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Abstract. We prove that any circulant graph of order n with
connection set S such that n and the order of ZZ∗

n(S), the subgroup
of ZZ∗

n that fixes S set-wise, are relatively prime, is also a Cayley
graph on some noncyclic group, and show that the converse does
not hold in general. In the special case of normal circulants whose
order is not divisible by 4, we classify all such graphs that are also
Cayley graphs of a noncyclic group, and show that the noncyclic
group must be metacyclic, generated by two cyclic groups whose
orders are relatively prime. We construct an infinite family of
normal circulants whose order is divisible by 4 that are also normal
Cayley graphs on dihedral and noncyclic abelian groups.

1. Introductory remarks

Much study over recent years has gone into the Cayley Isomorphism
problem. One way of thinking of that problem, is as the question
of when two Cayley graphs, each represented as a Cayley graph on
the same group, can be isomorphic to one another. A significantly less-
studied problem is the question of when two Cayley graphs, represented
as Cayley graphs on two nonisomorphic groups, can be isomorphic to
one another. In fact, the only results on the latter problem involve one
of the groups being cyclic.

Joseph proved in 1995 [1] that a Cayley graph on the cyclic group
ZZp2 can be represented as a Cayley graph on the elementary abelian
group of order p2 (where p is prime), if and only if the graph is a wreath
product. Morris extended this result in [2] to show that a Cayley graph
on the cyclic group ZZpn can be represented as a Cayley graph on some
noncyclic group of order pn, if and only if the graph is a wreath product
(in this case, p must be an odd prime, though one special case of the
result is proven for p = 2).
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In this paper, we first establish a condition that is sufficient in gen-
eral (on any circulant graph) to guarantee that a circulant graph can
also be represented as a Cayley graph on some noncyclic group; how-
ever, we also show that this condition is not necessary. We then restrict
our attention to the case where the order of the circulant graph is not
divisible by 4, require that the cyclic group be normal in the automor-
phism group of the graph, and arrive at a characterisation of when such
graphs can be represented as a Cayley graph on some noncyclic group,
and what the noncyclic group can be.

Throughout this paper graphs are simple and undirected. The sym-
bol ZZn, where n is an integer, will be used to denote the ring of integers
modulo n as well as its (additive) cyclic group of order n.

Given a group G and a symmetric subset S = S−1 of G \ {id},
the Cayley graph of G relative to S has vertex set G and edges of
the form {g, gs}, for all g ∈ G and s ∈ S. A circulant is a Cayley
graph of a cyclic group. More precisley, let n be a positive integer
and S ⊆ Zn \ {0} satisfy i ∈ S if and only if n − i ∈ S. The Cayley
graph Cir(n, S) = Cay(ZZn, S) is called a circulant and the set S a
connection set of Cir(n, S). A Cayley graph on a group G is normal if
its automorphism group contains a regular normal subgroup isomorphic
to G. In particular, a circulant is normal if its automorphism group
contains a cyclic regular normal subgroup. Note that this definition for
a normal Cayley graph has emerged relatively recently in the literature.
The term “normal Cayley graph” has also been used to mean a Cayley
graph Cay(G, S) in which S is a normal subset of G (so that the graph
admits both right and left translation by G; this is not the sense in
which this term is used in this paper, and neither definition implies the
other.

For permutation group notation not defined in this paper, the reader
is referred to [3].

2. The general sufficient condition

Given Cir(n, S), let ZZ∗
n(S) denote the subgroup of ZZ∗

n that fixes S
set-wise. Then we have the following result.

Theorem 2.1. Let X = Cir(n, S), and ZZ∗
n(S) be defined as above.

Then if gcd(n, |ZZ∗
n(S)|) > 1, we have X ∼= Cay(G, S ′) for some G 6∼=

ZZn, and some S ′ ⊆ G \ {id}.
In fact, given any G ∼= ZZp n ZZn/p, where p is any prime divisor of

gcd(n, |ZZ∗
n(S)|), there is some S ′ ⊆ G\{id} such that X ∼= Cay(G, S ′).

Proof. Let p be any prime that divides both |ZZ∗
n(S)| and n. Then

ZZ∗
n(S) has a subgroup of order p, say a ∈ ZZ∗

n(S) with ap ≡ 1( mod n).



NORMAL CIRCULANT GRAPHS WITH NONCYCLIC REGULAR SUBGROUPS3

We claim that

G = {gi,j : gi,j(x) = aix +
ai − 1

a− 1
+ jp, 0 ≤ i < p, 0 ≤ j < n/p}

is a regular subgroup of Aut (X), and is isomorphic to ZZp n ZZn/p.
First, since ZZn ≤ Aut (X), if the map taking x to ax is in Aut (X),

then each g ∈ G will be in Aut (X). Now, if x and y are adjacent in X,
then y = x + s for some s ∈ S, so ay = ax + as and since a ∈ ZZ∗

n(S),
we have as ∈ S, so ay and ax are adjacent in X. It is straightforward
to verify that the composition of any two elements of G is still in G.
Thus, G ≤ Aut (X).

Now we establish that G is regular. Clearly, since there are p choices
for i and n/p choices for j, |G| = n. We show that G0, the set of
elements in G that fix 0, consists only of the identity. Suppose that
g = gi,j ∈ G and g fixes 0. Then ai−1

a−1
= −jp (in ZZn). We will establish

in the next paragraph that 0, a−1
a−1

, a2−1
a−1

, . . . , ap−1
a−1

are all in different

residue classes modulo p. Thus, ai−1
a−1

= −jp forces i = 0, which in turn
forces j = 0 as j < n/p, meaning g is the identity.

To establish our claim that 0, a−1
a−1

, a2−1
a−1

, . . . , ap−1
a−1

are all in different

residue classes modulo p, suppose that ar−1
a−1

≡ at−1
a−1

( mod p), with 0 ≤
r, t ≤ p− 1, and that t > r. Then

ar − 1

a− 1
≡ at − 1

a− 1
( mod p)

⇔ ar−1 + . . . + 1 ≡ at−1 + . . . + a + 1( mod p)

⇔ at−1 + at−2 + . . . + ar ≡ 0( mod p)

⇔ ar(at−r−1 + . . . + a + 1) ≡ 0( mod p)

⇔ at−r − 1

a− 1
≡ 0( mod p)

⇔ t− r ≡ 0( mod p),

a contradiction that establishes our claim, and thus completes the proof
that G is regular.

Finally, we show that G ∼= ZZp n ZZn/p, where ZZn/p is identified with
the set {g0,j | 0 ≤ j < n/p}. We have

g−1
i,j g0,`gi,j(x) = g−1

i,j (gi,j(x) + `p)

= g−1
i,j (aix +

ai − 1

a− 1
+ (j + `)p)

= x + a−i`p

= g0,a−i`(x)
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so ZZn/p / G.
It is easy to verify that G is nonabelian, so we must have G ∼=

ZZp n ZZn/p. �

Corollary 2.2. Any circulant of even order is also a Cayley graph on
the dihedral group of the same order.

Proof. Since multiplication by −1 fixes S set-wise, {−1, 1} ≤ ZZ∗
n(S),

so |ZZ∗
n(S)| must be even. �

We note that the converse of Theorem 2.1 does not hold. The trivial
example of this is the complete graph Kn, n > 2, where gcd(n, φ(n)) =
1 (so n must be odd and square-free). As n and φ(n) are coprime,
the gcd of n with |ZZ∗

n(S)| must also be 1, but Kn can be written as a
Cayley graph on any permutation group of degree n.

From this trivial example, more complicated examples can be built.
For example, let m (odd) have the property that gcd(m, φ(m)) = 1,
and let n = mm′, where m′ is odd. Construct the circulant Cay(n, S),
where the elements of S are 1, −1, and all multiples of m′ (so we have
a number of copies of Km, joined by a perfect matching). Then the
only multipliers that fix S setwise are 1 and −1, and as n is odd, if the
converse of the theorem were true, this graph shouldn’t be Cayley on
any other group. However, it is Cayley on the direct product of ZZm′

with any permutation group of degree m.

3. A construction

We now construct circulants that are also Cayley graphs on more
general metacyclic groups.

For any circulant X = Cir(n, S) we have that S is a union of cosets
of a subgroup of ZZ∗

n, even if that subgroup be {1,−1}. Suppose γ ∈
Aut(X) is such that γ(j) = j+1 for any j, where addition is performed
modulo n.

For any element τ in N(〈γ〉) (that is, the normaliser of 〈γ〉 within
the automorphism group of the graph), there must exist some r in ZZ∗

n

such that τ has the form

τ(x) = xr + τ(0),∀x.

Suppose i ∈ S. Then using the automorphism γ−τ(0)τ , we see that
ri must also be an element of S. So we must have rS = S.

Consider any other function τ ′ on X, defined by τ ′(x) = xr + τ ′(0)
with the same r. If (i, j) ∈ E(X) then j − i ∈ S so since rS = S,
rj− ri ∈ S. Hence (ir + τ ′(0), jr + τ ′(0)) ∈ E(X), and since this is the
image of (i, j) under τ ′, we see that τ ′ must be an automorphism of X.
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So the choice of τ(0) does not affect the structure of the graph. We
will choose to look at the automorphisms defined by τ(0) = 1, since
there must be such an automorphism in any regular subgroup of the
automorphism group of X.

We let H(S) be the largest subgroup of ZZ∗
n such that S may be

written as a union of cosets of H(S), and let r ∈ H(S) have order k,
dividing n. This ensures that τ is an automorphism of X. Notice that
if r = 1 then τ = γ. If some choice for r gives k such that k does not
divide n, then since τx(0) = rx−1

r−1
, the order of τ must be some multiple

of k, which therefore does not divide n. Consequently, such a τ cannot
be part of a regular subgroup of the automorphism group of X. If all
choices for r except r = 1 give ks that do not divide n, then X can
only be a Cayley graph on ZZn. So we may assume that there is some
r ∈ H(S) such that r has order k > 1 and k|n.

Now τ(x) = xr + 1 for any x; so the order of τ is the least value y
such that ry−1

r−1
≡ 0( mod n). Since k divides y, let y = kt. As above, if

we cannot find some r such that kt divides n, X is not a Cayley graph
on any group other than ZZn. So we may assume that there is some
r ∈ H(S) such that r has order k > 1 and kt|n.

We further assume that kt (the order of τ) is actually coprime with
n
kt

. It will be demonstrated in Theorem 4.3 that this condition is nec-
essary for X to be a Cayley graph on some group other than ZZn.

Now we take τ and γkt. Together, these generate a group of order
n; calculations show that the group is transitive so must be regular.
Furthermore, this group is clearly metacyclic.

Theorem 3.1. Let X = Cir(n, S) with S = rS as above, the order
of r in ZZ∗

n being k, the order of τ : x → xr + 1 being kt, kt|n, and
(kt, n

kt
) = 1. Then X is a circulant and a Cayley graph of the metacyclic

group generated by γkt and τ , where τ(x) = xr + 1 for any x.

Proof. The proof is given in the construction above. �

Notice that not all of the graphs constructed above need be normal
circulants. There is nothing in our construction to prevent the graph
from having other automorphisms that do not normalise the cyclic
group. However, some of them are normal circulants, and in the next
section we will show that this construction yields all normal circulants
that are Cayley graphs on any non-cyclic group.
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4. Normal circulants, Cayley graphs on more than one
group

In this section, we show that the graphs constructed in Section 3 of
this paper are the only normal circulant graphs whose order is not divis-
ible by 4, that are also Cayley graphs on some other group. We further
show that the only regular normal subgroups in the automorphism
groups of such graphs are either cyclic, or the metacyclic semidirect
product of two cyclic groups whose orders are coprime. We finish the
section with a construction of an infinite family of normal circulants
whose order is divisible by 4 that are also normal Cayley graphs on
dihedral and noncyclic abelian groups.

We require two lemmata before we can prove our main result.

Lemma 4.1. Let G be a transitive group on a set X of cardinality pi,
where p is an odd prime and i ≥ 2. Let C = 〈γ〉 be a regular cyclic
normal subgroup of G and let R be a second regular subgroup of G. Let
B0, B1, . . . , Bp−1 be the blocks of G of length pi−1 formed by the orbits
of γp, where γBj = Bj+1. If σ ∈ R is such that σB0 = B1, we must
have |〈σ〉| > p.

Proof. Since R is regular on a set of cardinality pi, R is a p-group.
Hence R ≤ P (R), for some Sylow p-subgroup P (R) of G. But since
C is also a p-group and C is normal in G, we must have C in the
intersection of all Sylow p-subgroups of G, so in particular, C ≤ P (R).

Since σ and γ are in the same p-group, and σ−1γB0 = B0, we must
have σ−1γBj = Bj for all j, so that σBj = Bj+1 for all j.

Toward a contradiction, suppose that |〈σ〉| = p. We will show that
in this case, σγσ−1 6∈ 〈γ〉, contradicting the normality of C.

We will actually perform all calculations using the quotient groups
C/〈γp2〉 and R/〈γp2〉. Label the blocks formed by the orbits of γp2

by
B′

0, B
′
1, . . . , B

′
p2−1, where B′

k ⊂ Bj if and only if k ≡ j( mod p), and the

action of γ/〈γp2〉 takes B′
j to B′

j+1. Because σBj = Bj+1, we must have
σB′

j = B′
k where k ≡ j + 1( mod p).

Since σ has order p by assumption, let one p-cycle in the disjoint
cycle decomposition of σ consist of:

(B′
0 B′

1+x1p B′
2+x2p . . . B′

p−1+xp−1p).

Now, σ and γp are two distinct elements of order p acting within a p-
group on p2 blocks, so they must commute and generate an elementary
abelian group on p2 elements. Since σ ∈ R, and R is regular, σ acts
semiregularly on the set {B′

0, . . . , B
′
p2−1}, and since σ commutes with

γp in its action on these blocks, the other cycles in the disjoint cycle
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decomposition of σ have the form:

(B′
kp B′

1+kp+x1p B′
2+kp+x2p . . . B′

p−1+kp+xp−1p).

Now we consider the conjugate σγσ−1, in its action on these blocks.
This is:

(B′
1+x1p B′

2+(x2−x1)p B′
3+(x3−x2)p . . . B′

p−1+(xp−1−xp−2)p B′
−xp−1p B′

1+p+x1p . . . ).

In order for this to be a power of γ, we must have the differences
between any two successive subscripts being equivalent modulo p2.

First we deal with the special case p = 3. In this case, we have

1 + 3(x2 − 2x1) ≡ −3x2 − 2− 3(x2 − x1) ≡ 4 + 3x1 + 3x2( mod 9),

that is,

x2 − 2x1 ≡ 2 + x1 − 2x2 ≡ 1 + x1 + x2( mod 3),

or x2 + x1 ≡ 2 + x1 + x2 ≡ 1 + x1 + x2( mod 3), a clear contradiction
that yields the desired conclusion.

So now we may assume p > 3. Thus, by the condition on differences
between successive subscripts,

1+(x2−2x1)p ≡ 1+(x3−2x2+x1)p ≡ 1+(xj−2xj−1+xj−2)p( mod p2)

whenever 3 ≤ j ≤ p− 1. We show by induction that

xj ≡
j(j − 1)

2
x2 − j(j − 2)x1( mod p)

for 3 ≤ j ≤ p− 1.
When j = 3, we have x3 ≡ 3x2 − 3x1 ≡ 3·2

2
x2 − 3 · 1x1( mod p), as

desired. When j = 4, we have x4 ≡ 2x3 − x2 + x2 − 2x1 ≡ 6x2 − 6x1 −
2x1 ≡ 4·3

2
x2 − 4 · 2x1( mod p), again as desired. These two cases form

the basis for induction.
In general,

xj ≡ 2xj−1 − xj−2 + x2 − 2x1

≡ 2(
(j − 1)(j − 2)

2
x2 − (j − 1)(j − 3)x1)

−(j − 2)(j − 3)

2
x2 + (j − 2)(j − 4)x1 + x2 − 2x1

≡ j(j − 1)

2
x2 − j(j − 2)x1( mod p).

This completes the induction.
We also have:

1 + (x2 − 2x1)p ≡ 1 + p + x1p + xp−1p( mod p2).
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Thus,

x2 − 2x1 ≡ 1 + x1 + xp−1( mod p).

By our induction, we then have

x2 − 2x1 ≡ 1 + x1 +
(p− 1)(p− 2)

2
x2 − (p− 1)(p− 3)x1( mod p)

≡ 1 + x1 + x2 − 3x1

≡ 1 + x2 − 2x1( mod p).

This is the desired contradiction, and we may therefore conclude |〈σ〉| 6=
p, as desired. �

Lemma 4.2. Suppose that V is a set of cardinality n, and C = 〈γ〉 acts
cyclically with order n on V . Further suppose that R is a group that
acts regularly on V , normalises C, and contains semiregular elements
σ of order s and τ of order t where s and t = pj are coprime, p prime.
Also, τ normalises σ. Assume that σ = σ1σ2 . . . σk where |σi| = si = pei

i

and every pi is a distinct prime. If σi does not commute with γ for any
i, then τ commutes with σ.

Proof. There exist integers ci such that τσ−1
i τ−1 = σ−ci

i , with ct
i ≡

1( mod si). We also have σ−1
i γσi = γxi , xsi

i ≡ 1( mod n) and τ−1γτ =
γy, with yt ≡ 1( mod n).

Suppose that ci 6≡ 1( mod si), that is, σi and τ do not commute. Then
τσ−1

i τ−1γτσiτ
−1 = τσ−1

i γyσiτ
−1 = τγyxiτ−1 = γxi , but we also have

this being σ−ci
i γσci

i = γx
ci
i . Hence, xci

i ≡ xi( mod n). Together with
xsi

i ≡ 1( mod n) and assuming xi 6= 1 since σi does not commute with
γ, this forces ci − 1 ≡ kpzi

i ( mod n) for some k with pi and k coprime
(note that k 6= 0, by the supposition that began this paragraph). Notice
that zi < ei.

Now, since ct
i ≡ 1( mod si), we have (kpzi

i + 1)t ≡ 1( mod si), so
1 + t(kpzi

i ) + ... + t(kpzi
i )t−1 + (kpzi

i )t ≡ 1( mod si). We subtract 1 from
both sides and divide through by pzi

i to get:

tk +
t(t− 1)

2
k2pzi

i + · · ·+ ktp
(t−1)zi

i ≡ 0( mod pei−zi
i ).

Since ei− zi ≥ 1, we must have tk ≡ 0( mod pi), contradicting previous
assumptions.

So for every i, ci ≡ 1( mod si), that is, σi and τ commute, meaning
that σ and τ commute. �

Theorem 4.3. Let X be a normal circulant graph of order n, n not
divisible by 4, which is also a Cayley graph on another (noncyclic)
group R. Then X is in the family of graphs constructed in Section 3
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of this paper, and R is metacyclic, generated by two cyclic subgroups
whose orders are relatively prime.

Proof. Let C be the normal regular cyclic group in G = Aut X, gen-
erated by γ. We may assume that V (X) = ZZn and that γ maps i to
i + 1. Let R be another (noncyclic) regular subgroup in G.

Let K0 be the subgroup of C of order qe1
1 . . . qex

x generated by the
union of all subgroups of R ∩ C of order py, where p is prime and py

is the largest power of p that divides n. That is, K0 is the largest Hall
subgroup of C that is contained in R ∩C. It may be that K0 = 1, but
certainly K0 is cyclic since it is a subgroup of C. Let n′ = n/(qe1

1 . . . qex
x ),

so n′ is coprime with q1, . . . , qx.
Let n′ = p1p2 . . . pk, where p1, . . . , pk are all prime and in non-

ascending order (pi ≥ pi+1). Let Bi be the complete block system
generated by the orbits of 〈γpi+1pi+2...pk〉, and B0 the complete block
system whose blocks are the orbits of K0. Let θi : G → G/Bi, and let
Ki = Kerθi.

We begin by showing inductively that R/(R ∩Ki) is regular on the
blocks of Bi for every i. For the base case i = 0, this is clearly true.
For i > 0, we will prove this by using the induction hypothesis to prove
the additional result that (R∩Ki)/(R∩Ki−1) = (C ∩Ki)/(C ∩Ki−1).
Inductively, we assume that R/(R ∩ Ki−1) is regular. We know that
(C ∩ Ki)/(C ∩ Ki−1) ∼= ZZpi

is generated by γpi+1...pk (where the bar
indicates the action of this element on the blocks of Bi−1). Showing
that γpi+1...pk ≤ R/(R ∩Ki−1) will complete the induction, because of
the regularity of R/(R ∩Ki−1) and of R.

Suppose that (C ∩ Ki)/(C ∩ Ki−1) 6≤ (R ∩ Ki)/(R ∩ Ki−1), that is
R/(R ∩Ki−1)∩ (C ∩Ki)/(C ∩Ki−1) = 1. For B ∈ Bi take the setwise
stabiliser R/(R∩Ki−1)B = R/(R∩Ki−1)∩G/(Ki−1)B of B in R/(R∩
Ki−1). The regularity of R/(R∩Ki−1) implies that |R/(R∩Ki−1)B| =
pi. Let q be any prime dividing pi+1 . . . pk and different from pi (if there
is one). Consider the block system in X/Bi−1 arising from the group
〈γq〉, of index q in C. Since q < pi, it follows that R/(R∩Ki−1)B fixes
each of of these blocks setwise. Doing this for all primes different from
pi, and subdividing the blocks in each case, we end up with a block
system with blocks of cardinality pj

i , for some j, where pj
i is the largest

power of pi dividing n
p1...pi−1

; with all of these blocks fixed setwise by

R/(R ∩ Ki−1)B. Now if j = 1, these blocks coincide with the blocks
of Bi, and so the semiregularity of R/(R ∩ Ki−1)B and the normality
of (C ∩Ki)/(C ∩Ki−1) forces R/(R ∩Ki−1)B = (C ∩Ki)/(C ∩Ki−1).
This yields the desired conclusion to the induction in this case.
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So assume now that j ≥ 2. Because n is not divisible by 4, we may
assume pi > 2. We let pl

i be the largest size of successive blocks “inside”
the blocks of length pj

i , with the property that R/(R ∩Ki−1)B moves
pi of them in a cycle. (In other words, blocks of length pl+1

i are fixed
by R/(R ∩Ki−1)B.) Take a block U of length pl+1

i which is the union
of pi of these blocks of length pl

i. Then U admits a cyclic action of a
corresponding subgroup of C/(C∩Ki−1), generated by the appropriate
power of γ. Furthermore we have the action of R/(R ∩Ki−1)B which
decomposes U into pl

i cycles of length pi. The corresponding element of
order pi does not normalise the pl+1

i -cycle (from C/(C ∩Ki−1)). This
follows by Lemma 4.1.

This has shown that we must have R/(R∩Ki) regular on the blocks of
Bi for all i, and furthermore (R∩Ki+1)/(R∩Ki) = (C∩Ki+1)/(C∩Ki)
for all i.

Now we show that if pi = pi+j > 2, then (R ∩ Ki+j)/(R ∩ Ki−1) is
cyclic. (Certainly if pk = 2 then (R∩Kk)/(R∩Kk−1) is cyclic of order
2, as it acts on just 2 elements.) Toward a contradiction, suppose that
(R∩Ki+j′)/(R∩Ki) is cyclic but (R∩Ki+j′+1)/(R∩Ki) is not, where
j′ < j. Notice that we must have j′ ≥ 1. Then (R ∩ Ki+j′+1)/(R ∩
Ki+j′−1) contains an element of order p that permutes the blocks of
Bi+j′ , as well as the element of order p that fixes each block of Bi+j′

while permuting the blocks of Bi+j′−1. These two elements contradict
Lemma 4.1. So we have the desired conclusion.

Let q1, . . . qk′ be the distinct primes in the prime factorisation of n′,

in descending order, with n′ = qe1
1 qe2−e1

2 . . . q
ek′−ek′−1

k′ .
We show by induction that (R ∩ Kei

)/(R ∩ K0) is cyclic for every
i. It is clear from the argument above that (R ∩ Ke1)/(R ∩ K0) is
cyclic. Inductively, we assume that (R ∩Kei−1

)/(R ∩K0) is cyclic. So
R∩Kei−1

contains an element σ such that σ (indicating the action of σ
on the blocks of B0) generates the group (R∩Kei−1

)/(R∩K0). By the
construction of K0, we have n/n′ is coprime with q1, . . . , qi−1, so we can
take a power of σ if necessary to ensure that σ has order qe1

1 . . . q
ei−1

i−1 .
Now, (R ∩ Kei

)/(R ∩ Kei−1
) is cyclic of order qei

i , so we can similarly
find an element τ in R such that τ (indicating the action of τ on the
blocks of Bei−1

) generates (R ∩ Kei
)/(R ∩ Kei−1

) and τ has order qei
i .

Now we use Lemma 4.2. By the construction of K0, none of the σi in
the lemma can commute with γ (otherwise they would be in K0, since
〈σi, γ〉 is a transitive and abelian group, and hence regular, so equal to
〈γ〉).

Furthermore, if τ does not normalise σ, we can reject it and give the
name τ instead to one of its conjugates with the same qualities that we
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required of τ , that does normalise σ, as described in what follows. Since
〈σ, K0〉 = R∩Kei−1

is normal in R, it follows that τ does normalise this
group. Furthermore, since 〈σ〉 is a Hall subgroup of 〈σ, K0〉 (because
the orders of σ and K0 are coprime), and any two Hall subgroups of
〈σ, K0〉 are conjugate in 〈σ, K0〉, we must have τ−1στ = φ−1σφ for
some φ ∈ 〈σ, K0〉. The normaliser of 〈σ〉 in 〈σ, K0〉 has index |K0|,
so the number of Hall subgroups of 〈σ, K0〉, conjugate to 〈σ〉, must
divide |K0|. Since τ has order qei

i , all orbits of Hall subgroups under
conjugation by τ must have length some power of qi. Since qi and |K0|
are coprime, there must be some of these Hall subgroups that are fixed
setwise under conjugation by τ . If conjugation by τ fixes the subgroup
generated by φ−1σφ, then conjugation by φτφ−1 fixes the subgroup
generated by σ. Hence, as claimed, we can choose a τ with all of the
qualities required in our original choice (qualities that are preserved
under conjugation by φ), that also normalises σ.

So we conclude that σ and τ commute. Since the orders of σ and
τ are coprime, 〈στ〉 (indicating the action on blocks of B0) generates
(R ∩Kei

)/(R ∩K0), the desired inductive conclusion.
Hence, R/(R∩K0) is cyclic, R∩K0 is cyclic, and R is not cyclic. Fur-

thermore, the element στ in R generated in the final step of the above
induction has order n′ and normalises R ∩K0. Thus, R is metacyclic.
Since R contains an element τ ′ such that τ ′(0) = 1, and τ ′ normalises
〈γ〉, and τ ′ must permute the orbits of K0 cyclically, we conclude that
X is in the family of graphs we constructed in Section 3 of this paper,
concluding the proof. �

It is worth noting that if 4 divides the order of the graph, the con-
clusion of this theorem is not true; on the contrary, many metacyclic
groups that are not generated by cyclic subgroups whose orders are
relatively prime may be regular subgroups of the automorphism group
of the graph; in fact, they may even be normal regular subgroups of
the automorphism group of the graph, as demonstrated in the following
construction.

Let n ≥ 5 be an integer and let X(4n) denote the circulant Cir(4n, S)
where S = {1, 2, 2n−1, 2n+1, 4n−2, 4n−1}. We show that X = X(4n)
is a normal Cayley graph relative to a cyclic, a dihedral and a noncyclic
abelian group isomorphic to ZZ2n × ZZ2. To this end we first compute
the automorphism group G = Aut X.

Clearly the permutation γ mapping according to the rule γ : i →
i+1, for each i ∈ ZZ4n and the permutation τ mapping according to the
rule τ : i → −i for each i ∈ ZZ4n are automorphisms of X. In addition,
it may be seen that the permutation α which fixes all even elements of
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ZZ4n and maps an odd i to 2n + i is also an automorphism of X. In
fact, we claim that G = 〈γ, τ, α〉. To see this it suffices to check that
the identity is the only automorphism fixing simultaneously 0 and 1,
in other words, it suffices to see that the action of the stabilizer G0 on
the set of odd neighbors of 0 is faithful and regular. We omit the proof
of this fact. (Also, note that the automorphism τα = ατ interchanges
i and −i for i even and interchanges i and 2n− i for i odd.)

We now identify the three regular subgroups inside G. They are
the cyclic group C = 〈γ〉, the dihedral group D = 〈γ2, τγ〉, and the
nocyclic abelian group 〈γ2, αγn〉 which is isomorphic to ZZ2n × ZZ2.

Observe that αγα = γ2n+1, so C is clearly normal in G.
To see that D is normal, note first that 〈γ2〉 is a normal subgroup

in G. Moreover, τ(τγ)τ = γτ = τγ−1 = (τγ)γ2 ∈ D. Next, α(τγ)α =
ταγα = τγ2n+1 = (τγ)γ2n ∈ D. Finally, γ−1(τγ)γ = τγ3 = (τγ)γ2 ∈
D.

As for the normality of A, we check the conjugates of αγn. First,
we have γ−1(αγn)γ = αγ2n−1γnγ = αγ3n = αγnγ2n ∈ A. Second,
τ(αγn)τ = ατγnτ = αγ−1 = αγnγ2n ∈ A. And finally, α(αγn)α =

γnα = αγn(2n+1) = αγnγ2n2 ∈ A.
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