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Abstract12

A Walecki tournament is any tournament that can be formed by choosing13

an orientation for each of the Hamilton cycles in the Walecki decomposition14

of a complete graph on an odd number of vertices. In this paper, we show15

that if some arc in a Walecki tournament on at least 7 vertices lies in ex-16

actly one directed triangle, then there is a vertex of the tournament (the17

vertex typically labelled ∗ in the decomposition) that is fixed under every18

automorphism of the tournament. Furthermore, any isomorphism between19

such Walecki tournaments maps the vertex labelled ∗ in one to the vertex20

labelled ∗ in the other.21

We also show that among Walecki tournaments with a signature of even22

length 2k, of the 22k possible signatures, at least 2k produce tournaments23

that have an arc that lies in a unique directed triangle (and therefore to24

which our result applies).25
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1. Introduction30

Walecki tournaments were introduced by Alspach in his PhD thesis in 1966 [3].31

They are orientations of the complete graph Kn that arise from Walecki’s elegant32

decomposition of Kn into Hamilton cycles, when n is odd.33
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More precisely, given an integer m ≥ 1, take n = 2m and N = 2m + 1. We
identify the vertices of KN with the elements of Zn∪{∗}. Define the permutation

ρ = (0 1 2 · · · n− 1)

and the Hamilton cycle

C0 = [∗, 0, 1,−1, 2,−2, . . . ,m, ∗].

Take C+
0 to be the cycle C0 oriented in the direction we have given, and C−0 to34

be the opposite orientation. For 1 ≤ j ≤ n − 1, define Cj = C0ρ
j , with C+

j and35

C−j defined accordingly. Note that Cj = Cj+m, so in the remainder of the paper36

when we are considering undirected cycles we may take the subscript modulo m,37

but C−j = C+
j+m. For any binary string u ∈ Zm

2 , with entries u0, . . . , um−1, we38

can form a tournament Wu on the vertices of KN by choosing the arcs that are39

in C+
j if uj = 1, and the arcs that are in C−j if uj = 0. For each string u ∈ Zm

2 ,40

this defines a tournament that we call a Walecki tournament. We refer to the41

binary string u as the signature of the tournament.42

The initial motivation for studying Walecki tournaments was a conjecture by43

Kelly that every regular tournament can be decomposed into directed Hamilton44

cycles. Walecki tournaments are examples of regular tournaments that admit45

a particularly symmetric decomposition into directed Hamilton cycles, by con-46

struction.47

Although Walecki tournaments have not been much studied, research on them
has focussed on understanding their automorphisms and isomorphisms. One of
the first observations about isomorphisms of Walecki tournaments arises from
the so-called complementing register shift map acting on the signature of the
tournament. For a binary string u ∈ Zm

2 , define

uR1 = (1− um−1)u0u1 · · ·um−2, and Ri = Ri
1.

That is, the complementing register shift Ri shifts every entry of the binary string48

i positions to the right cyclically, and if that results in the entry wrapping past49

the final entry back to the beginning, then the value of the entry is changed (to50

its complement). Alspach made the following observation in [3]51

Proposition 1 Alspach, [3]. The tournaments Wu and WuRi are isomorphic for52

any integer i.53

This was the first observation suggesting that isomorphisms and automor-
phisms of Walecki tournaments may bear a close relationship to symmetries and
anti-symmetries of the signature. This focus continued in [1, 2] and related un-
published work by Ales. Ales’ work focuses on the situation where there is pe-
riodicity in the signature; that is, Walecki tournaments in which the signature
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can be broken down as the concatenation of some number of copies of either v
or v̄, where v is a shorter binary string and v̄ is the binary string obtained by
replacing every 1 in v with a 0, and every 0 with a 1. Let 1m denote the binary
string with m entries all of which are 1. In [2], the automorphisms of W1m are
completely determined (and therefore, by Theorem 1, so are the automorphisms
of W1mRi for every integer i). The map

σ = (0 1 2 · · · m− 1)(n− 1 n− 2 n− 3 · · · m)

is important in this result and more broadly in automorphisms found in Ales’54

work.55

Theorem 2 Ales, [2], Theorem 3.7. The automorphism group of W1m is as56

follows:57

1. if m = 1, then W1 is a directed cycle of length 3 and its automorphism58

group is C3 = 〈(0 1 ∗)〉;59

2. if m = 2, then W11 lies in the unique isomorphism class of Eulerian orien-60

tations of K5 and its automorphism group is C5 = 〈(0 1 3 2 ∗)〉;61

3. if m ≥ 3 is odd, then the automorphism group of W1m is Cm = 〈σ〉; and62

4. if m ≥ 4 is even, then the automorphism group of W1m is trivial (that is,63

W1m is asymmetric).64

In Ales’ work, and in unpublished work the author undertook with Ales,65

Alspach, and Steve Wilson, it has seemed possible that with a few small excep-66

tions, all automorphisms of Walecki tournaments might arise from the two basic67

permutations: ρ and σ; in fact all of the automorphisms that were found in that68

previous work were powers of ρ or σ, or some power of σ conjugated by some69

power of ρ (again, with the two exceptions listed in Theorem 2, and two other70

small exceptions).71

This idea supported a conjecture that Alspach had made verbally: that again72

with a few small exceptions, every automorphism of a Walecki tournament Wu73

fixes the vertex ∗, and so every isomorphism between Walecki tournaments maps74

the vertex labelled ∗ in one, to the vertex labelled ∗ in the other. Proving this75

conjecture (if it is even true) seems to be the “hard” part of characterising au-76

tomorphisms and isomorphisms for Walecki tournaments. The other two excep-77

tional cases are as follows: W101 has an affine group of order 21 acting transitively78

on its vertices; and the automorphism group of W1011 is isomorphic to C3, fixing79

3 vertices and acting as two disjoint cycles of length 3 on the remaining 6 ver-80

tices. (This last action does fix the vertex ∗, and in fact falls into the situation81

we consider in this paper.)82
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In this paper, we present a class of signatures such that the automorphism83

group of any Walecki tournament with one of these signatures fixes at least three84

of the vertices of the tournament, including the vertex ∗. It may be the case85

that with the exception of W1011, the tournaments with these signatures all have86

trivial automorphism groups; certainly any automorphisms they may have do not87

arise directly from just ρ and σ.88

In Section 2, we consider in some detail ways of understanding the triangles89

that contain a particular arc, and present some elementary results about the90

numbers of triangles that take various forms. In Sections 3, 4, and 5, we consider91

various locations in a Walecki tournament in which an arc may lie, and show92

that in almost all of these locations, any arc we look at must lie in more than93

one directed triangle. In fact, in all cases we conclude that if there is a unique94

directed triangle containing our arc a, then the third vertex of that triangle must95

be ∗; this central result of the paper is pulled together and proved in Section 6. In96

Section 7, we determine a family of signatures that produce Walecki tournament97

that have an arc that lies in a unique directed triangle, and prove that this is the98

case. We conclude the paper with some broad observations and open problems.99

2. Triangle types100

In a tournament, there are two basic types of cycles of length 3 that can appear.101

If the subdigraph induced on the three vertices is regular, we refer to this as a102

directed triangle. If not, then we refer to it as a transitive triangle.103

From the perspective of any arc in the triangle, a directed triangle appears104

the same: the other two arcs form a directed path from the head of the given105

arc to the tail of the given arc. However, in a transitive triangle, each arc has a106

unique role. From the perspective of one arc, both of the other arcs point away,107

to the remaining vertex. We refer to this situation as an “out” triangle. From108

the perspective of a different arc, both of the other arcs point toward this arc,109

from the remaining vertex. We refer to this situation as an “in” triangle. Finally,110

from the perspective of the remaining arc, the other two arcs form a directed111

path from the tail of the given arc to its head; we refer to this situation as a112

“bypass” triangle, adopting this terminology from [4]. In that paper, the arcs113

whose perspective we are considering here are referred to as bypass arcs, on the114

basis that such an arc forms a direct route from its starting vertex to its terminal115

vertex, bypassing the other vertex involved in the directed path of length 2 given116

by the other two arcs of the bypass triangle. Often we use this more intuitive117

description that a is a bypass arc in a particular triangle, rather than saying that118

the triangle is a bypass triangle from the perspective of a.119

We establish some notation for the numbers of triangles of each of these types120
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that contain a given arc. Since this is a key concept of this paper, this notation121

will be used in the statements of most of our results.122

Notation 3. Let Γ be a tournament, and let a be an arc of Γ. Then we will use:123

• i(a) to denote the number of triangles containing a that are “in” triangles124

from the perspective of a;125

• o(a) to denote the number of triangles containing a that are “out” triangles126

from the perspective of a;127

• b(a) to denote the number of triangles that are “bypass” triangles from the128

perspective of a; and129

• d(a) to denote the number of triangles containing a that are directed trian-130

gles from the perspective of a.131

There are some very nice relationships between these parameters in any reg-132

ular tournament.133

Lemma 4. Let Γ be a regular tournament on 2m + 1 vertices, and let a be an134

arc of Γ. Then 0 ≤ i(a) ≤ m− 1, and:135

• b(a) = m− 1− i(a);136

• d(a) = m− i(a); and137

• o(a) = i(a).138

Proof. Suppose that a = (i, j). Then j has m − 1 other inneighbours, each of139

which forms either a “bypass” or “in” triangle from the perspective of a (when140

put together in an induced subdigraph with a). Furthermore, none of the m141

outneighbours of j forms a “bypass” or “in” triangle with a from the perspective142

of a. Thus, i(a) + b(a) = m− 1, so b(a) = m− 1− i(a), and 0 ≤ i(a) ≤ m− 1.143

Similarly, if we consider the m inneighbours of i, each forms either a directed144

or “in” triangle from the perspective of a, and none of the outneighbours of i145

can form a directed or “in” triangle with a from the perspective of a. Thus146

i(a) + d(a) = m, and so d(a) = m− i(a).147

Finally, if we consider the m outneighbours of j, each forms either a directed148

or “out” triangle from the perspective of a, and none of the inneighbours of149

j can form a directed or “out” triangle with a from the perspective of a, so150

o(a) + d(a) = m. Putting this together with the previous conclusion, we see that151

o(a) = i(a).152
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In the remainder of this paper, we will repeatedly need to focus on two153

sorts of directed cycles in the tournaments we study: directed cycles of length 3,154

as considered in this section, and the directed Hamilton cycles C+
i and C−i for155

various values of i. There may be many other directed cycles in a tournament,156

but we ignore all of these. For clarity, whenever we are referring to a directed157

cycle of length 3 we call it a directed triangle. Whenever we refer to a directed158

cycle containing a particular vertex or arc, we mean the directed Hamilton cycle159

C+
i or C−i for some i.160

There are a couple of particularly important consequences of Theorem 4 that161

we state as a corollary for clarity and ease of reference. These arise from noting162

that the formulas for d(a) and b(a) yield d(a) = b(a) + 1.163

Corollary 5. Let Γ be a regular tournament on 2m+ 1 vertices, and let a be an164

arc of Γ. Then d(a) ≥ 1. Furthermore if b(a) ≥ 1, then d(a) ≥ 2.165

In the remainder of this paper, we will show that for certain signature types,166

in the resulting Walecki tournament we can show that for every arc a such that167

d(a) = 1, the third vertex of the directed triangle is ∗. This implies that any168

such arc must be mapped to such an arc by every automorphism of the tourna-169

ment. Furthermore, the unique directed triangle that contains such an arc must170

also be mapped to another such directed triangle by every automorphism of the171

tournament, so the third vertex of such a triangle must be mapped to the third172

vertex of such a triangle. Since the third vertex must be ∗ in both triangles, this173

implies that in these Walecki tournaments, every automorphism fixes ∗.174

3. Arcs that include ∗ or consecutive vertices175

Our goal in this section is to show that if an arc includes the vertex ∗ or lies be-176

tween two consecutive vertices, then it must lie in more than one directed triangle177

(with exceptions for three small tournaments). When we say that two vertices178

are consecutive, we mean that they are identified with consecutive elements of179

Zn.180

Lemma 6. Let a be an arc in a Walecki tournament such that one of the end-181

points of a is ∗. Then d(a) > 1, unless the tournament is the unique Walecki182

tournament on 3 or 5 vertices, or has 11 vertices and is isomorphic to the tour-183

nament with signature 11011.184

Proof. Towards a contradiction, suppose that a = (∗, i) is in exactly one directed185

triangle, for some i ∈ Zn. If (∗, i − 1) is an arc of Wu then (i − 1, i) is also an186

arc of Wu (these are both in C+
i−1) and this produces a triangle in which a is a187

bypass arc, so b(a) ≥ 1, and by Theorem 5 d(a) ≥ 2, the desired contradiction.188
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So we must have the arcs (i, i − 1) and (i − 1, ∗) in Wu. Thus (∗, i, i − 1) is a189

directed triangle containing a.190

Let the number of vertices in Wu be 2m + 1. To avoid (i + m, ∗, i) being a191

second directed triangle containing a, we must have an arc from i+m to i. The192

next part of our argument depends on the parity of m.193

Ifm is even, saym = 2k, then this arc comes from C+
i+k, in which it is followed194

by the arc (i, i+m+ 1). Again to avoid another directed triangle containing a,195

we must have the arc (∗, i+m+ 1) (unless m = 2 in which case this is the same196

as the first directed triangle we identified, leading to the counterexample on 5197

vertices) and therefore the cycle C−i+1, which also contains the arc (i+ 1, ∗). But198

since (i, i+ 1) lies in C+
i , we now have the directed triangle (∗, i, i+ 1) containing199

a. Thus it is not possible for a to be in just one directed triangle.200

We assume now that m is odd. Observe that if a is to lie in exactly one201

directed triangle, it must be the case that every other triangle that includes a202

must be either an “in” triangle or an “out” triangle. Thus for any j, the direction203

of the arc between i and i+ j determines the direction of the arc between ∗ and204

i+ j. In particular, there is an arc from i to i+ 1 so there must be an arc from205

∗ to i+ 1. The arc from ∗ to i+ 1 lies in a directed cycle that also contains arcs206

from i+ 2 to i, and from i to i+ 3, which implies that there are arcs from i+ 2207

to ∗ and from ∗ to i+ 3. And the arc from i+ 2 to ∗ lies in a directed cycle that208

also contains the arcs from i+ 5 to i to i+ 4, so there are arcs from ∗ to i+ 4 and209

from i+ 5 to ∗. In fact, continuing this argument shows that whenever j is even210

and j < 2m− 2, of the arcs between ∗ and i+ j and between ∗ and i+ j+ 1, one211

is directed toward ∗ and the other away from ∗.212

Suppose that m > 5. Then 3 +m is even and less than 2m− 2, so of the arcs213

between ∗ and i + 3 + m and between ∗ and i + 4 + m, one is directed toward214

∗ and the other away from ∗. But these arcs are in the same cycles as the arcs215

between ∗ and i + 3 and ∗ and i + 4, both of which are directed away from ∗,216

a contradiction. This leads us again to conclude that we must have d(a) > 1 in217

this case.218

When m ∈ {1, 3, 5}, relabelling the vertices starting with 0 instead of i and219

applying the same argument produces the signatures in our statement. In the220

case m = 3 this again leads to a contradiction.221

Reversing the directions of each arc in the above argument shows that (i, ∗)222

also cannot lie in exactly one directed triangle.223

We will often use the following fact in our arguments about Walecki tour-224

naments. Details of the arcs in any cycle in a Walecki tournament also appear225

in [1, 2, 3], and this can be deduced from those but is not hard to work out226

directly. In the next result and several others, it is important to note that since227

n = 2m is even, it makes sense to consider the parity of an element of Zn.228
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Lemma 7. Let i ∈ Zn be a vertex in a Walecki tournament, and let j be any229

other vertex such that j has the same parity as i. Then of the arcs between the230

vertex i and the vertices j and j+ 1, one is oriented toward i and the other away231

from i.232

Proof. The arc between i and j lies in the same directed Hamilton cycle C+
` or233

C−` (for some `) as the arc between i and j + 1. This means that one of the arcs234

must be oriented toward i, and the other away from i.235

This allows us to deal with the case where the endpoints of a differ by 1 (i.e.,236

are consecutive).237

Lemma 8. Let a be an arc in a Walecki tournament whose endpoints are i and238

i+ 1. If n > 4, then d(a) > 1.239

Proof. Let ` be a vertex with the same parity as i, with ` 6= i. By Theorem 7,240

exactly one of i and i + 1 is an outneighbour of `. If b(a) ≥ 1 by Theorem 5241

d(a) > 1 completing the proof if a is a bypass arc in the triangle induced by `, i,242

and i+ 1. The fact that there is a directed path of length 2 via ` between i and243

i+ 1 therefore forces this triangle to be a directed triangle.244

Since n > 4 there are at least two vertices distinct from i that have the same245

parity as i, so applying the above argument to each yields at least two directed246

triangles containing a, completing the proof.247

4. Arcs whose endpoints have opposite parity248

We have already addressed the situation of consecutive vertices. In this section249

we consider every other situation in which an arc whose endpoints have opposite250

parity might lie in a unique directed triangle. We begin with a lemma that251

demonstrates a situation that often produces a second directed triangle if one252

exists.253

Lemma 9. Let Wu be a Walecki tournament, and let a be an arc of Wu whose254

endpoints i and j have opposite parity and are not consecutive. Suppose there is255

some ` such that `, ` + 1 6= i, j and ` and ` + 1 are either both inneighbours or256

both outneighbours of i. Then either d(a) > 1 or ` = 2j − i− 1.257

Proof. Since ` and `+ 1 are either both inneighbours or both outneighbours of258

i, by Theorem 7 ` must not have the same parity as i, so ` has the same parity as259

j and exactly one of ` and `+ 1 is an outneighbour of j. Thus there is a directed260

path of length 2 between i and j via either ` or `+ 1. Putting this together with261

a produces either a triangle in which a is a bypass arc, in which case b(a) ≥ 1 and262

by Theorem 5 d(a) > 1, or a directed triangle. Thus, if we have not yet reached263
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our desired conclusion, then either ` or ` + 1 together with a induce a directed264

triangle.265

Notice that the arc between i and ` is in the same Hamilton cycle as the266

arc between j and `− j + i; likewise, the arc between `+ 1 and i is in the same267

Hamilton cycle as the arc between j and `− j + i+ 1. So unless `− j + i = j or268

`− j+ i+1 = j, we have `− j+ i and `− j+ i+1 are either both inneighbours or269

both outneighbours of j. Since i, j, and ` are distinct, we cannot have `−j+i = i.270

Since ` has the same parity as j, `−j+i has the same parity as i, and in particular271

`−j+i+1 6= i. Furthermore, by Theorem 7, exactly one of `−j+i and `−j+i+1272

is an outneighbour of i. Thus we have a directed path of length two between i273

and j via either ` − j + i or ` − j + i + 1. We conclude that either ` − j + i or274

` − j + i + 1 together with a induce a triangle in which either a is a bypass arc275

(our desired conclusion), or the triangle is directed.276

Since i and j are distinct, we cannot have `−j+ i = `, or `−j+ i+1 = `+1.277

Since i and j are not consecutive, we cannot have `−j+i = `+1, or `−j+i+1 = `.278

Thus, the two directed triangles we have found are distinct, and we conclude279

d(a) > 1 as desired.280

The only remaining possibility is that the “unless” condition we assumed was281

false to find the second directed triangle, is in fact true: that is, `− j + i = j or282

`− j+ i+ 1 = j. Since ` and i have opposite parity, we cannot have `− j+ i = j,283

so we must have ` − j + i + 1 = j, and therefore ` = 2j − i − 1, completing the284

proof.285

We now make use of the preceding lemma to deal with many possible choices286

for the third vertex of a unique directed triangle.287

Lemma 10. Let Wu be a Walecki tournament, and let a be an arc of Wu whose288

endpoints i and j have opposite parity and are not consecutive. Suppose i, j, and289

` induce a directed triangle in Wu. Then one of the following holds:290

• d(a) > 1;291

• ` ∈ {i− 1, i+ 1, j − 1, j + 1};292

• 2m+ 1 ≡ 0 (mod 3), and we can choose i′, j′ such that {i′, j′} = {i, j} and293

j′ = i′ + (2m+ 1)/3, and ` = 2j′ − i′ − 1; or294

• 4m+ 1 ≡ 0 (mod 3), and we can choose i′, j′ such that {i′, j′} = {i, j} and295

j′ = i′ + (4m+ 1)/3, and ` = 2j′ − i′ − 1.296

Proof. We assume that d(a) = 1 and ` /∈ {i−1, i+1, j−1, j+1}, and deduce that297

one of the other conclusions must hold. Note that ` has the same parity as exactly298

one of i, j. Since there is no distinction between i and j at this point, we may299

assume without loss of generality that j and ` have the same parity; therefore,300
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i and ` − 1 have the same parity, and by hypothesis, ` − 1 6= i. However, since301

this choice for ` may have caused us to interchange the labels of i and j, any302

conclusions that are not equivalent in i and j need to be written in terms of some303

i′ and j′ with {i′, j′} = {i, j} (as we have done).304

Since ` /∈ {i− 1, i+ 1, j − 1, j + 1}, the vertices i, j, `− 1, `, and `+ 1 are all305

distinct. Since d(a) = 1, neither i, j and ` − 1, nor i, j and ` + 1 can induce a306

directed triangle; also by Theorem 5, neither can induce a triangle in which a is307

a bypass arc. So from the perspective of a, each of these induced triangles must308

be either “in” or “out”.309

By Theorem 7, exactly one of ` and `+1 is an outneighbour of j, and exactly310

one of ` − 1 and ` is an outneighbour of i. Since i, j, and ` induce a directed311

triangle, exactly one of i and j is an inneighbour of `. Putting all of this together312

with the fact that the induced triangles involving a and `+ 1 and a and `− 1 are313

either “in” or “out”, we deduce that ` and `− 1 are either both inneighbours of314

j or both outneighbours of j, and that ` and ` + 1 are either both inneighbours315

of i or both outneighbours of i. Now we apply Theorem 9 to each of these.316

Applying Theorem 9 to the arcs between j and both ` − 1 and `, since317

d(a) = 1 we conclude that `− 1 = 2i− j − 1, so ` = 2i− j. Applying Theorem 9318

to the arcs between i and both ` and ` + 1, we conclude that ` = 2j − i − 1.319

Combining these yields 3j = 3i + 1. These equalities are actually equivalencies320

modulo n = 2m, and clearly force 2m not to be 0 modulo 3. If 2m is 2 modulo 3,321

then 2m+1 ≡ 0 (mod 3), and 3j = 3i+2m+1 which implies j = i+(2m+1)/3,322

and ` = 2j − i − 1. Recalling that we may have to reverse the roles of i and323

j, this is the first of our remaining two conclusions. If 2m is 1 modulo 3 then324

4m is 2 modulo 3 so 4m+ 1 ≡ 0 (mod 3) and similar calculations yield the final325

conclusion.326

The preceding lemma left a few cases remaining to be dealt with, one of327

which is the possibility that ` is one of i − 1, i + 1, j − 1, or j + 1. We address328

this next.329

Lemma 11. Let Wu be a Walecki tournament, and let a be an arc of Wu whose330

endpoints i and j have opposite parity and are not consecutive. Let ` ∈ {j−1, j+331

1} and suppose that i, j, and ` induce a directed triangle in Wu. Then d(a) > 1.332

Proof. Suppose first that ` = j+ 1. Since ` and i have the same parity, by The-333

orem 7 exactly one of ` and ` + 1 is an outneighbour of i (since i and j are not334

consecutive and due to parity, neither of these vertices can be i). If exactly one335

of ` and ` + 1 is an outneighbour of j, then since i, j, and ` induce a directed336

triangle, there are directed paths of length 2 in opposite directions between i and337

j via ` and via ` + 1. But this implies that i, j, and ` + 1 induce a triangle in338

which a is a bypass arc, so by Theorem 5, d(a) > 1 and we are done.339
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We may therefore assume that ` and `+ 1 are either both inneighbours of j,340

or both outneighbours of j. Now by Theorem 9, either d(a) > 1 and we are done,341

or ` = 2j − i − 1. Since ` = j + 1, this implies 2j − i − 1 = j + 1, so j = i + 2,342

contradicting the distinct parities of i and j.343

Now suppose that ` = j − 1. Now j and j − 2 = `− 1 have the same parity,344

so by Theorem 7 exactly one of ` − 1 and ` is an outneighbour of j. If exactly345

one of ` and `− 1 is an outneighbour of i, then since i, j, and ` induce a directed346

triangle, there are directed paths of length 2 in opposite directions between i and347

j via ` and via ` − 1. But this implies that i, j, and ` − 1 induce a triangle in348

which a is a bypass arc, so by Theorem 5, d(a) > 1 and we are done.349

We may therefore assume that ` and ` − 1 are either both inneighbours of350

i, or both outneighbours of i. Now by Theorem 9, either d(a) = 1 and we are351

done, or ` − 1 = 2j − i − 1, meaning ` = 2j − i. Since ` = j − 1, this implies352

2j − i = j − 1, so j = i− 1, but this contradicts our hypothesis that i and j are353

not consecutive.354

Our next two results deal with the other cases that were not addressed in The-355

orem 10.356

Lemma 12. Let Wu be a Walecki tournament. Suppose that 2m+1 ≡ 0 (mod 3),357

(2m+1)/3 is odd, and i, j, and ` are such that j = i+(2m+1)/3 and ` = 2j−i−1.358

Let a be the arc in Wu whose endpoints are i and j. If i, j, and ` induce a directed359

triangle, then d(a) > 1.360

Proof. For concreteness, let us assume that there are arcs from i to j to ` to i.361

Note that the parity of ` is different from that of i, and therefore the same as362

that of j. By Theorem 7, there is an arc from j − 1 to i.363

Note that since ` = 2j − i − 1 the arc from ` to i is in the same Hamilton364

cycle as the arc between j = `− j + i+ 1 and i+ j − i− 1 = j − 1. Accordingly,365

this arc must be directed from j to j−1. Now we have a directed triangle from j366

to j−1 to i to j, so d(a) > 1. Reversing all of the arcs gives the same conclusion.367

368

Lemma 13. Let Wu be a Walecki tournament. Suppose that 4m+1 ≡ 0 (mod 3),369

(4m+1)/3 is odd, and i, j, and ` are such that j = i+(4m+1)/3 and ` = 2j−i−1.370

Let a be the arc in Wu whose endpoints are i and j. If i, j, and ` induce a directed371

triangle, then d(a) > 1.372

Proof. For concreteness, let us assume that there are arcs from i to j to ` to i.373

Note that the parity of ` is different from that of i, and therefore the same as374

that of j. By Theorem 7, there is an arc from `+ 1 to j. If there is an arc from i375

to `+ 1 then a is a bypass arc in the triangle induced by a and `+ 1, so b(a) ≥ 1376

and by Theorem 5, d(a) > 1, completing the proof. So we may assume that there377

is an arc from `+ 1 to i.378
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By Theorem 7, there is also an arc from ` to j + 1; that is, from i + (2m +379

2)/3 − 1 to i + (4m + 1)/3 + 1. In the same Hamilton cycle and parallel to this380

arc, there is an arc from (i + (2m + 2)/3 − 1) − ((2m + 2)/3 − 2) to (i + (4m +381

1)/3 + 1) + ((2m + 2)/3 − 2); that is, from i + 1 to i. If there were also an arc382

from j to i+ 1 then a together with i+ 1 would induce a second directed triangle383

containing a, completing the proof. So we may assume that there is an arc from384

i + 1 to j. There must then also be the parallel arc from i to j + 1 in the same385

Hamilton cycle.386

Recall that there is an arc from `+ 1 to i, and therefore by Theorem 7 there387

is an arc from i to `+2; that is, from j− (4m+1)/3 to j+(4m+1)/3+1. In the388

same Hamilton cycle, there is a parallel arc from (j−(4m+1)/3)−((2m+2)/3−2)389

to (j+ (4m+ 1)/3 + 1) + ((2m+ 2)/3−2); that is, from j+ 1 to j. But now a is a390

bypass arc in the induced triangle on a and j+ 1, so b(a) ≥ 1 and by Theorem 5,391

d(a) > 1. This completes the proof.392

To this point, we have shown that if an arc whose endpoints have opposite393

parity lies in a unique directed triangle, the third vertex of that triangle cannot be394

anything but ∗. In the final result of this section, we show that the only situation395

in which an arc whose endpoints have opposite parity can lie in a unique directed396

triangle is if m is odd and our tournament is isomorphic to W1m . In W1m the397

arc between 0 and m does lie in a unique directed triangle whose third vertex is398

∗, but is the only arc whose endpoints have opposite parity that lies in a unique399

directed triangle. (You may recall that when m is odd the automorphism group400

of W1m is the cyclic group generated by σ; while this does map the arc between401

0 and m to other arcs, the endpoints of any of these arcs have the same parity.)402

Lemma 14. Let Wu be a Walecki tournament, and let a be an arc of Wu whose403

endpoints i and j have opposite parity. If i, j and ∗ induce a directed triangle in404

Wu, then either d(a) > 1, or j = i+m and u ∈ {1mRi, 1mRj}.405

Proof. By considering instead the isomorphic tournament WuR−i or WuR−j if406

necessary, we may assume i = 0 and 1 ≤ j ≤ m is odd.407

By Theorem 5, if b(a) ≥ 1 then we are done; also if any of the triangles408

involving i, j, and ` for ` ∈ Zn with ` 6= i, j is directed then we are done. So409

every vertex in {j+ 1, . . . , 2m− 1} must be in either an “in” triangle or an “out”410

triangle with a, from the perspective of a. This means that each of these vertices411

is either a mutual inneighbour of 0 and j, or a mutual outneighbour of 0 and j.412

For r ∈ {j+1, . . . , 2m−2}, Theorem 7 tells us that r is a mutual inneighbour413

of 0 and j if and only if r+ 1 is a mutual outneighbour of 0 and j (we apply the414

lemma to either 0 or j depending on the parity of r). This implies that all the415

vertices of one parity in {j + 1, . . . , 2m− 1} are mutual inneighbours of 0 and j,416

while all the vertices of the other parity are mutual outneighbours of 0 and j.417
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If j ≤ m−1 then the arc between 2m−1 and 0 is parallel to and in the same418

Hamilton cycle as the arc between 2m−1− j and j. Thus 2m−1 and 2m−1− j419

are either both mutual inneighbours, or both mutual outneighbours of 0 and j.420

But 2m− 1 is odd, and 2m− 1− j is even; this is a contradiction that completes421

the proof in this situation.422

The possibility remains that j = m. In this case, the arc between 2m − 1423

and 0 is parallel to and in the same Hamilton cycle as the arc between j = m424

and j − 1 = m− 1. In this case, however, this means that exactly one of 2m− 1425

and m − 1 is a mutual inneighbour of 0 and j. Note that these vertices have426

opposite parity. Moreover, the same argument as above now applied to the set427

{1, . . . ,m− 1} of vertices, tells us that all of the vertices of one parity in this set428

are mutual inneighbours of 0 and j, while all the vertices of the other parity are429

mutual outneighbours of 0 and j.430

Putting these together, we see that either all of the even vertices in Zn except431

0 are mutual outneighbours of 0 and j, while 1 is a mutual inneighbour of 0 and j;432

or they are all mutual inneighbours of 0 and j, while 1 is a mutual outneighbour433

of 0 and j. The former case implies that there is an arc from 0 to 2` for every434

1 ≤ ` ≤ m − 1, while the latter implies the arcs are in the opposite direction.435

In the first case, u` = 0 for 0 ≤ ` ≤ m − 1; in the second case, u` = 1 for436

0 ≤ ` ≤ m − 1. So we either have u = 0m or u = 1m. After applying Ri or437

Rj to u to return to the original tournament, we conclude u ∈ {1mRi, 1mRj}, as438

desired.439

5. Arcs whose endpoints have the same parity440

In this section, we consider the remaining possible type of arc: arcs whose end-441

points have the same parity. We have already seen that when m is odd, W1m442

has a number of arcs that lie in unique directed triangles. When the endpoints443

of an arc have opposite parity, the information Theorem 7 provides about the444

outneighbours and inneighbours of one endpoint complements the information445

provided by the other endpoint. When the endpoints have the same parity, both446

provide the same information. This makes it much harder to pin down which447

arcs whose endpoints have the same parity can be in unique directed triangles.448

In particular, there seem to be many possible Walecki tournaments that have449

some arc a whose endpoints have opposite parity, and d(a) = 1. The amazing450

thing that is not so difficult to prove, though, is that in all cases the third vertex451

of the unique directed triangle must be ∗. For our purposes, this is all we need.452

We begin with a preliminary result that narrows down the possible third453

vertices.454

Lemma 15. Let a be an arc in a Walecki tournament Wu whose endpoints are455
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i, j ∈ Zn, where j− i ≤ m and j and i have the same parity. Let t be the additive456

order of j − i in Zn. If d(a) = 1 then the other vertex of the directed triangle457

containing a lies in {j + (j − i), j + 2(j − i), . . . , j + (t− 2)(j − i), ∗}.458

Proof. To simplify our notation and arguments, we will work in WuR−i so that459

we can take i = 0 and j − i = j as the endpoints of a, and the set of possible460

third vertices becomes {2j, . . . , (t− 1)j, ∗}.461

Our goal is to show that it is not possible for all of the triangles containing462

a whose other vertex lies in {2j, . . . , (t − 1)j, ∗} to be either “in” or “out” from463

the perspective of a. This implies that either one of them is a “bypass” triangle,464

in which case b(a) ≥ 1 and by Theorem 5 d(a) ≥ 2, a contradiction, or one of465

them is directed, and must therefore be the unique directed triangle containing a.466

Therefore, towards a contradiction, suppose that all of the triangles containing a467

whose other vertex lies in {2j, . . . , (t − 1)j, ∗} are either “in” or “out” from the468

perspective of a.469

If j = m then the arcs between ∗ and each of 0 and j are both in C+
0 or in470

C−0 , and one must begin at ∗ while the other ends at ∗, producing an immediate471

contradiction. Henceforth we assume j < m.472

In the argument that follows, we may reverse the direction of all arcs and473

reach the same conclusion. So we begin by assuming without loss of generality474

that there are arcs from ∗ to both 0 and j; that is, u0 = 1 = uj . This implies475

that there is an arc from j to −j, and that there is an arc from 2j to 0.476

Our assumption that each triangle is “in” or “out” from the perspective of a,477

allows us to conclude that for every 2 ≤ s ≤ t−1, sj is either a mutual inneighbour478

or a mutual outneighbour of 0 and j. This in turn is equivalent to the existence of479

an arc parallel to that between j and sj (from the same Hamilton cycle) between480

0 and (s+ 1)j. Based on our initial choice of directions, it turns out at each step481

(inductively) that if after reducing modulo n we have 0 < (s+ 1)j < j, then this482

arc goes from 0 to (s+1)j; otherwise it goes from (s+1)j to 0. Since 0 < j < m,483

we must have j < (t − 1)j < n after reducing modulo n. Thus we eventually484

conclude that there is an arc from −j = (t − 1)j to 0. But this contradicts the485

existence of the arc from j to −j, completing the proof.486

We can now show that the third vertex must in fact be ∗.487

Lemma 16. Let a be an arc in a Walecki tournament whose endpoints are i, j ∈488

Zn, where j − i ≤ m and j and i have the same parity. If d(a) = 1, then the489

other vertex of the directed triangle containing a is ∗.490

Proof. Again, to simplify our notation and arguments, we will work in WuR−i491

so that we can take i = 0 and j − i = j as the endpoints of a. By Theorem 15,492

the other vertex of the directed triangle lies in {2j, . . . , (t− 1)j, ∗}, where t is the493

additive order of j in Zn.494
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Towards a contradiction, suppose that (0, j, sj) is a directed triangle for some495

2 ≤ s ≤ t− 1. (Reversing the direction of this cycle and of all subsequent arcs in496

the argument yields the same conclusion.) Since j is even, sj is also even.497

We distinguish two possibilities, depending on whether after reduction mod-498

ulo n we have 0 < sj < j, or j < sj < n.499

Suppose first that j < sj < n. Since there is an arc from sj to 0, we must500

have usj/2 = 1, and there is also an arc from 0 to sj + 1. Since there is an arc501

from j to sj, we must have u(s+1)j/2 = 0, and there is also an arc from sj + 1 to502

j. But now a is a bypass arc in the triangle on 0, j, and sj+ 1, meaning b(a) ≥ 1503

so d(a) ≥ 2 by Theorem 5, a contradiction.504

Now suppose 0 < sj < j. Since there is an arc from sj to 0, we must have505

usj/2 = 0, and there is also an arc from 0 to sj + 1. Since there is an arc from j506

to sj, we must have u(s+1)j/2 = 1, and there is also an arc from sj + 1 to j. But507

now a is a bypass arc in the triangle on 0, j, and sj + 1, meaning b(a) ≥ 1 so508

d(a) ≥ 2 by Theorem 5, again a contradiction.509

Since there is no 2 ≤ s ≤ t− 1 such that (0, j, sj) can be a directed triangle510

(in either direction), Theorem 15 implies that the other vertex of the directed511

triangle containing a must be ∗.512

6. Automorphisms and isomorphisms of Walecki tournaments513

We begin this section by producing a result that summarises the results of the514

previous sections. Note that the following result is not true for the (unique up515

to isomorphism) Walecki tournament on 5 vertices, which does have at least one516

arc that lies in a unique directed triangle whose third vertex is not ∗.517

Theorem 17. Suppose that a is an arc in a Walecki tournament Wu on at518

least 7 vertices that is in exactly one directed triangle, and the tournament is not519

isomorphic to the tournament on 11 vertices with signature 11011. Then the third520

vertex of that directed triangle is ∗.521

Furthermore, either m is odd, u = 1mRi for some i, and the endpoints of522

a are i and i + m, or the endpoints of a are elements of Zn that have the same523

parity.524

Proof. If either endpoint of a is ∗, this is Theorem 6. If the endpoints of a525

are consecutive then since n ≥ 6, this is Theorem 8. If the endpoints of a have526

opposite parity but are not consecutive, then this follows from one of Theo-527

rem 10, Theorem 11, Theorem 12, or Theorem 13, together with Theorem 14 to528

complete the “furthermore”. Finally, if the endpoints of a have the same parity529

then this follows from Theorem 16.530
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Corollary 18. Suppose that the Walecki tournament Wu on at least 7 vertices531

is not isomorphic to the tournament on 11 vertices with signature 11011, and532

contains an arc a that lies in a unique directed triangle. Then every automorphism533

of Wu fixes ∗. Moreover, if Wu
∼= Wv, then any isomorphism must map the vertex534

labelled ∗ in Wu to the vertex labelled ∗ in Wv.535

Proof. Since an automorphism is an isomorphism from Wu to itself, the second536

statement implies the first. Suppose, then, that Wu contains an arc a that lies537

in a unique directed triangle. By Theorem 17, this triangle must have ∗ as its538

third vertex. Any isomorphism from Wu to Wv must map a to some arc a′539

in Wv that lies in a unique directed triangle. Furthermore, it must map the540

unique directed triangle containing a to the unique directed triangle containing541

a′. By Theorem 17, the third vertex of the unique directed triangle containing542

a′ must be the vertex of Wv that is labelled ∗. Thus our isomorphism must map543

the vertex labelled ∗ in Wu to the vertex labelled ∗ in Wv.544

In the next and final section of this paper, we define a fairly significant family545

of Walecki tournaments that do contain an arc that lies in a unique directed546

triangle.547

7. Walecki Tournaments in which ∗ is uniquely determined548

We begin by defining a family of signatures.549

Definition. Let m be even, say m = 2k. Let S be the set of binary strings u of550

length m that have the following properties:551

• u = u0 . . . um−1; and552

• for 0 ≤ i ≤ k − 1, ui+k 6= ui.553

So we can pick any binary string of length k for the first k entries, but the554

remaining entries are completely determined by those first k entries.555

Now we show that when u ∈ S, the arc between 0 and m in Wu is in exactly556

one directed triangle.557

Theorem 19. Let m = 2k with k ≥ 3, and u ∈ S. In Wu, if a is the arc between558

0 and m, then using the notation of Theorem 4, d(a) = 1.559

In particular, this means that every automorphism of Wu fixes ∗. Moreover,560

if Wu
∼= Wv, then any isomorphism must map the vertex labelled ∗ in Wu to the561

vertex labelled ∗ in Wv.562
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Proof. Note that each arc in Wu arises from a directed version of either the cycle563

Cj or the cycle Cj+k for some 0 ≤ j ≤ k − 1. So let 0 ≤ j ≤ k − 1. If uj = 1564

then every arc in C+
j that does not involve ∗ has the form (j − `, j + 1 + `) for565

some 0 ≤ ` ≤ m − 1, or (j + 1 + `, j − 1 − `) for some 0 ≤ ` ≤ m − 1; if uj = 0566

then C−j has the same underlying edges but each arc has the opposite direction.567

Likewise, if uj+k = 0 then every arc in C−j+k that does not involve ∗ has the form568

(j + k + 1 + `, j + k − `) for some 0 ≤ ` ≤ m− 1, or (j + k − 1− `, j + k + 1 + `)569

for some 0 ≤ ` ≤ m − 1; if uj+k = 1 then C+
j+k has the same underlying edges570

but each arc has the opposite direction.571

Recall that since u ∈ S, we have uj 6= uj+k. The formulas of the previous572

paragraph tell us that if uj = 1 then the arcs involving the vertex 0 in C+
j are573

(2j, 0) (if j = 0 then this is replaced by (∗, 0)) and (0, 2j + 1), and in C−j+k are574

(2j+m+1, 0) and (0, 2j+m) (and the reverse of these arcs if uj = 0). Meanwhile,575

the arcs involving the vertex m in C+
j are (2j+m+1,m) and (m, 2j+m), and in576

C−j+k are (2j,m) and (m, 2j + 1) (and the reverse of these arcs if uj = 0). Since577

every vertex other than ∗ has one of the forms 2j + 1, 2j, m+ 2j + 1 or m+ 2j578

for some 0 ≤ j ≤ k − 1, we see that because u ∈ S, for each vertex i of our579

tournament other than ∗, 0, and m, we either have arcs from both 0 and m to i,580

or arcs from i to both 0 and m. Thus except for the triangle involving ∗, every581

triangle that includes 0 and m is either an “in” triangle or an “out” triangle.582

Thus, o(a) = i(a) = m−1, so using Theorem 4, d(a) = 1 (the triangle involv-583

ing ∗ is the directed triangle). The final conclusion is an immediate consequence584

of Theorem 18585

It is worth pointing out that 12kRk ∈ S, so at least some of the Walecki586

tournaments we have identified in these results are isomorphic to those whose587

automorphism groups were already known to be trivial through the work of Ales.588

However, his result did not directly show that there could not be a Walecki589

tournamentWv such thatW1m
∼= Wv but the vertex ∗ ofW1m maps to some vertex590

not labeled ∗ in Wv. Furthermore, there are definitely Walecki tournaments591

whose signature lies in S that are not isomorphic to W1m for the appropriate592

m. Specifically, the signature of W1001 lies in S, but it can easily be checked593

computationally that the automorphism group of W1001 is cyclic of order 3, so594

W1001 cannot be isomorphic to W1111, whose automorphism group is trivial.595

It may be possible to further extend these ideas. This may be possible very596

directly by finding other families of signatures whose Walecki tournaments in-597

clude an arc that lies in a unique directed triangle. It may take a more indirect598

approach, for example by looking at the other end of the possible values for the599

parameters we have studied here, and finding families of signatures whose Walecki600

tournaments include a unique arc a with the property that i(a) = o(a) = 0. It601

may require a more complex approach such as counting the numbers of arcs that602
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lie in a particular number of directed triangles. Additional research along any of603

these lines would be of interest.604

It is not the case that every Walecki tournament has an arc that is in exactly605

one directed triangle, whether m is even or odd. Neither W10001 nor W110011 has606

such an arc. So Theorem 18 does not apply to all Walecki tournaments.607

The family {Wu : u ∈ S} does not include any Walecki tournaments whose608

signature has odd length. However, when the signature has even length 2k, it609

covers 2k of the possible 22k signatures (so long as k ≥ 3). If combined with the610

isomorphisms produced by the complementing register shift R1, it covers even611

more. For example, when k = 3 there are 23 = 8 of the 26 = 64 signatures in S,612

but applying various powers of R1 results in a total of 48 signatures (4 of the 6613

isomorphism classes under the action of R1).614
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