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ABSTRACT. A finite group R is a DCI-group if, whenever S and T are subsets
of R with the Cayley graphs Cay(R, S) and Cay(R,T') isomorphic, there exists
an automorphism ¢ of R with S¥ =1T.

The classification of DCI-groups is an open problem in the theory of Cay-
ley graphs and is closely related to the isomorphism problem for graphs. This
paper is a contribution towards this classification, as we show that every di-
hedral group of order 6p, with p > 5 prime, is a DCI-group. This corrects and
completes the proof of |5, Theorem 1.1] as observed by the reviewer [3].

1. INTRODUCTION

Let R be a finite group and let S be a subset of R. The Cayley digraph of
R with connection set S, denoted Cay(R,S), is the digraph with vertex set R
and with (z,y) being an arc if and only if 2y~ € S. Now, Cay(R,S) is said to
be a Cayley isomorphic digraph, or DCI-graph for short, if whenever Cay(R,S)
is isomorphic to Cay(R,T), there exists an automorphism ¢ of R with S® = T.
Clearly, Cay(R, S) = Cay(R, S¥) for every ¢ € Aut(R) and hence, loosely speaking,
for a DCI-graph Cay(R, S) deciding when a Cayley digraph over R is isomorphic to
Cay(R,S) is theoretically and algorithmically elementary; that is, the solving set
for Cay(R,S) is reduced to simply Aut(R) (for the definition of solving set see for
example [6] [7]). The group R is a DCI-group if Cay(R, S) is a DCI-graph for every
subset S of R. Moreover, R is a Cl-group if Cay(R,S) is a DCI-graph for every
inverse-closed subset S of R. Thus every DCI-group is a Cl-group.

Throughout this paper, p will always denote a prime number.

In order to obtain new and severe constrains on the structure of a DCI-group,
the authors of [5] considered the problem of determining which Frobenius groups R
of order 6p are DCI-groups. They were in fact interested in the more specific case
of Frobenius groups of order 6p with Frobenius kernel of order p; this is clear from
their analysis and their proofs, but is not specified in the statement of [5, Theo-
rem 1.1]. The proof of their theorem as stated is therefore incomplete, as observed
by Conder [3]. The aim of this paper is to fix this discrepancy by completing the
analysis of which Frobenius groups of order 6p are DCI-groups, hence completing
the proof of [5, Theorem 1.1] as the authors stated it.
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An elementary computation yields that if R is a Frobenius group of order 6p
with Frobenius kernel whose order is not p, then R is isomorphic to the alter-
nating group on four symbols Alt(4) (and p = 2), or to the quasidihedral group
((1,2,3),(4,5,6),(2,3)(5,6)) (and p = 3), or to the dihedral group of order 6p.
A routine computer-assisted computation shows that Alt(4) is a DCI-group and
((1,2,3),(4,5,6),(2,3)(5,6)) is not a DCI-group. Moreover, as is observed in [3],
((1,2,3),(4,5,6),(2,3)(5,6)) is a Cl-group. Therefore in order to complete the
analysis of Frobenius groups of order 6p, we only need to consider dihedral groups
of order 6p.

Theorem 1.1. Let p be a prime number and let R be the dihedral group of order
6p. Then R is a DCI-group if and only if p > 5, and R is a Cl-group if and only
if p> 3.

The structure of the paper is straightforward. In Section [2] we consider the case
p < 5. In Section [3] we provide some preliminary definitions and our main tool. In
Section 4| we introduce some notation and we divide the proof of Theorem into
four cases, which we then study in turn in Sections

2. SMALL GROUPS: p <5

Lemma 2.1. Let p be a prime with p <5 and let R be the dihedral group of order
6p. Then R is a DCI-group if and only if p =5, and R is a Cl-group if and only
if p# 2.

Proof. The proof follows from a computer computation with the invaluable help
of the algebra system magma [2]. Let R, = (a,b | a®® = b? = (ab)? = 1) be the
dihedral group of order 6p. Here we simply prove that R, is not a Cl-group and
that Rj3 is not a DCI-group.

For p = 2, the graphs Cay(Ra, {b,a%}) and Cay(Ra, {b, a®b}) are both isomorphic
to the disjoint union of three cycles of length 4. As a? is the only central involution
of Ry, there exists no automorphism of Ry mapping {b,a®} to {b,ab}.

For p = 3, the digraphs Cay(Rs3, {a,a*,a% a"}) and Cay(Rs3, {a?,a°,a®,a®}) are
isomorphic and a computation shows that there exists no automorphism of Rj
mapping {a, a*, a% a"} to {a?,a’,a% a®}. O

Given that the (di)graphs we described in this proof are not connected, it is
worth observing that a group R is a Cl-group if and only if every pair of connected
isomorphic Cayley graphs on R are isomorphic via an automorphism of R. This
is because the complement of a disconnected graph is always connected, and the
property of being a Cl-graph is preserved under taking complements. A similar
observation also applies to DCI-groups.

In view of Lemma for the rest of this paper we may assume that p > 7.

3. SOME BASIC RESULTS

Babai [I] has proved a very useful criterion for determining when a finite group
R is a DCI-group and, more generally, when Cay(R, S) is a DCI-graph.

Lemma 3.1. Let R be a finite group and let S be a subset of R. Then Cay(R,S)
is a DCI-graph if and only if Aut(Cay(R,S)) contains a unique conjugacy class of
reqular subgroups isomorphic to R.
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Let Q be a finite set and let G be a permutation group on ). The 2-closure of
G, denoted G, is the set

{7 € Sym(Q) | V(w,w') € Q2, there exists g, € G with (w,w’)™ = (w,w’)%="},

where Sym(Q) is the symmetric group on Q. Observe that in the definition of G(),
the element g, of G may depend upon the ordered pair (w,w’). The group G is
said to be 2-closed if G = G,

It is easy to verify that G(? is a subgroup of Sym(Q) containing G and, in fact,
G®@ is the smallest (with respect to inclusion) subgroup of Sym () preserving every
orbital digraph of G. It follows that the automorphism group of a graph is 2-closed.
Therefore Lemma [3.1] immediately yields:

Lemma 3.2. Let R be a finite group and let R, be the right regular representation
of R in Sym(R). If, for every m € Sym(R), the groups R, and RT are conjugate in
(R,, R"Y? | then R is a DCI-group.

Proof. Let S be a subset of R, and set I' := Cay(R, S) and A := Aut(T"). Observe
that R, < A and that A is 2-closed. Let T be a regular subgroup of A isomorphic
to R. Since (R,,T) < A, we get (R,,T)?) < A?) = 4.

Every regular subgroup of Sym(R) isomorphic to R is conjugate to R, and hence
T = R~ for some m € Sym(R). By hypothesis, R, and T are conjugate in (R,., T)(?)
and so are conjugate in A. In particular, A contains a unique conjugacy class of
regular subgroups isomorphic to R and Lemma|3.1| gives that R is a DCI-group. O

We will use this formulation of Babai’s criterion without comment in our proof
of Theorem [[11

4. NOTATION AND PRELIMINARY REDUCTIONS

Multiplication of permutations is on the right, so o7 is calculated by first apply-
ing o, and then 7. For the rest of this paper we let R be the dihedral group of order
6p and we let Q := {1,...,6p}. Using Lemma we may assume that p > 7 in
the proof of Theorem In what follows, we identify R with a regular subgroup
of Sym(2) isomorphic to R, that is, R acts regularly on . Let m € Sym(Q2) and
set G := (R, R™). In view of Lemma Theorem will follow by proving that
R is conjugate to R™ via an element of G(?).

Let R, denote the Sylow p-subgroup of R, let P be a Sylow p-subgroup of G with
R, < P and let T be a Sylow p-subgroup of Sym(2) with P < T. From Sylow’s
theorems, replacing R™ by a suitable G-conjugate, we may assume that R} < P.
Observe that, as p > 7, the group T is elementary abelian of order p®. Since R,
and R} are acting semiregularly, their orbits on { must be equal to the orbits of
T.

Since R, is the unique Sylow p-subgroup of R, we see that R admits a unique
system of imprimitivity C with blocks of size p, namely C consists of the R,-orbits
on 2. Similarly, R™ admits a unique system of imprimitivity with blocks of size
p, namely C™, and the system of imprimitivity C™ consists of the RJ-orbits on €.
Since each of these is equal to the orbits of T on 2, we have C = C™, and C is R-
and R™-invariant. As G = (R, R™), we get that C is also G-invariant. Therefore, G
is conjugate to a subgroup of Sym(p) wr Sym(6). Similarly, since C is m-invariant,
7 is conjugate to an element in Sym(p) wr Sym(6).
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We can use this structure to decompose the set 2 as A x A with |A] = p and
|A| = 6. We identify Q with A x A, A with {1,...,p} and A with {1,...,6}.
Write W := Sym(A) wr Sym(A) and B := Sym(A)® the base group of W. Then for
o € Sym(A), (y1,...,96) € B, and (5,\) € A x A, we have

(3,\)7 = (6,A%) and (6, \)r-¥0) = (592 \),
and W = {o(y1,...,v6) | 0 € Sym(A), (y1,-..,ys) € B}. Observe that under this
identification the system of imprimitivity C is {Aq,...,Ag} where Ay = A x {A}
for every A € A.

Let K be the kernel of the action of G on C, that is, K = BNG. Clearly, RK/K
and R™K/K are regular subgroups of Sym(A) isomorphic to Sym(3). A direct
inspection in Sym(A) shows that if A and B are regular subgroups of Sym(A)
isomorphic to Sym(3), then either B is conjugate to A via an element of (A, B), or
(A, B) = A x B. Summing up and applying this observation to G/K, we obtain
the following reduction.

Reduction 4.1. We have
GL<W and weW,

and (replacing G by a suitable W-conjugate) either
G _RK_RK

(1) K K K = <(172a3)(43576)7(134)(276)(375»3
RK/K - <(17273)(4v5a6)7(134)(2a6)(375)7
RWK/K = <(1,2,3)(4,6,5),(1,4)(2,5)(3,6)>.

A moment’s thought gives that in case (1) we may assume that 7 € B and in
case (2)) we may assume that 7 = (5,6)y with y € B. Write 7 := o(y1,...,¥s)
with 0 = 1 or ¢ = (5,6) depending on whether case or is satisfied. Set

y:= (Y1, Y6)-
Let ¢ be the cycle (1,2,...,p) of length p of Sym(A). Set
r1 = (¢,¢ ¢ c,0,0), 72 = (1,2,3)(4,5,6) and 73 := (1,4)(2,6)(3, 5).
Replacing G by a suitable W-conjugate, we may assume that
(3) R, = (r1) and R = (ry,72,73).

Clearlyu NSym(A)(<C>) = AGLl(p) and hence NSym(A)(<C>) = <C7 OZ> = <C> X <OZ>,
where « is a permutation fixing 1 and acting by conjugation on (c) as an automor-
phism of order p — 1.

As R, < T, we see that T is generated by ci,c2,...,cs where

c1:=(c1,1,1,1,1),¢c0 := (1,¢,1,1,1,1),...,¢c6 := (1,1,1,1,1, ¢).

7 ) ) ) )

Since R; < T and since R; is semiregular, we obtain

R = (e, e, efs, e, o5, o)),

with ¢; = 1 and for some {s,...,0s € {1,...,p —1}.
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Now r{ = (c¥*,¢¥2,c¥3, ¢, ¢¥%, c¥) € R} and hence there exists £ € {1,...,p—1}
with ¢ = %, for every A € A. Thus yx € Ngym(a)((€)) = (¢, @) and y) = c*>a®>
for some uy € {0,...,p— 1} and vy € {0,...,p — 2}. Tt follows that

(4) T = o(ca”, v, " a0) € (¢, a) wr Sym(A),

G < (¢,a)wrSym(A).

Now . € R < G, and hence replacing 7 by r; “*7, we may assume that u; = 0. Fur-
thermore, (o, a, o, o, a, @) € Ngym(o)(R), and hence replacing 7 by («, ..., a) "',
we may assume that v; = 0.

As (e, a) wr Sym(A) has a normal Sylow p-subgroup, we get P <G and K/P is
isomorphic to a subgroup of (&) x {a) x (@) x (@) x {a) x {a).

Next we define an equivalence relation = on Q2. We say that w =’ if P, = P,,r.
Since P < G, we see that = is G-invariant. Moreover, since P is abelian, we get
that P acts regularly on each of its orbits and hence w = w’ for every w and w’
in the same P-orbit. This shows that = defines a system of imprimitivity £ for G
coarser than C. In particular, = consists of either 1, 2, 3 or 6 equivalence classes.

There is an equivalent definition of =. Given w € Ay and W’ € A/, we have
w = w’ whenever, for every p € P, p|a, = 1if and only if p|a,, = 1 (or equivalently,
pla, is a p-cycle if and only if p|a,, is a p-cycle).

We will use the following lemma repeatedly.

Lemma 4.2. For every p € K and for every E € £, the permutation pg : Q — ,
fizing Q\ E pointwise and acting on E as p does, lies in G2,

Proof. This is Lemma 2 in [4]. (We remark that [4, Lemma 2] is only stated for
graphs, but the result holds for each orbital digraph of G, and hence for G(?.) O

With all of this notation at our disposal we are ready to prove Theorem with
a case analysis depending on the number of =-equivalence classes.

5. CASE I: = HAS ONLY ONE EQUIVALENCE CLASS

Here, P, = P, for every w,w’ € Q, hence P acts semiregularly on Q and
|P| = p. It follows that P = R, = Rj. In particular, {; = --- = g = 1 and
vy = -+ = vg = 0. Therefore 7 = o (c"*, %2, ¢4, ¢4, "5, c*6) with u; = 0.

Suppose that o = 1. Since 79,75 € G, we have

7"2_1(T2)7T —_ (C*u3+u1 , C*u1+u2’ C*u2+u3yc*u6+u4’ c*u4+u57C*U5+u6) cP
and hence —usz+u; = —u1+us = —uUs+us = —Ug+us = —Ug+Uus = —uUs+ug. This
gives u; = ug = uz = 0 and uy = us = ug. Write u := uy. A similar computation
gives
rgl(rg)” =(c", " T M et et) e P

Thus u = —u and hence u = 0. Therefore 7 = 1 and R™ = R. It follows that R is
conjugate to R™ via the identity element of G(2).

Suppose that o = (5,6). Since 79,75 € G, we have
T;l(TQ)W _ (4’ 57 6)(C_u3+u1,C_u1+u2,c_u2+u3, C—us-i-uzL7 C—us-‘rus’ C—u4+u5) cqG

and by taking the 3" power we get (3(-ustu1) ed(-uwituz) (3(-uatus) 1 1) ¢ P.
Thus 3(—us + u1) = 3(—u1 + uz) = 3(—uz + uz) = 0 and since u; = 0, we have
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up = ug = ugz = 0. Moreover
ro(ra)™ = (1,3,2)(1,1,1,¢7uetua cmuetus muatie) ¢ @

and by taking the 3" power we get (1,1, 1, c3(-ustua) (3(-ustus) o3(—uvatue)y ¢ p,
Thus 3(—us + ug) = 3(—ug + us) = 3(—ug + ug) = 0 and hence uy = uy = ug.
Write u := uy. Now

r;l(rg)” =(2,3)(5,6)(c ", c " e M et M) e

and by taking the 2°¢ power we get (c72%, ¢~ 2%, ¢~ 2%, %, ¢, ) € P. Thus
2u = —2u, and hence u = 0. It follows that 7 = o = (5,6) and

G =(R,R™) = (r1,(1,2,3)(4,5,6),(1,4)(2,6)(3,5),(1,2,3)(4,6,5),(1,4)(2,5)(3,6)).

We claim that 7 € G, from which the proof of this case follows. First observe
that (1,2,3)(4,5,6)(1,2,3)(4,6,5) = (1,3,2) € G. Also 5] = (2,3)(5,6) €
G, and hence (conjugating by the elements of ((1,3,2))), we see that (1,2)(5,6)
and (1,3)(5,6) belong to G. Next, let w = (§,A) and ' = (&', N) be in Q. If
A A ¢ {5,6}, then (w,w)™ = (w,w)%« with g, = 1. If A, € {5,6}, then
(w,w)™ = (w,w)%«" with g, = (1,2)(5,6). Finally, suppose that only one of
AN lies in {5,6}. Let A” be the element of {\, N} N {1,2,3,4} and let g,
be in {(1,2)(5,6),(1,3)(5,6),(2,3)(5,6)} fixing the block Ay~ pointwise. Then
(W, W™ = (w,w)dwe’ .

6. CASE II: = HAS SIX EQUIVALENCE CLASSES

Since = has six equivalence classes, for every two distinct A, \' € A, there exists
an element ¢ € P with ¢ fixing A pointwise and acting as the cycle ¢ on Ay/. From
this it follows that P = T. Next, from T < G®) it follows that if v : Q@ — Q is
a permutation with the property that for each A € A, we have

e Al =A, and
® v|a, = gxla, for some g € G fixing Ay setwise,
then v € G,

As T = P®? < G®), replacing 7 by ¢~ ' for a suitable ¢ € T, we may assume
that 1 = ug = --- = ug = 0.

For 2 < A <6, let g) be the element of R that maps (1,1) to (1,A) (so g2 = 7o,
etc.). Define v: Q — Q by v|a, = id|a,, and for 2 < X\ <6,

Ya, = ((gga)flgx) Ay -

By the observations we made in the first paragraph of this case, v € G®). Careful
computations show that (r{)” = r;. Thus, (R})” = R,. We now see that after
conjugating R™ by v we are in Case I and can complete the proof as before.

7. CASE III: = HAS TWO EQUIVALENCE CLASSES

The =-equivalence classes are blocks of imprimitivity for G of size 3p and are a
union of P-orbits. The only system of imprimitivity for G/K with blocks of size 3 is
{{1,2,3},{4,5,6}}. Therefore the two =-equivalence classes are A; UAyUA3 and
AsUA5UAg. By Lemmaapplied top=r1, (c,c,c,1,1,1),(1,1,1,¢,¢,¢) € GO,

Replacing 7 by ¢~ ' for a suitable g € G®), we may assume that ug = 0. As
Ry < P, we get Uy =€y = ¥3 and {4 = l5 = Lg. It follows that v1 = v = v3 =0
and vy = v = vg. Write 8 := a¥4. Therefore m = o (1, c¥2, c"2, 8, c*s 3, c¥6 ).
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Suppose that ¢ = 1. We have
ryt(ra)™ = (7", ¢z e et gl e g B e B, BT e T e B) € P

and hence —uz = ugy = —ug +wus and —ug = us = —us +ug. This gives us = uz =0
and us = ug = 0, that is, 7 = (1,1,1, 5,3, 8). A similar computation gives

ryt(ra)" = (871,671,871 8.8,8) € K.

Applying Lemmawith E = AJUAUAg and p := r3* (r3)™, we get (1,1,1, 8,3, 8) €
G® | that is, 7 € G, from which the proof follows.
Suppose that o = (5,6). Since 79,77 € G, we have

ry (ra)™ = (4,5,6)(c1e, ¢, et gl g g T g g ce B) € G

and by taking the 3' power we get (¢~3Us, U2, 3(-u2tus) 1 1.1) € P. Thus
—3ug = 3ug = 3(—usg + u3) and hence u; = us = ug = 0. Moreover

ra(ra)™ = (1,3,2)(1,1,1,87 e, B e et us g g e B) € G

and by taking the 34 power we get (1,1,1, 7 c 3% g, B~ 13 (~ustus) g g=1c3us By ¢
P. Thus —3us = 3(—ug + us5) = 3ug and hence uy = us = ug = 0. Thus 7 =
(5,6)(1,1,1,3, 8, 3) and 75 'r5 = (4,6,5) € G. This gives ((1,2,3), (4,5,6)) < G.
Now
r3t(rs)™ = (2,3)(5,6)(8 1,871,871, 8,8,8) € G.
Call this element g;. As (1,2,3) € G, we have

Go =gy = (1L,3)E.6) (B A6 B.5) €
and

. A(1 3,2)

g3:=g = (L,2)(5.6)(87, 871,87, 8,8,8) € G.

We claim that 7 € G, from which the proof of this case immediately follows.
Let w = (6,\) and o' = (&’,)) be in Q. If \, N € {1,2,3}, then (w,0)™ =
(wy,w' )9« with g = 1. If A, N € {4,5,6}, then (w,w")™ = (w,w')%«" with
Juww = g1. Finally, suppose that only one of A, X\ lies in {1,2,3}. Without loss of
generality we may assume that A € {1,2,3} and M € {4,5,6}. Thus w™ = (5, \)™ =
(6,\) and W'™ = (6", \)™ = (6%, N'(>9)). Since (c) is transitive on A, there exists
x € (c) with 6* = 857", Set Gow = ga(z,2,2,1,1,1)~ and observe that g, € G.
By construction, we have (w,w’)™ = (w,w’)%w«".

8. CASE IV: = HAS THREE EQUIVALENCE CLASS

Observe that the =-equivalence classes are blocks of imprimitivity for GG of size
2p and are union of P-orbits. In case of Reduction the group G/K has
no system of imprimitivity with blocks of size 2 and hence this case cannot arise.
Therefore only case can happen, that is, o = 1.

The group G/K = ((1,2,3)(4,5,6), (1,4)(2,6)(3,5)) has three subgroups of order
2 and hence G/ K has three systems of imprimitivity with blocks of size 2, namely
{{1,4},{2,6},{3,5}}, {{1,5},{2,4},{3,6}} and {{1,6},{2,5},{3,4}}. Without
loss of generality we may assume that the three =-equivalence classes are A; U Ay,
AQ U Ag and Ag U Ar.

Applying Lemma with p ;=7 and with E € {A; U Ay, Ay U Ag, A U A5},
we get

P:={((c,1,1,¢,1,1),(1,¢,1,1,1,¢),(1,1,¢,1,¢,1)) < G®
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Replacing 7 by g~ !m for a suitable g € P, we may assume that us = ug = 0.

Furthermore, as R} < P, we get {; = {4, {5 = lg and {3 = (5. It follows that
v1 = vg4 = 0 and vy = vg and v3 = vs. Write 8 := a2 and ~ := a¥3. Therefore
m=(1,8,7,c", "5y, c'sf).

We have

7“?:1(7”3)7‘— _ (C—u47 ﬁ_lc_UGﬂ, ,_y—lc—ug),y, CU47 ,y—lcuspy’ B—lcu56) cP

and hence —uy4 = uy, —us = us and —ug = ug. Thus uy = us = ug = 0 and
m=(1,8,7,1,7, ). Similarly, we have

ry (r) = (LB, 87 By IB) K.
Call this element g. As A; U A, is a =-equivalence class, v~! = 87! and hence
7= (1,8,8,1,8,8)and g = (871, 3,1,37,,1). Applying Lemmawith pi=g
and E := Ay U As, we get ¢ = (1,3,1,1,8,1) € G®. Thus ¢’ = (¢')? =
(1,1,8,1,1,8) € G® and 7 = ¢'¢" € G®, from which the proof follows.
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