
A GEOMETRIC VARIANT OF TITCHMARSH DIVISOR PROBLEM

AMIR AKBARY AND DRAGOS GHIOCA

Abstract. We formulate a geometric analogue of the Titchmarsh Divisor Problem in the con-
text of abelian varieties. For any abelian variety A defined over Q, we study the asymptotic
distribution of the primes of Z which split completely in the division fields of A. For all abelian
varieties which contain an elliptic curve we establish an asymptotic formula for such primes
under the assumption of GRH. We explain how to derive an unconditional asymptotic formula
in the case that the abelian variety is a CM elliptic curve.

1. Introduction

Let τ(n) denote the number of divisors of the positive integer n and p denote a prime number.
In 1931 Titchmarsh [23] studied the behaviour of∑

a<p≤x

τ(p− a),

for a fixed positive integer a, as x →∞. He proved the following result.

Theorem 1.1. (Titchmarsh) Under the assumption of the Generalized Riemann Hypothesis
(GRH) for the Dirichlet L-functions we have∑

a<p≤x

τ(p− a) = x
∏
p|a

(
1− 1

p

)∏
p-a

(
1 +

1
p(p− 1)

)
+ O

(
x log log x

log x

)
,

as x →∞.

In 1961, Linnik [12] established the above asymptotic unconditionally by using his dispersion
method. Later Rodriquez [18] and independently Halberstam [8], by a straightforward applica-
tion of the Bombieri-Vinogradov theorem, proved unconditionally the Titchmarsh conjectural
asymptotic formula. In the special case a = 1 we have∑

p≤x

τ(p− 1) =
ζ(2)ζ(3)

ζ(6)
x + O

(
x log log x

log x

)
,

where ζ(.) denotes the Riemann zeta function. It is immediate to see that

(1.1)
∑
p≤x

τ(p− 1) =
∑

1≤m≤x−1

π(x;m, 1) =
∑
m≥1

π(x;m, 1),

where π(x;m, 1) = #{p ≤ x; p is prime and p ≡ 1 (mod m)} is the usual counting function
for primes congruent to 1 modulo m. This allows us to make the following interpretation of
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Titchmarsh classical result. For each positive integer m and for each odd prime number p, we
have that p ≡ 1 (mod m) if and only if p splits completely in the cyclotomic extension Q(µm)
(where µm is the set of all roots of unity of order dividing m). Also note that the prime 2 splits
completely in Q(µm) if and only if m ∈ {1, 2}. So, essentially, in (1.1) we are counting each
prime number p ≤ x for each occurrence of m ∈ N such that p splits completely in Q(µm). This
interpretation of Titchmarsh’s original result leads us to consider the more general problem for
arbitrary families of Galois extensions.

Let F = {Fm; m ∈ N} be a family of finite Galois extensions of Q. For each m, let Dm be
a union of conjugacy classes of Gal(Fm/Q) and let τF (p) be the number of m ∈ N such that p
is unramified in Fm/Q and the Artin symbol σp belongs to Dm. Suppose that τF (p) < ∞ for
each prime p. Then we have the following generalization of the Titchmarsh Divisor Problem.

Generalized Titchmarsh Divisor Problem: Study the behaviour of
∑

p≤x τF (p) as x →∞.

In the above generality, the problem is too unwieldy unless some constraints are imposed on
the sizes of Dm, at least. Thus, for the most part, it seems reasonable to first consider the case
of Dm = {Id}, i.e., when τF (p) = #{m ∈ N; p splits completely in Fm}. This will be the case
for most of this paper (see Theorems 1.2 and 1.3). In Theorem 1.5 we will discuss a slightly
more general case in which Dm is a union of conjugacy classes of Gal(Fm/Q) with the property
that each σ ∈ Dm restricts to a given morphism on a subextension Em ⊂ Fm.

Next we consider an instance of the Generalized Titchmarsh Divisor Problem, which has
geometric flavour and it is also closely connected with the original Titchmarsh conjecture.

Let A be an abelian variety defined over Q, and for each positive integer m, let A[m] be the
set of torsion points of A of order dividing m (for more information on abelian varieties, see
Section 3). Let A = {Q(A[m]); m ∈ N} be the family of finite Galois extensions of Q and define

τA(p) = #{m ∈ N; p splits completely in Q(A[m])}.
Since Q(µm) ⊂ Q(A[m]) (according to [3, Lemma 1]), we know that if p splits completely in
Q(A[m]) then p splits completely in Q(µm) and so for p 6= 2 we have p ≡ 1 (mod m). For p = 2,
clearly, p may split completely in Q(A[m]) only if m = 1, 2 (since for m > 2, the prime 2 does
not split completely in Q(µm)). Therefore τA(p) < ∞ for all primes p. So we have the following
analogue of the Titchmarsh Divisor Problem for abelian varieties.

Titchmarsh Divisor Problem for Abelian Varieties Study the behaviour of
∑

p≤x τA(p)
as x →∞.

In this paper we answer completely the above question for abelian varieties which contain a
dimension one abelian subvariety E, assuming that the Generalized Riemann Hypothesis holds
for the Dedekind zeta function for each number field Q(A[m]). Note that any dimension one
abelian variety is an elliptic curve. Furthermore, we show that a version of our theorem holds
unconditionally when A = E is an elliptic curve with complex multiplication (CM).

We note the following connection between the classical Titchmarsh divisor problem and our
abelian varieties analogue. In both cases, one studies the asymptotic behaviour of the number
of primes p which split completely in the extensions of Q obtained by adjoining the torsion
points of order dividing m of a given algebraic group. Indeed, in the original Titchmarsh divisor
problem, the algebraic group is the multiplicative group Gm, while in our problem, the algebraic
group is the abelian variety itself.
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In Section 3, we show the following further connection between our question and the classical
Titchmarsh divisor problem. For a prime p of good reduction for the abelian variety A, let Ap

be the reduction modulo p of A. Let iA(p) be the largest positive integer m such that Ap(Fp)
contains a subgroup isomorphic to (Z/mZ)2g, where g = dim(A). In Section 3 we show that
τ(iA(p)) is a natural analogue of τ(p − 1); more precisely, we show that τA(p) = τ(iA(p)) for
each prime number p of good reduction for A. Therefore, the Titchmarsh divisor problem for
abelian varieties reduces to studying

∑
p≤x τ(iA(p)).

We prove the following theorem.

Theorem 1.2. Let A be an abelian variety defined over Q, which contains a dimension one
abelian subvariety E also defined over Q. If GRH holds for the Dedekind zeta function of each
extension Q(A[m])/Q, then∑

p≤x

τA(p) =

( ∞∑
m=1

1
[Q(A[m]) : Q]

)
· Li(x) + O

(
x5/6(log x)2/3

)
.

We believe Theorem 1.2 holds in general, possibly with a less precise error term, i.e.

(1.2)
∑
p≤x

τA(p) =

( ∞∑
m=1

1
[Q(A[m]) : Q]

)
· Li(x) + o

(
x

log x

)
,

as x → ∞. However, we will explain in Remark 4.1 why our method of proof for Theorem 1.2
does not generalize to arbitrary abelian varieties.

In the special case that A = E is a CM elliptic curve, one can prove unconditionally a slightly
weaker version of Theorem 1.2; in this case we denote by

τE(p) := {m ∈ N; p splits completely in Q(E[m])}.

Theorem 1.3. Let E be an elliptic curve defined over Q whose endomorphism ring End(E) is
isomorphic with the ring of algebraic integers of an imaginary quadratic field K. Then∑

p≤x

τE(p) =

( ∞∑
m=1

1
[Q(E[m]) : Q]

)
· Li(x) + O

(
x

(log x)c

)
,

for any c > 1.

In the case of elliptic curves the proof of the asymptotic for
∑

p≤x τE(p) is essentially the same
as the proof of the asymptotic for the set of primes that never split completely in extensions
Q(E[m]). (In the latter problem the constant in the main term contains a Möbius function,
instead of 1.) So the proof of Theorem 1.3 follows essentially from [15, Section 6] (see also [1]);
For proving Theorem 1.3 we observe that since Q(E[m]) = K(E[m]) for m ≥ 3 (see [15, Lemma
6]) the study of primes of Q that split completely in Q(E[m]) can be reduced to the study of
prime ideals of K that split completely in K(E[m]). On the other hand since the extension
K(E[m])/K is abelian, we can use class field theory to show that the prime ideals of K which
split completely in K(E[m]) belong to a bounded number of classes in the fm-ideal class group of
K. Here f is the conductor of the Grössencharacter associated to E and m is the ideal generated
by m in the ring of integers of K. Then one employs a version of the Bombieri-Vinogradov
theorem for number fields to count the prime ideals in some fixed classes of the fm-ideal class
group of K as m varies. The fact that the ring of integers of K has only a finite number of units
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plays a crucial role in the successful application of the Bombieri-Vinogradov theorem in a proof
of Theorem 1.3.

Going in the opposite direction, one can prove easily under GRH the asymptotic for the set
of primes p which never split completely in the extensions Am (see [15, Theorems 1 and 2]).

Theorem 1.4. Let A be an abelian variety defined over Q, and assume the GRH holds for each
extension Q(A[m])/Q. Then the number of primes p ≤ x which split completely in none of the
extensions Am is equal to ( ∞∑

m=1

µ(m)
[Q(A[m]) : Q]

)
· Li(x) + o

(
x

log x

)
,

as x →∞, where µ(m) is the usual Möbius function.

We would like to point out that although Theorem 1.4 and our conjectured asymptotic (1.2)
for
∑

p≤x τA(p) appear very similar to each other, however we are not able to adapt the proof
of Theorem 1.4 to prove (1.2). This is mainly due to the fact that in Theorem 1.4 we are
dealing with the estimations of sums which are taken over square-free integers and such sums
are amenable to application of sieve techniques, however to establish (1.2) we need to deal
with sums which are taken over integers (both square-free and non square-free) and these sums
are harder to estimate. So our variant of the Titchmarsh divisor problem for abelian varieties
appears to be a technically more challenging problem.

We note that our Theorem 1.4 fits into the general framework established by Murty in [15]
for studying the asymptotic of the set of primes which do not split in any extension from a given
family of Galois extensions. Our Theorem 1.4 also can be considered as a higher dimensional
analogue of the cyclicity question for elliptic curves (see [20], [15], and [4]). Therefore, similar to
the cyclicity question for elliptic curves, one may ask when is the density from our Theorem 1.4
positive, i.e.

δA :=
∞∑

m=1

µ(m)
[Q(A[m]) : Q]

> 0?

It is clear that if A[2] ⊂ A(Q), then δA = 0. This fact may be seen either directly since
in this case Q(A[2m]) = Q(A[m]) for all odd integers m, or by interpreting the conclusion
of Theorem 1.4. The density δA refers to the primes p for which Ap(Fp) does not have 2g
invariant factors; however, if A[2] ⊂ A(Q) then for all odd primes p of good reduction for A,
we have Ap[2] ⊂ Ap(Fp) and Ap[2] ∼→ (Z/2Z)2g. Therefore, there are at most finitely many
primes p satisfying the hypothesis of Theorem 1.4, which forces δA = 0. We also note that the
method of [4, Section 6] can be applied to show that if A[2] 6⊂ A(Q) then δA > 0, assuming the
image of Gal(Q(A[`∞])/Q) is an open subgroup of GSp(2g, Z`) for all primes `, and moreover,
Gal(Q(A[`∞])/Q) ∼→ GSp(2g, Z`) for all but finitely many primes `. Here A[`∞] is the set of
all torsion points of A of order a power of the prime number `, while GSp denotes the general
symplectic group of matrices with respect to the Weil pairing on the polarized abelian variety
A. Serre [21, Théorème 3] showed that if End(A) ∼→ Z and if dim(A) equals 2, 6 or any odd
integer, then the above assumption regarding the Galois groups Gal(Q(A[`∞])/Q) holds, and
thus, the proof of [4, Section 6] applies to show that δA > 0 in this case.

In order to prove Theorem 1.2, we consider the prime counting function

(1.3) πA(x;m) = #{2 < p ≤ x; p is a good prime for A which splits completely in Q(A[m])},
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and show that ∑
2<p≤x

τA(p) =
∑

1≤m≤
√

x+1

πA(x;m).

The proof of Theorem 1.2 comes as a result of an application of the Chebotarev density theorem
(under the assumption of GRH) for small values of m and employing a suitable upper bound
for πA(x;m) for large values of m. In finding the suitable upper bound for πA(x;m) for large
values of m, we use the information that A contains a dimension one abelian subvariety. We
believe that such a bound may be established for any abelian variety A. However, in Remark 4.1
we explain why our method does not apply for an arbitrary abelian variety A; so, in order to
establish the conclusion of Theorem 1.2 without the extra assumption about A, one would need
a new approach.

Moreover, using the same approach outlined above we can prove the following generaliza-
tion of Theorem 1.2. Note that for any elliptic curve E defined over Q, and for any m ∈ N,
Gal(Q(E[m])/Q) embeds naturally into GL2(Z/mZ); we will fix such an embedding for the
statement of our next result.

Theorem 1.5. Let A be an abelian variety defined over Q, which contains a dimension one
abelian subvariety E also defined over Q. Let δ be a real number in the interval [0, 1), and
let a be a positive integer. For each m ∈ N, we let Cm be a union of conjugacy classes in
Gal(Q(A[m])/Q) such that

(i) |Cm| � mδ; and
(ii) each σ ∈ Cm acts on E[m] through the scalar matrix(

a 0
0 a

)
.

For each prime number p we define

τA,C(p) := {m ∈ N : σp ∈ Cm},
where for each prime p, we denote by σp a lifting of the Frobenius in Gal(Q(A[m])/Q). Assuming
the GRH and the Artin Holomorphy Conjecture (AHC) hold for each extension Q(A[m])/Q, then∑

p≤x

τA,C(p) =

( ∞∑
m=1

|Cm|
[Q(A[m]) : Q]

)
· Li(x) + o

(
x

log x

)
,

as x →∞. More precisely if δ ∈ [0, 2/3) we have∑
p≤x

τA,C(p) =

( ∞∑
m=1

|Cm|
[Q(A[m]) : Q]

)
· Li(x) + O

(
x

10+3δ
12+2δ (log x)

4
6+δ

)
,

and if δ ∈ [2/3, 1) then∑
p≤x

τA,C(p) =

( ∞∑
m=1

|Cm|
[Q(A[m]) : Q]

)
· Li(x) + O

(
(x/ log x)

5+2δ
6+δ

)
.

Note that using estimate (3.1) together with the fact that |Cm| � mδ where δ < 1, we conclude
that the infinite sum from Theorem 1.5 is convergent. As mentioned before, if End(A) = Z it
is expected conjecturally (and also proven in many cases by Serre) that Gal(Q(A[m])/Q) ∼→
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GSp(2g, Z/mZ) and thus [Q(A[m]) : Q] � m2g2+g+1−ε; in this case, we can relax condition (i)
from Theorem 1.5 by asking that |Cm| � mδ for some δ ∈ [0, 2). Also, as proved by Serre [21]
(see also [2, Theorem 2.8]), there exists a positive integer D such that as long as a is relatively
prime with D, then a · Id2g is contained in the image of the Galois representation for A.

We consider Theorem 1.5 as a generalization of Titchmarsh original problem of studying∑
p≤x τ(p − a) for an arbitrary a. Indeed, the sum in Titchmarsh’s divisor problem reduces

to studying the asymptotic distribution of primes p whose corresponding Frobenius elements
correspond to the map x 7→ xa in the Galois group of the cyclotomic extension Q(µm)/Q. An
analogue of this condition in the geometric context of Theorem 1.5 is condition (ii). For example,
using the Weil pairing on the elliptic curve E, condition (ii) yields that the action on Q(µm) of
each such σp is precisely x 7→ xa2

. In particular, each p with σp ∈ Cm satisfies p ≡ a2 (mod m)
which shows that for each prime number p, the set τA,C(p) is finite.

The motivation for our paper comes in part from [10, Section 3], where Kowalski studied the
asymptotic behaviour of

∑
p≤x iE(p) (the sum is over the primes of good reduction for E) for

an elliptic curve E; and also our motivation comes in part from the paper of Murty [15] where
a related question is considered for families of Galois extensions. Our proof of Theorem 1.2 was
inspired by the method employed by Cojocaru and Murty in [4]. We also found enlightening
the papers of Duke and Tóth [6] and Duke [5] which study the primes p which split completely
in Q(E[m]). The plan of our paper is as follows. In Section 2, we introduce our notation. In
Section 3 we present more background on abelian varieties and set up our problem, and then in
Section 4 we prove Theorem 1.2. We conclude our paper by proving Theorem 1.5 in Section 5.

Acknowledgments. The authors thank Ram Murty and the referee for many useful sugges-
tions. Also, the second author thanks David Masser for a conversation regarding the size of the
Galois groups for division fields associated to abelian varieties.

2. Notation

The identity of any group G will be denoted simply by 1. For the cardinality of any finite
set S, we will use alternatively the notation #S, or |S|. For any a ∈ N, we denote by ϕ(a) the
Euler totient function.

For any abelian variety A, always a sum
∑

p fA(p) (for some function fA associated to A)
represents a sum over all primes p of good reduction for A.

For two functions f(x) and g(x) 6= 0, we use the notation f(x) = O(g(x)), or alternatively
f(x) � g(x), if |f(x)/g(x)| is uniformly bounded as x → ∞. Sometimes we will use the
notation f(x) �t g(x), or alternatively f(x) = Ot(g(x)) to denote the dependence of the O-
constant only on the parameter t. On the other hand we use the notation f(x) = o(g(x)) if
limx→∞ |f(x)/g(x)| = 0. We also use the notation Li(x) for

∫ x
2 dt/ log t.

3. The Setup of our Problem for Abelian Varieties

We describe in detail our abelian varieties analogue of the Titchmarsh divisor problem. We
start with preliminaries regarding abelian varieties (for a comprehensive treatment of abelian
varieties see [14]).
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An abelian variety is a projective connected algebraic group. From now on, we assume A is an
abelian variety defined over Q; for any number field K, we denote by A(K) the set of K-points
of the abelian variety A.

For any positive integer m, let A[m] be the kernel of the multiplication-by-m endomorphism
of A. If dim(A) = g ≥ 1, then A[m] ' (Z/mZ)2g, and so #A[m] = m2g. Then Am := Q(A[m])
is a finite Galois extension of Q and moreover Q(µm) ⊂ Am (according to [3, Lemma 1]). We
will use the following result of Masser [13] (see also [9, Théorème 1.1]).

Theorem 3.1. (Masser) Let A be an abelian variety of dimension g defined over a number
field K0. Then for every nontrivial finite extension K of K0, the size of the torsion subgroup
A(K)tor of A(K) is bounded above by C(A)[K : Q]g(log[K : Q])g, for some absolute constant
C(A) depending only on A.

We claim that Theorem 3.1 yields the following lower bound for the degrees of our extensions

(3.1) [Am : Q] �ε,A m2−ε for any ε > 0.

Indeed, according to Theorem 3.1, |A(Am)tor| ≤ C(A)[Am : Q]g(log[Am : Q])g. On the other
hand, clearly |A(Am)tor| ≥ m2g. Therefore m2g ≤ C(A)[Am : Q]g(log[Am : Q])g, which immedi-
ately yields [Am : Q] �ε,A m2−ε, for any ε > 0, as claimed by (3.1).

Now, since A is defined over Q, there exists an abelian scheme Ã over an open subset of
Spec(Z) such that the generic fiber of Ã is A (see for example the proof of [7, Claim 3.3]).
Therefore, for all but finitely many primes p, there exists a canonical reduction Ap of A modulo
p, which is an abelian variety defined over Fp of the same dimension as the dimension of A. Each
such p is called a prime of good reduction; if a prime is not of good reduction, then we say that
it is of bad reduction. Since there are only finitely many primes p of bad reduction, it suffices to
prove Theorem 1.2 by restricting the sum

∑
p≤x τA(p) over the odd primes of good reduction for

A. We exclude p = 2 since later we will employ the condition that the prime p splits completely
in Q(µm) if and only if p ≡ 1 (mod m), which holds as long as p > 2. Hence, from now on,
implicitly all our sums over primes p are restricted to the odd primes of good reduction for the
abelian variety A.

For a prime of good reduction p, we have that for all integers m such that p - m, the
torsion subgroup Ap[m] is isomorphic to (Z/mZ)2g. On the other hand, #Ap[p] ≤ pg. By [22,
Proposition 4.1(a), Ch. 7], the only possible ramified primes p for the extension Am/Q which
are of good reduction for A are the primes dividing m. Actually, the proof from [22] is only
for elliptic curves, but the same proof goes through for arbitrary abelian varieties - the main
ingredient of the proof there is [22, Proposition 3.1, Ch. 7], while for this last statement, one
uses [22, Proposition 3.2(b), Ch. 4] (which is a general statement about formal groups).

The finite group Ap(Fp) has
∏2g

i=1 | 1− ξi | elements, where the {ξi}1≤i≤2g are the eigenvalues
of the Frobenius corresponding to Fp seen as an endomorphism of Ap. Since for each i, we have
|ξi| ≤

√
p (see [14, Theorem 1.1(b), Ch. 2]), we conclude that

(3.2) #Ap(Fp) ≤ (1 +
√

p)2g .

Let eA(p) be the exponent of the finite group Ap(Fp); then Ap(Fp) ⊂ Ap[eA(p)]. Therefore,
Ap(Fp) is a subgroup of a group isomorphic to (Z/eA(p)Z)2g, since Ap[eA(p)] is itself isomorphic
with a subgroup of (Z/eA(p)Z)2g. Let iA(p) be the largest positive integer m such that there
exists a subgroup of Ap(Fp) isomorphic to (Z/mZ)2g. In particular, this means that there exist
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positive integers i1 | i2 | · · · | i2g such that Ap(Fp)
∼→ Z/i1Z × Z/i2Z × · · · × Z/i2gZ; we have

that iA(p) = i1 and eA(p) = i2g. Since

iA(p)2g | #Ap(Fp),

inequality (3.2) yields that

(3.3) iA(p) ≤ √p + 1.

The following result establishes a close connection between the primes that split completely
in Am and the divisors of iA(p) (the analogue of this statement for elliptic curves is well-known
- see [15] and [6]).

Lemma 3.2. Let A be an abelian variety defined over Q, let p be an odd prime of good reduction
for A. Then m | iA(p) if and only if p splits completely in Am.

Proof. If m | iA(p), then we first note that p is unramified in Am since it is a prime of good
reduction, and also because p - m (since #Ap[m] = m2g because m | iA(p)). Secondly, we note
that the Frobenius corresponding to Fp acts trivially on Ap[m], which means that the identity
of the Galois group Gal(Am/Q) is a lifting of the Frobenius corresponding to Fp. Therefore p
splits completely in Am by [17, Page 367, Corollary 1].

Conversely, assume now that p splits completely in Am. Since p is unramified in Am, we get
that p - m (recall that p is odd and Q(µm) ⊂ Am, which means that all odd primes dividing m
ramify in Am). If p ∈ Spec (OAm) lies above the prime p ∈ Spec(Z), then the reduction of each
element of A[m] modulo p belongs to Ap(Fp). However, since p is a prime of good reduction for
A which does not divide m, then the entire torsion subgroup A[m] goes injectively through the
reduction map modulo p (by a similar argument as in the proof of [22, Proposition 3.1, Ch. 7]).
Hence Ap[m] ∼→ (Z/mZ)2g is a subgroup of Ap(Fp); this can only happen if m | iA(p). �

Lemma 3.2 shows that our Titchmarsh Divisor Problem for Abelian Varieties is equivalent to
the asymptotic study of the sum

∑
p≤x τ(iA(p)). We use the prime counting function πA(x;m)

defined as in (1.3), and so, according to Lemma 3.2, we have

∑
2<p≤x

τ(iA(p)) =
∑

2<p≤x

 ∑
m|iA(p)

1

 =
∑

1≤m≤
√

x+1

πA(x;m).

Note that in the above equality, we used the fact that iA(p) ≤
√

x + 1 for p ≤ x (see inequality
(3.3)), and thus all divisors m | iA(p) are also at most

√
x + 1.

Let σp be the conjugacy class in Gm = Gal(Am/Q) of a lifting of the Frobenius associated
to the prime p. As noted before, p splits completely in Am if and only if σp = 1 (see [17, Page
367, Corollary 1]). So, πA(x;m) counts the number of primes p ≤ x for which their lifting of the
Frobenius in Gm equals the identity of this Galois group. This fact will allow us to employ in
our proofs an effective version of the Chebotarev Density Theorem (see [11, Theorem 1.1] and
[19, Theorem 4] for a proof of the first part, and [16, Corollary 3.7] for a proof of the second
part).

Proposition 3.3. (Effective Chebotarev) Let K/Q be a finite Galois extension with Galois
group G. Let C ⊂ G be closed under conjugation, and assume the GRH for K/Q. Define

ΠC(x,K/Q) := #{p ≤ x; p is a prime of Q unramified in K such that σp ⊆ C}
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where σp is the Frobenius conjugacy class corresponding to p in Gal(K/Q). Then

ΠC(x,K/Q) =
|C|
|G|

Li x + O

|C|x1/2 log

|G|
 ∏

p∈P (K/Q)

p

x

 ,

where P (K/Q) is the set of rational primes which ramify in K, and the constant appearing in
the O-notation is absolute and effectively computable.

Moreover if we assume that both GRH and AHC hold for K/Q, then we have the following
version of the above asymptotic with the improved error term.

ΠC(x,K/Q) =
|C|
|G|

Li x + O

|C|1/2x1/2 log

|G|
 ∏

p∈P (K/Q)

p

x

 ,

where P (K/Q) is defined above, and the constant appearing in the O-notation is absolute.

We will use Proposition 3.3 for the extensions Am/Q and for the conjugacy class of the identity
from Gal(Am/Q) (which obviously has only one element in it). Moreover, since we know that
the only primes which may ramify in Am are either the primes dividing m, or the (finitely many)
primes which are not of good reduction for A, we derive the following result.

Corollary 3.4. With the above notation and under the assumption of GRH,

πA(x;m) =
1

[Am : Q]
· Li(x) + OA

(
x1/2 log(mx)

)
.

Proof. The conclusion follows immediately from Proposition 3.3 once we note that Gal(Am/Q)
embeds naturally into GL2g(Z/mZ) (by identifying each σ ∈ Gal(Am/Q) with its action on
A[m]); therefore |Gal(Am/Q)| � m4g2

. �

Using Corollary 3.4 we establish the following result.

Corollary 3.5. Let η ∈ (1/4, 1/2), and let h(x) be any function satisfying

xη � h(x) � x1/2/(log x)3.

Then, working with the above notation and under the assumption of GRH, we have

(3.4)
∑

1≤m≤h(x)

πA(x;m) =

( ∞∑
m=1

1
[Am : Q]

)
· Li(x) + OA,η

(
h(x)x1/2 log x

)
.

Proof. Applying Corollary 3.4 for the range 1 ≤ m ≤ h(x), and also using estimate (3.1), we
obtain (3.4). Indeed, the sum from the left hand side in (3.4) equals ∑

1≤m≤h(x)

1
[Am : Q]

 · Li(x) + OA

(
h(x)x1/2 log x

)

=

( ∞∑
m=1

1
[Am : Q]

)
· Li(x) + Oε,A

(
x

log x
x−η(1−ε)

)
+ OA

(
h(x)x1/2 log x

)
=

( ∞∑
m=1

1
[Am : Q]

)
· Li(x) + OA,η

(
h(x)x1/2 log x

)
.
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In the above computation, we may choose ε = 4η−1
2η since η ∈

(
1
4 , 1

2

)
. �

4. Proof of Theorem 1.2

We continue with the notation as in Section 3.

Proof of Theorem 1.2. Using h(x) = x1/3/(log x)1/3 in Corollary 3.5, we obtain∑
1≤m≤x1/3/(log x)1/3

πA(x;m) =

( ∞∑
m=1

1
[Am : Q]

)
· Li(x) + OA

(
x5/6(log x)2/3

)
.

We will show that

(4.1)
∑

x1/3/(log x)1/3<m≤
√

x+1

πA(x;m) = OA

(
x5/6(log x)2/3

)
,

which will conclude the proof of Theorem 1.2. For proving estimate (4.1) we will use the fact
that A contains a one dimensional abelian subvariety E defined over Q. As noted before, E is
an elliptic curve.

Now, if the prime p splits completely in Am (for some positive integer m), then p also splits
completely in Em := Q(E[m]). Furthermore, we may assume that p is a prime of good reduction
for both A and E. Indeed, there are finitely many primes of bad reduction for A or E, and
thus for m large (as in the sum from (4.1)), no prime of bad reduction for either A or E splits
completely in Q(E[m]) because then p would split completely in Q(µm) (which may only happen
if p ≡ 1 (mod m) for odd p, or if m ≤ 2 for p = 2). Therefore πA(x;m) ≤ πE(x;m) (where
πE(x;m) is the prime counting function associated to E), and thus, in order to prove (4.1), it
suffices to show that

(4.2)
∑

x1/3/(log x)1/3<m≤
√

x+1

πE(x;m) = O
(
x5/6(log x)2/3

)
.

We prove (4.2) using the method employed in [4]. So, using Lemma 3.2 for the one dimensional
abelian variety E, we conclude that if p ≤ x splits completely in Q(E[m]) then m | iE(p), and
in particular, m2 | #Ep(Fp) (where Ep is the reduction of the elliptic curve E modulo the prime
p of good reduction for E). Using [14, Theorem 1.1, Ch. 2] for the one-dimensional abelian
variety E, we conclude that #Ep(Fp) = p + 1− aE(p), where

|aE(p)| ≤ 2
√

p ≤ 2
√

x.

Furthermore, since Q(µm) ⊂ Em, we obtain that if the odd prime p splits completely in Em, then
p ≡ 1 (mod m) (since p must also split completely in Q(µm)). Since p ≡ aE(p) − 1 (mod m2)
and also p ≡ 1 (mod m), then aE(p) ≡ 2 (mod m), and thus we have the following inequality:

(4.3) πE(x;m) ≤
∑

|c|≤2
√

x
c≡2 (mod m)

N(x;m, c),

where for each integer c, we let N(x;m, c) be the set of primes p ≤ x satisfying p ≡ c − 1
(mod m2). By the trivial upper bound for the number of primes in an arithmetic progression we
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have N(x;m, c) ≤ x
m2 + 1. Since we employ this estimate for N(x;m, c) only when m ≤

√
x + 1,

we conclude that
N(x;m, c) � x

m2
.

Applying this bound for N(x;m, c) in (4.3) yields

πE(x;m) ≤
∑

|c|≤2
√

x
c≡2 (mod m)

N(x;m, c)(4.4)

� x3/2

m3
,

for m ≤
√

x + 1. Therefore, using (4.4) with x1/3/(log x)1/3 < m ≤
√

x + 1, we obtain∑
x1/3/(log x)1/3<m≤

√
x+1

πE(x;m) �
∑

x1/3/(log x)1/3<m≤
√

x+1

x3/2

m3

= O
(
x5/6(log x)2/3

)
,

as desired. �

Remark 4.1. We expect that for any abelian variety A over Q∑
p≤x

τA(p) =

( ∞∑
m=1

1
[Q(A[m]) : Q]

)
· Li(x) + o

(
x

log x

)
,

as x →∞. The difficulty in establishing this asymptotic lies in estimation of the sum
∑

m πA(x;m)
on a range containing large values of m. It is plausible that a bound of the form

(4.5) πA(x;m) � xg+1/2

m2g+1

may hold for any abelian variety of dimension g. From such a bound and from Corollary 3.5
applied for h(x) = xg/(2g+1)

(log x)1/(2g+1) , one deduces that

∑
p≤x

τA(p) =

( ∞∑
m=1

1
[Q(A[m]) : Q]

)
· Li(x) + O

(
x

4g+1
4g+2 (log x)

2g
2g+1

)
.

The difficulty in establishing bound (4.5) for any arbitrary abelian variety A lies in the fact
that #Ap(Fp) = pg − aA(p) + 1, where | aA(p) |≤ (2g− 1)pg−1/2 + (4g − 2g− 1)pg−1 + 1 (see [14,
Theorem 1.1, Ch. 2]). Therefore, our approach through congruences to estimate the tail of the
series similar to (4.2) would not work for g > 1 since then the range for a in (4.3) would be too
large.

5. Proof of Theorem 1.5

In order to prove Theorem 1.5 we employ the same strategy as in our proof of Theorem 1.2;
however the key ingredient in this case will be the more refined error term in the Chebotarev
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density theorem as proved by Murty, Murty and Saradha [16] (see the second part of our Propo-
sition 3.3). So, similarly as in the proof of Theorem 1.2, for each m ∈ N we define

πA,C(x;m) = {p ≤ x : p is a prime of good reduction such that σp ∈ Cm},

where Cm is a conjugacy class in Gal(Am/Q) satisfying conditions (i)-(ii) from Theorem 1.5. It
suffices to prove that∑

1≤m≤x

πA,C(x;m) =

( ∞∑
m=1

|Cm|
[Am : Q]

)
· Li(x) + O

(
(x/ log x)

4+3δ+2ε
6+δ

)
+ O

(
x

10+3δ
12+2δ (log x)

4
6+δ

)
,

for any ε > 0. Indeed, as observed before, condition (ii) of Theorem 1.5 yields that p ≡ a2

(mod m) and thus m ≤ x as long as x > a2; this justifies the range of the above sum. We will
see later that actually we can reduce the above summation to the range m ≤ 2

√
x.

For the range 1 ≤ m ≤ h(x) = (x/ log x)
2

δ+6 , we use the second part of Proposition 3.3 (see
also Corollary 3.4) and conclude

(5.1) πA,C(x;m) =
|Cm|

[Am : Q]
· Li(x) + O

(
x1/2 log(mx) · |Cm|1/2

)
.

We sum (5.1) for all m in the above range and get

(5.2)
∑

1≤m≤h(x)

πA,C(x;m) =

 ∑
1≤m≤h(x)

|Cm|
[Am : Q]

 · Li(x) + O

x1/2 log x
∑

1≤m≤h(x)

|Cm|1/2

 .

Now, we use condition (i) from Theorem 1.5 and therefore conclude that

∑
1≤m≤h(x)

|Cm|1/2 � h(x)
δ
2
+1 �

(
x

log x

) 2+δ
6+δ

.

Therefore the error term in (5.2) is bounded by

(5.3) x
1
2 log x ·

(
x

log x

) 2+δ
6+δ

= x
10+3δ
12+2δ (log x)

4
6+δ .

On the other hand, using (3.1) we know that

[Am : Q] � m2−ε for any ε > 0.

So, |Cm|
[Am:Q] � m−2+δ+ε, and thus

∑
1≤m≤h(x)

|Cm|
[Am : Q]

=
∞∑

m=1

|Cm|
[Am : Q]

+ O
(
h(x)−1+δ+ε

)
.

Therefore

(5.4)

 ∑
1≤m≤h(x)

|Cm|
[Am : Q]

 · Li(x) =

( ∞∑
m=1

|Cm|
[Am : Q]

)
· Li(x) + O

(
(x/ log x)

4+3δ+2ε
6+δ

)
.
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In conclusion, (5.2) together with estimates (5.3) and (5.4) yield
(5.5)∑
1≤m≤h(x)

πA,C(x;m) =

( ∞∑
m=1

|Cm|
[Am : Q]

)
· Li(x) + O

(
(x/ log x)

4+3δ+2ε
6+δ

)
+ O

(
x

10+3δ
12+2δ (log x)

4
6+δ

)
.

Next we show that

(5.6)
∑

h(x)<m≤x

πA,C(x;m) = O
(
x

10+3δ
12+2δ (log x)

4
6+δ

)
.

First we note that by a similar reasoning as in the proof of Theorem 1.2, using condition (ii) of
Theorem 1.5, it suffices to prove

(5.7)
∑

h(x)<m≤x

πE,a(x;m) = O
(
x

10+3δ
12+2δ (log x)

4
6+δ

)
,

where πE,a(x;m) is the set of all primes p ≤ x such that their lifting of the Frobenius in
Gal(Em/Q) corresponds to the scalar multiple a · Id2 under an embedding of Gal(Em/Q) into
GL2(Z/mZ).

Now, as proved in [6, Formula (2-2)] (see also [5, Formula (6)]), we have

(5.8) 4p = aE(p)2 −∆E(p)bE(p)2,

where ∆E(p) is the discriminant of the ring of endomorphisms of the reduced elliptic curve Ep

over the finite field Fp. Furthermore, aE(p) is (as before) the unique integer satisfying

#Ep(Fp) = p + 1− aE(p),

and bE(p) is also an integer. Moreover, using [6, Theorem 2.1], if σp = a · Id2 then

(5.9) bE(p) ≡ 0 (mod m) and aE(p) ≡ 2a (mod m).

In particular, using also (5.8) we obtain that

m2 | (4p− aE(p)2).

Since |aE(p)| ≤ 2
√

p and p ≤ x, we conclude that m ≤ 2
√

x. This allows us to restrict the
summation from both (5.7) and (5.6) over the smaller range h(x) < m ≤ 2

√
x. Using (5.8) and

(5.9) we conclude that∑
h(x)<m≤2

√
x

πE,a(x;m) ≤
∑

h(x)<m≤2
√

x

∑
|c|≤2

√
x

c≡2a (mod m)

L(x;m, c),
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where L(x;m, c) counts the primes p ≤ x such that 4p ≡ c2 (mod m2). Since m ≤ 2
√

x, we may
employ the trivial bound L(x;m, c) � x

m2 and thus conclude that∑
h(x)<m≤2

√
x

πE,a(x;m)

�
∑

h(x)<m≤2
√

x

∑
|c|≤2

√
x

c≡2a (mod m)

x

m2

�
∑

h(x)<m≤2
√

x

x3/2

m3

� x
3
2

h(x)2
= x

10+3δ
12+2δ (log x)

4
6+δ .

as desired for (5.6). Estimates (5.6) and (5.5) imply that∑
1≤m≤x

πA,C(x;m) =

( ∞∑
m=1

|Cm|
[Am : Q]

)
· Li(x) + O

(
(x/ log x)

4+3δ+2ε
6+δ

)
+ O

(
x

10+3δ
12+2δ (log x)

4
6+δ

)
,

for ε > 0. Now if δ ∈ [0, 2/3) we choose 0 < ε ≤ (2 − 3δ)/4 and if δ ∈ [2/3, 1) we choose
ε = (1 − δ)/2. In the former case (latter case) the second (first) error term is dominant. This
finishes the proof of Theorem 1.5.
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A. Fröhlich (ed.), 1977, 409–464.
[12] J. V. Linnik, The dispersion method in binary additive problems, (Leningrad 1961), Transl. Math. mono-

graphs, Vol. 4, Amer. Math. Soc., Providence, R. I., 1963; Chapter 8.
[13] D. Masser, Lettre à Daniel Bertrand du 10 novembre 1986.
[14] J. Milne, Abelian varieties. Lecture notes available online at http://www.jmilne.org/math/CourseNotes/AV.pdf.



A GEOMETRIC VARIANT OF TITCHMARSH DIVISOR PROBLEM 15

[15] M. R. Murty, On Artin’s conjecture, J. Number Theory 16 (1983), 147–168.
[16] M. R. Murty, V. K. Murty, and N. Saradha, Modular forms and the Chebotarev density theorem, American

J. Math. 110 (1988), 253-281.
[17] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, third edition, Springer, 2004.
[18] G. Rodriquez, Sul problema dei divisori di Titchmarsh, Boll. Un. Mat. Ital. (1965), 358–366.
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