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Abstract. A finite group G is a non-DCI group if there exist subsets S1 and S2 of G, such that
the associated Cayley digraphs C−→ay(G; S1) and C−→ay(G; S2) are isomorphic, but no automorphism
of G carries S1 to S2. Furthermore, G is a non-CI group if the subsets S1 and S2 can be chosen to
be closed under inverses, so we have undirected Cayley graphs Cay(G; S1) and Cay(G; S2).

We show that if p is a prime number, and the elementary abelian p-group (Zp)r is a non-DCI
group, then (Zp)r+3 is a non-CI group. In most cases, we can also show that (Zp)r+2 is a non-CI
group. In particular, from Pablo Spiga’s proof that (Z3)

8 is a non-DCI group, we conclude that
(Z3)

10 is a non-CI group. This is the first example of a non-CI elementary abelian 3-group.

0. Preliminaries

We state some basic definitions, in order to establish our conventions.
Definition 0.1 (cf. [7, pp. 302 and 307]). Let G be a finite group.

(1) For any subset S of G, the Cayley digraph C−→ay(G; S) is the directed graph with vertex set G,
and with a directed edge g → h if and only if h ∈ Sg.

(2) If S is symmetric (i.e., if S = S−1), then C−→ay(G; S) can be viewed as an undirected graph,
by replacing each pair of oppositely directed edges (x → y and y → x) with an undirected
edge (x y), and replacing each directed loop (x → x) with an undirected loop (x x).
This undirected graph is called a Cayley graph, and is denoted Cay(G; S).

(3) We often refer to S as the connection set of C−→ay(G; S) or Cay(G; S).
(4) A Cayley graph Cay(G; S) is said to be a CI graph if, for every symmetric subset S′ of G,

such that Cay(G; S) ∼= Cay(G; S′), there is an automorphism α of G, such that α(S) = S′.
(5) Similarly, a Cayley digraph C−→ay(G; S) is said to be a DCI digraph if, for every subset S′ of G,

such that C−→ay(G; S) ∼= C−→ay(G; S′), there is an automorphism α of G, such that α(S) = S′.
(6) G is a CI group if every Cayley graph of G is a CI graph, and
(7) G is a DCI group if every Cayley digraph of G is a DCI digraph.

Thus, the difference between “CI” and “DCI” is whether only undirected graphs are considered (so
the generating set S is required to be symmetric), or all digraphs are allowed (so S can be any
subset of G).
Remark 0.2. The terminology in (6) and (7) is not entirely standard: some authors use “CI” for
the concept that we call “DCI,” and may use a phrase such as “CI with respect to undirected graphs”
for the concept that we call “CI.” The letters “CI” are an abbreviation of “Cayley Isomorphism” [7,
§3].

1. Introduction

Most finite groups are not CI groups. In particular, it is known that every CI group has a
subgroup of index at most 24 that is a direct product of elementary abelian groups [8, Thm. 1.2].
(Recall that a group is elementary abelian if it is isomorphic to (Zp)r, for some prime number p,
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S0,0,0 = {v1, v3, v4, v5}
S1,0,0 = {w1 + av1 + bv2 + cv5 : a, b, c ∈ Z3}
S0,1,0 = {w2 + av1 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S0,0,1 = {w3 + av2 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S1,1,0 = {w1 + w2 + av1 + bv2 + cv3 + bv4 + dv5 : a, b, c, d ∈ Z3}
S1,0,1 = {w1 + w3 + av1 + bv2 + av3 + cv4 + dv5 : a, b, c, d ∈ Z3}
S0,1,1 = {w2 + w3 + av1 + bv2 + cv3 + dv4 − (a + b)v5 : a, b, c, d ∈ Z3}
S1,1,1 = {w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 + (−a − b + c + d)v5 : a, b, c, d ∈ Z3}
S2,1,1 = {2w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 − (a + b + c + d)v5 : a, b, c, d ∈ Z3}
S1,2,1 = {w1 + 2w2 + w3 + av1 + bv2 + cv3 + dv4 + (a + b − c + d)v5 : a, b, c, d ∈ Z3}
S1,1,2 = {w1 + w2 + 2w3 + av1 + bv2 + cv3 + dv4 + (a + b + c − d)v5 : a, b, c, d ∈ Z3}

Figure 1. Eleven sets Si,j,k whose union is the connection set for P. Spiga’s non-
DCI Cayley digraph of (Z3)8.

and some r ≥ 0.) However, it is not known which groups with this property are indeed CI groups.
(See the survey [7].) Therefore, a fundamental problem in the theory of CI groups is to determine
which elementary abelian groups are CI groups. Since every subgroup of a CI group is a CI group
[2, Lem. 3.2], it suffices to determine, for each prime p, the smallest natural number r, such that
(Zp)r is not a CI group. This number is 6 for p = 2 [3, 13], and it is known that the number is at
least 6 for all p [6], but the exact value is unknown for every p > 2.

To provide an upper bound, G. Somlai [15, Thm. 2] showed in 2011 that if p > 3, then the
elementary abelian group of order p2p+3 is not a CI group. However, Somlai [15, p. 324] also
pointed out that the case p = 3 remained open: it was not known whether there is an elementary
abelian 3-group that is not a CI group, even though P. Spiga [17, Thm. 2] had proved two years
earlier that the elementary abelian group of order 38 is not a DCI group (see Theorem 1.3), and
larger examples of non-DCI elementary abelian 3-groups had been constructed previously [11, 16].
To fill this gap in the literature, we show that every example of a non-DCI elementary abelian p-
group will automatically yield an example of a (slightly larger) non-CI elementary abelian p-group
(for the same prime p), even if p = 3:
Theorem 1.1. If (Zp)r is not a DCI group (and p is prime), then (Zp)r+3 is not a CI group.

Moreover, the following result shows that we can usually decrease the exponent in our answer
by 1. (In fact, it will be explained in Remark 1.5(2) that the exponent r +2 will always suffice, but
this improvement relies on a theorem that was proved after the original version of this paper was
written.)
Theorem 1.2. Assume (Zp)r is not a DCI group (and p is prime). If either of the following is
true, then (Zp)r+2 is not a CI group:

(1) p 6= 3, or
(2) there is a non-DCI Cayley digraph C−→ay

(
(Zp)r; S

)
, such that |S| < pr−1.

For the reader’s convenience, we recall the detailed statement of the following important example
(that was mentioned above).
Theorem 1.3 (Spiga [17, proof of Thm. 2]). Let {w1, w2, w3, v1, v2, v3, v4, v5} be a generating set
of (Z3)8, and let S be the union of the sets Si,j,k that are defined in Figure 1. Then C−→ay

(
(Z3)8; S

)
is a non-DCI digraph.
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We see from Figure 1 that the outvalency of this Cayley digraph (i.e., the cardinality of the
connection set S) is 4 + 33 + 9 · 34 = 760. Since 760 < 37 (= 2187), we immediately deduce the
following from Theorem 1.2(2). It is the first example of a non-CI elementary abelian 3-group.
Corollary 1.4. (Z3)10 is not a CI group.
Remarks 1.5.

(1) By modifying Spiga’s example, the second author [9] has shown that (Z3)8 is not a CI
group. Therefore, Corollary 1.4 may be of limited interest. However, the argument in [9] is
longer (and more intricate) than the proofs here (and that paper was completed after this
one). (Part of the reason our proof of Corollary 1.4 is short is that we assume it is known
that Spiga’s example is not a DCI digraph, but [9] also makes this assumption.)

(2) If we assume the above-mentioned fact that (Z3)8 is not a CI group, then the conclusion of
Theorem 1.2 is true even without assuming (1) or (2):

if (Zp)r is not a DCI group, then (Zp)r+2 is not a CI group.
To see this, note that we may assume p = 3 (for otherwise Theorem 1.2(1) applies). How-
ever, P. Spiga [17, Thm. 1] showed that (Z3)5 is a DCI group, so we must have r ≥ 6. Then
r + 2 ≥ 8. If we assume that (Z3)8 is not a CI group, then this implies (Zp)r+2 is not a
CI group, as desired. Note that part (2) of Theorem 1.2 was not used in this argument. In
fact, knowing that (Z3)8 is not a CI group makes this part of the theorem superfluous.

(3) Theorem 1.2(1) may have a better chance of being useful in the future. For example, if
it is ever proved that there is a constant C, such that, for every prime p, the elementary
abelian group of order pC is not a DCI group, then it will immediately follow that there is
a constant C ′, such that the elementary abelian group of order pC′ is not a CI group.

(4) Every Cayley graph is a Cayley digraph, so (as is well known) it is clear that every DCI
group is a CI group. The reverse is not true. Indeed, the paper [4] provides infinitely many
examples of CI groups that are not DCI groups. However, it is not known whether the
two properties are equivalent for elementary abelian groups. In some sense, Theorem 1.1
shows, for this class of groups, that the two properties are closely related (even if they are
not exactly the same).

(5) The CI property is a Cayley Isomorphism property for graphs, and the DCI property is a
Cayley Isomorphism property for digraphs, so comparing CI with DCI is a comparison of
the Cayley Isomorphism property for two different relational structures (symmetric binary
relations vs. arbitrary binary relations). It is also interesting to consider other relational
structures. In particular:
(a) P. Pálfy [14] showed that the cyclic group Zn has the Cayley Isomorphism property for

all relational structures if and only if either n = 4 or gcd
(
n, ϕ(n)

)
= 1 (where ϕ is the

the Euler totient function).
(b) For relational structures with a cyclic, transitive group of automorphisms, M. Muzychuk

[10] reduced the isomorphism problem to the case where the number of points is a power
of a prime number.

(c) E. Dobson and P. Spiga [5] (and others) have studied the Cayley Isomorphism problem
for ternary relations.

(d) M. Muzychuk and G. Somlai [12] studied the Cayley Isomorphism property for Cayley
maps. Every Cayley map has an associated ternary relational structure, so this is
related to (c).

Our construction of a non-CI Cayley graph Cay(Ĝ; Ŝ) from a non-DCI Cayley digraph C−→ay(G; S)
is in Notation 2.3. It is a fairly straightforward adaptation of the well-known observation that if X̃

is the bipartite double cover of a digraph −→
X , i.e., if:
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• V (X̃) = V (
−→
X ) × {0, 1}, and

• (x, 0) is adjacent to (y, 1) in X̃ ⇐⇒ there is a directed edge from x to y in −→
X ,

and we define a permutation π̃ of V (X̃) by π̃(x, i) =
(
π(x), i

)
, where π is a permutation of V (

−→
X ),

then
π̃ is an automorphism of the graph X̃ ⇐⇒ π is an automorphism of the directed graph −→

X.

Acknowledgements. We thank two anonymous referees for their helpful comments that corrected
errors and improved the exposition. The second author was partially supported by the Natural
Science and Engineering Research Council of Canada (grant RGPIN-2017-04905).

2. Proofs of the main results

This section proves Theorem 2.2, which easily implies the main results that were stated in the
Introduction (i.e., Theorems 1.1 and 1.2). Although elementary abelian groups are our primary
interest, the result is stated more generally, because assuming that the group G is (elementary)
abelian would not simplify the argument to any significant extent.

Notation 2.1. If −→X is a digraph, then −→
X− is the digraph that is obtained from −→

X by reversing
all of its directed edges.

Theorem 2.2. Assume
• G is a finite group,
•
−→
X = C−→ay(G; S) is a non-DCI Cayley digraph,

• n ≥ 3 and k =

{
2 if n > 3;
3 if n = 3,

• either n > 3 or |S ∪ {1G}| ≤ |G|/3,
• m ≥ 3 and mk 6= |G|,
• A is a group of order m, and
• either −→

X 6∼=
−→
X− or there is an automorphism α of G, such that α(S) = S−1.

Then G × A × Zn is not a CI group.

Before proving this theorem, let us show that it contains Theorem 1.2 as a special case, and then
derive Theorem 1.1 from this latter result.

Proof of Theorem 1.2. For p = 2, it is well known that (Z2)r is a CI group if and only if it is
a DCI group. (Every element of (Z2)r is equal to its inverse, so every generating set is symmetric.
Hence, every Cayley digraph of (Z2)r is also a Cayley graph.) Therefore, we may assume p > 2.

Let G = (Zp)r, m = n = p, and A = Zp, so G × A × Zn = G × (Zp)2. Since (Zp)r is not a DCI
group, there is a non-DCI Cayley digraph −→

X = C−→ay(G; S). Also note that, since G is abelian, the
function α(g) = g−1 is a group automorphism, and it obviously has the property that α(S) = S−1.

Assume, for the moment, that p > 3. Then k = 2 is not a power of p, so it is obvious that
mk 6= pr = |G|. Therefore, all of the hypotheses of Theorem 2.2 are satisfied, so G×A×Zn is not
a CI group.

We now assume p = 3. In this case, Condition (2) in the statement of Theorem 1.2 must hold,
so we may assume |S| ≤ 3r−1 − 1. Then

|S ∪ {1G}| ≤ |S| + 1 ≤ (3r−1 − 1) + 1 = 3r−1 = |G|/3.

Also, it is well known that (Zp)2 is a DCI group (in fact, even (Zp)5 is a DCI group [6]), so
|G| 6= 32 = 3 · 3 = mk. Therefore, all of the hypotheses of Theorem 2.2 are satisfied again, so
G × A × Zn is not a CI group. □
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Proof of Theorem 1.1. We may assume p = 3, for otherwise Theorem 1.2(1) applies. Then,
by assumption, there is a non-DCI, Cayley digraph C−→ay

(
(Z3)r; S). Via the natural embedding of

(Z3)r in (Z3)r+1, we also have the Cayley digraph C−→ay
(
(Z3)r+1; S), which is also non-DCI. Since

S ∪ {1} ⊆ (Z3)r, we have |S ∪ {1}| ≤ |(Z3)r| = |(Z3)r+1|/3, so we conclude from Theorem 1.2(2)
(with r + 1 in the place of r) that (Z3)(r+1)+2 is not a CI group. □

The remainder of this section will prove Theorem 2.2. To get started, we fix some notation.

Notation 2.3. Let
•
−→
X = C−→ay(G; S) be a Cayley digraph of a nontrivial finite group G, such that S 6= S−1 (so
−→
X is not an undirected graph),

• n ≥ 3 and k =

{
2 if n > 3;
3 if n = 3,

• A be a group of order m ≥ 3,
• B = 〈b〉 be a (multiplicative) cyclic group of order n,
• Ĝ = G × A × B (so G, A, and B can be naturally identified with subgroups of Ĝ that

centralize each other),
• Ŝ = G ∪ Sb ∪ A ∪ Ab, and
• X̂ = Cay

(
Ĝ, Ŝ±1

)
, where Ŝ±1 = Ŝ ∪ { ŝ−1 | ŝ ∈ Ŝ }.

Note that, since G, A, and B are normal subgroups of Ĝ, there is no need to specify whether cosets
of these subgroups are right cosets or left cosets.

Remark 2.4. In our applications, we will take G = (Zp)r and A = B = Zp, for some prime p.
To prove Theorem 2.2, we will show that if −→

X is not a DCI digraph, and some minor technical
conditions are satisfied, then X̂ is not a CI graph.

Notation 2.5 ([1, §2]). For any group H, we use HR to denote the right regular representation
of H. This consists of all permutations of H that have the form x 7→ xh, for some h ∈ H.

The following well known, fundamental theorem shows that being a CI graph (or CI digraph) is
a property of the automorphism group of the graph (or digraph).

Theorem 2.6 (Babai [1, Lem. 3.1], or [7, Thm. 4.1]). A Cayley graph (or Cayley digraph) Y of a
group H is a CI graph (or DCI digraph) if and only if the conjugates of HR are the only subgroups
of Aut Y that are isomorphic to H and act sharply transitively on V (Y ).

Adding a directed loop at every vertex of a digraph does not affect the automorphism group of
the digraph. Therefore, the following causes no loss of generality:

Assumption 2.7. Assume 1G ∈ S, which means that C−→ay(G; S) has a directed loop at every
vertex.

Remark 2.8. Since b ∈ Ab, we know that b ∈ Ŝ, even without Assumption 2.7. Therefore, adding
1G to S does not change Ŝ at all. The reason for making Assumption 2.7 is to ensure that Sb is the
set of all outneighbours of 1

Ĝ
that are in the coset Gb. This avoids needing to treat the vertex b

as a special case when looking at the outneighbours of 1G.

The following simple result provides a crucial connection between Aut
−→
X and Aut X̂.

Proposition 2.9. Suppose φ is an automorphism of X̂, such that
(1) φ(1) = 1,
(2) φ maps each coset of G to a coset of G, and
(3) φ maps each coset of AB to a coset of AB.
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Then the restriction of φ to G is either an automorphism of −→X or an isomorphism from −→
X to −→

X−.

Proof. By (2), we know that φ maps G to some coset of G. Since φ(1) = 1, this implies that
φ(G) = G.

So the restriction of φ to G is a permutation of G.
From the definition of Ŝ, we see that 1 has |S| neighbours in the coset Gb and also has |S|

neighbours in the coset Gb−1 (and has |G| neighbours in its own coset G) but has at most one
neighbour in any other coset of G. Therefore,

φ(Gb) = Gbϵ, for some ϵ ∈ {±1}.

Let −→
X ϵ be −→

X or −→
X−, depending on whether ϵ is 1 or −1, respectively.

We claim that φ(gb) = φ(g)bϵ, for every g ∈ G. To see this, note that (3) implies φ(gb) ∈ φ(g)AB.
Also, we see from the above displayed equations that φ(gb) ∈ Gbϵ = φ(g)Gbϵ. Since (AB)∩G = {1},
this implies the claim.

We can now complete the proof, by showing that the restriction of φ to G is an isomorphism
from −→

X to −→
X ϵ. To this end, let g, h ∈ G, such that g → h in −→

X . This means there exists s ∈ S,
such that h = sg. Since sb ∈ Sb, we have g (sb)g in X̂. Since φ ∈ Aut X̂, this implies

φ(g) φ
(
(sb)g

)
= φ

(
(sg)b

)
= φ(sg)bϵ.

Since φ(g), φ(sg) ∈ G, we see from the definition of Ŝ that this implies φ(sg) = tϵφ(g), for some
t ∈ S. Hence, there is a directed edge from φ(g) to φ(sg) in −→

X ϵ.
We have shown that if g → h in −→

X , then φ(g) → φ(h) in −→
X ϵ. Since −→X and −→

X ϵ are regular digraphs
of the same outvalency, this implies that the permutation φ|G is an isomorphism of digraphs. □

Our next series of lemmas culminates in Lemma 2.12, which establishes simple conditions that
imply the hypotheses of the above proposition are satisfied. That will complete our preparations
for the proof of Theorem 2.2.

Lemma 2.10. If n > 3, then every maximal clique of X̂ is induced by one of the following sets of
vertices (for some x ∈ Ĝ):

(a) Gx (i.e., a coset of the subgroup G),
(b) Ax ∪ Abx, or
(c) a subset of Gx ∪ Gbx that does not contain any coset of G.

If n = 3, then (b) and (c) are replaced with:
(b′) ABx, and
(c′) a subset of GBx that does not contain any coset of G.

Conversely, the subgraph induced by each subset listed in (a) or (b/b′) is a maximal clique.

Proof. We first prove the “converse” that is stated the final sentence of the lemma. Assume, without
loss of generality, that x = 1.

(a) Since G is contained in Ŝ, it is clear that the subgraph induced by G is a clique. So we just
need to show that the clique is maximal. Suppose y ∈ Ĝ, such that y /∈ G, but y is adjacent to every
vertex in G. After translating by an element of G, we may assume y ∈ AB. Since y is adjacent
to 1, we also know that y ∈ Ŝ±1. Hence, y ∈ A ∪ Ab ∪ Ab−1 (and y 6= 1). Since S 6= S−1 (see
Notation 2.3), there is some nontrivial g ∈ G, such that g−1 /∈ S. Now, we see from the definition
of Ŝ that:

• If s ∈ Ŝ, such that sg ∈ AB, and sg 6= 1, then s ∈ (Sb)−1. Hence, g is not adjacent to any
element of A or Ab. Therefore, y /∈ A ∪ Ab.
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• Similarly, if s ∈ Ŝ, such that sg−1 ∈ AB, and sg−1 6= 1, then s ∈ Sb. Hence, g−1 is not
adjacent to any element of Ab−1. Therefore, y /∈ Ab−1.

This is a contradiction. So we conclude that the clique induced by G is indeed maximal.
(b) Since A is contained in Ŝ, it is clear that A and Ab each induce a clique. Also, we know

that every vertex in A is adjacent to every vertex in Ab, because Ab is contained in Ŝ. Therefore,
the subgraph induced by A ∪ Ab is a clique. So we just need to show that this clique is maximal.
Suppose y ∈ Ĝ, such that y /∈ A∪Ab, but y is adjacent to every vertex in A∪Ab. Since y is adjacent
to 1, we know that y ∈ Ŝ±1. Since y /∈ A ∪ Ab, we conclude that y ∈ G ∪ Sb ∪ Sb−1 ∪ Ab−1. Since
n > 3, no element of GAb−1 is adjacent to any element of Ab. Therefore, we must have y ∈ G∪ Sb
(and y 6= 1, b). Then every neighbour of y that is in AB must be in

Gy ∪ Sby ∪ (Sb)−1y ⊆ GBy.

Since GBy does not include any nontrivial elements of A, this contradicts the fact that y is adjacent
to every vertex in A.

(b′) Since n = 3, we have AB ⊆ Ŝ, so the subgraph induced by AB is a clique. So we just need
to show that this clique is maximal. Suppose y ∈ Ĝ, such that y /∈ AB, but y is adjacent to every
vertex in AB. We may assume y ∈ G (after translating by an element of AB). This implies that y
is not adjacent to any nontrivial element of A (see the proof of case (b)). This is a contradiction.

Now, let C be any maximal clique in X̂, and assume, without loss of generality, that 1 ∈ C. This
implies C ⊆ Ŝ±1. We will prove that C is contained in a clique of type (a), (b), (b′), (c), or (c′).

Case 1. Assume C is not contained in any coset of GB. Then C must contain some vertex of
the form gabi where g ∈ G, i ∈ Z, and a is a nontrivial element of A. Since gabi ∈ C ⊆ Ŝ±1, we
must have g = 1 and i ∈ {0,±1}.

Now, let v be any common neighbour of 1 and abi. Since a is nontrivial, these two elements are
in different cosets of GB, so we can choose some c ∈ {1, abi} that is not in the coset GBv. Then
(by the preceding argument) we have v = a′bjc, for some a′ ∈ A and j ∈ {0,±1}. Hence, we have
v ∈ AB. This shows that C is contained in a maximal clique of type (b′) if n = 3.

So we may assume n > 3. Then no vertex in Ab is adjacent to any vertex in Ab−1. Thus, C must
be contained in either A ∪ Ab or Ab−1 ∪ A. Each of these sets is of type (b) (with x ∈ {1, b−1}).

Case 2. Assume C is contained in a coset of GB, and is not of type (a). Since 1 ∈ C, we must
have C ⊆ GB. We also know that C does not contain any coset of G (since cosets of G induce
maximal cliques of type (a)), so we may assume n > 3, for otherwise C is of type (c′). Note that

C ⊆ GB ∩ Ŝ±1 = G ∪ Gb ∪ Gb−1.

However, no vertex in Gb is adjacent to any vertex in Gb−1 (since n > 3), so we conclude that C
is contained in either G ∪ Gb or Gb−1 ∪ G. So C is of type (c) (with x ∈ {1, b−1}). □

Without Assumption 2.7 (which tells us that S contains the identity element of G), the conclusion
of the following lemma would only be that S is a coset of a subgroup, not that it is a subgroup. It
is a variation of the easy (and well known) fact that if x and y are two vertices of C−→ay(G; S) that
have the same outneighbours, then S is a union of left cosets of the subgroup generated by xy−1.

Lemma 2.11. Assume D is a set of vertices of C−→ay(G; S), such that |D| ≥ max
(
|S| − 1, 2

)
, and

all of the vertices in D have exactly the same outneighbours. Then S is a subgroup of G.

Proof. Assume, without loss of generality, that 1 ∈ D. Then S is the set of outneighbours of every
element of D, so Sd = S for every d ∈ D. This means that S is a union of left cosets of 〈D〉. Since
1 ∈ S (see Assumption 2.7), this implies that S contains 〈D〉. If S is not equal to this subgroup,
then it is the union of at least 2 cosets, so |S| ≥ 2|〈D〉| ≥ 2|D|. On the other hand, we are also



8 DAVE WITTE MORRIS AND JOY MORRIS

assuming that |D| + 1 ≥ |S|. Combining these inequalities implies that |D| + 1 ≥ 2|D|, which
contradicts the assumption that |D| ≥ 2. □
Lemma 2.12. Assume

• φ is an automorphism of X̂ that fixes the vertex 1
Ĝ

,
• mk 6= |G| (recall that m and k were defined in Notation 2.3), and
• |S| ≤

(
|G| + 1

)
/k.

Then the hypotheses of Proposition 2.9 are satisfied.

Proof. 2.9(1): We have φ(1) = 1. This is true by assumption.
2.9(2): φ maps each coset of G to a coset of G. The maximal cliques of X̂ are described in

Lemma 2.10. It is obvious that every clique of type (a) has cardinality |G|, and that every clique
of type (b) or (b′) has cardinality mk (since |A| = m). Assume, for the moment, that

the cardinality of every maximal clique of type (c)
(or of type (c′) if n = 3) is strictly less than |G|.(2.13)

(We will show how to complete the proof with this assumption, and we will establish later that the
assumption is indeed true.) This assumption implies that the cosets of G are the only maximal
cliques whose cardinality is |G|. So every automorphism of X̂ (including φ) must map each coset
of G to a coset of G.

2.9(3): φ maps each coset of AB to a coset of AB. Each maximal clique of type (b) or (b′)
contains no more than one vertex of any coset of G. If a maximal clique of type (c) or (c′) has
this property, then it cannot have more than k vertices. Since maximal cliques of type (b) or (b′)
have mk vertices (and mk > k), this implies that no automorphism can carry a maximal clique of
type (b) or (b′) to a clique of type (c) or (c′). So φ must preserve the set of cliques of type (b)
(or (b′)). This easily implies Hypothesis 2.9(3).

Now, all that remains is to prove Assumption (2.13). To this end, let C be a maximal clique of
type (c) (or of type (c′) if n = 3), and suppose |C| ≥ |G|. (This will lead to a contradiction, which
completes the proof.) Also assume, without loss of generality, that 1

Ĝ
∈ C. Then

C ⊆ GB ∩ Ŝ±1 = G ∪ Sb ∪ Sb−1 ⊆ G ∪ Gb ∪ Gb−1.

Let Ci = C ∩ Gbi for i ∈ {−1, 0, 1}. It is clear that |C1| ≤ |Sb| = |S| and |C−1| ≤ |Sb−1| = |S|.
We claim that also |C0| ≤ |S|. Since C 6= G and |C| ≥ |G|, we know that C ⊈ G. Hence,

C−1 ∪ C1 6= ∅, so there is some gbϵ in C, with ϵ ∈ {±1}. The set of neighbours of this vertex in
G is (Sb)−ϵgbϵ. Since this set of neighbours contains C0 and has cardinality |S|, we conclude that
|C0| ≤ |S|.

Choose j ∈ {−1, 0, 1}, such that |Cj | is maximal. Since at most k of the sets C−1, C0, C1 are
nonempty, and

|Ci| ≤ |Cj | ≤ |S| ≤
(
|G| + 1

)
/k,

then we have
|G| ≤ |C| = |C−1| + |C0| + |C1| ≤ k · |Cj | ≤ k · |S| ≤ k ·

(
|G| + 1

)
/k = |G| + 1,

so
|G|
k

≤ |Cj | ≤ |S| ≤ |G|
k

+
1
k
.

Since 1/k < 1, this implies |Cj | = |S| (because the absolute value of the difference of two distinct
integers cannot be less than one). Also, since

|C−1| + |C0| + |C1| = |C| ≥ |G| ≥ k · |Cj | − 1,

we have |Ci| ≥ |Cj | − 1 for all i 6= j. Assume, for the sake of concreteness, that j = 1, so we may
let i = 0.
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Since C is a clique, we know that every element of C1 is an outneighbour of every element of C0.
From the definition of Ŝ, we also know, for each x ∈ C0, that the number of outneighbours of x
in Gb is precisely |S| = |C1|. Hence, we conclude that C1 is the set of all outneighbours of x that
are in Gb; so C1 = Sbx. Since x is an arbitrary element of C0 (and 1G ∈ C0), we conclude that
Sbx = Sb 1G. Since Sb = bS (recall that b commutes with all elements of G), this implies Sx = S,
for all x ∈ C0.

Now Lemma 2.11 tells us that S is a subgroup of G. Therefore S is closed under inverses (i.e.,
S = S−1). This contradicts the first bullet point of Notation 2.3. □

We are now ready to prove Theorem 2.2. For the reader’s convenience, we copy the statement
here.

Theorem 2.2. Assume
• G is a finite group,
•
−→
X = C−→ay(G; S) is a non-DCI Cayley digraph,

• n ≥ 3 and k =

{
2 if n > 3;
3 if n = 3,

• either n > 3 or |S ∪ {1G}| ≤ |G|/3,
• m ≥ 3 and mk 6= |G|,
• A is a group of order m, and
• either −→

X 6∼=
−→
X− or there is an automorphism α of G, such that α(S) = S−1.

Then G × A × Zn is not a CI group.

Proof. We may assume S 6= S−1, for otherwise Cay(G; S) is a non-CI Cayley graph of G, so G is
not a CI group; hence any finite group that contains G is also not a CI group.

Let B = Zn, and recall that Ĝ, Ŝ, and X̂ = Cay(Ĝ; Ŝ±1) are defined in Notation 2.3. We will
show that the Cayley graph X̂ is not a CI graph.

Since −→
X is not DCI, we know from Theorem 2.6 that there is a subgroup M of Aut

−→
X , such that

M is isomorphic to G, and acts sharply transitively on the vertex set V (
−→
X ) = G, but

no element of Aut
−→
X conjugates M to GR.(2.14)

It is easy to see that Aut
−→
X × AR × BR is contained in Aut X̂, so

• M × AR × BR ⊆ Aut X̂, and it is clear that
• this subgroup is isomorphic to Ĝ and acts sharply transitively on G×A×B = Ĝ = V (X̂).

If X̂ is CI, then Theorem 2.6 tells us that some φ ∈ Aut X̂ conjugates M ×AR ×BR to the right
regular representation of Ĝ. We may assume φ(1

Ĝ
) = 1

Ĝ
(by composing φ with a translation).

Also, there is no loss of generality in assuming that |S| ≤
(
|G| + 1

)
/2, because we can replace S

with its (almost) complement (G ∖ S) ∪ {1G}. (Recall that Assumption 2.7 requires us to keep 1G

in S.) Then the hypotheses of Lemma 2.12 are satisfied, so we conclude that the hypotheses of
Proposition 2.9 are satisfied. Hence, the restriction of φ to G is either an automorphism of −→X or
an isomorphism from −→

X to −→
X−.

Since φ conjugates M × AR × BR to ĜR = GR × AR × BR, and we now know that φ(G) = G,
we can conclude that

the restriction φ|G conjugates M to GR.
This contradicts (2.14) if φ|G is an automorphism of −→X .

Therefore, φ|G must be an isomorphism from −→
X to −→

X−. Then −→
X ∼=

−→
X−, so, by assumption,

there is an automorphism α of G, such that α(S) = S−1, so α is an isomorphism from −→
X to −→

X−.
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Also, α normalizes GR (since α is a group automorphism). Then the composition α ◦ φ|G is an
automorphism of −→X that conjugates M to GR. This is again a contradiction to (2.14). □
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