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ON SYMMETRIES OF ELLIPTIC NETS AND VALUATIONS OF NET
POLYNOMIALS

AMIR AKBARY, JEFF BLEANEY, AND SOROOSH YAZDANI

ABSTRACT. Under certain conditions, we prove that the set of zeros of an elliptic net forms an
Abelian group. We present two applications of this fact. Firstly we give a generalization of a
theorem of Ayad on valuations of division polynomials in thecontext of net polynomials. Secondly
we generalize a theorem of Ward on symmetry of elliptic divisibility sequences to the case of elliptic
nets.
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1. INTRODUCTION

LetE be an elliptic curve defined over a fieldK with the Weierstrass modelf(x, y) = 0, where

f(x, y) := y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6; ai ∈ K. (1.1)

It is known that there are polynomialsφn, ψn, andωn ∈ K[x, y]/〈f(x, y)〉 such that for any
P ∈ E(K), the group ofK-rational points ofE, we have

nP =

(

φn(P )

ψ2
n(P )

,
ωn(P )

ψ3
n(P )

)

. (1.2)

Moreover,ψn satisfies the recursion

ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m, (1.3)

with initial conditions

ψ1 = 1, ψ2 = 2y + a1x+ a3, ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2 ·
(

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + (b2b8 − b4b6)x+ (b4b8 − b2

6)
)

.
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Here

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

The polynomialψn is called then-th division polynomialassociated toE. (See [3, Chapter 2] for
the basic properties of division polynomials.)

Now letK be a field with a discrete valuationν, let Oν = {x ∈ K : ν(x) ≥ 0} andp = {x ∈
K : ν(x) > 0}. In [1, Theorem A], Ayad proved the following theorem on the valuation ofψn(P ).

Theorem 1.1(Ayad). LetE/K be an elliptic curve defined by the polynomial(1.1) with ai ∈ Oν

for i = 1, 2, 3, 4, 6. Let P ∈ E(K) be a point inE(K) such thatP 6≡ ∞ (mod p). Then the
following assertions are equivalent:

(a) ν(ψ2(P )) andν(ψ3(P )) > 0.
(b) For all integersn ≥ 2, we haveν(ψn(P )) > 0.
(c) There exists an integern0 ≥ 2 such thatν(ψn0

(P )) andν(ψn0+1(P )) > 0.
(d) There exists an integerm0 ≥ 2 such thatν(ψm0

(P )) andν(φm0
(P )) > 0.

(e) Reduction ofP modulop is singular.

An important ingredient of the proof of the above theorem is the recursion (1.3). Generally, any
solution over an arbitrary integral domainR of the recursion

Wm+nWm−nW
2
1 = Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m, (1.4)

wherem,n ∈ Z, is called anelliptic sequence. Hence the sequence(ψn(P )) is an example of an
elliptic sequence. The theory of elliptic sequences was developed by Morgan Ward in 1948. An
elliptic divisibility sequence(EDS) is an integer elliptic sequence(Wn), which is also a divisibility
sequence (i.e.Wm | Wn if m | n).

Theorem1.1 has an immediate application to elliptic denominator sequences, which we will
define now. LetE/Q be an elliptic curve defined by (1.1), with ai ∈ Z for i = 1, 2, 3, 4, 6, and let
P ∈ E(Q) be a non-torsion point. It is known that

P =

(

AP

D2
P

,
BP

D3
P

)

with gcd(AP , DP ) = gcd(BP , DP ) = 1 andDP ≥ 1 (see [2, Proposition 7.3.1]). Let(DnP ) be
the sequence of denominators of the multiples ofP . More preciselyDnP is given by the identity

nP =

(

AnP

D2
nP

,
BnP

D3
nP

)

(1.5)

with gcd(AnP , DnP ) = gcd(BnP , DnP ) = 1 andDnP ≥ 1. One can show that(DnP ) is a
divisibility sequence. Some authors call this sequence an elliptic divisibility sequence. In this
paper, in order to distinguish this sequence from the classical elliptic divisibility sequences studied
by Ward, we call the sequence(DnP ) theelliptic denominator sequenceassociated to the elliptic
curveE and the pointP .

Comparing equations (1.5) and (1.2) we expect a close relation betweenψn(P ) andDnP . In
particular, for any primep we have that

νp(x(nP )) = νp(AnP ) − 2νp(DnP ) = νp(φn(P )) − 2νp(ψn(P )), (1.6)

whereνp is thep-adic valuation onQ andx(nP ) is thex coordinate ofnP .
2



From construction of division polynomials we know that ifp ∤ Dp thenνp(ψn(P )) ≥ 0 and
νp(φn(P )) ≥ 0. Now Theorem1.1 tells us that ifP reduces to a non-singular point and ifP
modulop is different from∞ (i.e. p ∤ DP ), thenνp(ψn(P ))νp(φn(P )) = 0. Under these conditions
if νp(x(nP )) ≥ 0 then by (1.6) and the fact thatAnP andDnP are coprime to each other, we
haveνp(DnP ) = νp(ψn(P )) = 0. Similarly, if νp(x(nP )) < 0 thenνp(DnP ) = νp(ψn(P )) =
−1

2
νp(x(nP )).

Therefore, we have the following proposition.

Proposition 1.2. Let E/Q be an elliptic curve over the rationals given by equation(1.1), and
assume thatai ∈ Z. Furthermore, letP ∈ E(Q) be a point of infinite order such thatP 6≡ ∞
(mod p) and let(DnP ) be the elliptic denominator sequence associated toE andP . Then for a
primep if P (mod p) is non-singular, we have

νp(DnP ) = νp(ψn(P )).

Remark 1.3. (a) One can drop the conditionP 6≡ ∞ (mod p) in the previous proposition and
prove a stronger result for an scaled version ofψn(P ). Let

ψ̂n(P ) := Dn2

P ψn(P ).

Then ifP (mod p) is non-singular for all primesp, we have

DnP = |ψ̂n(P )|.

(See [1] ). For a proof of this fact (in more general case of elliptic nets) see Proposition1.7.
(b) Formulas for explicit valuations ofψn(P ) at primesp (of good or bad reduction) are given in
[8]. Also in [5] the sign ofψn(P ) is computed explicitly.

In [7], Stange generalized the concept of an elliptic sequence toann-dimensional array, called
an elliptic net. In this paper we give a generalization of Ayad’s theorem for net polynomials.

Definition 1.4. LetA be a free Abelian group of finite rank, andR be an integral domain. Let0 and
0 be the additive identity elements ofA andR respectively. An elliptic net is any mapW : A → R
for whichW (0) = 0, and that satisfies

W (p + q + s)W (p − q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p + s)W (p)

+W (r + p + s)W (r − p)W (q + s)W (q) = 0, (1.7)

for all p,q, r, s ∈ A. We identify the rank ofW with the rank ofA.

Note that ifA = Z andW : A → R is an elliptic net, then by settingp = m, q = n, r = 1,
ands = 0 in (1.7), and noting thatW is an odd function, we get thatW (n) satisfies equation
(1.4), hence(W (n)) is an elliptic sequence. Therefore elliptic nets are a generalization of elliptic
sequences.

We can relate elliptic nets to elliptic curves in the following way. For an arbitrary fieldK, let

S = K[x1, y1, · · · , xr, yr],

and consider the polynomial ring

Rr = K[xi, yi]1≤i≤r[(xi − xj)
−1]1≤i<j≤r/〈f(xi, yi)〉1≤i≤r,

3



wheref is the defining polynomial (1.1) for E. Let P = (P1, P2, . . . , Pr) ∈ E(K)r andv =
(v1, v2, . . . , vr) ∈ Zr. From [7, Section 4] follows that there exist “polynomials”Ψv,Φv,Ωv ∈ Rr

such thatΨv (as a function ofv ∈ Zr) is an elliptic net and

v · P = v1P1 + v2P2 + · · · + vrPr =
(

Φv(P)

Ψ2
v(P)

,
Ωv(P)

Ψ3
v(P)

)

. (1.8)

The “polynomial”Ψv is called thev-th net polynomialassociated toE. Also, the functionv 7→
Ψv(P) is calledthe elliptic netassociated toE andP. In [7], Stange also proves that whenr > 1,
then we can computeΨv using the recurrence relation (1.7) and the initial valuesΨv for v = ei,
v = 2ei, v = ei + ej andv = 2ei + ej, where{e1, e2, . . . , er} is the standard basis forZr. (For
r = 1 the recurrence (1.3) shows thatψn is uniquely determined byψ1, ψ2, ψ3, andψ4.) Note that
the initial values ofΨv are defined as follows:

Ψei
= 1, Ψ2ei

= 2yi + a1xi + a3, Ψei+ej
= 1,

Ψ2ei+ej
= 2xi + xj −

(

yj − yi

xj − xi

)2

− a1

(

yj − yi

xj − xi

)

+ a2.
(1.9)

The above initial conditions define thev-th net polynomials of rankr > 1 for any elliptic curves
completely. We refer the reader to Theorem 2.5, Lemma 2.6, and Theorem 2.8 of [7] for the details
of how this can be done.

In this paper, we prove the following generalization of Theorem1.1for net polynomials. LetK,
ν, Oν , andp be defined as before.

Theorem 1.5. Let E/K be an elliptic curve defined by the polynomial(1.1) with ai ∈ Oν for
i = 1, 2, 3, 4, 6. LetP = (P1, P2, . . . , Pr) ∈ E(K)r be such thatPi 6≡ ∞ (mod p), for 1 ≤ i ≤ r,
andPi ± Pj 6≡ ∞ (mod p), for 1 ≤ i < j ≤ r. Then the following are equivalent:

(a) There exists1 ≤ i ≤ r, such that

ν(Ψ2ei
(P)) > 0 and ν(Ψ3ei

(P)) > 0.

(b) There exists1 ≤ i ≤ r such that for alln ≥ 2 we have

ν(Ψnei
(P)) > 0.

(c) There existsv ∈ Zr and1 ≤ i ≤ r such that

ν(Ψv(P)) > 0 and ν(Ψv+ei
(P)) > 0.

(d) There existsv ∈ Zr such that

ν(Ψv(P)) > 0 and ν(Φv(P)) > 0.

(e) There exists1 ≤ i ≤ r such thatPi (mod p) is singular.

To prove this, we first need to show thatν(Ψv(P)) ≥ 0 in the cases we are dealing with. This
result is of independent interest, so we record it in the following proposition.

Proposition 1.6. LetE/K be an elliptic curve defined by the polynomial(1.1) with ai ∈ Oν for
i = 1, 2, 3, 4, 6, and letP = (P1, P2, . . . , Pr) ∈ E(K)r. Whenr = 1, assume thatP1 6≡ ∞
(mod p). Whenr > 1, then assume that for all1 ≤ i < j ≤ r we havePi 6≡ ∞ (mod p) and
Pi ± Pj 6≡ ∞ (mod p). Then for allv ∈ Zr we have

ν(Ψv(P)) ≥ 0,

henceΨv(P) ∈ Oν .
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Next we specialize to the case thatE is defined overQ. LetE/Q be an elliptic curve, and letP =
(P1, P2, . . . , Pr) ∈ E(Q)r ber linearly independent points inE(Q). For v = (v1, v2, · · · , vr) ∈
Zr, let v · P = v1P1 + · · · + vrPr. We denote theelliptic denominator netassociated toE andP
by (Dv·P), whereDv·P is the denominator ofv · P. More precisely,

v · P = v1P1 + v2P2 + · · · + vrPr =

(

Av·P

D2
v·P

,
Bv·P

D3
v·P

)

. (1.10)

We are interested in the relation between the elementDv·P of the elliptic denominator net, and the
value of thev-th net polynomialΨv at P. An immediate corollary of Theorem1.5 is that for all
but finitely many primesp we have

νp(Dv·P) = νp(Ψv(P)),

whereνp is thep-adic valuation. We extend this result, however similar to Remark1.3 (a), we
need to multiplyΨv at P with a quadratic form to obtain an equivalent net polynomialΨ̂v. More
precisely, by using notation (1.10), let

Fv(P) =
∏

1≤i≤j≤r

A
vivj

ij , (1.11)

where

Aii = Dei·P = DPi
, and Aij =

DPi+Pj

DPi
DPj

for i 6= j.

ThenF (P) : Zr → K× defined byv 7→ Fv(P) is a quadratic form. Define

Ψ̂v(P) = Fv(P)Ψv(P),

for all v ∈ Zr. ThenΨ̂(P) is an elliptic net that is scale equivalent toΨ(P) (see Section2 for
more explanation). Furthermore, notice that

Ψ̂ei
(P) = Fei

(P)Ψei
(P) = Aii = Dei·P,

and
Ψ̂ei+ej

(P) = Fei+ej
(P)Ψei+ej

(P) = AiiAjjAij = DPi+Pj
= D(ei+ej)·P.

We will prove the following generalization of Proposition1.2.

Proposition 1.7. Let E/Q be an elliptic net defined by polynomial(1.1) with ai ∈ Z for i =
1, 2, 3, 4, 6. Let P = (P1, . . . , Pr) ∈ E(Q)r be anr-tuple consisting ofr linearly independent
points inE(Q). Letp be a prime so thatPi (mod p) is non-singular for1 ≤ i ≤ r. Then

νp(Dv·P) = νp(Ψ̂v(P)),

for all v ∈ Zr. In particular, if for all primesp and all integers1 ≤ i ≤ r we have thatPi (mod p)
is nonsingular, then

Dv·P = |Ψ̂v(P)|.

Section5 includes proofs of Propositions1.6, 1.7, and Theorem1.5. Also see Examples5.1and
5.2for concrete descriptions of Proposition1.7.

To prove Theorem1.5, we need to study the behaviour of zeros of an elliptic netW : Zr →
K, whereK is an arbitrary field. Recall that for the values of rank1 elliptic nets (i.e. elliptic
sequences), we have the concept ofrank of apparition. More precisely, for any elliptic sequence
(Wn) we say that a natural numberρ is a rank of apparition ifWρ = 0 andWm 6= 0 for anym|ρ.
We say a sequence hasa unique rank of apparitionρ (> 1) if Wk = 0 if and only if ρ|k. Motivated

5



by this definition, we say an elliptic netW : Zr → K has aunique rank of apparition with respect
to the standard basisif each sequence(W (ne1)), (W (ne2)), . . . , (W (ner)) has a unique rank of
apparition. In general, it is convenient to have a definitionthat works for a free finitely generated
Abelian groupA, rather thanZr.

Definition 1.8. LetW : A → K be an elliptic net of rankr. LetB = {b1,b2, . . . ,br} be a basis
for A. We say thatW has aunique rank of apparition with respect toB if there exists anr-tuple
(ρ1, ρ2, . . . , ρr) of positive integers withρi > 1 for 1 ≤ i ≤ r, such that

W (nbi) = 0 ⇐⇒ ρi | n,

for all 1 ≤ i ≤ r.

Note that an elliptic sequence(Wn) has a unique rank of apparition if its corresponding net
n 7→ Wn has a unique rank of apparition with respect to{1}.

We remark here another possible generalization of a unique rank of apparition of a sequence.
Namely, for a sequenceW : Z → K, having a unique rank of apparition is the same asΛ = {v ∈
Z : W (v) = 0} being a subgroup ofZ. Therefore, a natural generalization of the concept of unique
rank of apparition to elliptic netsW : A → K is thatΛ = W−1(0) = {v ∈ A : W (v) = 0} to
be a subgroup ofA. The following theorem shows that our concept of unique rankof apparition
implies thatΛ is a subgroup ofA.

Theorem 1.9. LetW : A → K be an elliptic net, and letB = {b1, . . . ,br} be a basis forA.
Assume thatW has a unique rank of apparition with respect toB. Let

Λ = W−1(0) = {v ∈ A : W (v) = 0}

be the zero set ofW . ThenΛ is a full rank subgroup ofA.

We prove Theorem1.9in Section3.
The proof of Theorem1.5 comes as a combination of Theorems1.1, 1.9 and the following

theorem.

Theorem 1.10(Ward). Let (Wn) be an elliptic sequence. A necessary and sufficient condition
that (Wn) does not have a unique rank of apparition is thatW3 = W4 = 0.

The proof of Theorem1.10is analogous to [9, Theorem 6.2] where the case of an integer elliptic
sequence modulop has been considered.

Here we describe another application of Theorem1.9. LetWn = ψ̂n(P ) as defined in Remark
1.3 (a). Then Proposition1.2 tells us that in many cases, we can think ofWn as the denominator
of the pointnP for some elliptic curveE/Q and some pointP ∈ E(Q). Now let p be a prime
of good reduction and letnp be the order of the pointP in E(Fp), whereFp is the finite field of
p elements. Then we have that(np + k)P ≡ kP (mod p). Therefore, it is tempting to assume
thatWnp+k ≡ Wk (mod p). More generally, letW : Z → K be an elliptic sequence withρ the
unique rank of apparition ofW . Then, one may speculate thatWρ+k = Wk. This in fact is not
true. However, in [9] the following is proved.

Theorem 1.11(Ward’s Symmetry Theorem). Let (Wn) be an elliptic sequence and assume
W2W3 6= 0. Let ρ > 1 be the unique rank of apparition ofW . Then there existsa, b ∈ K
such that

Wmρ+n = am2

bmnWn

for all m,n ∈ Z.
6



See Theorem 9.2 of [9] for a proof and Theorem 8.2 of [9] for some properties of elementsa and
b, whenK = Fp. Note that the proofs also work for any fieldK.

The following theorem gives a generalization of Theorem1.11.

Theorem 1.12.Let W : A → K be an elliptic net with the property thatΛ = W−1(0) is a
subgroup ofA and assume|A/Λ| ≥ 4. Then, there exist well defined functionsξ : Λ → K× and
χ : Λ × A → K× such that

W (λ + v) = ξ(λ)χ(λ,v)W (v) for all λ ∈ Λ and all v ∈ A,

and the functionsξ andχ satisfy the following properties:
(i) χ is bilinear,

(ii) χ(λ1,λ2) = χ(λ2,λ1),
(iii) ξ(λ1 + λ2) = ξ(λ1)ξ(λ2)χ(λ1,λ2),
(iv) ξ(−λ) = ξ(λ), and
(v) ξ(λ)2 = χ(λ,λ).

Furthermore, the functionsχ(λ,p) andξ(λ), are defined by

δ : Λ × (A \ Λ) −→ K×

(λ,p) 7−→ W (λ+p)
W (p)

,

and relations
χ : Λ × A −→ K×

(λ,p) 7−→ δ(λ,p+v)
δ(λ,v)

,

wherev is any element ofA with v,v + p /∈ Λ, and

ξ : Λ −→ K×

λ 7−→ δ(λ,v)
χ(λ,v)

,

for anyv ∈ A \ Λ.

Note that under conditions of Theorem1.11, by consideringλ = mρ andv = n in the previous
theorem and applying the bilinearity ofχ and Corollary4.4, we obtain

W (mρ+ n) = ξ(mρ)χ(mρ, n)W (n) = ξ(ρ)m2

χ(ρ, 1)mnW (n).

Thus, by lettinga = ξ(ρ) andb = χ(ρ, 1) we have the assertion of Theorem1.11.
We remark here that in [6], Stange relates some of the functions given in Theorem1.12to the

Tate pairing onE. Furthermore, special cases of the above formula does show up in her thesis.
However to the best of our knowledge, the statement of the above theorem is new.

Given the properties ofχ andξ, for anyr ∈ N, anyλ1,λ2, . . . ,λr ∈ Λ, and anyn1, n2, . . . , nr ∈
Z, we get that

W

((

r
∑

i=1

niλi

)

+ v

)

=





r
∏

i=1

ξ(λi)
n2

iχ(λi,v)ni





i−1
∏

j=1

χ(λi,λj)
ninj







W (v). (1.12)

As a simple corollary of the above identity, we have the following periodicity result.

Corollary 1.13. LetW : A → Fq be an elliptic net, and letΛ = W−1(0). Assume thatΛ is a
subgroup ofA and |A/Λ| ≥ 4. ThenW (v1) = W (v2) if v1 ≡ v2 (mod (q − 1)).

We can also employ (1.12) in computing elliptic nets with values in finite fields (See Example
4.5for a description). Section4 is dedicated to proofs of Theorem1.12and its corollaries.

7



2. REVIEW OF ELLIPTIC NETS

We will collect some basic facts about elliptic nets in this section for sake of completion. Recall
that for a free Abelian groupA and an integral domainR, we defined an elliptic net to be any map
W : A → R with W (0) = 0 and

W (p + q + s)W (p − q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p + s)W (p)

+W (r + p + s)W (r − p)W (q + s)W (q) = 0,

for all p,q, r, ands ∈ A. Also recall that the rank of an elliptic net is defined to be the rank of its
domainA.

Lemma 2.1. LetW : A → R be an elliptic net.

(a) For any integral domainR′ and any morphismπ : R → R′, the functionπ ◦ W : A → R′ is
an elliptic net,

(b) For any subgroupA′ ⊂ A, the functionW |A′ : A′ → R is an elliptic net.
(c) For anyv ∈ A we haveW (−v) = −W (v),

Proof. To prove the first two parts of this lemma, note that bothW |A′ andπ ◦W satisfy the elliptic
net recurrence (1.7). To proveW (−v) = −W (v), observe that ifW (v) = W (−v) = 0, then we
are done. Otherwise, assume without loss of generality thatW (v) 6= 0. Then by settingp = q = v

andr = s = 0 in (1.7) we have

W (v)3(W (v) +W (−v)) = 0.

SinceR is an integral domain, we getW (−v) = −W (v). �

We have already remarked that the values of an elliptic net ofrank1 form an elliptic sequence.
Let W : A → R be any elliptic net, and letv ∈ A. Then by part (b) of the above lemma,
W |vZ : Z → R is an elliptic net of rank1. Also, note that ifR is an integral domain and
K = Frac(R), the fraction field ofR, theni : R → K is injective. Thereforei ◦W : A → K is an
elliptic net, and(i ◦W )−1(0) = W−1(0). Therefore we are not losing any generality in Theorems
1.9and1.12by focusing on elliptic nets having entries in a field.

Next we are interested in relating elliptic nets with linearcombination of points on elliptic
curves. In order to do this we review some results of [7] on net polynomials.

For a complex latticeΛ ⊂ C, letσ : C → C be the Weierstrassσ function

σ(z) = σ(z; Λ) = z
∏

w∈Λ,w 6=0

(

1 −
z

w

)

e
z
w

+ 1

2
( z

w
)2

.

Fix an r-tuple z = (z1, z2, . . . , zr) ∈ Cr with zi 6∈ Λ and zi + zj 6∈ Λ. For anr-tuple v =
(v1, v2, . . . , vr) ∈ Zr define

Ωv(z) = Ωv(z; Λ) = (−1)
∑

1≤i≤j≤r
vivj+1 σ(v1z1 + v2z2 + · · · + vrzr)

(

∏r
i=1 σ(zi)

2v2

i
−
∑r

j=1
vivj

)

(

∏

1≤i<j≤r σ(zi + zj)vivj

)

.

Theorem 2.2(Stange).The function

Ω = Ω(z; Λ) : Zr −→ C
v 7−→ Ωv(z),

8



is an elliptic net.

Proof. See [7, Theorem 3.7]. �

Now let E/C be an elliptic curve, and letΛE be the lattice corresponding toE. Let P =
(P1, . . . , Pr) ∈ E(C)r with Pi, Pi + Pj 6= ∞ and letz = (z1, . . . , zr) ∈ Cr be such thatzi maps to
Pi under the uniformization map

C → C/ΛE ≃ E(C).

Then the function
Ψ(P;E) : Zr −→ C

v 7−→ Ωv(z),

is an elliptic net with values inC. We callΨ(P;E) theelliptic net associated toE(over C) andP.
Let Suniv = Z[α1, α2, α3, α4, α6], and for any positive integerr let

Runiv
r = Suniv[xi, yi]1≤i≤r[(xi − xj)

−1]1≤i<j≤r/〈f(xi, yi)〉1≤i≤r,

wheref(x, y) is given by (1.1). Then for every elliptic curveE/K defined by the polynomial
(1.1), andP ∈ E(K)r with Pi, Pi ± Pj 6= ∞, we can find a morphism

π = πP;E : Runiv
r → K

so thatπ(αi) = ai, and(π(xi), π(yi)) = Pi. The following result is proved in [7, section 4].

Theorem 2.3(Stange). For eachv ∈ Zr, there isΨuniv
v ∈ Runiv

r so thatΨuniv : v 7→ Ψuniv
v is an

elliptic net, and for any elliptic curveE/C andP ∈ E(C)r with Pi, Pi ± Pj 6= ∞ we have

πP;E ◦ Ψuniv = Ψ(P;E).

Let Runiv
r , Suniv, andE/K be as before. Then, there exists a mapπE : Suniv → K, so that

πE(αi) = ai. This induces a map

(πE)∗ : Runiv
r → K[xi, yi]1≤i≤r[(xi − xj)

−1]1≤i<j≤r/〈f(xi, yi)〉1≤i≤r.

Then part (a) of lemma2.1shows thatΨ : v 7→ (πE)∗(Ψ
univ
v ) defines an elliptic net with values in

Rr := K[xi, yi]1≤i≤r[(xi − xj)
−1]1≤i<j≤r/〈f(xi, yi)〉1≤i≤r.

We callΨv ∈ Rr thev-th net polynomialassociated toE. Now letP ∈ E(K)r with Pi, Pi ±Pj 6=
∞. Then by part (a) of Lemma2.1, Ψ(P;E) : v 7→ Ψv(P) is an elliptic net with values inK. We
call Ψ(P;E) theelliptic net associated toE(over K) andP.

Here we note thatΨnei
(P) = ψn(Pi). Moreover, we remark that forE/K defined by the

polynomial (1.1), we can computeΨv explicitly. In fact forv ∈ {ei, 2ei, ei +ej , 2ei +ej : i 6= j},
the exact values ofΨv are given by (1.9). Furthermore, as we pointed out in the introduction,
Theorem 2.5, Lemma 2.6, and Theorem 2.8 of [7] prove that these initial conditions are sufficient
for computingΨv for anyv ∈ Zr.

Example 2.4. If we let (p,q, r, s) = (ei + ej , ei ± ek,−ei,−ei), then from (1.7) we get that

Ψei+ej±ek
Ψej∓ek

Ψ−2ei
Ψ−ei

+ Ψ−ei±ek
Ψ2ei±ek

Ψej
Ψei+ej

+ Ψ−ei±ek
Ψ−2ei−ej

Ψ±ek
Ψei±ek

= 0.

We note that in [7, Theorem 2.5] it is shown that the termsΨei−ej
, andΨ2ei−ej

can be computed
explicitly in terms ofΨv for v ∈ {ei, 2ei, ei + ej , 2ei + ej : i 6= j}. In particular, setting
(p,q, r, s) = (ei, ej , 0, ei + ej) gives

Ψei−ej
= Ψei+2ej

− Ψ2ei+ej
.
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Similarly, taking(p,q, r, s) = (−ei + ej , ej, ei, ei), we have

Ψ2ei−ej
= ψ2ei

ψ2ej
− ψ2ei+ej

ψ2
ei−ej

.

ThusΨei+ej±ek
can be computed usingΨv for v ∈ {ei, 2ei, ei + ej, 2ei + ej : i 6= j}.

We are interested in relatingΨv(P) to the denominators of linear combinations of points on an
elliptic curve. To do this, recall that for anyE/K given by the polynomial (1.1), P ∈ E(K)r,
andv ∈ Zr we can find rational functions (by repeated use of doubling and addition formulas for
elliptic curves)Xv, Yv ∈ Frac(Rr), the fraction field ofRr, such that

v · P = v1P1 + · · · + vrPr = (Xv(P), Yv(P)).

The following lemma gives an explicit representation forXv in terms of net polynomials.

Lemma 2.5. LetE/K be an elliptic net, and letP ∈ E(K)r be such thatPi 6= ∞ andPi ± Pj 6=
∞. Then For anyv ∈ Zr, there isΦv ∈ Rr such that

Xv =
Φv

Ψ2
v

.

In particular for any1 ≤ i ≤ r we have

Φv(P) = Ψ2
v(P)x(Pi) − Ψv+ei

(P)Ψv−ei
(P).

Proof. In [7, Lemma 4.2], it is proved that for anyv,u ∈ Zr we have

Ψ2
vΨ2

u(Xv −Xu) = −Ψv+uΨv−u.

If we let u = ei, thenXu(P) = x(Pi). Thus we have

(Ψ2
vXv)(P) = Ψ2

v(P)x(Pi) − Ψv+ei
(P)Ψv−ei

(P),

which gives us the desired result. �

Definition 2.6. LetB andC be Abelian groups written additively. Furthermore, assumethatC is
2-torsion free. Then a functionF : B → C is a quadratic form if

F (x+ y) + F (x− y) = 2F (x) + 2F (y), (2.1)

for all x, y ∈ B.

Equation (2.1) is sometimes called theparallelogram law.

Example 2.7. (a) Letai, cij ∈ Q and considerF : Zr → Q defined by

F (v1, v2, . . . , vr) =
r
∑

i=1

aiv
2
i +

∑

1≤i<j≤r

cijvivj .

Then we can check thatF satisfies the parallelogram law (2.1).
(b) Letpi, qij ∈ Q×. Then the functionG : Zr → Q× defined by

G(v1, v2, . . . , vr) =
r
∏

i=1

p
v2

i

i ·
∏

1≤i<j≤r

q
vivj

ij

is a quadratic form.
(c) LetF1, F2 : B → C be two quadratic forms. Then their difference,F1−F2, is again a quadratic

form.

The main reason we are interested in quadratic forms is the following result.
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Proposition 2.8. LetK be a field and letW : A → K be an elliptic net. LetF : A → K× be a
quadratic form. Then

W F : A −→ K
v 7−→ W (v)F (v)

(2.2)

is an elliptic net.

Proof. See [7, Proposition 6.1]. �

Definition 2.9. We say that two elliptic netsW andW ′ are scale equivalent, if there is a quadratic
formF : A → K such thatW ′ = W F .

Let λp be the(local) Néron height function onE associated to the primep. (See [4, Chapter VI,
Theorem1.1] for properties ofλp.) An important property of Néron height is that it satisfiesthe
quasi-parallelogram law.

Lemma 2.10. Assume thatP , Q ∈ E(Q) are two points such thatP , Q, P ± Q 6= ∞. Then we
have

λp(P +Q) + λp(P −Q) = 2λp(P ) + 2λp(Q) + νp(x(P ) − x(Q)) −
1

6
νp(∆E).

Proof. See [4, Page 476, Exercise 6.3]. �

Lemma 2.11.LetE/Q defined by the polynomial(1.1), and assumeai’s are all integers. Let∆E

be the discriminant ofE. Let P = (P1, . . . , Pr) ∈ E(Q)r be anr-tuple consisting ofr linearly
independent points onE(Q). Define

ε(v) =







λp(v · P) − 1
12
νp(∆E) − νp(Ψv(P)) if v 6= 0,

0 otherwise.

Thenε is a quadratic form fromZr toZ.

Proof. From Lemma2.5, we know that

νp(Ψv+w(P)) + νp(Ψv−w(P)) = 2νp(Ψv(P)) + 2νp(Ψw(P)) + νp(Xv(P) −Xw(P)). (2.3)

Now assume thatv,w,v ± w 6= 0. Then substitutingv · P andw · P in Lemma2.10, we get

λp(v·P+w·P)+λp(v·P−w·P) = 2λp(v·P)+2λp(w·P)+νp(Xv(P)−Xw(P))−
1

6
νp(∆E).

(2.4)

Subtracting (2.3) from (2.4) we have

ε(v + w) + ε(v − w) = 2ε(v) + 2ε(w), (2.5)

wherev,w,v ± w 6= 0. The identity (2.5) also holds ifv or w = 0. So to complete the proof
it is enough to show thatε(2v) = 4ε(v). In order to establish this we add copies of (2.5) for
(v,w) = (4u,u), (3u,u), (3u,u), (2u,u) to obtain

ε(5u) + ε(u) = 2ε(3u) + 8ε(u) (2.6)

Also letting(v,w) = (3u, 2u) in (2.5) yields

ε(5u) + ε(u) = 2ε(3u) + 2ε(2u). (2.7)

Now subtracting (2.7) from (2.6) givesε(2u) = 4ε(u). Thusε is a quadratic form as desired.�
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3. PROOF OFTHEOREM 1.9

LetK be any field and assume thatW : A → K is an elliptic net of rankr. Theorem1.9claims
that ifW has a unique rank of apparition thenΛ = W−1(0) will be a subgroup ofA. The goal of
this section is to prove this claim.

Throughout this section assume thatW has a unique rank of apparition and letB = {b1,b2, . . . ,br}
be a basis forA such thatW has a unique rank of apparition with respect toB. Therefore, there
exists(ρ1, ρ2, . . . , ρr) ∈ Zr with ρi > 1 for 1 ≤ i ≤ r such thatW (nbi) = 0 if and only if n|ρi.

LetAi be the subgroup ofA generated by{b1,b2, . . . ,bi} for 1 ≤ i ≤ r and let

Λi = Λ ∩ Ai = {v ∈ Ai : W (v) = 0}.

Note thatΛi is the zero set of the elliptic netW |Ai
: Ai → K. By induction oni, we will prove

thatΛi is a subgroup ofAi. Note that the base case,i = 1, is true by definition of unique rank of
apparition.

We will prove the inductive step by proving three lemmas.

Lemma 3.1. Letn ∈ Z, and let1 ≤ i ≤ r. If ρi | n, then we have

W (v + nbi) = 0 ⇐⇒ v ∈ Λ.

Proof. First letv ∈ Λ. Takingp = v, q = −nbi, r = bi, ands = 2nbi in (1.7) yields

W (v + nbi)
2W ((2n+ 1)bi)W (bi) = 0. (3.1)

Note that sinceρi | n andρi > 1, we haveρi ∤ (2n + 1) and soW ((2n + 1)bi) 6= 0. Thus, from
(3.1), we haveW (v + nbi) = 0 for all v ∈ Λ.

Conversely assume thatv /∈ Λ. Then takingp = v, q = nbi, r = bi, ands = 0 in (1.7) yields

W (v + nbi)W (v − nbi)W (bi)
2 +W ((n+ 1)bi)W ((n− 1)bi)W (v)2 = 0. (3.2)

Sincev /∈ Λ andρi | n, we haveW ((n + 1)bi)W ((n − 1)bi)W (v)2 6= 0. It therefore follows,
from (3.2), thatW (v + nbi) 6= 0 for all v /∈ Λ. �

The following is a straightforward consequence of Lemma3.1.

Corollary 3.2. We have

{n1b1 + n2b2 + · · · + nrbr : ρi | ni for 1 ≤ i ≤ r} ⊆ Λ.

Lemma 3.3. Suppose that for a fixedi > 1 we have thatΛi−1 is a subgroup ofA. Then for all
v ∈ Λi−1, we have

W (v + nbi) = 0 ⇐⇒ ρi | n.

Proof. Choosev ∈ Λi−1. Sincev ∈ Λi−1 ⊂ Λ, it follows from Lemma3.1 that if ρi | n then
W (v + nbi) = 0. Conversely, letρi ∤ n, takingp = v, q = nbi, r ∈ Ai−1 \ Λi−1, ands = 0 in
(1.7) yields

W (v + nbi)W (v − nbi)W (r)2 +W (r + v)W (r − v)W (nbi)
2 = 0. (3.3)

Sincev ∈ Λi−1, r ∈ Ai−1 \ Λi−1, andΛi−1 is a subgroup, it follows thatv ± r ∈ Ai−1 \ Λi−1,
henceW (v ± r) 6= 0. It therefore follows from (3.3) thatW (v + nbi) 6= 0. �

Lemma 3.4. Suppose thatΛi−1 is a subgroup ofA for a fixedi > 1 andρi > 2. Let u,v ∈ Λi

such thatu = u0 + nbi, andv = v0 + nbi for u0,v0 ∈ Ai−1. Thenu − v = u0 − v0 ∈ Λi−1.
12



Proof. Settingp = u0 + nbi, q = v0 + nbi, r = mbi, ands = −2nbi in (1.7) gives

W (u0 + v0)W (u0 − v0)W ((2n−m)bi)W (mbi) = 0. (3.4)

Sinceρi > 2, we haveW (bi), W (2bi) 6= 0. So we can choosem ∈ {1, 2} such that

W ((2n−m)bi)W (mbi) 6= 0.

Thus from (3.4) we conclude thatW (u0 + v0)W (u0 − v0) = 0. Now if W (u0 − v0) = 0 we are
done. Otherwise we assume thatW (u0 − v0) 6= 0, henceW (u0 + v0) = 0, and show that this
gives a contradiction.

Settingp = u0 + nbi, q = v0 + nbi, r = bi, ands = 0 in (1.7) gives

W (u0 + v0 + 2nbi)W (u0 − v0)W (bi)
2 = 0,

henceW (u0 + v0 + 2nbi) = 0 (recall thatW (u0 − v0) 6= 0). Sinceu0 + v0 ∈ Λi−1 it follows
from Lemma3.3thatρi | 2n. Now we consider two cases.

Case 1: Ifρi | n, then sinceu = u0 + nbi,v = v0 + nbi ∈ Λi, it follows from Lemma3.1that
u0,v0 ∈ Λi−1, henceu0 − v0 ∈ Λi−1, contradicting our assumption thatW (u0 − v0) 6= 0.

Case 2: Ifρi ∤ n, thenW (u0+v0+nbi) 6= 0 by Lemma3.3. Settingp = u0+nbi, q = v0+nbi,
r = bi, ands = −nbi in (1.7) gives

W (u0 + v0 + nbi)W (u0 − v0)W ((n− 1)bi)W (bi) = 0,

henceW ((n − 1)bi) = 0 and soρi | n − 1. Similarly by settingp = u0 + nbi, q = v0 + nbi,
r = −bi, ands = −nbi in (1.7) we find thatW ((n+ 1)bi) = 0 and soρi | n+ 1. Sinceρi | n− 1
andρi | n + 1, we haveρi = 2. This is a contradiction. �

We are ready to prove our main result on zeros of an elliptic net.

Proof of Theorem1.9. We proceed by induction oni. Note thatΛ1 is a subgroup ofb1Z, since
W (nb1) = 0 if and only if ρ1|n. Assume thatΛi−1 is a subgroup. We want to prove thatΛi is a
subgroup, that is for anyu,v ∈ Λi thatu−v ∈ Λi. We will prove this by contradiction, so assume
thatu − v 6∈ Λi. Let u = u0 + nbi, v = v0 + mbi ∈ Λi, whereu0,v0 ∈ Ai−1. It follows from
(1.7), for p = u, q = v, r = u + w, ands = −2u, thatW (u − v)2W (u − w)W (u + w) = 0.
SinceW (u − v) 6= 0 andu = u0 + nbi, we conclude that

W (u0 + nbi − w)W (u0 + nbi + w) = 0 (3.5)

for anyw ∈ Ai. We claim that (3.5) implies thatρi | n. To show this assume otherwise thatρi ∤ n.
Then, sinceu = u0 +nbi ∈ Λi it follows from Lemma3.3thatu0 6∈ Λi−1. We consider two cases.

Case 1: Ifρi > 2, then settingw = u0 in (3.5) yields

W (2u0 + nbi)W (nbi) = 0.

Then we have thatW (2u0 + nbi) = 0 sinceρi ∤ n. SinceW (u0 + nbi) = W (2u0 + nbi) = 0, it
follows from Lemma3.4thatu0 ∈ Λi−1. This is a contradiction.

Case 2: Ifρi = 2, then settingw = bi in (3.5) yields

W (u0 + (n + 1)bi)W (u0 + (n− 1)bi) = 0,

from which it follows thatu0 ∈ Λi−1 (since bothn−1 andn+ 1 are even). This is a contradiction.
In either case, the assumptionρi ∤ n leads to a contradiction. Thus, we haveu = u0 + nbi

with u0 ∈ Λi−1, andρi | n. Similarly we havev = v0 + mbi, with v0 ∈ Λi−1 andρi|m. Then,
u−v = u0 −v0 +(n−m)bi with u0 −v0 ∈ Λi−1, andρi | (n−m). Thus it follows from Lemma
3.3thatW (u − v) = 0. This is a contradiction as we assumed thatW (u − v) 6= 0.
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Since the assumptionu − v 6∈ Λi leads to a contradiction, we conclude thatu − v ∈ Λi and so
Λi is a subgroup ofA. �

4. PROOFS OFTHEOREM 1.12 AND COROLLARY 1.13

Theorem1.9shows that for a given elliptic netW : A → K, in favorable conditions, ifW (λ1) =
W (λ2) = 0 thenW (λ1 + λ2) = 0. In this section we study the relation betweenW (v + λ)
andW (v) whenW (λ) = 0 but W (v) is non-zero. Throughout this section we assume that
Λ = W−1(0) is a subgroup ofA. We also assume that|A/Λ| ≥ 4. The results of this section
generalizes Theorem1.11to Elliptic nets. In order to do this, we first define the auxiliary function

δ : Λ × (A \ Λ) −→ K×

(λ,v) 7−→ W (λ+v)
W (v)

,

and explore the properties ofδ. Notice that forλ ∈ Λ andv /∈ Λ we get thatδ(λ,v) 6= 0. We have
the following lemma.

Lemma 4.1. For all λ ∈ Λ, anda,b, c,d ∈ A\Λ with a + b = c + d, we have

δ(λ, a)δ(λ,b) = δ(λ, c)δ(λ,d).

Proof. Assume thatp + s,p,q + s,q /∈ Λ. Then, settingr = λ in (1.7) gives

W (λ + q + s)W (λ − q)W (p + s)W (−p) = W (λ + p + s)W (λ − p)W (q + s)W (−q).

Sincep + s,p,q + s,q /∈ Λ we haveW (p + s)W (p)W (q + s)W (q) 6= 0, hence

W (λ + q + s)W (λ − q)

W (q + s)W (−q)
=
W (λ + p + s)W (λ − p)

W (p + s)W (−p)
.

Thus
δ(λ,q + s)δ(λ,−q) = δ(λ,p + s)δ(λ,−p).

Taking
a = q + s, b = −q, c = p + s, and d = −p,

yields the result. �

Note that ifv,p1,p2 ∈ A andp1,p2,v + p1,v + p2 6∈ Λ, then

δ(λ,v + p1)δ(λ,p2) = δ(λ,v + p2)δ(λ,p1).

Sinceδ is nonzero, we get
δ(λ,v + p1)

δ(λ,p1)
=
δ(λ,v + p2)

δ(λ,p2)
. (4.1)

Since we are assuming that|A/Λ| ≥ 4, we get that for anyv ∈ A there is an an elementp ∈ A so
thatp andv + p are inA \ Λ. In light of this observation, we define the functionχ by

χ : Λ × A −→ K×

(λ,v) 7−→ δ(λ,v+p)
δ(λ,p)

,
(4.2)

for any choice ofp with p,v + p /∈ Λ. Equation (4.1) shows that this definition is independent of
the choice ofp. Furthermore, note thatδ is non-zero, soχ maps toK×.

We now show thatχ is a bilinear map.
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Lemma 4.2. LetW : A → K be an elliptic net, andΛ = W−1(0) be a subgroup ofA such that
|A/Λ| ≥ 4. Letχ : Λ ×A → K× be defined as before. Then forλ,λ1,λ2 ∈ Λ, andv,v1,v2 ∈ A,
we have the following:

(i) χ(λ,v1 + v2) = χ(λ,v1)χ(λ,v2).
(ii) χ(λ1 + λ2,v) = χ(λ1,v)χ(λ2,v).
(iii) χ(λ1,λ2) = χ(λ2,λ1).
(iv) χ(λ,−v) = χ(λ,v)−1.

Proof. First we note that if|A/Λ| ≥ 4, then for any choice ofv1,v2 ∈ A, we can findp ∈ A so
thatp,p + v2, andp + v1 + v2 are not inΛ. In particular, by pigeonhole principle, we can find
u ∈ A/Λ so that the image of0,v2 andv1 + v2 will miss u in A/Λ. Lettingp be any element in
A that reduces to−u we get the desired result. Given thisp we have,

χ(λ,v1)χ(λ,v2) =
δ(λ,v1 + v2 + p)

δ(λ,v2 + p)

δ(λ,v2 + p)

δ(λ,p)

=
δ(λ,v1 + v2 + p)

δ(λ,p)

= χ(λ,v1 + v2).

This proves the first statement.
For the second statement, we letp ∈ A\Λ be such thatv + p /∈ Λ (Again, by pigeonhole

principle, such an element exists). SinceΛ is a subgroup ofA, it follows thatv+p+λ2,p+λ2 /∈ Λ.
Hence, we have

χ(λ1,v)χ(λ2,v) =
δ(λ1,v + p + λ2)δ(λ2,v + p)

δ(λ1,p + λ2)δ(λ2,p)

=
W (v + p + λ1 + λ2)W (p + λ2)W (v + p + λ2)W (p)

W (v + p + λ2)W (p + λ1 + λ2)W (v + p)W (p + λ2)

=
W (v + p + λ1 + λ2)W (p)

W (v + p)W (p + λ1 + λ2)

=
δ(λ1 + λ2,v + p)

δ(λ1 + λ2,p)

= χ(λ1 + λ2,v).

For the third statement, takingp ∈ A \ Λ, we have

χ(λ1,λ2) =
δ(λ1,λ2 + p)

δ(λ1,p)
=
W (λ1 + λ2 + p)W (p)

W (λ2 + p)W (λ1 + p)
=
δ(λ2,λ1 + p)

δ(λ2,p)
= χ(λ2,λ1).

The last statement follows from(i) and the fact thatχ(λ, 0) = 1. �

Note that forλ ∈ Λ andv /∈ Λ we have

W (v + λ) = δ(λ,v)W (v) =
δ(λ,v)

χ(λ,v)
χ(λ,v)W (v).

We now show thatδ(λ,v)/χ(λ,v) is independent of choice ofv.
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Lemma 4.3. For all v1,v2 ∈ A\Λ we have

δ(λ,v1)

χ(λ,v1)
=
δ(λ,v2)

χ(λ,v2)
.

Proof. First, if v1 + v2 /∈ Λ we have

δ(λ,v1)

χ(λ,v1)
=
δ(λ,v1)δ(λ,v2)

δ(λ,v1 + v2)
=
δ(λ,v2)

χ(λ,v2)
. (4.3)

Next, we suppose thatv1 + v2 ∈ Λ. Then, since|A/Λ| ≥ 4, we can findp ∈ A \ Λ such that
p 6≡ −v1,−v2 (mod Λ). Then, we have

v1 + v2 + p, 2v1 + v2 + p,v1 + 2v2 + p /∈ Λ.

It then follows from (4.3), that

δ(λ,v1)

χ(λ,v1)
=
δ(λ,v1 + v2 + p)

χ(λ,v1 + v2 + p)
=
δ(λ,v2)

χ(λ,v2)
.

�

Now in light of Lemma4.3, we define

ξ : Λ −→ K×

λ 7−→ δ(λ,v)
χ(λ,v)

,
(4.4)

for any choice ofv ∈ A \ Λ. Lemma4.3shows thatξ is a well defined function.
We are now in a position to give a generalization of Theorem1.11.

Theorem 1.12. Let W : A → K be an elliptic net with the property thatΛ = W−1(0) is a
subgroup ofA and assume|A/Λ| ≥ 4. Then, there exist well defined functionsξ : Λ → K× and
χ : Λ × A → K× such that

W (λ + v) = ξ(λ)χ(λ,v)W (v) for all λ ∈ Λ and all v ∈ A,

and the functionsξ andχ satisfy the following properties:

(i) χ is bilinear,
(ii) χ(λ1,λ2) = χ(λ2,λ1),
(iii) ξ(λ1 + λ2) = ξ(λ1)ξ(λ2)χ(λ1,λ2),
(iv) ξ(−λ) = ξ(λ), and
(v) ξ(λ)2 = χ(λ,λ).

Proof. Recall that we have defined the functionsδ(λ,v) = W (v+λ)
W (v)

, χ(λ,v) = δ(λ,v+p)
δ(λ,p)

, ξ(λ) =
δ(λ,v)
χ(λ,v)

for any choice ofv,p ∈ A so that the fractions make sense. Note that

W (v + λ) = δ(λ,v)W (v) = ξ(λ)χ(λ,v)W (v),

for anyv 6∈ Λ. If v ∈ Λ then both sides are0. Therefore, for anyv ∈ A and anyλ ∈ Λ we have

W (v + λ) = ξ(λ)χ(λ,v)W (v) (4.5)

Furthermore, Lemma4.2shows thatχ is bilinear andχ|Λ×Λ is symmetric.
Therefore, all we have to do is to show that

ξ(λ1 + λ2) = ξ(λ1)ξ(λ2)χ(λ1,λ2), (4.6)
16



thatξ(−λ) = ξ(λ), and
ξ(λ)2 = χ(λ,λ). (4.7)

Let λ1,λ2 ∈ Λ andv /∈ Λ. Note that by (4.5) and (i) we get

W (λ1 + λ2 + v) = ξ(λ1 + λ2)χ(λ1 + λ2,v)W (v) = ξ(λ1 + λ2)χ(λ1,v)χ(λ2,v)W (v).

On the other hand

W (λ1 + (λ2 + v)) =ξ(λ1)χ(λ1,v + λ2)W (v + λ2)

=ξ(λ1)ξ(λ2)χ(λ1,v + λ2)χ(λ2,v)W (v)

=ξ(λ1)ξ(λ2)χ(λ1,λ2)χ(λ1,v)χ(λ2,v)W (v).

Equating the above two equations forW (λ1 + λ2 + v) yields

ξ(λ1 + λ2)χ(λ1,v)χ(λ2,v) = ξ(λ1)ξ(λ2)χ(λ1,λ2)χ(λ1,v)χ(λ2,v),

which gives us (4.6).
Now note thatξ(0) = 1, sinceW (v + 0) = ξ(0)χ(0,v)W (v) = W (v). Similarly,

W (−v − λ) = ξ(−λ)χ(−λ,−v)W (−v)

= ξ(−λ)χ(λ,v)W (−v)

= −ξ(−λ)χ(λ,v)W (v)

while

W (−v − λ) = −W (v + λ)

= −ξ(λ)χ(λ,v)W (v)

which impliesξ(−λ) = ξ(λ). Therefore

1 = ξ(0) = ξ(λ − λ) = ξ(λ)ξ(−λ)χ(λ,−λ),

which by employing part (iv) of Lemma4.2results inξ(λ)2 = χ(λ,λ). This completes the proof
of our theorem. �

As an immediate corollary of the above theorem we have

Corollary 4.4. LetW : A → K be an elliptic net withΛ = W−1(0) be a subgroup ofA and
|A/Λ| ≥ 4. Then for allλ ∈ Λ andn ∈ Z we have

ξ(nλ) = ξ(λ)n2

.

Proof. We already showed thatξ(0) = 1, so the statement holds forn = 0. It also trivially holds
for n = 1. We proceed by induction. Assume the statement is true for somen ≥ 1. From part (4)
of Theorem1.12and Lemma4.2, we have

ξ((n+ 1)λ) = ξ(λ)ξ(nλ)χ(λ, nλ) = ξ(λ)ξ(nλ)χ(λ,λ)n.

From the induction hypothesis and part (v) of Theorem1.12, it follows that

ξ((n+ 1)λ) = ξ(λ)n2+1ξ(λ)2n = ξ(λ)(n+1)2

.

Therefore the statement holds for alln ≥ 0. Finally note thatξ(−nλ) = ξ(nλ) = ξ(λ)n2

from
part (5) of Theorem1.12. Thus the statement holds for alln ∈ Z. �
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Note that Theorem1.12allows us to computeW : A → K by knowing the values ofW on a set
of representatives ofA/Λ and by computing certain values ofχ andξ. In particular ifΛ is a full
rank subgroup ofA, then we can chooseλ1,λ2, . . . ,λr as a basis ofΛ. Then

W

((

r
∑

i=1

niλi

)

+ v

)

= ξ

(

r
∑

i=1

niλi

)

χ

(

r
∑

i=1

niλi,v

)

W (v)

= ξ

(

r
∑

i=1

niλi

)

r
∏

i=1

χ (λi,v)ni W (v)

and

ξ

(

r
∑

i=1

niλi

)

=
r
∏

i=1

ξ(niλi)





r
∏

j=i+1

χ(λi,λj)
ninj





=
r
∏

i=1

ξ(λi)
n2

i





r
∏

j=i+1

χ(λi,λj)
ninj



 .

Combining the above two identities yields (1.12).

Proof of Corollary1.13. If K = Fq, a finite field withq elements, and if(q−1)|ni for all i, then we
getξ(

∑r
i=1 niλi) = 1, since every term is raised to a power divisible byni for somei. Similarly,

χ(λi,v)ni = 1. �

Example 4.5. Here by an example we show that how one can use the identity (1.12) to calculate
an arbitrary term of an elliptic net over a finite field. To illustrate the method we consider a rank
2 elliptic net associated to an elliptic curve overQ and compute a specific term of its associated
p-reduced nets asp varies over certain primes.

For a primep let W : Z2 → Fp be the elliptic net associated to the rank2 elliptic curve
y2 = x3 − 11 and generatorsP = (3, 4), andQ = (15, 58). The netW has a unique rank of
apparition respect to the standard basis{e1, e2} and so its zero set forms a subgroup of rank2 of
Z2. We choose a basis{λ1,λ2} for this subgroup and by using definitions of functionsξ andχ we
computeξ(λ1), ξ(λ2), χ(λ1,λ2), χ(λ1, e1), χ(λ1, e2), χ(λ2, e1), andχ(λ2, e2). The following
table summarizes the result of our computations for five values ofp (i.e. p = 7, 11, 19, 61, 89).

p λ1 λ2 ξ(λ1) ξ(λ2) χ(λ1,λ2) χ(λ1, e1) χ(λ1, e2) χ(λ2, e1) χ(λ2, e2)
7 (1,5) (0,13) 1 4 3 3 3 6 2
11 (1,7) (0,11) 4 9 9 4 9 9 6
19 (1,6) (0,14) 8 5 4 1 3 6 2
61 (2,8) (0,38) 39 60 19 34 6 43 41
89 (9,3) (0,10) 87 43 80 62 58 52 33

Let D be a fixed set of representatives forZ2/Λ. Then any point(r, s) in Z2 can be uniquely
written as(r, s) = n1λ1 + n2λ2 + m1e1 + m2e2 with (m1, m2) ∈ D. Now by computing values
for W (m1e1 +m2e2) (by using the defining recursion of our net), the above table,and employing
the rank2 version of (1.12),

W (n1λ1 + n2λ2 +m1e1 +m2e2) = ξ(λ1)
n2

1ξ(λ2)
n2

2χ(λ1,λ2)
n1n2χ(λ1, e1)

n1m1χ(λ1, e2)
n1m2

× χ(λ2, e1)
n2m1χ(λ2, e2)

n2m2W (m1e1 +m2e2),
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we can computeW (r, s).
Here by using the above formula and table we compute the termW (101, 100) modulop.

p n1 n2 m1 m2 W (m1e1 +m2e2) W(101, 100)
7 101 -32 0 11 3 1
11 101 -56 0 9 6 5
19 101 -37 0 12 12 12
61 50 -8 1 4 21 28
89 11 6 2 7 44 52

5. PROOFS OFPROPOSITION1.6, THEOREM 1.5, AND PROPOSITION1.7

Recall thatK is a field with a discrete valuationν : K× → Z. We haveOν , p, andK defined as
before. An application of the fact thatΨuniv

v ∈ Runiv
r is the following proof of proposition1.6.

Proof of Proposition1.6. Recall thatπE : Suniv → K is defined byπE(αi) = ai. Then the image
of πE lies in Oν , so we can think ofπE as a function fromSuniv into Oν . In particular for any
v ∈ Zr we get that

Ψv = (πE)∗(Ψ
univ
v ) ∈ Oν [xi, yi]1≤i≤r[(xi − xj)

−1]1≤i<j≤r/〈f(xi, yi)〉1≤i≤r. (5.1)

Now assume thatPi 6≡ ∞ (mod p) andPi ± Pj 6≡ ∞ (mod p) for all i 6= j. Then, since
Pi 6≡ ∞ (mod p), we haveν(x(Pi)) ≥ 0 andν(y(Pi)) ≥ 0 and soν(x(Pi) − x(Pj)) ≥ 0. On
the other hand, sincePi, Pj, Pi ± Pj 6≡ ∞ (mod p) we conclude thatx(Pi) 6≡ x(Pj) (mod p),
and thusν(x(Pi) − x(Pj)) ≤ 0. Therefore,ν(x(Pi) − x(Pj)) = 0. This together with (5.1) give
ν(Ψv(P)) ≥ 0, as desired. �

Proof of Theorem1.5. (a) =⇒ (b). Observe thatΨnei
(P) = ψn(Pi). So the result follows from

Theorem1.1.
(b) =⇒ (c) is clear.
(c) ⇐⇒ (d). From Lemma2.5, we have

Φv(P) = Ψ2
v(P)x(Pi) − Ψv+ei

(P)Ψv−ei
(P),

which implies the (c) and (d) are equivalent.
(c) =⇒ (e). First note that by proposition1.6, we haveν(Ψv(P)) ≥ 0, henceν(Ψv(P)) ∈ Oν

and therefore the reduction modp is well defined. We letΨv(P) (mod p) be the image ofΨv(P)
in the corresponding residue field under this reduction map.By part (a) of Lemma2.1we get that
Ψv(P) (mod p) is an elliptic net. Under the assumptions of (c) we haveΨv(P) (mod p) = 0
andΨv+ei

(P) (mod p) = 0. Now if the zero set ofΨv(P) (mod p) forms a subgroup then we
haveΨei

(P) (mod p) = ψ1(Pi) (mod p) = 0 which is a contradiction, sinceψ1 = 1. So the
zero set ofΨv(P) (mod p) does not form a subgroup ofZr and thus by Theorem1.9we conclude
thatΨv(P) (mod p) does not have a unique rank of apparition (with respect to{e1, · · · , er}). So
there exists1 ≤ i ≤ r such thatΨnei

(P) (mod p) does not have a unique rank of apparition.
By Theorem1.10 we get thatΨ3ei

(mod p) = Ψ4ei
(mod p) = 0, which meansν(Ψ3ei

) and
ν(Ψ4ei

) > 0. Therefore from Theorem1.1we conclude thatPi (mod p) is singular.
(e) =⇒ (a) SincePi (mod p) is singular, then from Theorem1.1we know thatν(ψ2(Pi)) > 0

andν(ψ3(Pi)) > 0. Now the result follows sinceψn(Pi) = Ψnei
(P) for n ∈ Z. �
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Proof of Proposition1.7. First of all by [4, Theorem 4.1] ifP is a point such thatP (mod p) is
non-singular then we have the following expression for the local Néron height ofP ,

λp(P ) = max
{

−
1

2
νp(x(P )), 0

}

+
1

12
νp(∆E).

Observe that

νp(DP ) = max
{

−
1

2
νp(x(P )), 0

}

.

Under our assumptions sincePi (mod p) is non-singular for1 ≤ i ≤ r, we conclude that the
quadratic formε(v) in Lemma2.11, can be written as

ε(v) = νp(Dv·P) − νp(Ψv(P))

for v 6= 0. We also note thatv 7→ νp(Fv((P )) is a quadratic form, whereFv(P) is given in (1.11).
Defineε̂ : Zr → Z by

ε̂(v) = ε(v) − νp(Fv(P)) = νp(Dv·P) − νp(Ψ̂v(P)).

Since ε̂ is the difference of two quadratic forms, we conclude thatε̂ is also a quadratic form.
Furthermore, we have

ε̂(ei) = νp(DPi
) − νp(Ψ̂ei

(P)) = 0,

for all 1 ≤ i ≤ r, and

ε̂(ei + ej) = νp(DPi+Pj
) − νp(Ψ̂ei+ej

(P)) = 0,

for all 1 ≤ i < j ≤ r. Thus by [7, Lemma 4.5] we havêε(v) = 0 for all v ∈ Zr. This shows that,
for all v ∈ Zr, we have

νp(Dv·P) = νp(Ψ̂v(P)),

as desired. �

The following two examples give illustrations of Proposition1.7.

Example 5.1.We consider the elliptic curveE : y2 = x3 − 11. Then the group of rational points
of E overQ is generated by two pointsP = (3, 4) andQ = (15, 58). We observe thatP,Q 6≡ ∞
(mod p) for all primesp andP + Q 6≡ ∞ (mod p) for all primesp exceptp = 2. In Table5.1
we provide some values of the elliptic denominator net associated toE and the pointsP andQ
as a two dimensional array with lower left cornerD0Q+0P , lower right cornerD4Q+0P , upper left
cornerD0Q+9P , and upper right cornerD4Q+9P . Table5.2 provides the corresponding values for
the elliptic net associated to net polynomialsΨ(v1,v2)(P,Q). As predicted in Proposition1.7 the
valuations of these two nets at all primesp (exceptp = 2) coincide.

Example 5.2. We consider the elliptic curveE : y2 + 7y = x3 + x2 + 28x with E(Q) generated
by two independent pointsP = (0, 0) andQ = (1, 3). ThenP,Q, P + Q 6≡ ∞ (mod p) for any
primep. HoweverP reduces to a singular point modulo7. Thus as predicted in Proposition1.7the
valuations of the elliptic denominator net (given in Table5.3) and the elliptic net (given in Table
5.4) are the same for all primesp 6= 7.
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3
3 · 17 · 861139 · 638022143238323743 2 · 31 · 227 · 32114101 · 2233563433631 13 · 97 · 967 · 2333 · 899531 · 20086489 2 · 3

2 · 67 · 89 · 379 · 1078019 · 724929587 23 · 103 · 340789 · 175849593114259

2
5 · 37 · 167 · 245519 · 3048674017 3 · 7

2 · 11 · 1567 · 634026250609 2
2 · 5

2 · 43 · 293 · 349 · 631 · 1670527 41 · 227 · 4051 · 32279374297 2
3 · 3 · 17 · 37 · 47 · 149 · 263 · 2003 · 714947

19 · 433 · 2689 · 8819 · 40487 2 · 131 · 179 · 2103080101 3 · 17 · 101 · 15641 · 150379 2 · 71 · 83 · 107 · 751 · 22613 77711 · 82149276767

2
3 · 3

2 · 5 · 17 · 23 · 1737017 163 · 1877 · 42797 2
2 · 67 · 317 · 98377 3

2 · 5 · 59 · 25640299 2
6 · 7 · 41 · 157 · 229 · 9437

449 · 104759 2 · 3 · 29 · 809 11 · 19 · 31 · 677 2 · 29 · 569 · 4987 3 · 17 · 1439 · 925741

2
4 · 37 · 167 5

2 · 631 2
2 · 3 · 17 · 149 13 · 30557 2

3 · 5 · 37 · 239 · 1549

3
2 · 17 2 · 67 7 · 157 2 · 3

3 · 2087 19 · 23 · 503 · 659

2
3

3 2
2 · 5 11 · 1553 2

4 · 3 · 17 · 199 · 577

1 2 3 · 17 2 · 31 · 233 631 · 1753

0 1 2
2 · 29 3

2 · 5 · 3331 2
3 · 29 · 37 · 83 · 3467

TABLE 5.1. Elliptic denominator net associated toE : y2 = x3 − 11 and the pointsQ = (15, 58) andP = (3, 4)

−3
3 · 17 · 861139 · 638022143238323743 −2

−8 · 31 · 227 · 32114101 · 2233563433631 −2
−18 · 13 · 97 · 967 · 2333 · 899531 · 20086489 −2

−26 · 3
2 · 67 · 89 · 379 · 1078019 · 724929587 −2

−36 · 23 · 103 · 340789 · 175849593114259

2
5 · 37 · 167 · 245519 · 3048674017 −2

−8 · 3 · 7
2 · 11 · 1567 · 634026250609 −2

−14 · 5
2 · 43 · 293 · 349 · 631 · 1670527 −2

−24 · 41 · 227 · 4051 · 32279374297 −2
−29 · 3 · 17 · 37 · 47 · 149 · 263 · 2003 · 714947

19 · 433 · 2689 · 8819 · 40487 2
−6 · 131 · 179 · 2103080101 2

−14 · 3 · 17 · 101 · 15641 · 150379 −2
−20 · 71 · 83 · 107 · 751 · 22613 −2

−28 · 77711 · 82149276767

2
3 · 3

2 · 5 · 17 · 23 · 1737017 2
−6 · 163 · 1877 · 42797 2

−10 · 67 · 317 · 98377 2
−18 · 3

2 · 5 · 59 · 25640299 2
−18 · 7 · 41 · 157 · 229 · 9437

−449 · 104759 −2
−4 · 3 · 29 · 809 2

−10 · 11 · 19 · 31 · 677 2
−14 · 29 · 569 · 4987 2

−20 · 3 · 17 · 1439 · 925741

−2
4 · 37 · 167 −2

−4 · 5
2 · 631 −2

−6 · 3 · 17 · 149 −2
−12 · 13 · 30557 2

−13 · 5 · 37 · 239 · 1549

−3
2 · 17 −2

−2 · 67 −2
−6 · 7 · 157 −2

−8 · 3
3 · 2087 −2

−12 · 19 · 23 · 503 · 659

2
3

2
−2 · 3 −2

−2 · 5 −2
−6 · 11 · 1553 −2

−4 · 3 · 17 · 199 · 577

1 1 2
−2 · 3 · 17 2

−2 · 31 · 233 −2
−4 · 631 · 1753

0 1 2
2 · 29 3

2 · 5 · 3331 2
3 · 29 · 37 · 83 · 3467

TABLE 5.2. Elliptic net associated toE : y2 = x3 − 11 and the pointsQ = (15, 58) andP = (3, 4).



3
2 · 5 · 8243 · 7289363 59 · 523 · 1170779 2803 · 2163467 2

3 · 23 · 7758139 59 · 149837011 31 · 229 · 32045369 3 · 11 · 733 · 154099559

13 · 127 · 3066533 2 · 41 · 53 · 26627 7 · 13 · 17 · 5653 5
2 · 29 · 67 · 487 3 · 13 · 19 · 89 · 1291 7 · 109 · 1427 · 2833 2

2 · 13 · 167 · 199 · 617887

5948431 181 · 8819 3
2 · 47 · 1097 11 · 11779 2 · 61 · 74377 17 · 25967671 5 · 56479 · 333271

3 · 5 · 7 · 1949 6553 2
4 · 431 7

2 · 521 42181 47 · 71 · 14557 3 · 7 · 127 · 349 · 32537

2 · 11 · 113 911 463 5 · 557 3
3 · 37 · 137 2

2 · 2059769 25084117199

127 7 3 · 19 2 · 199 7 · 2039 653 · 15767 5 · 11 · 293 · 662327

3 · 5 2
3

1 349 53 · 593 5624039 2 · 3
2 · 41 · 73 · 661 · 2141

1 1 7 5 · 11 2
2 · 3 · 23 · 107 7 · 4812433 19 · 127 · 601 · 4637

1 1 2 · 3 601 277 · 313 1987 · 119321 5
2 · 139843540153

0 1 13 7 · 59 13 · 55819 2 · 29 · 26272439 3 · 7 · 13 · 59 · 263 · 5880307

TABLE 5.3. Elliptic denominator net associated toE : y2 + 7y = x3 + x2 + 28x and the pointsQ = (1, 3) andP = (0, 0)

−3
2 · 5 · 7

20 · 8243 · 7289363 7
20 · 59 · 523 · 1170779 7

20 · 2803 · 2163467 2
3 · 7

20 · 23 · 7758139 −7
20 · 59 · 149837011 −7

20 · 31 · 229 · 32045369 −3 · 7
20 · 11 · 733 · 154099559

−7
16 · 13 · 127 · 3066533 −2 · 7

16 · 41 · 53 · 26627 7
17 · 13 · 17 · 5653 5

2 · 7
16 · 29 · 67 · 487 3 · 7

16 · 13 · 19 · 89 · 1291 −7
17 · 109 · 1427 · 2833 −2

2 · 7
16 · 13 · 167 · 199 · 617887

7
12 · 5948431 −7

12 · 181 · 8819 −3
2 · 7

12 · 47 · 1097 7
12 · 11 · 11779 2 · 7

12 · 61 · 74377 7
12 · 17 · 25967671 −5 · 7

12 · 56479 · 333271

3 · 5 · 7
10 · 1949 7

9 · 6553 −2
4 · 7

9 · 431 −7
11 · 521 −7

9 · 42181 7
9 · 47 · 71 · 14557 3 · 7

10 · 127 · 349 · 32537

2 · 7
6 · 11 · 113 7

6 · 911 7
6 · 463 −5 · 7

6 · 557 −3
3 · 7

6 · 37 · 137 −2
2 · 7

6 · 2059769 7
6 · 25084117199

−7
4 · 127 7

5
3 · 7

4 · 19 2 · 7
4 · 199 −7

5 · 2039 −7
4 · 653 · 15767 −5 · 7

4 · 11 · 293 · 662327

−3 · 5 · 7
2 −2

3 · 7
2 −7

2
7

2 · 349 7
2 · 53 · 593 −7

2 · 5624039 −2 · 3
2 · 7

2 · 41 · 73 · 661 · 2141

7 −7 −7
2 −5 · 7 · 11 2

2 · 3 · 7 · 23 · 107 7
2 · 4812433 −7 · 19 · 127 · 601 · 4637

1 1 −2 · 3 −601 −277 · 313 1987 · 119321 5
2 · 139843540153

0 1 13 −7 · 59 −13 · 55819 −2 · 29 · 26272439 3 · 7 · 13 · 59 · 263 · 5880307

TABLE 5.4. Elliptic nets associated toE : y2 + 7y = x3 + x2 + 28x and the pointsQ = (1, 3) andP = (0, 0)
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