinite
family of such groups, but also prove that Zn is not a strongly CIf -group
for n > 1. We show that every finitely-generated subgroup of a strongly
CIf -group is a CIf -group, but leave open the question of whether or not
all subgroups of strongly CIf -groups are strongly CIf -groups. In Section
4, we consider CIf -groups. We show that without the condition of local-
finiteness, connectedness is not sufficient to ensure that a Cayley graph on
Zn is a CI-graph. We note that Zn is a CIf -group for every n. In Section
5, we include the results from [19]. We have slightly generalised as well
as correcting the statements (which can be done using the same proofs),
and include some easy corollaries of his proofs, showing that every locally-
finite Cayley (di)graph on Zn is a normal Cayley (di)graph, and in fact
has a unique regular subgroup isomorphic to Zn. Finally, in Section 6, we
completely characterise the locally-finite Cayley graphs on Zn that are CI-
graphs, and in particular show that if the number of connected components
of the graph is sufficiently large relative to n, then the graph cannot be a
CI-graph.

2. CI-groups

In this section of the paper, we demonstrate that various families of in-
finite groups are not CI-groups. Since all DCI-groups are also CI-groups,
this implies that these groups are not DCI-groups. We also discuss the open
questions that remain.
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Remark 2.1. [4] We observe that the property of being a CI-group is in-
herited by subgroups.

There is a standard construction for the above fact, used for finite groups,
that works equally well for infinite groups if we are not requiring that graphs
be locally finite. That is: if H < G is not a CI-group, take a connected
Cayley graph Γ = Cay(H;S) that is not a CI-graph (use a complement if
necessary to ensure that the graph is connected). Let Γ′ = Cay(H;S′) be an
isomorphic graph that is not isomorphic via an automorphism of H. Then
Cay(G;S) and Cay(G;S′) are clearly isomorphic, but any isomorphism must
take connected components to connected components, so would restrict to
an isomorphism from Γ to Γ′ that cannot come from a group automorphism
of H.

We now show that Z is not a CI-group. Together with the preceding
remark, this has strong consequences.

Proposition 2.2. The group Z is not a (D)CI-group.

Proof. We prove this by finding a Cayley graph on Z that is not a CI-graph.
Let S = {i ∈ Z : i ≡ 1, 4 (mod 5)}. We will show that Γ = Cay(Z;S) is not
a CI-graph.

Let S′ = {i ∈ Z : i ≡ 2, 3 (mod 5)}, and let Γ = Cay(Z;S′). We claim
that if we define φ : Γ→ Γ′ by

φ(i) =



i if i ≡ 0 (mod 5)

i+ 1 if i ≡ 1 (mod 5)

i+ 2 if i ≡ 2 (mod 5)

i− 2 if i ≡ 3 (mod 5)

i− 1 if i ≡ 4 (mod 5)

,

then φ is a graph isomorphism. Clearly φ is one-to-one and onto, so we need
only show that xy is an edge of Γ if and only if φ(x)φ(y) is an edge of Γ′.

Suppose that xy is an edge of Γ; equivalently, y − x ≡ 1, 4 (mod 5). A
case-by-case analysis of the possible residue classes for x and y shows that
this always forces φ(y) − φ(x) ≡ 2, 3 (mod 5); equivalently, φ(x)φ(y) is an
edge of Γ′.

Since the only automorphisms of Z fix sets that are closed under taking
negatives (which S and S′ are), and S 6= S′, we conclude that Γ is not a
CI-graph. �

This of course has very strong consequences.

Corollary 2.3. No infinite group containing an element of infinite order is
a CI-group. That is, infinite CI-groups must be torsion groups.

Proof. If G contains an element τ of infinite order, then 〈τ〉 ∼= Z. By Propo-
sition 2.2, this subgroup is not a CI-group, and by Remark 2.1, G cannot
be a CI-group. �
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We now consider infinite abelian p-groups.

Proposition 2.4. No infinite abelian p-group is a CI-group.

Proof. By Remark 2.1, any subgroup of a CI-group is a CI-group. By Corol-
lary 2.3, any infinite CI-group must be a torsion group (i.e., every element
has finite order). Elspas and Turner [6] showed that Z16 is not a CI-group,
and this was generalised in [4] to Zn2 for n ≥ 4, so any infinite abelian
p-group would have to be elementary abelian (or contain an infinite elemen-
tary abelian subgroup). But Muzychuk [17] showed that elementary abelian
p-groups of sufficiently high rank are not CI-groups. (Muzychuk’s rank re-
quirement was later improved by Spiga [21] and Somlai [20], but we only
require a finite bound.) �

The following simple lemma will allow us to eliminate all infinite abelian
groups. This idea has been used in the finite case, but we provide the proof
here since it is short, to show that it works equally well in the infinite case.

Lemma 2.5. Suppose that G is a CI-group. If H1, H2 ≤ G with |H1| = |H2|
and |G : H1| = |G : H2|, then some automorphism of G carries H1 to H2.
In particular, H1

∼= H2.

Proof. We have Cay(G;H1 − {e}) ∼= Cay(G;H2 − {e}) since both consist of
|G : H1| disjoint copies of the complete graph on |H1| vertices. So there is
an automorphism of G that carries H1 to H2. �

Using the above results, we can now show that no infinite abelian group
is a CI-group. In fact the idea of this proof does not really require the
assumption that the infinite group is abelian, but that is certainly more
than sufficient, and results in the strong corollary that follows.

Theorem 2.6. No infinite abelian group is a CI-group.

Proof. Suppose that G were an infinite abelian CI-group. By Corollary 2.2,
we can assume that every element of G has finite order. By Proposition 2.4
(and Remark 2.1), we can assume that G does not contain an infinite p-
group (applying Proposition 2.4 requires the assumption that G is abelian).
Thus every p-subgroup of G is a finite CI-group, and there are nontrivial
p-subgroups of G for infinitely many primes. Fix some prime p for which
the p-subgroups of G are nontrivial. Let H1 be any infinite subgroup of
G that has infinite order and infinite index in G, and has no elements of
order p. (Such an H1 exists since the Sylow p-subgroup of G is finite. For
example, if P1, P2, . . . are all of the nontrivial Sylow subgroups of G with
the exception of the Sylow p-subgroup, we could take 〈Pi : i is odd〉.) Let
H2 be generated by H1 together with an element of order p from G. Clearly,
H1 and H2 are non-isomorphic since only one contains an element of order
p, but this contradicts Lemma 2.5. �

A locally-finite group is a group in which every finitely-generated sub-
group is finite. The preceding theorem has the following consequence.
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Corollary 2.7. No infinite locally-finite group is a CI-group.

Proof. Hall and Kulatilaka [8] and Kargapolov [10] independently proved
that every infinite locally-finite group contains an infinite abelian group.
Both proofs rely on the Feit-Thompson Theorem. Together with Remark
2.1, Theorem 2.6 therefore yields the desired conclusion. �

Given the above results, it would be tempting to conjecture that no infi-
nite group is a CI-group, but this is by no means clear, particularly in the
case of unusual groups such as the Tarski Monsters (see below). We leave
this as a problem for future research, first summarising what we can say
about such a group.

Corollary 2.8. Every subgroup of a CI-group must be a CI-group. Further-
more, every infinite CI-group must be:

(1) a torsion group; and
(2) not locally-finite.

In addition, if there is an infinite CI-group, there is one that is finitely
generated.

Proof. The first statement is Remark 2.1. Conclusion (1) is Corollary 2.3.
Conclusion (2) is Corollary 2.7.

Suppose now that G is an infinite CI-group. Since G is not locally-finite,
it must have a subgroup that is finitely generated but infinite, and is still a
CI-group (by Remark 2.1). �

In determining whether or not there is an infinite CI-group, one possi-
ble family of candidates that needs to be considered carefully is the fam-
ily of so-called “Tarski Monsters”. These are infinite groups whose only
proper subgroups have order p for some fixed (but dependent upon the
group) large prime p. Thus, every element of the group has order p, while
any two elements in different cyclic subgroups generate the entire group.
Clearly, if such a group were to be a CI-group, then every non-identity
element would have to lie in a single automorphism class (otherwise, if
there is no automorphism taking g to h in the Tarski monster G, then
Cay(G; {g, g−1}) ∼= Cay(G; {h, h−1}) but there is no automorphism of G
taking {g, g−1} to {h, h−1}). We found discussions on the internet [14] indi-
cating that for some Tarski monsters, any two of the subgroups are conju-
gate, but did not find an answer as to whether or not the stronger condition
we are interested in is true for some Tarski monsters. Even if it were true,
this is not enough to guarantee that such a group is a CI-group. We leave
this as an open question.

Question 2.9. Does there exist an infinite CI-group? In particular, is any
Tarski monster a CI-group?
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3. Strongly CIf -groups

In contrast to the class of CI-groups, we were able to find groups that are
strongly CIf -groups. To begin this section, we note that Ryabchenko [19]
proved that Z is a strongly CIf -group. This result is stated in Section 5 of
this paper, as Corollary 5.2.

This naturally leads to the question of Zn. We show that Zn is not a
strongly CIf -group for any n > 1. Because we actually plan to give a
precise characterisation of the finitely-generated (D)CI-graphs on Zn, we in
fact prove a stronger result.

Proposition 3.1. Let n > 1, and let Γ = Cay(Zn;S) be any Cayley
(di)graph on Zn such that the number of connected components of (the un-
derlying graph of) Γ is either infinite, or is divisible by p2 for some prime
p. Then Γ is not a (D)CI-graph.

Proof. For this proof, we use the formulation of the CI problem given in
Theorem 1.3.

Let G = 〈S〉, and let Γ0 = Cay(G;S) (so this is connected). Then
Aut(Γ) will either be SZ o Aut(Γ0), or Sn o Aut(Γ0), where n is finite and
there is some prime p such that p2 | n. Consider the subgroup of the
appropriate symmetric group that is induced by the natural action of Zn
on the connected components of Γ. Clearly this will be a regular abelian
subgroup that is either countably infinite, or of order n. There are many
nonisomorphic countably infinite regular abelian subgroups of SZ (Z and
Z2×Z, for example). Likewise, there are at least two nonisomorphic regular
subgroups of Sn (Zp × Zn/p and Zp2 × Zn/p2). Since n > 1, each of these
can be expanded to a regular action isomorphic to Zn in Aut(Γ). Since
the subgroups are nonisomorphic, they are not conjugate in the appropriate
symmetric group, so the expanded actions on Γ are not conjugate in Aut(Γ).
Thus Γ is not a (D)CI-graph. �

Corollary 3.2. The group Zn is not a strongly CIf -group for n > 1.

Proof. When n > 1, it is easy to construct finitely-generated Cayley graphs
on Zn for which the number of connected components is either countably in-
finite, or divisible by a square. For example, Γ1 = Cay(Zn; {±(1, 0, . . . , 0)})
has a countably infinite number of connected components, while Γ2, the
Cayley graph on Zn whose connection set is the standard generating set for
Zn (together with inverses) with the first generator (and its inverse) replaced
by ±(p2, 0, . . . , 0), will have p2 connected components. So Proposition 3.1
is sufficient.

Had we only wanted to show that Zn is not a strongly CIf -group for n > 1,
we could have pointed out that Γ1

∼= Cay(Zn; {±(2, 0, . . . , 0)}) but not via a
group automorphism of Zn, or similarly that Γ2 is isomorphic to the Cayley
graph on Zn whose connection set is the standard generating set for Zn
(together with inverses) with the first generator (and its inverse) replaced
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by ±(p, 0, . . . , 0), and the second generator (and its inverse) replaced by
±(0, p, . . . , 0), but not via a group automorphism of Zn. �

Having determined the status of free abelian groups, we turn our at-
tention to the opposite end of the spectrum of infinite abelian groups and
consider torsion groups. First we prove a restriction on torsion groups that
are strongly CIf -groups (dropping the abelian constraint for the time being).

Lemma 3.3. Suppose that G is a locally-finite torsion group that is a
strongly CIf -group. Then every finite subgroup of G is a CI-group.

Furthermore, for p ≥ 5 the Sylow p-subgroups of G are elementary abelian,
and the Sylow 3-subgroups are either cyclic of order at most 27, or elemen-
tary abelian.

Proof. Since G is a strongly CIf -group, an argument similar to that of Re-
mark 2.1 shows that every finite subgroup must be a CI-group.

Babai and Frankl [4] showed that for p ≥ 5 the only finite p-groups that are
CI-groups are elementary abelian, and the finite 3-groups that are CI-groups
are either cyclic of order at most 27, or elementary abelian. Furthermore,
Muzychuk [17] proved that elementary abelian groups of sufficiently high
rank are not CI-groups. Since G is locally-finite and the results just stated
imply that every finite p-subgroup has bounded order, there must be a finite
number of generators that contribute to any p-group in G. In particular,
this means that the p-groups in G must all be finite. Thus by [4] again, we
obtain the desired conclusion. �

In addition to the single example of Z, we are able to find an infinite
family of groups are strongly CIf -groups.

Theorem 3.4. Let G be a countable abelian torsion group. Then G is a
strongly (D)CIf -group if and only if every finite subgroup of G is a (D)CI-
group.

Proof. Abelian torsion groups are locally-finite, so necessity is shown in
Lemma 3.3.

For the converse, suppose that G is a countable abelian torsion group,
and every finite subgroup of G is a (D)CI-group.

By Lemma 3.3, the Sylow p-subgroups of G are elementary abelian, or
cyclic of order at most 27, where p ≥ 3. Aside from some finite exceptional
groups whose order does not exceed 2532 = 288, it is known that in any
finite abelian (D)CI-group H, every Sylow p-subgroup of H must be either
Z4, or elementary abelian. This strengthening of the work of Babai and
Frankl [4] for p = 2 and p = 3 is mentioned in [12]. Since G has arbitrarily
large finite subgroups all of which are (D)CI-groups, this implies that every
Sylow p-subgroup of G must be either Z4, or elementary abelian.

Let Γ = Cay(G;S) ∼= Γ′ = Cay(G;S′), with S finite. Since G is an abelian
torsion group, 〈S〉 must be finite, and 〈S′〉 has the same finite order, so H =
〈S, S′〉 is a finite subgroup of G, so is a (D)CI-group. Clearly Cay(H;S) ∼=
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Cay(H;S′), so as H is a (D)CI-group, there is an automorphism α of H
taking S to S′.

Since G is countable, list the elements of G: g1, g2, . . ., so that H =
{g1, . . . , g|H|} (the rest of the list can be arbitrary). For i ≥ |H|, define
Gi = 〈g1, . . . , gi〉 (so G|H| = H).

We claim that for i ≥ |H|, there is an automorphism αi of Gi that takes
S to S′ (so is an isomorphism from Cay(Gi;S) to Cay(Gi;S

′)) such that for
every j ∈ {|H|, |H| + 1, . . . , i}, the restriction of αi to Gj is αj . We prove
this claim by induction. The base case of i = |H| has been established. By
induction, we can assume that we have αi−1 such that the restriction of αi−1
to Gj is αj for every |H| ≤ j ≤ i − 1, so we need only find αi such that
the restriction of αi to Gi−1 is αi−1. Since Gi is abelian, it is the direct
product of its Sylow p-subgroups, so if we show that the action of αi−1 on
any Sylow p-subgroup of Gi−1 is the restriction of the action of αi on the
corresponding Sylow p-subgroup of Gi, this will suffice. Let Pi be a Sylow
p-subgroup of Gi, and Pi−1 the corresponding Sylow p-subgroup of Gi−1. If
Pi−1 = Pi then we define αi(g) = αi−1(g) for every g ∈ Pi = Pi−1. If Pi
is elementary abelian and Pi 6= Pi−1, then since Gi = 〈Gi−1, gi〉 is abelian,
we must have Pi ∼= Pi−1 × Zp. In this case use this representation, and
for any (g, h) ∈ Pi = Pi−1 × Zp, define αi(g, h) = (αi−1(g), h). The only
remaining possibility is that p = 2, Pi = Z4, and Pi−1 = Z2. In this case,
define αi(g) = g for every g ∈ Pi. Since αi−1 must act as the identity on
Pi−1 ∼= Z2, the restriction of αi to Pi−1 is again αi−1.

Now we define α′, which will be an automorphism of G that takes S to S′.
For ease of notation, first define αi = α for 1 ≤ i ≤ |H|. Now for any gi ∈ G,
define α′(gi) = αi(gi). We show that the map α′ is an automorphism of G.
Let gi, gj ∈ G with i ≤ j. First, notice that because the restriction of αj to
Gi is αi (where Gi = H for every 1 ≤ i ≤ |H|), we have αj(gi) = αi(gi).
Now, gi, gj , gigj ∈ Gj and

α′(gi)α
′(gj) = αi(gi)αj(gj) = αj(gi)αj(gj) = αj(gigj) = α′(gigj).

�

While the finite abelian (D)CI-groups have not been completely deter-
mined, elementary abelian groups of rank at most 4 are known to be DCI-
groups [5, 7, 9, 15, 22]. So the preceding theorem gives us an infinite class
of infinite strongly (D)CIf -groups: namely, pick any infinite set of primes
Q. For each p ∈ Q, take a cyclic p-group. Define G to be the direct product
of the chosen groups. Then G is a strongly (D)CIf -group. (It would be nice
to be able to select an elementary abelian p-group of rank higher than one
for at least some of the primes in Q; unfortunately, the question of whether
or not finite direct products of most such groups are (D)CI-groups remains
open.)

It is, unfortunately, not clear whether the property of being a strongly
(D)CIf -group is necessarily inherited by subgroups of strongly (D)CIf -groups.
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In the examples that we have found, it is inherited, since the only infinite
subgroup of Z is Z, and if G is any group in the family of strongly (D)CIf -
groups described in Theorem 3.4, and H is any infinite subgroup of G, then
(by our structural characterisation of the family) H is in the family, so H is a
strongly (D)CIf -group. In general, though, we do not see why the following
situation might not arise: G is a strongly (D)CIf -group, and for some infi-
nite subgroup H and some finite subsets S, S′ of G, Cay(G;S) ∼= Cay(G;S′),
but for every automorphism α of G that takes S to S′, we have α(H) 6= H,
and in fact no automorphism of H takes S to S′.

Question 3.5. Is every subgroup of a strongly (D)CIf -group necessarily a
strongly (D)CIf -group?

We can at least say that subgroups of strongly (D)CIf -groups that are
finitely-generated are necessarily (D)CIf -groups.

Proposition 3.6. Every finitely-generated subgroup of a strongly (D)CIf -
group is a (D)CIf -group.

Proof. Let G be a strongly (D)CIf -group, and let H ≤ G be finitely gener-
ated. Suppose that 〈S〉 = H, and Cay(H;S) ∼= Cay(H;S′) for some subset
S′ of H. Since Cay(H;S) (or the underlying undirected graph) is connected,
we also have 〈S′〉 = H. Clearly, Cay(G;S) ∼= Cay(G;S′) since each is the dis-
joint union of |G : H| copies of the original (di)graph. Since G is a strongly
(D)CIf -group, there is an automorphism α of G such that α(S) = S′. Since
H = 〈S〉 = 〈S′〉, we must have α(H) = H, so the restriction of α to H is an
automorphism of H that takes S to S′. �

4. CIf -groups

Although it was not the statement he gave, Ryabchenko [19] proved that
Zn is a CIf -group for every n; that is, every finitely-generated free abelian
group is a CIf -group. We include a slight generalisation of his proof in Sec-
tion 5, as Corollary 5.4. Currently, these are the only infinite (D)CIf -groups
that we know of, since the family of strongly (D)CIf -groups determined in
Theorem 3.4 has no finitely-generated members.

An interesting observation is that although connectedness is enough to
ensure that a locally-finite Cayley graph on Zn is a (D)CI-graph, it is not
sufficient if the graph is not locally-finite.

Corollary 4.1. Let n > 1. Amongst connected Cayley (di)graphs on Zn
that are not locally finite, some will be (D)CI-graphs and some will not.

Proof. Corollary 5.4 tells us that any such (di)graph for which the comple-
ment is locally finite and connected will be (D)CI, while Proposition 3.1 tells
us that any such (di)graph for which the complement is locally finite with a
number of connected components that is infinite or is not square-free, will
not be (D)CI. �



THE CI PROBLEM FOR INFINITE GROUPS 11

Since subgroups of finitely-generated groups need not be finitely-generated,
it is again not at all evident whether or not the property of being a (D)CIf -
group is inherited by subgroups. Amongst other things, we would need to
determine that all subgroups of (D)CIf -groups are finitely generated. Set-
ting this aside, it is not evident whether or not finitely generated subgroups
of (D)CIf -groups are (D)CIf -groups. Since for a (D)CIf -group we only know
that connected, locally-finite Cayley (di)graphs are (D)CI-graphs, it is hard
to see even how, given two locally-finite, isomorphic Cayley (di)graphs on
H ≤ G, one might construct suitable Cayley (di)graphs on G that are
locally-finite and connected, to use the (D)CIf -property. One possible ap-
proach would involve proving that every Cayley colour graph on G actually
has the CI-property, and then using a second colour of edges on a finite num-
ber of generators to connect cosets of H. We leave this as another question.
To prove any result along these lines (e.g. with the additional condition that
|G : H| be finite) would be interesting, we believe.

Question 4.2. If G is a (D)CIf -group and H ≤ G is finitely-generated, is
H a (D)CIf -group?

5. Ryabchenko’s results

In this section we state the results from Ryabchenko’s paper, and some
closely-related results.

Although Ryabchenko does not consider digraphs, his proofs in fact cover
the more general situation, and have a number of easy and interesting con-
sequences that he does not make note of.

Theorem 5.1 ([19], Theorem 1). Let S ⊂ Z be finite. If Cay(Z;S′) ∼=
Cay(Z;S) then S′ = ±S.

Since the statements of this and of Theorem 5.3 are changed from the
versions in Ryabchenko’s paper, for the reader’s convenience and confidence
complete proofs (based on Ryabchenko’s proofs) are provided in the arχiv
version of this paper, [16].

This has the following immediate consequence.

Corollary 5.2. The group Z is a strongly (D)CIf -group.

Proof. If Cay(Z;S) and Cay(Z;S′) are isomorphic and S is finite, then by
Theorem 5.1, S′ = ±S, so either the identity or the automorphism of Z that
takes every integer to its negative will act as an isomorphism from Cay(Z;S)
to Cay(Z;S′). �

The next result does not look at all like the statement of Theorem 2
from [19], but is the clearest and most precise statement of the proof he
gives for that theorem.

Theorem 5.3 ([19], Theorem 2). Let S be a finite generating set for Zn, and
let Γ = Cay(Zn;S). Then if Γ′ = Cay(Zn;S′) and there is an isomorphism
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φ : Γ→ Γ′ such that φ takes the identity of Zn to the identity of Zn, then φ
is a group automorphism of Zn.

Again, a complete proof of this is provided in [16].
This has an easy corollary, which is (except for his omission of his as-

sumption that the graphs are locally-finite) the result that was stated in
[19], Theorem 2.

Corollary 5.4. The group Zn is a (D)CIf -group.

Proof. Let Γ = Cay(Zn;S) and Γ′ = Cay(Zn;S′) with φ : Γ → Γ′ an
automorphism. Let 0 represent the identity element of Zn. If c is the
element of Zn that corresponds to the vertex φ(0), then φ′ = φ − c is an
isomorphism from Γ to Γ′ that takes 0 to 0. By Theorem 5.3, φ′ must be
an automorphism of Zn. �

The following corollary was not mentioned in Ryabchenko’s paper but is
an immediate consequence of his proof.

Corollary 5.5. If Γ = Cay(Zn;S) for some finite generating set S of Zn,
then Γ is a normal Cayley (di)graph of Zn.

Proof. Let 0 be the vertex of Γ corresponding to the identity element of
Zn. Let γ be any automorphism of Γ. Then γ fixes 0. By Theorem 5.3,
γ ∈ Aut(Zn), so Zn /Aut(Γ). �

The final corollary presented in this section is slightly less obvious, but is
still essentially a consequence of the proof in [19].

Corollary 5.6. If Γ = Cay(Zn;S) for some finite generating set S of Zn,
then Aut(Γ) has a unique regular subgroup isomorphic to Zn.

Proof. Let Z1 and Z2 be two regular subgroups isomorphic to Zn in Aut(Γ)
(with Z1 = 〈S〉). Let α′ ∈ Z2 be arbitrary; we plan to show that α′ ∈ Z1.
Let α ∈ Z1 such that α′(0) = α(0), where 0 is the vertex corresponding to
the identity of Zn. Then β = α−1α′ is an automorphism of Γ that fixes 0,
so by Theorem 5.3, β ∈ Aut(Z1).

Since S is finite, Z1 and Z2 each have finite index in Aut(Γ). It is well-
known that the intersection of two groups of finite index, itself has finite
index (c.f. Problem 6, Section 5.1, [2]). Let Z = Z1 ∩ Z2. Clearly, since
Z1 and Z2 are abelian, β commutes with every element of Z. But since
β ∈ Aut(Z1), it can only commute with the elements of Z if it fixes all of
them. This means that β fixes a finite-index subgroup of Z1 pointwise, so
since β ∈ Aut(Z1), we must have β = 1. Hence α′ = α ∈ Z1, as claimed.
Since α′ was arbitrary, Z2 = Z1 is the unique regular subgroup isomorphic
to Zn in Aut(Γ). �

6. Characterisation of locally-finite (D)CI-graphs on Zn

We have already seen that Z is a strongly DCIf -group, and that for n > 1,
Zn is a DCIf -group but not a strongly (D)CIf -group. The goal of this section
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of the paper is to give a precise characterisation of the locally-finite Cayley
(di)graphs on Zn that are (D)CI-graphs (where n > 1). Throughout the
remainder of this section, we assume n > 1.

We have also seen that if the number of connected components of a locally-
finite Cayley (di)graph on Zn is either infinite or divisible by a square, then
the graph is not a (D)CI-graph.

To prove our characterisation, we will need the following well-known corol-
lary of Smith normal form (cf. 4.6.1 of [2]).

Theorem 6.1 (Simultaneous Basis Theorem). Let M be a free abelian group
of finite rank n ≥ 1 over Z, and let H be a subgroup of M of rank r. Then
there is a basis {y1, . . . , yn} for M and nonzero elements a1, . . . , ar ∈ Z such
that r ≤ n, ai divides ai+1 for all i, and {a1y1, . . . , aryr} is a basis for H.

Corollary 6.2. Let H = b1Z×. . .×bnZ for some b1, . . . , bn with Πn
i=1bi = k,

where k is finite and square-free. Then there is an automorphism σ of Zn
such that Hσ = kZ× Zn−1.

Proof. By Theorem 6.1, there is a basis {y1, . . . , yn} for Zn and nonzero
integers a1, . . . an such that ai divides ai+1 for all i, and {a1y1, . . . , anyn} is
a basis for H. Notice that the index of H in Zn is clearly a1a2 . . . an, so for
this product to be the square-free integer k (given that ai divides ai+1 for
every i), the only possibility is that a1 = . . . = an−1 = 1 and an = k. Thus,
there is a basis {y1, . . . , yn} for Zn such that {y1, . . . , yn−1, kyn} is a basis
for H, so taking σ to be the automorphism of Zn that takes yn to e1, y1 to
en, and yi to ei for 2 ≤ i ≤ n− 1, where e1, . . . , en is the standard basis for
Zn, establishes the desired result. �

We are now ready to give our characterisation.

Theorem 6.3. Let Γ = Cay(Zn, S) be non-empty and locally finite, with
n > 1. Then Γ is a (D)CI-graph if and only if:

• Γ (or its underlying graph) has a finite, square-free number of com-
ponents; and
• Aut(H) = Aut(H)Zn · StabAut(H)(S),

where H = 〈S〉, StabAut(H)(S) is the group of all automorphisms of H that
fix S setwise, and Aut(H)Zn is the group of all automorphisms of H that
can be extended to automorphisms of Zn.

Proof. (⇒) We assume that Γ is a (D)CI-graph. By Proposition 3.1, Γ must
have a finite, square-free number of components.

Take any automorphism β of H. Then Cay(Zn, β(S)) ∼= Γ, so since
Γ is a (D)CI-graph, there must be some γ ∈ Aut(Zn) such that γ(S) =
β(S). So γ−1β|H ∈ Aut(H) and fixes S. Hence γ−1β|H ∈ StabAut(H)(S).
Also since β ∈ Aut(H), H = 〈S〉, and β(S) = γ(S), we have γ(H) =
β(H) = H, so γ|H ∈ Aut(H). Hence γ|H ∈ Aut(H)Zn . Therefore β =
(γ|H)(γ−1β|H) ∈ Aut(H)Zn · StabAut(H)(S). This shows that Aut(H) ≤
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Aut(H)Zn · StabAut(H)(S); since both of the groups in the product are sub-
groups of Aut(H), the other inclusion is immediate.

(⇐) Suppose that Γ ∼= Γ′ = Cay(Zn, S′). Let H = 〈S〉 and H ′ = 〈S′〉.
Let k be the number of connected components of Γ (and therefore of Γ′), so
by assumption k is finite and square-free. Then |H : Zn| = |H ′ : Zn| = k.
Since k is finite, the rank of H (and of H ′) is also n.

By Corollary 6.2, we can conjugate both H and H ′ to kZ×Zn−1 using an
element of Aut(Zn), so H and H ′ are conjugate to each other in Aut(Zn).
Thus, replacing S′ by a conjugate if necessary, we may assume without loss
of generality that H ′ = H.

Now since H ′ = H ∼= Zn and we have Cay(H,S) ∼= Cay(H ′, S′) =
Cay(H,S′) is connected, Corollary 5.4 tells us that this is a (D)CI-graph,
so there is some τ ∈ Aut(H) such that τ(S) = S′. By assumption, τ = τ1τ2
where τ1 ∈ Aut(H)Zn and τ2 ∈ StabAut(H)(S). Now, since τ2 fixes S, we

have τ1(S) = ττ−12 (S) = τ(S) = S′. By definition of Aut(H)Zn , there
is some σ′ ∈ Aut(Zn) such that σ′|H = τ1, so since S ⊆ H, we have
σ′(S) = τ1(S) = S′. This has shown that there is an automorphism of
Zn taking S to S′, so Γ is a (D)CI-graph. �

To demonstrate the importance of the rather odd-looking condition in
our characterisation, that Aut(H) = StabAut(H)(S) ·Aut(H)Zn , we conclude
with some examples in which this condition is not satisfied (so the graphs
are not CI, despite having a finite and in many cases square-free number of
connected components) and some examples in which it is satisfied (so the
graphs are CI).

Example 6.4. The graph Cay(Zn, S) where e1, . . . , en is the standard basis
for Zn, m > 1, and S = {±me1,±e2, . . . ,±en}, is not a CI-graph.

Proof. Let H = 〈S〉. Let S′ = {±(me1 + e2),±e2, . . . ,±en}. Clearly S′ and
S are both bases for H, so there is some automorphism σ of H that takes
S to S′. By multiplying by an element of StabAut(H)(S) if necessary, if our
condition were to hold, we would be able to find such a σ that would extend
to an automorphism of all of Zn. But since every entry of me1 ∈ S is a
multiple of m, and nothing in S′ has this property, there is no automor-
phism of Zn that takes me1 into S′, so in particular, σ cannot extend to an
automorphism of Zn. �

Example 6.5. The graph Cay(Z2, S) where S = {±(2, 0),±(0, 1),±(2, 1)}
satisfies the condition, so is a CI graph.

Proof. Let H = 〈S〉 = 2Z × Z, so the graph has 2 components, which is a
finite, square-free number. Thus we only need to check the second condition
of Theorem 6.3 to see that this is a CI graph.

Let

σ =

(
1/2 0
0 1

)
.
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Then σ is an isomorphism from H to Z2, and

σ(S) = {±(1, 0),±(0, 1),±(1, 1)}.

Now, the stabiliser of σ(S) in Aut(Z2) contains〈(
0 −1
1 −1

)〉
,

which has order 3 mod ±I.
Also,

Aut(H)Z2 =

{
φ|H : φ =

(
a b
c d

)
, b is even and ad− bc = ±1

}
,

where φ|H denotes the restriction of φ to its action on H, so

σ(Aut(H)Z2)σ−1 =

{(
a b
c d

)
: c is even and ad− bc = ±1

}
.

This has index 3 in σAut(H)σ−1 = GL(2,Z), because if we consider the
natural homomorphism onto GL(2,Z2), the image of this subgroup consists
of 2 of the 6 elements of GL(2,Z2), so has index 3.

Since the order of StabAut(Z2)(σ(S)) has order at least 3, which is the

index of σAut(H)Z2σ−1 in GL(2,Z), and the intersection of the subgroup of
order 3 with σAut(H)Z2σ−1 is trivial, we must have

σ(Aut(H)Z2)σ−1 · StabAut(Z2)(σ(S)) = GL(2,Z),

so conjugating by σ−1 gives

Aut(H)Z2 · StabAut(H)(S) = Aut(H),

satisfying the condition, as claimed. �

In fact, it turns out that the second condition of our characterisation
will never be satisfied if the number of connected components in the Cayley
(di)graph is sufficiently large relative to n.

Corollary 6.6. For every n > 1, there exists some natural number kn
such that if Γ = Cay(Zn, S) is nonempty and locally finite with at least kn
connected components, then Γ is not a (D)CI-graph.

Proof. It is well-known (cf. the stronger result [18, Theorem 4.3] that implies
this) that given n, there exists kn such that every finite subgroup of Aut(Zn)
has order less than kn.

Let Γ = Cay(Zn, S) be a nonempty locally-finite (di)graph. If the number
of connected components of Γ is infinite or square-free, then Proposition 3.1
tells us that Γ is not a (D)CI-graph. So we can assume that Γ has k con-
nected components, where k is square-free and H ∼= Zn, and that k ≥ kn.
By Corollary 6.2, we can conjugate S by an element of Aut(Zn) if necessary,
to ensure that H = kZ× Zn−1.
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Let

σ =


1/k 0 . . . 0
0 1 . . . 0
...

...
0 0 . . . 1

 .

Then σ is an isomorphism from H to Zn. Since every finite subgroup of
Aut(Zn) has order less than kn, in particular

|StabAut(Zn)(σ(S))| < kn.

Now Aut(H)Zn isφ|H : φ =

b11 . . . b1n
...

...
bn1 . . . bnn

 , det(φ) = ±1 and b12, . . . ,b1n ≡ 0 mod k

 ,

so σ(Aut(H)Zn)σ−1 is
b11 . . . b1n

...
...

bn1 . . . bnn

 : determinant is± 1 and b21, . . . , bn1 ≡ 0 mod k

 .

We claim that this has index greater than k in GL(n,Z) = σAut(H)σ−1.
If we consider the natural homomorphism onto GL(n,Zk), the subgroup of
GL(n,Zk) consisting of matrices of the form

1 0 0 . . . 0
x 1 0 . . . 0
0 0 1 . . . 0
...

...
...

0 0 0 . . . 1


where x ∈ Zk, has order k and intersects the image of σ(Aut(H)Zn)σ−1

(which is a subgroup) in only I, so the index of the image of σ(Aut(H)Zn)σ−1

in GL(n,Zk) under this homomorphism must be at least k. Hence the index
of σ(Aut(H)Zn)σ−1 in GL(n,Z) is at least k.

Now, if Γ were to be (D)CI, then by Theorem 6.3, we would have Aut(H) =
Aut(H)Zn · StabAut(H)(S), so conjugating by σ,

GL(n,Z) = σAut(H)Znσ−1 · StabAut(Zn)(σ(S)).

In particular, it would certainly need to be true that the index of σAut(H)Znσ−1

in GL(n,Z) is no bigger than the order of StabAut(Zn)(σ(S)). But we have
shown that this index is at least k, and that the order is less than kn ≤ k,
a contradiction that shows that Γ cannot be (D)CI. �
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