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ON INVARIANTS OF ELLIPTIC CURVES ON AVERAGE

AMIR AKBARY AND ADAM TYLER FELIX

Asstract. We prove several results regarding some invariants gitigllcurves on average over the family of
all elliptic curves inside a box of sidesandB. As an example, I€E be an elliptic curve defined ovérandp
be a prime of good reduction f&. Letez(p) be the exponent of the group of rational points of the radact
modulo p of E over the finite field?,. LetC be the family of elliptic curves
Eap: ¥ = X +ax+b,

wherelal < Aand|b| < B. We prove that, for ang > 1 andk € N,

1 Xk+1

& 23 ek = () + O o).

ICl Ezé DZ; (logx)°
asx — oo, as long asA, B > exp(cl(log x)1/2) andAB > x(log X)**%, wherec; is a suitable positive constant.

HereCy is an explicit constant given in the paper which depends onll, and li(x) = fzx dt/ logt. We prove
several similar results as corollaries to a general theor€he method of the proof is capable of improving
some of the known results with B > x* andAB > x(log X)° to A, B > exp(c;(log X)2) andAB > x(log x)°.

1. INTRODUCTION AND RESULTS

Let E be an elliptic curve defined ovér of conductorN. For a primep of good reduction (i.ep 1 N),
let Ep, be the reduction mog of E. It is known thatE,(Fp), the group of rational points @ over the finite
field Fp, is the product of at most two cyclic groups, namely

Ep(Fp) = (Z/ie(p)Z) x (Z/ee(p)Z),
whereig(p) divides eg(p). Thus,eg(p) is the exponent oEp(F,) andig(p) is the index of the largest
cyclic subgroup oE,(Fp). In recent years there has been a lot of interest in studyi@glistribution of the
invariantsig(p) andeg(p).
Borosh, Moreno, and Port&][were the first to study computationallg(p) and conjectured that, for
some elliptic curvesg(p) = 1 occurs often. We note that(p) = 1 if and only if Ex(Fp) is cyclic. Let

Ne(X) = #Hp < x; p4 N andEp(Fp) is cyclic}. (1.1)

Then Serre 6], under the assumption of the generalized Riemann hypstli&RH) for division fields
Q(E[K]), proved thatNg(x) ~ celi(x) asx — oo, wherecg > 0 if and only if Q(E[2]) # Q. Here li(x) =
fzx dt/logt. For the curves with complex multiplication (CM), Murt25] removed the assumption of the
GRH. Also, he showed that under GRH one can obtain the egtid(atog logx/(log x)?) for the error term
in the asymptotic formula foNg(x) for any elliptic curveE. The value of the error term is improved to
O(x*8(log x)?/3) in [10]. In [3], following the method of 25] in the CM case, the error ter@(x/(log X))
for any A > 1 is established.

Another problem closely related to cyclicity is finding theeeage value of the number of divisorsigp)
asp varies over primes. Lat(n) denote the number of divisors of In [1], Akbary and Ghioca proved that

> (ie(p) = celi(x) + O(x*¢(log ¥*?)

p<x

if GRH holds, and
> ie(P) = cel) + O gows).

p<x
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for A > 1, if E has CM. In the above asymptotic formulgsis a positive constant which depends only on
E.

A more challenging problem is studying the average valug=(f). In [23], Kowalski proposed this
problem and proved unconditionally that the lower bounddgg holds for

1 .
X/IOQXZ|E<p)

p<x

if E has CM. He also showed that for a non-CM curve the above duasthounded from the below.

A more approachable problem is finding the average valge (@). Freiberg and Kurlberglle] were the
first to consider this problem and established conditionaténditional in CM case) asymptotic formulas
for 3 p<x €e(p). The best result to date is due to Felix and Mudg][who proved more generally that fér
a fixed positive integer the following asymptotic formuldds

D" e(p) = celi(X1) + O(XE(x),
p<x
where
(%) = x/(logx)A if E has CM
| x®8(logx)? if GRH holds
andce is a positive constant depending Brandk. Felix and Murty derived their result as a consequence
of a more general theorem on asymptotic distributione¢p)’'s. Their general theorem also imply the best

known results on the cyclicity, the Titchmarsh divisor desh, and several other similar problems. To state
their result, leg(n) be an arithmetic function such that

D19l < X (log ¥, (1.2)
n<x
whereg andy are arbitrary, and let
f() = ) 9(d). (13)
din

Then the following is proved inl4, Theorem 1.1(c)].

Theorem 1.1 (Felix and Murty). Under the assumption of GRH and bouiid?) for 8 < 1/2 and arbitrary
v, we have

D Hie(p) = ce(li(x) + o(x¥ (log X) ‘2"*’35“”),

p<x

where ¢(f) is a constant depending only on E and f.

They also proved an unconditional version of the above #rador CM elliptic curves (se€lld, Theorem
1.1(a))).

Our goal in this paper is to prove that Theorérit holds unconditionally on average over the family of
all elliptic curves in a box. More precisely, we consider family C of elliptic curves

Eap:Y? = X +ax+bh,

wherela] < Aand|b| < B. Itis not that dificult to prove a version of Theorefnl on average over a large
box. However it is a challenging problem to establish theesaxrer a thin box. By #hin box we mean, as
a function ofx, eitherA or B can be as small ag for anye > 0. Here we prove a stronger result in which
one of A andB can be as small as exp(log x)'/?) for a suitably chosen constaot > 0. Before stating
our main theorem, we note that, at the expense of replgamdy by larger non-negative values, we can
assume that andy are non-negative.

Theorem 1.2. Let ¢ > 1 be a positive constant and let f be the summatory fundtlo®) of a function g
that satisfieg1.2) for certain non-negative values gfandy. Assume that AB x(logx)**if 0 <8 < 1/2
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and AB> xY2*B(log x)2"+6+2¢(log logx)? if 1/2 < 8 < 1. Then there is a positive constant x 0 such that
if A, B > exp(cy(log X)1/2), we have

cl Z Zf(uEab(p))—Co(f)"(x)+o((l gx)C)’

EapeC P<X

v 99
()= 2 G ae@r ¢

The implied constant depends orsgy, and c. Herep(n) = n[[gn(1 - 1/p) andy(n) = [Tgn(1 + 1/p).

where

This theorem is comparable to Stephens’s average resulttorisfprimitive root conjecture. Let be a
non-zero integer other thanl or a perfect square and lag(x) be the number of primes not exceedixg
for whichais a primitive root. The following result has been proved2][and [29].

Theorem 1.3 (Stephens). There exist a constant ¢ 0 such that, if N> exp(cl(log x)/ 2), then

— Aa(x)—All(x)+O( )
%ZN (logx)°
where A= [] (1-1/¢(¢ - 1))and cis an arbitrary constant greater thdn

¢ prime

The line of research on Artin primitive root conjecture ore@ge started with the work of Goldfeld
[19] that used multiplicative character sums and the largessiegquality to establish a weaker version of
Theoreml.3 The extension of the method of character sums to the avesgions on a two parameters
family, in the case of elliptic curves inside a box, was peneel by Fouvry and Murty inlj5] on the average
Lang-Trotter conjecture for supersingular primes. Theirkwvas extended to the general Lang-Trotter
conjecture by David and Pappalard]. The best result on the size of the bdaj € A and|b| < B) is due
to Baier {] who established the Lang-Trotter conjecture on averagetutine condition

A B> xY/?t€ andAB > x%/2*€, (1.5)

wheree > 0. The supersingular case of this result is due to Fouvry andyM15, Theorem 6]. Baierq]
has also established an average result for the Lang-Trauitgecture on the range

A, B > (log x)®%¢ andx®2(log x)1%¢ < AB < &, (1.6)

wheree > 0. Note that {.6) is superior to {.5) if AandB are not very large.

There are also average results for other distribution problfor elliptic curves. Banks and Shparlinski
[7] considered such average problems in a very general sdijirgnploying multiplicative characters and
consequently proved average results for the cyclicity lgrmbthe Sato-Tate conjecture, and the divisibility
problem on a boj¥al < A, |b] < B satisfying the conditions

A, B < x' ¢ andAB > x}*€, (1.7)
wheree > 0. Another notable result is related to Koblitz conjecturet
aWIN(x) 1= #p < x; #E(Fp) is prime.
A conjecture of Koblitz predicts that
tWIn( ) X
*Ellog 2"

asx — oo, wherecg is a constant depending & Balog, Cojocaru, and David proved the following result
on Koblitz conjecture on the average over the faniily

Theorem 1.4 (Balog, Cojocaru, and David). Let A B> x¢ and AB> x(log x)1°. Then, as x- oo,

Win (Y _ 2-t-1 X X
i é” o prﬂg(l_ e [l (e
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(See p, Theorem 1].)

The error term in the above theorem is estimated by a carealysis of some multiplicative character
sums. We prove our Theoreh? by a generalization of a modified version 6f Lemma 6] (see our Lemma
3.1). We have used some results of Steph@® o sharpen the estimates given ) Lemma 6], and thus
we could establish our results, f8r< 1/2, on a box of size

A, B > exp(1(log x)*/?) andAB > x(log X)°, (1.8)

for appropriate positive constants andés. As far as we know this is the thinnest box used for an elliptic
curve average problem. Our Theorérhas many applications. Here we mention some direct conseque
of it to the cyclicity problem, the Titchmarsh divisor prebh, and computation of tHeth power moment

of the exponenég(p).

Corollary 1.5. Letc> 1 and AB> x(logx)**%. There is ¢ > 0 such that if AB > exp(cl(log x)l/z) then,
as x— oo, the following statements hold.

()
ued ), X
GPIRECE [Z dt//(d)so(d)z]ll(x)+o((|09 x)C)’

EeC d>1
where N:(X) is the cyclicity counting function ang(d) is the Mobius function.

(i
) X
c 5 >, > lie(p) = [Z g (d)e (d)Z}"(X) ’ O((Iog x)C)'

EeC p<x d>1

(iii) For k € N we have

26|d/l( ) el Xt
RPIPLCE [Z dk+1w<d)¢(d>2}'( ) O((Iogx)c)

EeC p<x d>1

Part (i) of the above corollary gives a strengthening of altesf Bank and Shparlinski7, Theorem
18] where asymptotic formula in (i) was proved in the wealarge (.7). Parts (i) and (iii) establish
unconditional average versions of some results givedliarid [14].

Remarks 1.6. (i) As corollaries of Theoreni.2 we can also establish unconditional average results for
f(ie(p)), wheref(n) is one of the functions (log)®, w(n)¥, Q(N)K, 2«’™  or 1 (n)'. Herea is an arbitrary
positive real number anklandr are fixed non-negative integers. Séd,[p. 276] for conditional results
related to these functions in the case of a single elliptiveu

(i) Under the conditions of Theorerh.2 one can also obtain average results fem) = n® and f(n) =
og(N) = Xmn m’ as long ag < 1. More precisely, foA andB satisfying the conditions of Theorein2we

have, forc > 1,
g(d) - X
EPINACE (Z dw(dw(d)Z}"(X) ' O((Iog x)°)’

EeC p=x d>1
whereg is the unigue arithmetical function satisfying

= Z g(m).
mn

This stops short of providing an answer on average to a propl@posed by KowalskiZ3, Problem 3.1]
that asks about asymptotic behavioryaf., ie(p).

(iii) Following the proof of Theoreml.2, one can improve the conditioh, B > x° in Theoreml1.4to
A. B > exp(cy(log x)V/2), for some suitably chosen constant

(iv) Lemmaa3.1lis the dificult part of the proof of Theorer.2 The proof of LemmeB.1 follows the
method used in the proof of Lemma 6 6f [which itself is based on7]) and combines it with some devices
from [29]. A new ingredient in the proof of Lemntalis an asymptotic estimate due to Howe (see Lemma
2.1) for the number of elliptic curves ovét, which haved-torsion subgroup ovef, isomorphic to two
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copies ofZ/dZ. Another new feature is a successful application of Burgdssund (see Lemma.6) in
handling terms obtained from the error term of Howe's esttiima

(v) One other novel feature of the proof of Theor&ris sharp estimates of the error terms arising from
the curves ofj-invariant 0 or 1728, which are estimated using some refulis the theory of CM curves
(see Lemma&.3). A trivial estimate of these terms will result in unsatigfary upper bounds on admissible
values ofA andB in Theoreml.2

Following the ideas of the proof of Theoret2 and by a careful analysis of some character sums one
can show thato(f)li( x) closely approximatey, .., f(ie(p)) for almost all curves € C. Here we prove the
following more general theorem.

Theorem 1.7. LetO < B < 1/2andy > 0. Let f(n) be an arithmetic function satisfying

f(n) < NP(logn)”. (1.9)
Suppose AB- x2(logx)8 if 0 < B < 1/4 and AB> x3*%(log X)**+14(loglogx)* if 1/4 < B < 1/2. Then
there is a positive constang ¢ 0 such that, if AB > exp(cl(log x)Y 2), we have
2

1 . . X2
33| 23 feton - o -0 )

ICl =
where @(f) is defined by1.4).

The following is a direct consequence of Theorem

Corollary 1.8. Let (X) be a positive real function such thgilm h(x) = 0. Under the assumptions of
Theoreml.7, for any x> 1 we have

<

X
=< W, (1.10)

> f(e(p) - co( Fli(%)

p<x

for almost all E€ C. More precisely(1.10 holds except possibly for @(x)2|C|) of curves inC.

We note that one can takieto be any of the functions mentioned in Corolldrb (i), (i) and Remarks
1.6(i) and (ii). For Corollaryl.5 (i), the corresponding function ti(n) is the characteristic function of the
singleton setl}.

Remarks 1.9. It is possible to establish a version of Theorémiusing the bound
D lom)P < x%(log x>

n<x

instead of {.9). However we find thatl(.9) will make the presentation of the proof more convenientteNo

that if
f(n) = > g(d) < rP(logn)”
din
then, by the Mobius inversion formula, we have

Dl < xH#(log 02+,
n<x
The structure of the paper is as follows. In Section 2 we surizaaesults that will be used in the proof
of our two theorems. Section 3 is dedicated to a detailedffmfobheoreml.2and Corollaryl.5. In Section
4 we briefly summarize the proof of a technical lemma whichtiw@dimensional version of Lemntal
The proof is tedious and divides to several subcases. Wedosae cases and briefly comment on the
remaining ones. Finally in Section 5 we prove Theotkeih

Notation 1.10. Throughout the papep andq denote primes (for simplicity in most cases we assume that
p,q # 2,3), ¢(n) is the Euler functiongw(n) is the number of distinct prime divisors of Q(n) is the total
number of prime divisors af, 7(n) is the total number of divisors af, p(n) is the largest prime factor of,

7k(n) is the number of representationsrofis a product ok natural numbersy(n) is the Moébius function,
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Y(n) = n[]gn(1+1/d), andr(x; d, a) is the number of primes not exceedinthat are congruent tamodulo
d. Moreover,K is a quadratic imaginary number field of class numbéax () is the norm of an ideal of
K, N(«) is the norm of an elementin K, p always denotes a degree 1 prime ideaKokith N(p) = p, and
dsp is the largest divisor off composed of primes that split completelydn We denote the finite field gb
elements byF, and its multiplicative group b¥5. For two functionsf(x) andg(x) # 0, we use the notation
f(X) = O(g(X)), or alternativelyf(x) < g(x), if |f(X)/g(X)| is bounded ag — oo.

2. LEMMAS
Let Est denote an elliptic curve ovét, given by the equation

y? =X+ sx+t; stekFp,
where at least one of or t is non-zero. LetEg[d](Fp) denote the set ofi-torsion points ofEs; with
coordinates irFp. The following lemma essentially is due to Howe (s2& p. 245]).
Lemma2l. (i) Forde N and afixed prime p, let
Sa(p) = {(s 1) € Fp x Fp; Exild](Fp) = Z/dZ x Z/dZ}.

Ford| p- 1, we have
p(p—1)
#S =
4P = (et
Moreover, if df p—1ord > /p+ 1, then#Sq(p) = 0.
(i) The assertions inY hold if we replaceSqy(p) with Sq(p), where

Sa(p) := {(s 1) € Fy x Fy; Esi[d](Fp) = Z/dZ x Z/dZ}.

+0(p*?).

Proof. (i) We know that elliptic curves isomorphic (ovEf) to Es; are of the formEg s, Whereu € Fy.
Let Autz,(Est) be the group of automorphisms (ovigy) of the elliptic curveEs;. So the number of
elliptic curves isomorphic tdes; (overFp) is (p — 1)/|Autg, (Est)l. Let [Est] denote the class of all
elliptic curves oveff, that are isomorphic ovét, to Es;. We have

p-1

#S4(p) = —

(EadBatp AUt (Esd)

Now the result follows since by?[l, p. 245], we have, fod | p -1,
1 __p
(B AU, (Esy)| v (d)e(d)

+0(pY?). (2.1)

Moreover, by P7, Corollary 111.8.1.1], ifd  p — 1 then £/dZ)? # Es:(Fp)[d], and so #4(p) = O.
Alsoif d > P+ 1and £/dz)? = Eg(Fp)[d] C Est(Fp), thenp + 2P + 1 < d? < #E¢(Fp). On the
other hand Es(Fp) < p+2+/p + 1, by Hasse’s theorem. This is a clear contradiction.

(i) We can deduce this by following the proof of part (i) andserving that there ai®(1) isomorphism

classes oveF, containing a curve of the forrg; or Esp.
O

Remarks2.2. (i) For any primep, we know thatAutg (Est)| = O(1). In fact, forp # 2,3, from [27,
Theorem I11.10.1], we know that

6 if s=0andp=1(mod 6)
|Autz, (Est)l = {4 ift=0andp=1(mod4).
2 otherwise

(i) We note that, using Howe's notatio2], Page 245], we have

- - g w(d)
|Autz, (Esy)l — dy(d)e(d) + O (w(d/d)2“@ yp),

[Est]cSa(p)
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where the implied constant is absolute. However, the tétffi B a bound forZ”gcd(d,pfl) u(j)- Inour
d

case,w =1, sinced | p— 1. Thus, the term49 can be removed. Alsa(d/d) = 1, and thus
(2.1 is correct.

Let K be a quadratic imaginary number field of class number 1plbet a degree 1 prime ideal Kfwith
N(p) = p. Letrp be the unique generator of Note that ifp is unramified, themr, is unique up to units,
and if it is ramified, themrp is unique up to units and complex conjugate. We Hd¢g) = N(7p) = p
Lemma 2.3. Suppose thatg is the largest divisor of d composed of primes that split detefy in K.

(i) For positive integer d with @< x/ log x we have

Z 1l 2Wr(dsp)  x
¢(d)  log(x/d?)

N(p)<x
di(rp-1)(rp-1)
(ii) For positive integer d, we have
T(dsp) X

1
< .

N(p)<x
di(mp-1)(mp-1)
(i) Let Est : y? = X + sx+ t be an elliptic curve oveF,, with st= 0. We have#Eg;(Fp) = p+ 1 or
#Est(Fp) = (mp — 1)(mp — 1) and N(mp) = p, whererp € Z[(1 + i V3)/2] or Z][i].
(iv) Letgd) be an arithmetic function satisfying.2) with g < 1. Then we have

PI-D VD V- C R

p<x " steFp dp-1
St=0 Eg(Fp)[d]=(2/dz)?

Proof. The proofs of (i) and (ii) are identical to the proofs of Prejiions 2.2 and 2.3 of].
(i) See 22, Chapter 18, Theorems 4 and 5].
(iv) We observe that the conditidBs(Fp)[d] = (Z/dZz)? implies thatd | p — 1 andd? | #Es(Fp). By part
(iif) we know the possibilities for Est(Fp). Now if #Es¢(Fp) = p + 1, then we conclude thak = 2 (since
d| p—1andd| p+1). On the other hand ifi(Fp) = (7p — 1)(7p — 1) wherery, € Z[(1 +iV3)/2] or Z[i],
we let 0< € < 1 - B. So by employing (i) and (ii), the sum in (iv) is bounded by

X X o) | gl _ _x
D1+ D gl Y i<+ S EE x> T e

p=x d<vx+1 N(p)<x logx ~ logx d<x1/5 d d>xL/5 d IOg X
p=—1 (mod 4) di(mp-1)(mp-1)

We next recall a version of the large sieve inequality fortiplitative characters.

Lemma 2.4 (Gallagher). Let M and N be positive integers al(uih)r“]":,\,l'\'+1 be a sequence of complex num-

bers. Then
+ | M+N 2 M+N
> ()Z D aw)| < (N+Q) > lal,
q<Q90 q x(@) In=M+1 n=M+1

where Q is any positive real number, aﬁg‘((q) denotes a sum over all primitive Dirichlet characteys
modulo qg.

Proof. See [L§, p. 16]. O
To state the next lemma, we need to describe some notation. Le
tea(n) = #{(a1, a..... &) € [LB*NNK n=agap---ay.
We also set

WX Y)i= >,
n<X
p(n)<Y
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wherep(m) is the largest prime factor @f. Note that we defin@(0) = p(x1) = .
Lemma 2.5 (Stephens). (i) Fork e N, if B < x8 then

Z 7is()? < BX(¥(B, 9 logx))¥.

b<Bk

(i) For a syficiently large constant,c> 0 there exists £> 0 such that ifexp(cl(log x)1/2) < B < x®then

X2 (¢(B, 9logx))"/? < exp(—cz(logx)*/?/log logXx),
where
k=[2logx/logB] + 1.
(iii) For a syficiently large constantc> O there exists £> 0 such that ifexp(cl(log x)1/2) < B < x*then

X% (¥(B,9logx))"/? < exp(—cs(log X)*/?/loglog ),
where
k =[4logx/logB] + 1.
Proof. See p9, Lemmas 8, 9, and 10]. O

Lemma 2.6 (Burgess). (i) For any prime p, non-principle charactgr, r e N, and B> 1, we have
> x(b) < BV pi log p.
b<B
where the implied constant is absolute.

(i) Lete >0, n> 1, y be a non-principal character, € N, and B> 1. Then, if n is cube-free or+ 2, we
have

Z){(b) « Bl-Tna?*e,
b<B
where the implied constant may dependeand r.

Proof. See P, Theorems 1 and 2]. O

LemmaZ2.7. (i) (Friedlander and Iwaniec) Let Q and N be positive integers. Then we have

4
> x()

< N?Qlog® Q,
n<N

x(mod Q)
wheresx denotes a sum over all primitive Dirichlet characters mad@.
(i) Suppose that Q is the product of two distinct primes. Thenave h
4

> Do x| < N%Qlog°Q.
x(mod Q) In<N
X#X0

Proof. (i) Thisis [17, Lemma 3].

(ii) Let Q = pgwith p # g. To see that the result is true if the summation is over alkpiancipal char-
acters, we need to consider the inequality for imprimitibaracters. The only non-principal imprimitive
characters modulpqgare of the formy’xg or xox”, wherey; andy are the principal characters modyio
andgq, respectively, ang’ andy’” are primitive characters modufmandgq, respectively. Then, partition the
summation over all characters into a summation over prmitharacters modulpg, primitive characters
modulo p and primitive characters modutp Hence, the assertion can be obtained by using the triangle
inequality and the result for primitive characters in pgrt ( O

We summarize several elementary estimations that are nsbd proofs of next sections.
Lemma28. (i) (Brun-Titchmarsh inequality) Let> 0. Then forl < d < x-¢, we have

X
7T(X, d, a) < m
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(i) Letd <1lande > 0. Thenforl <d < x¢, we have
Xl -0

Z p" “ e(dlogx

p= 1 modd

(i) For x> 3and d> 1we have

Z 1 - log logx + Iogd‘

i p ¢(d)
p=1 modd
(iv) We have
1 log logd
< .
@(d) d

(v) Under the assumption of bourdl.2), for any reald we have

Z |g(d)| <1+ yl+ﬂ O(IOgy)’y+1
d<y

Proof. (i) See[l1, Theorem 7.3.1].
(i) This is a consequence of partial summation and part (i).
(iii) See [11, Section 13.1, Exercise 9].
(iv) See RO, p. 267, Theorem 328].
(v) This comes by straightforward applications of partiainenation and boundL(2).

O
3. PROOFS OF THEORENM.2 AND COROLLARY 1.5
3.1. Basic set up. LetC be the family of elliptic curves
Eap: VP = X +ax+h,
wherela) < A, |b| < B, and at least one @ or b is non-zero. Note that
IC| = 4AB+ O(A + B).
Let
f(n) = > g(d)
din
for all n € N. We have
. 1 |Autg (Est)lf(lE ()
el =SS flien(P) = l—Z Z . . > o1
EabeC P<xX P<X steF, lal<A, bl<B: 31<u<p
a=su* (mod p)
b=tu® (mod p)
Next by applying Remark.2 (i) in the above identity (recall thai # 2, 3), we have
f(IESt(p))
Ci EZCZ (e (P) = Ci Z ZX Z 1+ Error Term 1
ab€C P=X P=X steFy lal<A, |bl<B, J1<u<p
a=su* (mod p)
b=tu® (mod p)
where
|Auty (Est)lf(lE (P)
Error Term 1= — P = 1 3.1
| Z > (3.1)

p<X steF lal<A,bl<B
:o ab=0 modp
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Now by considering

2AB 2AB
1=—-+ 1-—
laj<A, |bl<B, d1<u<p P lal<A, |bl<B, J1<u<p P
a=su* (mod p) a=su* (mod p)
b=tu® (mod p) b=tu® (mod p)

and applying it in the previous identity we arrive at

| Z Z f(ig,,(p)) = The Main Term+ Error Term 1+ Error Term 2

|C EapeC pP<x

where

. f(IE t(p))
The Main Term_ — =
ICl pZ:‘( Séx p(p-1)

and

Error Term 2 = IZ Z f(IES‘(p)) Z 1- ﬁ?’

P<X steFy laj<A, |bl<B, A1<u<p p
a=su* (mod p)
b=tu® (mod p)

3.2. TheMain Term. We have
. f(iew(P) 4AB
The Main Term_ Z Z o — 1) = Ci Z p(p— ) Z Z g(d)

P<X steFy p<x steF} diieg; (P)
4AB
= 9(d)#Sa(p).
CI pz p(p— )d%
Let @
e CN
G = and G = lg(d)].
() = Z ) 2(P) dmz_l o)
d< \/—+1 d<+/p+l

By using these notations and employing Lem2nawe have

The Main Term: — [Z Gi(p)+ O

cl\ &
_4AB
= <o (71 +0(72).

3.2.1. Estimation of#;. Leta € R.q be fixed. The Siegel-Walfisz Theorem implies
li( X) ( X )
a(x;d,1) = +0
U= 2@ * \ogxe
for anyd < (log X)* and anyC > 0. Then, by the Brun-Titchmarsh inequality (Lem&\& (i)), the fact that
W(d) = d, and (L.2), we have
dy(d)e(d) dy(d)e(d)

S =

d<(logx)” (log x)?<d< Vx+1

_ o) 9@ x 9@
=192 ae@? * [(Iogx)czdwd)w(d)] {Iogx 2 Tea? )

d>1 d>(log x)*
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Note that, for any > 0, we have

l9(d)| gy _ 1
dZ;/dW(d)so(d) Z BE YR

Thus, forg < 2,

Z g(d)

£ dy(d)p(d)2
is a constant and

X
= co(f)li _—
H = o )I(X)+O((Iogx)0’)’

whereC’ := C’'(C, a, B, ) is an appropriate positive constant. Simcis arbitrary, we can chooseso that
C’ is any constant bigger than 1. So

71 = co(FI(x) + o( (3.2)

wherec can be chosen as any number bigger than 1.

(lo QX)C)’

3.2.2. Estimation of.%. We first employ the Brun-Titchmarsh inequality (Lemr2a (i)) and (L.2) to
deduce

x1*3(log X)*~loglogx if B # 0
Sem= Y lodixd1) < { g 1097 Hloglogx 5 3.3)
=X i< vl x*z2(logx)”loglogx ifg=0
By partial summation and(3), we have
S = Z () <x? (logx)” log log x. (3.4)
p<x
In conclusion, sinc@ < 1
The Main Term= % (co(f)ll(x) ; o( (|ogx)c))’ (3.5)

wherec can be taken as any number bigger than 1.

3.3. Error Term 1. Recall the expressiorB(1) for Error Term 1. We have

If(ie,. (P)I (AB
Error Term 1<<| |Z Z —( 0 + A+ B)

p<X stelFp p
St= O
1 1
3D D YR -C T E- DY YD Y -
p<x steFp dip-1 p<x " steFp dip-1
St=0 Eg(Fp)[d]=(Z/dZ)? St=0 Eg(Fp)[d]=(Z/dZ)?
An application of part (iv) of Lemm&.3in the latter sum yields
1\ x
Error Term 1« Z 5 Z lg(d)| + (A B) o0 X (3.6)
p<x dip-1
d</p+l
By employing Lemma2.8 (iii) and (iv) and usual estimates, the first of these summnatis bounded as
follows. 1 1 o)
D5 >, @dl= 3 i Y < (oglogiog i BT (3.7)
p<x dip-1 d<y/x+1 p<x d< yx+1
d<+/p+l p=1 modd

From applying part (v) of Lemma.8in (3.7) we have

1 1) x
y+2
Error Term 1« x2(log X)**“(loglogx) + (A B) oo X (3.8)
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3.4. Error Term 2. We summarize the main result of this section in the followiagma, which can be
considered as a generalization and an improvement of Lemoh§ch

Lemma3.l. Letre N,0<8 < 3/2,y € Ryo, and g: N — C be a function such that

2,19 < x"*(log x)”.

d<x

Then there are positive constantsand ¢ such that if AB > exp(c1(log x)*/?) we have

EPIPXCIEDY o1l 2 L?

p<xdjp-1 1<st<p laj<Abl<B:
Est(Fp)[d]=(z/dz)? Jl<u<p

a=su* mod p

b=tu® mod p

< X7 (Iog X)”*1loglogx + (log x)” log logx + (i é)( L x? (log x)” log log x)

1/2
, (log x) N 1 N
log log x Alr - glr

1 = (x2(log %) + 4% (log X)7*3(log log X) ¥ + X% (log X)"*3 log log x)

log x

148

X2 ta?

+ (log x)”*! log log x

+ xexp(—c

+

Proof. Throughout,, with or without subscript, will denote a character modpldAs usual,yg will be the
principal character modulp. Let p be a fixed prime, and let t € Fy be fixed. By p, Equation (12)], we
have

L Y @eOATDET).

lal<A,|bl<B: 2(p-1) XTX2

Jl<u<p Xng:XO
a=su* mod p
b=tué mod p

where

A=) x@ and  B():= > x(b)

lal<A [bj<B

We use the identity

> xa( 2O AND)B(v2)

2(p 1) Xl/\/Z
Xl)(z_)(o
= 20 1))(0(8))(o(t)ﬂW 0)B(xo) + 2(p Z xo(x2(H)A0)B(2)
Xoi)(z
x5=xo
z(p ) Z XS AT BTS) + Z(pl 5 Y MOROATDEE)

Xis=xo

and note that

1 2AB AB A+B
25 - O OATDERD = 7555 3% 10 3 1o - ZR0(3+ 228).
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Therefore,

EDIDIC ORI Y | I
Ip %dipi p p

1<st<p laj<A|bl<B:
Est(Fp)ld]=(Z/dZ)? d1=u<p
a=su* mod p
b=tu® mod p
2 Z Z Z 1 ( (AB A+ B)
== — (o= + > xo(2() AR B(r2)
— 2
Cl p<xdp-1 1<st<p p 1 P P Z(p )X2¢X0
Est(Fp)ld]=(Z/dZ)? X5=xo
1
X1(o®AN1)BXo) + 57— x1(Sh2()AG1)B(r2 ))
2(p 1) X;m 1 0 1 0 2(p l) X;m 1 2 1 2
Xl—XO X2#X0

X 5=xo
=121+ 2o+ 23+ 24

We will evaluate each summation separately.

3.4.1. Estimation ofz;. We have

1 AB A+B
=2 Y Y —O(—2+ )
| | p<xdp-1 1<st<p p-1 P P
Est(Fp)ld]=(Z/dZ)?

(AB+A+ B) S Y 1

dip-1 1<st<p
Est(Fp)[d]=(Z/dZ)?

p(p-1) A+B p(p—1)
<3 Z 2 'g(d)'(dwm) (d)+o('°3/2))+( 9 )Z 2, lad ”(dw(d) (d)*o(pg/z))‘

p<x dip-1 p<x dip-1
d</p+l d<4/p+l

<ial Z

p<x

We denote the first summation By ; and the second by ». By partial summation and(3), we have

Y1 < X7 (log x)*** log logx + (log x)” log logx (3.9)

asp < 3/2.
By Equations 8.2) and @.4), we have

lg(d)] 1
212 <<( ) Z Z dgl/(gd)ga(d) Z o1/ Z lg(d)l

p<x dp-1 p<x dp-1
d</p+1 d<+/p+1
< l+l L+x2(lo x)” loglogx| . (3.10)
A B/\logx g g'od '

Therefore X, is bounded by the error terms in the lemma.
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3.4.2. Estimations ot, andX3. ForX,, we have

Tp = |C|Z 290 ) oI 2, X OAR)BR)

p<x d|p-1 1<st<p Xzi)(o
d<yp+l Est(Fp)[d]=(Z/dZ)? X5=x0
<G =SS g@ Y Z B2)l Y. 1
p<x dp-1 1<st<p )(2#(0 —A<a<A
d< vl Ea (]Fp)[d]N(Z/dZ)z X5=xo pra
<G Z > le@ ) 18t >, L
P<X dp-1 Xzi)(o 1<st<p
d<+p+l XZ—XO Est(Fp)[d] =(z/dz)?

By Lemma2.1, we have

Leg)s Y ldl Y IB()(Z)I(dS/((Z) (lj) (pS/Z))

P<X dp-1 )(2#)(0
d< Vp+l XQ_XO
d
D<X dip-1 ‘ﬁ Xzi)(o D<X dip-1 Xzi)(o
d<yp+l X5=x0 d< P+l ¥8=xo
=121 + 222
Now,
1 lg(d)]
221= 3 — 1B(x2)!. (3.11)
5,2, 80@ 24 2

p=1 modd &=y,

Letk = [2log x/ log B] + 1. By Holder’s inequality, we have

1-% *
oY i< > D1 >0 D xe®
p<x  x2#xo p<X  x2#xo p<X  x2#xo Ib<B
p=1 modd)(g:)(0 p=1 modd)(g:)(0 p=1 modd)(g:)(0
2%
<@xd ) E DS neaba) | (3.12)
P<X x2#x0 |b<Bk
whereryg(n) := #{(al, a,...,a) €[LB*NnN:n=aa,--- ak} By Lemma2.4, we have
2
2, pk 2
DD e ®)| < (6 +B9 > niep(b) (3.13)
P<X x#x0 |b<Bk b<Bk
Supposek = 1. That is,B > x2. Then, we obtain
2
DD o) < B2
P<X x2#xo |b<Bk
Therefore from .12 we have
D)
1B02)l < B— o172
psx - x2#xo ¢(d) / (logx) /

p=1 modd 8-y,
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after using Lemma&.8(i). Substituting this into§.11), we obtain
Skl ) x!/2
(log 072 24 dy(d)e(d)®2 ~ (log X2

d<x
asp < 3/2 and the summation above was previously determined to besiaru.

Now suppos& = [2log x/logB] + 1 > 1. ThenB < x? andx? < BX < BX¥? < x*. Then, by Lemm&.5
(i) and (i), (3.12), (3.13, and the trivial bound forr(x; d, 1), we have

Z Z 1B(r2)l < ( ) X ((XZ + Bk)Bk(‘P(B,glog X))k)i

p<x  x2#xo
p=1 moddX =x0

o1 ¥

2
< B—x"(¥(B,9logx))”

34
(logx)* 2)

loglogx )’ (3.14)

X
< BW exp(—02

wherec, > 0 if ¢; is suficiently large. Substituting3(14) into (3.11), we obtain

(log )Y l9(d) (log 9>
221 < xexp( “oglogx dZ;( Ay (Ap(d) XS\ " loglogx )°

asp < 3/2.
ForX;,, by Lemma2.6 (i), (1.2), and Lemm&.8 (i), (ii), and (v), we have

BZ D o)l D IBG)b) <<— PGS pl/z >

Z){z(b)‘

I0<X dip-1 X2¢X0 d< VX+1 p<x xzi)(o b<B
d< P+l XZ—XO p=1 modd X2:X0
1 a2 x2* a2 Iog logx lg(d)|
<= > Y p o logp Y 1< > =5
B 41 p<x X2%xo B d< Vx+1
p=1 modd X2=X0
X Fei (log x)*** log Iogx
B?
The proof of the bound fax, gives us the same bound fBg, mutatis mutandis
3.4.3. Estimation 0124 ForX,4, we have
1
d — 2 (DA B(x2
-G 2 Y w Y 517 D X2 OAND)B(72)
p<x d|p-1 1<st<p X1%£X0
d<+/p+l Est(Fp)[d]=(Z/dZ)? X27X0
X1X2=X0
1 1
= — d —_— A1) B (2 S)xa(t
G 2 9D D TR > ABE) Y, xSk
d</Xx+1 p<Xx X1#X0 1<st<p
p=1 modd 2zxo Est(Fp)[d]=(Z/dZ)?
X1X2=X0
1 1
= — d ﬂ Y1 B Y2 (W D) )
G 2 9D ), N > ACDBE2)Whalv1. x2)
d< VXx+1 p=X X1#X0
p=1 modd X2#X0
XS=xo
where
Wodrix2) = >, xS0,
I<st<p

Est(Fp)[d]=(Z/dz)?
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Applying the Cauchy-Schwarz inequality twice, we obtain
4 2

> ABEDWeavx2)| <| Y. [Weatr x| | D 1A || Y 1842

XliXO XliXO Xli)(o Xli)(o
X2FX0 X2FX0 X2FX0 X2FX0
4.6_ 4. 6_ 4. 6_ 4.6_

1X2=X0 1X2=X0 1X2=X0 1X2=X0

By Lemma2.7, we have
4

< A?p(log p)°.

2,

X1#£X0

> x@)

a<A

Hence,

DA = D) le(a) <16 ) Zm(a) D1

X1#X0 X1#xo |lal<A X1#£xo0 la<A X2#X0
X2FX0 XZ XO Xl/\/g:/\/o

XhS=xo Xi8=xo
Z x1(a)

)
a<A

X1#X0

4
< A?p(log p)°.

Similarly,

D, 1Ble2)l* < Bp(log p)°.

X1#X0
X2#X0

X¥5=xo
Also,

S Westerf =YY a0 Y AR

X1.X2 X1.X2 1<st<p 1< t'<p
Est(Fp)[d]=(Z/dZ)? Ey v (Fp)[d]=(Z/dZ)?
= > > ZXl(S)Xl(S’)Z)(z(t)Xz(t)
1<st<p 1<s t'<p X1

Est(Fp)[d]=(Z/dZ)? Eg v (Fp)[d]=(Z/dZ)?

=(p-12 > 1

1<st<p
Est(Fp)[d]=(Z/dZ)?

p* 7/2
<« —+ 3.15
W de@ P (3.19)
by Lemma2.1 Putting all this information together, we obtain
4

(AB)?p'%(log p)*? . (AB)?p'¥2(log p)*2
d2y(d)?p(d)? dy(d)e(d)

D, ACBODWpdlvix2) + (AB)*p°(log p)**.

X1#X0
X2#X0
H8=xo
Hence,
1 p1/2 p3/8
) — VAB(I 3 1/4
RIS (@ maem )
B p=1 modd
< ! B( 2(log X)? + x +2(Iog X)”*3(log log x)% + xﬁ(log X)”*3log log x),
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asp < 3/2. This completes the proof. O
3.5. Proof of Theorem 1.2.
Proof. By combining @.5), (3.8), and Lemma&3.1, we have
g(d) .
f = I E,
G 2 Hieu(P) - {Z Dl d)ZJ i)+

EapeC P<X d>1
where

X 1.1 X 1 1 B
loa )¢ = | ey y+2 Tt rz y+1
= {log ¢ (A B)(Iog + X% (log¥ ) ( ALTT Bl/r)x «2 (log x)*** log log x

bt - (xi (1092 + x5 (log X)*3(log 10gX)®' + "% (log X)”*3 log log x),

for givenc > 1 andA, B > exp(cy(log x)1/2) Now we choose large enough such thag? + L < 1. (Note
that we can do this B < 1.) So we arrive at the following upper bound r We have

(log )°

Now the result follows by choosingB > x(log X)**%¢ if 8 < 1/2 andAB > x¥?*8(log x)2"*6+%(log log x)?
if1/2<p<1. O

3.6. Proof of Corollary 1.5.

Ex— 4 xexp(—%(log x)l/z) + %3 (x% (logX)? + X" (log X)"*3 log log x).

Proof. Parts (i) and (ii) hold, since the characteristic functiérily can be written as
> u(d)

din
and the divisor function can be written as
() =>"1
din
Thus,g(d) = u(d) andg(d) = 1 both satisfy {.2) with 3 = 0 andy = 1.
For (iii), let f(n) = 1/nk, wherek € N. Then, writing

f(n) = > g(d),
din
gives us that
ol = > ( ) < M 1<),
din din
Therefore, by Theorerh.2, we have
. X
o ;szi o = Gk + o(—(log X)C). (3.16)

whereCy is defined in the corollary. Ledy(E) be defined by Ey(Fp) = p + 1 — ap(E). Hasse’s Theorem
says thatay(E)| < 2+/p. Note that

‘ p+1-ac(p) 5 (K P~ ap(E))
IRECEIRN ) ZZ[E<p)k+Z() e(p ]

EeC p=X EeC p=<x EeC p<x j=1

k-3
‘;C;;lE(p)k k[x ;pz p(E)k}

|C|Xk+%
ZZ (p)" [IOQX]'

EeC p<X
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For the first part in the above, bg.(L6), we have

pk ~ e ( i1 )_ Xk—l- ( xL )
|c|ZZ| (p)k_CkX li(x) + O Tog Ckkfzt li(t) dt+0kf2 (og0° dt

EeC p<x

= CodMIi(x) — Ckkf tLi(t) dt + O((IX:)l()C)

Then, the result holds since that there exists a con§taoich that

li( X1 + C = XKli(x) — kfx e 1i(t) dt.
2

4. ATECHNICAL LEMMA

Lemma4.l. Letr e Nande > 0 be fixed. Let g N — C be a function such that
D lgd) < x**(log ¥,
d<x

where0 < B < 3/4andy € R,y Then there are positive constants &nd ¢ such that if AB >
exp(1(log X)¥/?) we have

) AB
G P-DE-1) 1)<q— VIPIRPINECICY 2 1

P steFy  dieg () lal<Abi<B:
P S’,t’e]FX d'lig,, ., (Q) Jl<u<p,l<u’<q

o a=su* mod p,a=s (u')* modq
b=tu® mod p,b=t’(')® modq

1 1) » (log x)/2
y-1 2 NI
< X(logx)~“(log logx) + (A B) (logx2 " eXp( “log |09X)

+ (i 1 ) X7 *52+%(log x)” loglog x + \/T (x3(log X)+x 1 (Iogx)?*3(loglogx) )

Al/r Bl/r
where g is a positive constant.

Proof. Throughout, a primé superscript will denote that underlying object is relatedhe primeg. Note
that, forp, g prime,s,;t € IF;; ands,t' € Fé fixed, by orthogonality relations, we have

Yo iy 3% [ 3 wesme|

laj<A,|bl<B: 1<u<p 1<u'<q laj<A |bi<B x1 mod p
Jl<u<p,l<u’'<q
a=su* mod p,a=s (U)* modq
b=tu® mod p,b=t’ (')® modq

—— D, X )Xz(b)]

x2 mod p

x[rll D X'l(s«u')“)»?'l(a)][q%l 2 X’z(t’(U’f)ﬁ(b)]

X7 modq x5, modq

1 ’ v SN SN
= - 96-T > Z x1 (2O (WA ) AR 1) Blraxy):
P g x| modp x}.x, modq
XG0 () y)%=xp
where

A=y x@  and  B() = ) k().

la<A lbi<B
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Thus,

16
2 1=>'Si(p.gst,s,1),

[al<A|b|<B: =1
Jl<u<p,l<u’<q
a=su* mod p,a=s'(u)* modq
b=tué mod p,b=t’(u')® modq

whereS; corresponds to one of the cases arising from choices of ddbke tllowing conditions:

X1=)(o,)(2=)(é) X1 _XO’XZ—X()G /

X1 =X0.X2 # X0 : X7 = X0 X1=XoX2 # X0 ! (Xz) =Xo
4 X

X1 #X0,X2 = X0 X1 =X0 X1#EX0X2 = X0 - )(1) = X0

.. 4 6
1F X0 X2 #F X0 X1X2 = X0 4 6
X1 E XX # X6 (x) (¥h) = xb

From these 16 cases, there are essentially fi¥erdint cases to handle.
Case 1. all four of 1, x2, x7. x5 are principal.
Let this correspond tp = 1. Then, forp # g, we have

AB AB AB A+B
sae0-28+of 2] 2] o]

Thus, we have

) AB
G P-DE-1) 1)<q— VIPIRPINECICY 2 1

P steFy  dieg () lal<Abi<B:
P 5’,t’e]1-?X d'lig, ., (9) Jl<u<p,l<u’<q

o a=su* mod p,a=s (u')* modq
b=tu® mod p, b=t’(u’)6 modg

— g(d)g(d)| ) S(p.g.st,s,t)+ 0O
" al p;x(p 1@-1) &éx d“EZ(p) Z
P#q sy FXd lieg (@

(5 ¢ %)

The sums corresponding fo= 2,3,..., 16 are dealt with in Cases 2, 3, 4, and 5. Here, we will bound the
sums corresponding to the error terms above. We have

4 /
@ 2 oDE-D 1)(q D IPINC o

p.g<Xx s,te]FX dlig t(p)
pP#q s’,t’e]Fé dliey , (0)

<<[Z > |g<d)|J Z D, D, g

D<X steFy dllgst(p) q<x s,V eFy dlIEs’ v (a)

The first summation can be bounded as we batydin Subsectior8.4.1 and the second summation can
be bounded as we boud ; in Subsectior8.4.1 That is, by 8.9), (3.10), andg < 3/4, we have

AB
5> > D, ddud) o < x(logx)*loglogx
|C| P.O<X (p 1)(q 1) steFys  diieg () P
g,t'dﬁg dliey , ()
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The same bound holds for the term coming frOgAB/ pcd). For the last error term, bya(10), we have

,A+B
|C|Z<p 1)(q—)Z 2, 9=

p.gsXx steFy  diigg (p)
P#q s, t’e]FX dliey , (0)

<[5+ B)[Z =3P |g(d)|]z SO ey

p<x T steFy dlieg () a=x & sive Fg dliegy , (9)
< 1 + 1 X2
A B/ (logx)?

Case 2: Exactly two ofy1, x2, x7, x5 are principal. We have two subcases to consider.

Subcase 1. Exactly one ofy or x2 is principal and exactly one gf; or x7 is principal. We will bound
the summation wheg; = xo andy’ = x;. The bound for whew: = xo andy’, = xj is similar.

The estimation is analogous to estimationsEgfandX3 in Subsectior8.4.2 We note thajoyy, is the
principal character modulpgsincep # g. Hence IﬂC\/o)(é,)l < A. Thus,

G oD 2, STy Y e0aOntesin)

DTX steFy  diigg (p) X2EX0, X9EX )
P s’,t’e]Fé d,||ES;’l; (a) x5=x0, (¢5)°=x}
1 1 ) —
<32 o > lo@)l - lg(d)l > > 1Bl
p"fx dip-1 steFy X2EX0: XoEXG
P74 ds P+l EqEpld=(Z/dZ)? x3=xo. (xp)°=x}
d'lg-1 s VeF}
d<+G+1 p

Eg v (F)ld'1=(Z/d'Z)?

AL GG YT VT W e

2
d< vx+1 d'<vx+l 1DSX i qude 9 X2EX0, X5EX
=1 m = ¢
p=Lmo g=>mo X5=x0. (¥5)%=x}

M 3/2)( q(q_l) 3/2)
* (dlﬁ(d)so(d) +o(P™) Tu)e(d) | O(a™) (4.1)

=01+02+03+ 04,

whereo; is the sum corresponding to the product of the main term4.i),(c4 corresponds to the product
of error terms in 4.1), ando, and o3 correspond to the mixed terms. We will evaluate each of these
summations separately. For the first summation we have

_lg(d) g —
o1 = = 1B(r2x5)|- (4.2)
Bd<; 1dt//(d)90(d) Z dt//(d )e(d') p;X WOZXZM 2

1 modd
c:)lmodd/ X2=X0, (XZ)G—XO

Letk = [4log x/ log B] + 1. By Holder’s inequality, we have

-4 *
2k
—_— ’
)IEEDI - AR ED YD Y I D YD VN PRS0
BASX | XR0 X RS e O e S odd f2rvo xa#xo 1b<B
p=1 modd _ N6 s p=1 modd _ IN6_ s p=1 modd _ IN6_ s
g=1 modd’ X’ XOs (Xg) =Xo g=1 modd’ X’ XO’ (XZ) =Xo g=1 modd’ X XO’ ()(2) o
2%
1
< (a(x;d, Dr(x; d’, 1)) = Z Z Z Tk B(Ox2x5)| |
P.O<X y2#x0,x5%EX [b<BX

(4.3)
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whereryg(n) := #{(al, a,...,a) €[LB*NnN:n=aa,--- ak} By Lemma2.4, we have

2
DD wlow(d)| < (¢ +B9 > nea(b) (4.4)
P.a<Xx#xo |b<Bk b<Bk
Supposek = 1. That is,B > x*. Then, we obtain
2
DT 1D risbayb) < B2
P.A<X x2#x0 |b<Bk
X2#Xo

Therefore by employing Lemni&a8 (i) in (4.3), we have

S X
Z Z 1B(x2x))l < B 12 (12 :
BOX  yatvo xhEl @(d)2p(d’)+/4(log x)

=1 modd , ,
C‘]JE]. modd’ /\/g:/\/Os (Xz)ez/\/o

Substituting this into Equatior(2), we obtain

9 o) X
“ g 24 TDADT 2o THDET? < o

asp < 3/4. The latter summations were previously determined to heteats.
Now suppos& = [4log x/logB] + 1 > 1. ThenB < x* andx* < BX < Bx* < x8. Then, by Lemm&.5
() and (iii), (4.3), (4.4), and the trivial bounds for(x; d, 1) andnr(x; d’, 1), we have

2 1_2_1k 1
> > Bl < ( 5 d/) (< + BYB (¥ (B, 9logx))¥)*
p=x X2#EX0, X5#EX ()

=1 modd
cs)lmodd’ 6_X0 (XZ)G—XO

X — = xk(¥(B, 9log X))/

(dd )3/4
X2 (log x)/?
B—(dd')3/4 exp(—cg—Iog ogx )’ (4.5)

wherecs > 0 if ¢y is a suitable large constant. Substitutidgs] into (4.2), we obtain

2 ol (Iogx)l/z) lg(d)| lg(d)] 2 (_ (Iogx)l/z)
T exp( “ logiogx ) 2 T@AE 2o @ @@ = * | “logiogx

asp < 3/4.
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By Lemma2.6 (i), for any r € N ande > 0, we have that our second summatiesnis bounded by

d , ’
<5 Y g W Y > Y e
d</x+1 d’<vx+1 —lp<xdd —1q<xdd’ Xzi)(o, Yo#v, |b<B
p=1 modd g=1 mo —Xoa (/\”2)6:)(6
1 |g(d)| ) .
<re 5 _— lg(d")] Bl-1 =1
e B d;f;ﬂ dy(de(d) , ;&ﬂ 9(d) ; Z; ql/z X#X;# BT(P
- B =1 modd g=1 modd’ ’ ,26)(0,
> * X5=x0, (5)%=x}
1+— +&
X w2 |g(d)| , —2r2+r+1+‘9
< lg(d")| q a2
B/ log X log X, Z dl//(d) (d)z d’§)‘<+1 qu
- g=1 modd’
x2*a? "% (log log X) Z lg(d")|
< A7
BY/"(log x)2 oS d
< ix%ﬁ ;2 +2£(Iog X)y—l IOg IOg X.

BT
In the above estimations we employed Lemi&(v) and the fact thgg < 3/4.
We obtain a similar bound fars.
Finally, by Lemma2.6 (ii) and Lemmaz2.8 (v), for anyr € N ande > 0, we have that our fourth
summatioro4 is bounded by

1 , 1 1 ,
<B DIN-CIRDINCCONDY pl/2 > qi2 2 |ux ”O(b)|
d< Vx+1 d'<vx+1 p<x g<x X2#EX0, Xyt |b<B
p=1 modd g=1 modd’

Xg_)(o (5)®=x4

<zm A Y el Y Y (o

d<vx+1 d’ </x+1 p=<x gq=x
VX VX p=1 modd g=1 modd’

L EE gl 5 @A)y o)
Bl/r(|OgX)2 d<vx+1 d d’<y/x+1 o
< ix1+'8+rz:_21+2‘9(log )% (log log x)?.

Bi/r
Adding the above bounds fer, o, 073, ando4 concludes Subcase 1 of Case 2.
Subcase 2: Either bothy; andy: are principal or botly; andy’, are principal. Without loss of generality
we assume that; = xg andy), =

We have
2y DD e ) ), xa(r2OAl1rp)Blraxg)
cl ‘j:x(p 1)(Q— )&teFx diee(p) 4(I0 l)(q 1 o
b S refy dieg, (@ Kixmro
1 ) 1 — T
= Z g(d) Z g(d) Z (P- 1217 Z Alcxp)Br2x o) Wpalx1, x2),
d</x+1 d’</x+1 p.g=x P q X1#X0
p#q X2FX0
it
(4.6)
where
Woalerx2) = ) D xa(r200).
SteFy s VeFy

Est(FpldI=(Z/dZ)?  Egy (F)ld']=(Z/d'Z)?
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By applying the Cauchy-Schwarz inequality twice, we obtain
4 2

DT Al BlaxgWoalwxa)| <| D Wagrnx2?| | D MGwpl|| D) 18Uzl |-

X1#X0 X1#£X0 X1#£X0 X1#X0
X2#X0 X2#X0 X2FX0 X2FX0
X xS=xo h5=xo H5=xo H5=xo

From Lemma2.7 we have
D Akl < A?p(log pa)®

X1#X0
X2#X0
XS=xo
and
—N\4 2 6
D 1Blaxpl* < B*pa(log pa)®
X1#X0
X2#X0
XS=xo
We have
2 a7 o
DT 1 Woalerx2l? < ) Woalen x2) Wiglrax2)
X1#X0 X1.X2
X2#X0
XX5=xo

=2 2 e Y aWe®

X1.X2 SteFy u,veFy
S VeFy VRS
Est(Fp)[d]=(Z/dz)? Euv(Fp)[d]=(Z/dz)?
Eg v (Fo)ld']=(z/d'Z)? Ev v (Fo)ld]=(z/d'Z)?
= > > > @) Y x202()
steFy u,veFy X1 X2
S .VeFy UV eFy

Est(Fp)ld]=(Z/dZ)?  Euy(Fp)ld]=(Z/dZ)?
Eg v (F)ld']2(Z/d'Z)? Ey v (Fo)[d']=(Z/d'Z)?

_ _ _ P 3/2)( q* 3)
stzel;g (P-1@-1)< DQ(—dw(d)w(d) +p @U@ +q
SV WV ERS

Est(Fp)[d]=(Z/dZ)?
Eg v (Fo)ld']=(Z/d'Z)?
Ev v (Fold']=(z/d'Z)?
3~5 3~4 5/2~5
< 7\2 p(:]Z /2+ b + /p/q/2+p5/24’
d(d)2y(d)y(d)2e(d)e(d’)>  dy(d)e(d)  (d'y(d)e(d))

which implies

> Alp)Blraxg) Woalxrx2)
X1%X0
X2#X0
DS=xo

< \/A_B(Iog pq)3 P’ + p%qP/? 4 p’/4e? +pl 5/2).
(dy(d)p(d)Y2dy(d)e(d)  (dy(d)e(d)?  dy(d)e(d) 47

In the above inequalities, we have used the facts thab ¢ c+d)? <« a?+b%+c?+d? and @+b+c+d)Y* <
a4 + bt/4 + ¢4 + d¥/4, where the implied constants are absolute.
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Substituting the first term ind(7) into the original summation ird(6), we obtain

1 lg(d)| lg(d)] ,
VAB dZ d/2y(d)1/2¢(d)1/2 2 Tu(d)e(@) > allog po)

=Vt syl pzpl)’?r?();dd
g=1 modd’
1 lg(d)| lg(d")|
< x3(log X)
VAB d;f;‘ﬂ A2y (d) /2 (d)>/2 d,;m (d)u(d)e(d)?
1
< x3(log X), 48
VAE (logx) (4.8)

asp < 3/4.
Similarly by substituting the second, third, and fourtmisrin @.7) into the original summation ir4(6),
we obtain

—\/173 (x5*9)/2(log x)7*2(log log X) + x***#/4(log x)7*2(log log x) + X¥*4)4(log %) *¥(log logx)?).
(4.9)

Adding (4.8) to (4.9) concludes Subcase 2 of Case 2.

Case 3: Exactly three of1, x2, x7, andy;, are principal. In this case by following the method of Sulecas
1 of Case 2 we can conclude that the sum in question is boundie: lsame bound in Subcase 1 of Case 2.

Case 4: Exactly one ofy1, x2, x7. x5 is principal. In this case by following the method of Subcasef
Case 2 we can conclude that the sum in question is boundecesathe bound in Subcase 2 of Case 2.

Case 5: All four of x1, x2, x7. x5 are non-principal. In this case by following the method ob&se 2 of
Case 2 we can conclude that the sum in question is boundea sathe bound in Subcase 2 of Case 2.

m|

5. PROOF OF THEOREM..7

Proof. We will evaluate the following summation:

2

=N P EORNOIE

EeC \ p<x

= é DD flee)fe@) + ). flie()? - 2co(H)li(x) Y flie() + ol F)2(X)? .
EeC | p.g<x p<x f=x
. (5.1)
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For the first summation irb(1) we have

el =53 e flie(@)

EeC p.g<x
" el P (P-DE-1 1)(q 5 2., 9Dud) 2 1

p#q
P steFy  dlieg(p) lal<A bl<B:
P s t’e]Fé d'ligg ,, () Jl<u<p,l<u’<q
' a=su* mod p,a=s'(u)* modq
b=tu® mod p,b=t’(U)® modq

|Autg, (Est)l - JAUtz, (Es v)l ,
1 Z p( “Dq- f) Z Z g(d)g(d’) Z 1
ppc;];x p g steFp  dligg, (p) lIaJSA,lfilsBi
=0 d'li Ji< ,1<u’
S',StEGFl? ey o (@ a=suf modu[igzs’kju’j? modg
b=tu® mod p,b=t’ (u')® modq
|Autg, (Est)l - JAUtz, (Es v)l
=) 2 2, 9dyd) 2 !
ICl pi)c;}tgqx (P-1)@-1) SteFy; d|'|E51(p) IaJSA,IblgB,:
s’s;i’,e_]gq ey (@ a=suf ranlosdu; Zsf’ Eju’<)g modq
- b=tué mod p,b=t’ ()8 modq
|Aute, (Est)| - |Autg, (Es v )l ,
+ ﬁ D R T D, D, ddyd) >, 1
pi)c;}tgqx p-L- steFp  dligg, () :LIaJSA,I?_ISB:
—0 o1 Jl<u<p, i<
s’,stt’e(J)Fq ey o @ a=suf modug,gzs’?uf)g modgq
st'=0 b=tué mod p,b=t’ ()8 modq
=S1+So+S3+ Sa. (5.2)

Let S be the corresponding bound in Lem#hd to a functiong(n) satisfying

2, 18] < x*(log ™.

We have _
4AB 1
= f f
S1 = 08)+ 5 F; TR S%;X (e () (e, , (@)
pa s, t’e]FX
2
4AB
= 0O(S) + (ie () fle (M| |- (5.3)
cr pZ; p(p - )s%;:x . ] pZ; p2(p 1 [s%; - ] ]
From the calculation of the main term in Secti®2 we have
3D 2, fCeatd) =) (a7 5.4
for anyc’ > 1. Sinceig, (p) < v/p+ 1 andf(n) < r’(logn)”, we have
2
> m [ Z f(iESl(p))] < x**B(log 9?2, (5.5)
p<x SteFy
As B < 3/4, applying 6.3) and 6.4) in (5.5) yields
. X2
S1 = co(f)2li(X)? + O(S) + O(W) (5.6)

foranyc > 1.
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We will next boundS, (a similar argument will boun&3z). We have

Autz (E Autg, (Es v
A Bl AT Es Ol $v S o) > L

1 1 .
b= (P-D@-1) steFp diiew (p) lal<AJbI<B:
p#q st=0 d'lig, ,(q) Jl<u<p,l<u'<q
stery 9t a=su* mod p,a=s (U)* modq

b=tu® mod p,b=t’(')® modq

D0 D, lg@lgd) >, 1

AUtz (Esy)l - IAUtz, (Es )]

1 1 ;
p.g<X (p )(q ) steFp  dligg, (p) laj<A,|bl<B:
p#q st=0 d'lieg ,, (9) Jl<u'<q
8 V' €Fy t a=s'(u')* modq

b=t (1')® modq

< ZEZ D, g %ZS’Z W?@ oy > 1. 67

p<x " steFp diigg; (P) t'eFy dligg , (@ [aj<A,|bj<B:
st=0 ’ Jl<u'<q

a=s (U)* modq
b=t’(u')® modq

By Lemma2.3(iv), the first term in the above product is boundedxyog x. The second term in the above
product can be bounded by

< |é| Z Z Z lg(d")| Z 1—2%3 +Z Z Z |g(d)|—.

= 9s veFg dlieg , (@) <A Ibl<B: a=x 9 s veFy d'lieg , (@)
Jl<u’'<q

a=s (U)* mod’q

b=t'(u')® mod’q

Following the computations in Sectié?2we can conclude that
a=x g VR d'liey ,, ()

This together with Lemm&.1 imply that, under the assumptions of Theoré&m, the second term of the

product in 6.7) is also bounded by/ log x. Thus, we have
2

- 5.8

N L (5.8)

For S4, we have

Se < |C|Z P D00 g > L

pp%x steFp  dligg, (p) "'ﬁi@"bﬁB
P al mo
s’,stt’e]F d IIES, v (a) ab=0 modg
St=0
Note that
AB 8,3, B\
1 —+O(A+B+_+_+_)<<_+O(A+B).

lal<AJbl<B
ab=0 mod pq
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Thus,
<= > LS Y oA ase). ©9)
|C| P.g<X Pq steFp  dligg, (P) P
#q St:()p d o
p ST, lieg , (a)
st'=0

The summation ing.9) corresponding té&\B/pqcan be bounded by
2

2
Z lo(d)| Z lp < (log logx)*(log x)2[ Z @] < ¥(log logx)?(log x)?*+4.

d< vx+1 p<Xx d<vx+1
VX p=1 modd VX

By employing Lemma&.3(iv), the summation ing.9) corresponding t@& + B can be bounded by
2

2

<<(i é)ZEZ 2, 1o <<(/i é)(logx)z

p<x p SteFp dligg, (p)
St=

In conclusion we have

1 1 2
S4 < ¥(log logx)2(log X2+ + (A + B) (|og et (5.10)

Thus, under the assumptions of Theoreém by applying 6.6), (5.8), and 6.10 in (5.2), we have

2
Z D fe(P)Fie@) = co(F)i(%)? + O(S) + 0( 2) (5.11)
| EeC p,a<x (log )

p#q

Next we boundy. ;. f(ie(p))?. LetG : N — C be defined by
f(n)? =) G(d).

din

DG Y@ Y 1<xy S F@F _ 1280g 02+,

n<x d<x n<x d<x
din

Thus, applying the proof of Theorein2 for G and f? yields

2 1 l X 2y+3 1 1 725+L2 2y+2
i ;C;( flie(p)” < _Iogx ( ogx * X2 (log¥) *\ 2 B (log x)?*? log log x

Then, we have

+

= - (x2 (1092 + 4B (log X)2*(log logX)®'* + X% (log X)2** log log x) .

Therefore
2
G ;Z fie(p)? = O(S). (5.12)
eC pP<X
Now by applying 6.11) and 6.12) to (5.1) we conclude that, under the assumptions of Theatefnwe

have
ICl Z

EeC

[Z f(ie(p)) —Co(f)”(X)

p<x

X2
=0E)+ O((Iog x)z)

SinceS = O(x?/(log X)?) the result follows. O
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